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Abstract

Investigation of the visual system has mainly relied on a-priori hypotheses to restrict
experimental stimuli or models used to analyze experimental data. Hypotheses are an
essential part of scientific inquiry, but an exclusively hypothesis-driven approach might
lead to confirmation bias towards existing theories and away from novel discoveries not
predicted by them. This paper uses a hypothesis-neutral computational approach to
study four high-level visual regions of interest (ROIs) selective to faces, places, letters,
or body parts. We leverage the unprecedented scale and quality of the Natural Scenes
Dataset to constrain neural network models of these ROIs with functional Magnetic
Resonance Imaging (fMRI) measurements. We show that using only the stimulus im-
ages and the associated activity in an ROI, we are able to train from scratch a neural
network that can predict the activity in each voxel of that ROI with an accuracy
that beats state-of-the-art models. Moreover, once trained, the ROI-specific networks
can reveal what kinds of functional properties emerge spontaneously in their training.
Strikingly, despite no category-level supervision, the units in the trained networks act
strongly as detectors for semantic concepts like ‘faces’ or ‘words’, thereby providing sub-
stantial pieces of evidence for categorical selectivity in these visual areas. Importantly,
this selectivity is maintained when training the networks with selective deprivations
in the training diet, by excluding images that contain their preferred category. The
resulting selectivity in the trained networks strongly suggests that the visual areas do
not function as exclusive category detectors but are also sensitive to visual patterns
that are typical to their preferred categories, even in the absence of these categories.
Finally, we show that our response-optimized networks have distinct functional prop-
erties. Together, our findings suggest that response-optimized models combined with
model interpretability techniques can serve as a powerful and unifying computational
framework for probing the nature of representations and computations in the brain.
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1 Introduction

Large strides have been made in understanding early visual cortex by presenting model
organisms with abstract stimuli like oriented edges or sine-wave gratings and studying the
properties of evoked neuronal responses [1, 2]. However, detailed characterization of neuronal
responses in high-level areas has been more difficult, partly because it requires determining
what stimuli to present to probe the response properties of these areas. This is a circular
problem: understanding what an area encodes requires presenting the optimal stimulus but
the selectivity of the visual area remains hidden until the optimal pattern is presented [3].

One solution is to hypothesize the stimulus attributes represented in a region and then
design experiments with carefully selected stimuli to test the hypothesis. Indeed, with this
deductive approach, several category-selective regions have been reliably identified within the
human ventral temporal cortex (VTC) and macaque inferotemporal cortex (IT), including
regions responding selectively to faces [4, 5, 6], places [7, 8, 9], bodies [10, 11, 12, 6],
tools [13], words [14, 15], and other categories [16]. However, this approach is not exhaustive
or scalable; response properties within large swathes of the sensory cortex remain elusive.

An alternative approach is the use of naturalistic images and videos to drive activity in
the visual cortex, followed by the use of encoding models to test different hypotheses about
voxel-level tuning [17, 18, 19, 20]. This inductive system identification approach decouples
data collection from hypothesis testing, allowing multiple candidate models to be tested,
post-hoc, on the same dataset. Models are constructed to test a specific hypothesis about
brain function, and are typically adjudicated based on their prediction accuracy on held-out
datasets [21]. Therefore, this approach still relies on the prior specification of competing
hypotheses and their formulation in terms of explicit quantitative functional forms (e.g.
low-level gabor wavelet pyramid, motion-energy pyramid, semantic encoding models etc.).

Recently, representations extracted from deep neural networks have set new standards
for predicting neural responses along the ventral visual pathway in humans and non-human
primates [22, 23]. Optimizing for tasks like object recognition can lead to the emergence
of representations that accurately predict the ventral visual pathway, with different tasks
leading to different alignment with individual brain regions [24]. This suggests that arti-
ficial and biological networks could share computational goals, offering a new way to test
computational hypotheses about the brain.

All the approaches above rely on strong underlying hypotheses. In the deductive ap-
proach, the hypothesis governs the selection of the narrow range of stimuli. In the inductive
system identification approach, hypotheses are specified via an encoding model. When an
encoding model uses representations from task-optimized deep neural networks, the hypoth-
esis is specified by the network task. In contrast, hypothesis-neutral approaches with mini-
mal a priori assumptions are likely to be flexible and effective in revealing tuning properties
throughout the visual system. One such approach is response optimization, i.e., fitting model
parameters to reproduce the brain response related to stimulus directly. When successful
in predicting new responses and generalizing to unseen contexts, the response-optimization
approach can facilitate the discovery of unknown neuronal tuning properties and provide
strong tests for existing theories.

To date, the amount of data available to fit response-optimized models was often deemed
insufficient. However, recent advances in large-scale data collection present an opportunity
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to change this status-quo. Indeed, several recent studies have successfully built response-
optimized models of early visual cortex [25, 26, 27, 28]. However, it is unclear how such an
approach generalizes to high-level visual areas and what it might reveal about them.

We adopt a hypothesis-neutral approach and systematically characterize selectivity in
four human higher-level visual regions of interest (ROIs) via response-optimized models. We
focus on the fusiform face area (FFA) [4], the extrastriate body area (EBA) [10], the visual
word form area (VWFA) [14], and the retrosplenial cortex (RSC, a visual place selective
area) [29]. First, we leverage the unprecedented scale and quality of the massive 7T fMRI
Natural Scenes Dataset (NSD) [27] to train a deep neural network model to predict activity
of voxels in each ROI. Each network is randomly initialized (not pre-trained on any task)
and is optimized to predict the activity of all voxels in the ROI from the stimulus image. Our
models achieve high prediction performance, on par or outperforming state-of-the-art task-
optimized models. Then, we ask what kinds of functional properties emerge spontaneously in
our response-optimized models. We examine the trained networks through structural analysis
(feature visualizations) as well as functional analysis (feature verbalization) by running high-
throughput experiments with these models on large-scale probe datasets and dissecting the
evoked network activations [30, 31]. Strikingly, despite no category-level supervision (since
the networks are solely optimized for brain response prediction), the units (neurons) in the
optimized networks act as detectors for high-level visual concepts like ‘faces’ (in the FFA
model) or ‘words’ (in the VWFA model), thereby providing one of the strongest evidences
for categorical selectivity in these ROIs till date.

The observed strong semantic selectivity in model neurons raises another important ques-
tion: are the ROIs simply functioning as processing units for their preferred category (e.g.,
simply deciding whether the stimulus contains a face or a word) or are they a by-product
of a non-category-specific visual processing mechanism? To probe this, we create selective
deprivations in the visual diet of these response-optimized networks and study the selectivity
of model neurons in the resulting ‘deprived’ networks. We find that the resulting models
still demonstrate high selectivity for the preferred category, even in the absence of any expe-
rience with the preferred category. This suggests that the same “filters” used to encode the
preferred category are used to encode other non-specific natural images as well. The results
presented here further indicate that category-selective voxels do not respond to their pre-
ferred category by the unique structure of that category but perhaps by some other general
structural characteristics that other stimuli may share with the preferred category.

Beyond characterizing tuning properties of individual voxels, we further demonstrate
that the proposed models generalize remarkably and selectively to different perceptual tasks:
representations from the model of the fusiform face area (FFA) can predict facial identity
while those from the retrosplenial cortex (RSC, a visual place selective area) can discriminate
between spatial layouts of different indoor scenes, revealing important functional distinctions
between different ROIs. Together with this new class of data-driven models for higher order
visual areas and novel model interpretability techniques, our study illustrates that response-
driven deep neural network models of visual cortex can serve as powerful and unifying tools
for probing the nature of representations and computations in the brain.
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Results

We train deep neural network models directly to predict the brain activity related to viewing
natural images. We break from the current computational neuroscience approach of extract-
ing image representations from networks previously optimized on large image databases, with
tasks such as object classification. Instead, we optimize a network starting from scratch to
directly predict the recorded activity in the voxels of a given high-level ROI. The network
therefore learns to represent images in a way that is optimal for predicting voxel activity in
that ROI, capturing the important dimensions of variance and the tuning of the voxels. We
train a separate model for each of four ROIs: FFA, EBA, VWFA and RSC. We capitalize
on the natural variation in the rich Natural Scenes Dataset (NSD) [27] to train these models
directly on stimulus-response pairs from a wide range of naturalistic scenarios. Notably, the
dataset contains complex and sometimes crowded images of various everyday objects in their
natural contexts at varied viewpoints. The stimulus set is thus more typical of real-world
vision and allows us to characterize neural representations and computations in ethological
conditions.

Accurate predictions on complex, cluttered scenes; rapid general-
ization to new subjects

Our models learn deep convolutional feature spaces that are shared across thousands of voxels
over multiple subjects. We utilize a rotation-equivariant Convolutional Neural Network
(CNN) architecture to learn these feature spaces directly from fMRI data. This architectural
design choice enables the model to learn identical features at multiple orientations and spatial
locations, mimicking the response properties of neurons in early and intermediate visual
areas, which are known to capture similar features like edges and curves but at different
orientations and locations in the visual field [32, 33, 34, 35]. We employ a linear readout model
on top of this feature space to predict the responses of individual voxels in the ROIs. The
linear readout is factorized into spatial and feature dimensions following popular methods for
neural system identification in mouse visual cortex [36]. This factorization separates receptive
field location (i.e., what portion of the visual space is the voxel most sensitive to?) from
feature tuning (i.e. what features of the visual input is the voxel sensitive to?). Sharing the
entire representational network across subjects, sharing convolutional filters weights across
visual field locations (translation equivariance) and orientations (rotation equivariance) and
a factorized readout jointly enable the sample-efficient training of the response-optimized
models. Our baseline is a task-optimized model trained to perform object classification on
the large-scale ImageNet dataset (see Fig.1 and the Methods section for details). To assess
the prediction performance of this model, we used the standard methodology of modeling the
voxel response as a linear weighting of the task-optimized network’s output units (from the
best-performing layer that is determined using a separate validation set). Further, just as
in our response-optimized models, this linear mapping is factorized into spatial and feature
dimensions as this was found to significantly improve performance over the traditional non-
sparse readout method.

We compared the performance of response-optimized and task-optimized models (see
fig.1). The models are trained jointly on four subjects and their performance is estimated on
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Figure 1: Quantitative Results. A depicts a schematic of the experimental paradigm and a cor-
tical flatmap of the 4 visual ROIs studied here, which have some noticeable overlaps. B shows the
prediction accuracy of the proposed and baseline models (a task-optimized model trained on object
classification on ImageNet and a simple categorical model) as estimated by the Pearson correlation
coefficient (R) between predicted and held-out responses for the same subjects on which the mod-
els were trained. C Voxel-wise distribution of the difference between prediction accuracies of the
response-optimized and task-optimized models. The inset shows the proportion of voxels that are
better predicted by each. The response-optimized models achieve parity with the task-optimized
model trained on a million ImageNet images (no difference was found through a permutation test,
p>0.01 for all 4 ROIs). D Cortical flatmap illustrating the prediction accuracy achieved by the
response-optimized model in all voxels of the four ROIs. High predictive accuracy (>0.6 unnor-
malized correlation) is achieved within large swathes of these ROIs. E Generalization performance
of all models to new subjects as assessed by varying the amount of stimulus-response pairs used to
train the linear readout. Response-optimized models generalize much more efficiently to novel sub-
jects than task-optimized or categorical models. F Un-normalized prediction accuracy (R) of every
voxel against the corresponding noise ceiling. Noise-normalized prediction accuracy is reported in
the inset. Much of the variance in predictive accuracy across voxels is driven by their noise ceiling.
Response-optimized models attained approximately 61-70% of the noise ceiling, functioning as one
of the most quantitatively precise voxel-level models of these higher-order regions.
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a held-out set of 1,000 images seen by these same subjects. For these subjects, the response-
optimized models attained approximately 65% of the noise ceiling (median correlation),
with noise-normalized correlations lying between 52-77% for 50% of the voxels, yielding
one of the most computationally precise voxel-level models of these higher-order regions.
Further, response-optimized networks achieve parity with task-optimized networks on the
same subjects (FFA: p = 0.274, VWFA: p=0.014, RSC: p=0.709, EBA: p = 0.510. p-
values calculated by two-side permutation test with N=1,000). Similar to results previously
reported using recordings from non-human primates [22], our models are far more predictive
than the category ideal observer model which employed the category membership of labeled
objects in the image (another, simpler baseline than task-optimized models).

Next, we assessed how these predictive models generalize to the remaining set of four
subjects that were not used to train the model. For this analysis, we train each network
to predict activity for the remaining subjects by only optimizing the weights of the final
linear readout while keeping the rest of the network fixed. We vary the amount of stimu-
lus/responses pairs from the new subjects to train the readouts, from only 100 samples to a
large set of 5,445 stimulus-response pairs. The influence of neural dataset size on predictive
accuracy can complement prediction performance when evaluating the quality of two com-
peting models. We consider that the best representation is the one that enables the most
sample-efficient learning of the readout model for new subjects. Importantly, the difference
in performance between response-optimized and task-optimized networks becomes even more
striking as we limit the stimulus-response pairs (see fig. 1.E). In FFA, EBA and RSC, the
average performance for the response-optimized networks is already at more than 78% of its
final value after just 100 training samples, compared with 60−67% and 50−65% for the task-
optimized and categorical models respectively. In FFA and EBA, we need 500 samples for
the task-optimized network to achieve a comparable performance to the response-optimized
network with 200 samples. This remarkable generalization of response-optimized networks
suggests that they are able to sufficiently constrain the space of possible solutions in the
right manner so that the readouts for new subjects can be learned with few samples.

Selectivity, Tolerance and Clutter-invariance revealed by network
dissection

Here we demonstrate that the high prediction accuracy and generalization of our hypothesis-
neutral response-optimized networks do not come at the cost of model intelligibility. Instead,
we show that the response-optimized models possess both empirical and aesthetic virtues,
being computationally precise and elegant at the same time. Notably, features that emerge
in the trained networks result from optimization to match ROI responses. After training the
networks, we can probe their learned features, understand the computations they perform
and, consequently, understand the characteristics of the ROI responses they model.

We adapt the recently proposed technique of network dissection [30, 31] to generate “ver-
bal” explanations for the responses of different voxels. The technique measures the degree of
alignment between a voxel’s response properties and an extensive visual concept dictionary,
spanning objects and fine-grained visual concepts like parts of objects, colors, materials,
and textures. We quantify the agreement between each concept and individual voxel using
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Figure 2: Network Dissection Results. A Schematic of the model conversion procedure used to
obtain the dissection results. The spatial mask is discarded and the learned feature tuning of every
voxel is employed to create an additional 1x1 convolutional layer, so that every voxel is represented
by an independent unit in this convolutional layer. B demonstrates the median IoU metric across
all voxels belonging to an ROI for the top 20 visual concepts rank ordered by median IoU. The
top concepts for FFA, VWFA and EBA discovered using this hypothesis-neutral approach (‘heads’,
‘signboards’ and ‘person’ respectively) align remarkably well with the known domain-specificty of
voxels in these regions. C shows the matched concepts for every response-optimized model, i.e.,
the number of units in the ‘voxel’ layer that showed high alignment (IoU>0.04) with a human-
interpretable visual concept. Multiple units (i.e., multiple voxels) are associated with the same
high-level concept. Contrary to object recognition networks which are trained with explicit label
supervision and which show a broad diversity of detectors, the matched visual concepts in these
response-optimized networks are highly specific and aligned with the previously hypothesized func-
tional role of these ROIs. D shows the matched concepts for 3 networks with the same architecture
as response-optimized models but random weights. The detection of these concepts (e.g. sky, grass,
road) is likely driven by low-level cues, like color, instead of complex features.7
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the Intersection over Union (IoU) metric following [30]. The IoU metric is computed on
an independent, large-scale natural image database comprising a diverse set of real-world
environments (indoor, urban, and natural). An alignment is computed between two maps
for each image in the database. The first map indicates the high-level concept corresponding
to each pixel in the image (pixel-level labeling is performed by humans or a high-performing
segmentation network). The second map indicates the spatial regions within the image that
are highly activated by the convolutional filter corresponding to a voxel (see Methods section
for further details). After computing the alignment across images, the result is an alignment
value for every voxel-concept pair. It is essential to note this methodological framework’s
subtle yet profound implications. Previously, response profiles have been primarily defined
using image-level category labels. Our proposed approach enables us to model voxels as
convolutional filters and systematically identify the image properties that they respond to
without an a-priori hypothesis specification. Our approach enables us to characterize not
just ‘which’ images activate a particular brain voxel but also ‘what’ in those images drives
the response, providing a rich characterization of neural responses to crowded natural scenes.

Fig. 2(B) shows the results of this dissection procedure: for the top 20 concepts in each
ROI, the median IoU is shown across all voxels in that ROI. Following [30], we use an IoU
threshold of 0.04 to detect ‘matching’, i.e., if a voxel’s corresponding filter exhibits a high
agreement with a concept map (exceeding 0.04 IoU threshold), we say that the particular
voxel detects or encodes that concept. We show in fig. 2[C] the concepts for which a high
agreement is found and the count of the voxels that achieve a high agreement with that
concept (each voxel is only counted once, against the concept with the top IoU). Fig. 2[D]
shows the same measures for untrained networks having the same architecture as response-
optimized models, but with random weights. Finally, fig. 3 shows a visualization of the part
of highly activating images that leads to the high activation. For each ROI and its preferred
concept (according to the median IoU metric), the five top voxels are chosen, and for those,
the top 100 images activating images are picked from the large scale dataset. For randomly
selected images from this set, the area that leads to maximum activation of the voxel is
shown.

Fig. 2 shows that the FFA network’s favorite concept is ‘head’ (the large scale dataset
didn’t have a face label, and faces are labeled as parts of heads). The head concept has the
highest median IoU of 0.125, more than other top concepts for FFA and the other ROIs. Some
FFA voxels predictors have IoU as high as 0.20 with the ‘head’ concept. We can contrast
this with the ‘head’ detectors (model units with IoU>0.04 against the ‘head’ concept) that
emerge spontaneously in the last convolutional layer of a standard AlexNet trained on image
categorization (ImageNet)1. In this task-optimized model, the best detector yields an IoU of
0.15 against the ‘head’ concept maps with the median IoU among all head detectors being
0.08. Fig. 3[A] illustrates how the chosen voxels in FFA act as head (face) detector, with
the parts of images driving the predicted response being the faces.

The VWFA network has high median IoU with signboards (containing letters) even
though the number of images with writing is small in the NSD dataset. Fig. 3[B] shows
that signboards with very different lettering and signs (different backgrounds, fonts, styles,
scales, colors, orientations etc) drive the predicted response in the top voxels, even though

1Pre-trained model downloaded from here: https://pytorch.org/hub/pytorch_vision_alexnet/
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the scenes are often cluttered with myriad objects at once as shown. This result replicates
the highly invariant orthographic processing in the VWFA [37]. The VWFA also has high
alignment with the concepts of head and person, which is due to the anatomical overlap
of localized VWFA with FFA that we discuss in a following section. EBA has high IoU
with people, head and skin. The IoU with the people concept is highest, highlighting that
EBA cares about body parts. Interestingly, for RSC, we observe a large number of ‘window’
detectors after applying the dissection procedure. Navigational affordances are important
for scene perception, and windows might be particularly indicative of such affordances in
indoor scenes and critical to functional scene understanding (for e.g., windows indicate an
obstructed path where movements are blocked) [38]. Other concepts evoking high response
within the RSC (e.g., ‘wall’, ‘glass’, ‘building’) all relate to scene perception and navigation,
contrary to concepts discovered within the models optimized for the other three ROIs, high-
lighting the functional differences between these visual areas. Despite no access to category
labels during training, our networks gain a strong semantic selectivity for high-level visual
concepts.

Maximally exciting images reveal structured, high-level features
consistent with the previously hypothesized functional role of each
ROI

In classical neuroscience, identifying the optimal visual stimuli (the peak of the tuning curve)
for different neurons has been instrumental in understanding the selectivity of these neurons
and how they contribute to perception. Our models allow us to follow this approach for com-
plex stimuli. We perform an unconstrained optimization over input noise to discover input
images that would result in maximal (predicted) excitation of individual voxels. We refer
to these images as the maximally exciting inputs. While optimization without naturalistic
constraints may impose its own set of challenges including generation of hard-to-recognize
visual features, visualization with regularization or naturalistic constraints may not be truly
faithful to the model. We favor the former approach and do not restrict the space of max-
imally exciting inputs to the naturalistic domain. Instead, we let the optimization process
evolve complex visual inputs without constraints.

In fig. 4, we show that maximally exciting images for different voxels in the same ROI
capture very similar visual properties. Out of all the features that could emerge from uncon-
strained optimization in a network trained on cluttered natural scenes, from simple features
such as rounded shapes or eyes to possibly more complex high-level features, face-like images
with ovelapping small and large circles almost exclusively pop up for all FFA voxels, provid-
ing a strong support for the hypothesis that full ‘face’ features lead to increased activation in
FFA. Similary, for EBA, we observe elongated curved shapes, loosely similar in form to body
parts such as arms or legs. Maximally exciting inputs for the VWFA resemble orthographic
units comprising curves and lines of different stroke widths like the visual form of letters.
Finally, the maximally exciting inputs for voxels within RSC are reminiscent of windows (in
accordance with the Network dissection results) in different reference frames, which may be
linked to RSC’s role in spatial cognition [39]. We also observe rectilinear features in the
maximally activating images for RSC, consistent with the previously found rectilinear pref-
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Figure 3: Segmentation maps. Activation of a single voxel (converted to a 1x1 convolu-
tional filter) in response to an input image is visualized as the region in the input space that
elicits the highest (top 1% quantile level) activation in the corresponding filter output. Top
five voxels as ranked by the IoU with the preferred concept for every ROI (‘heads’, ‘sign-
boards’, ‘person’ and ‘windows’ for FFA, VWFA, EBA and RSC respectively) are identified
and input images are randomly selected for each voxel among the top 100 most activating
images for that particular voxel to maximize diversity across voxels. Each row corresponds
to a distinct voxel within the respective ROIs.
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Figure 4: Maximally exciting inputs. Most activating images as discovered by the opti-
mal stimulus identification procedure, wherein an unconstrained optimization is performed
over random input noise to discover the input that would result in maximal excitation of
individual voxels. Images are shown for 5 randomly selected voxels per ROI starting from
3 random initial points per voxel. Each column is a randomly chosen voxel and each row
is a different initialization. This structural analysis reveals that the featural drivers of in-
dividual voxels (the visualizations) are consistent with the verbalizations for those voxels
as expressed by the network dissection procedure. More specifically, face-like visual forms,
curved features akin to orthographic symbols, skin-colored shapes reminiscent of some body
parts and window-like rectilinear features emerge spontaneously for FFA, VWFA, EBA and
RSC respectively.

erence of scene-selective areas [40], while the EBA and the FFA only captured curvilinear
features. Our results therefore add proof to this hypothesis by learning the model that best
predicts the data instead of starting apriori with the hypothesis.

End-to-end models capture tuning differences between voxels in the
same ROI

To investigate if the proposed models are indeed capturing meaningful differences between
voxels, we computed spatial generalizability matrices by correlating the predicted response of
each voxel against the measured response of every other voxel to obtain an N×N correlation
matrix for shared models, where N is the total number of voxels across all participants [41, 42,
43]. These matrices reveal the similarity of the tuning of each pair of voxels. To account for
higher variability in measured versus predicted response, we normalize the rows and columns
of this correlation matrix following [44]. The diagonal dominance in these identifiability
matrices, as shown in Figure 5[A], suggests that predicted responses are most similar to
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the same voxel’s measured responses, indicating that all models are successfully able to
capture meaningful voxel-level idiosyncracies, albeit to different extents. The generalization
matrices reveal the presence of several distinct clusters (at least two) for all ROIs, such
that the models of voxels in one cluster are highly predictive of responses of voxels in the
same cluster (both within, and across participants), but do not generalize to other clusters.
Importantly, this clustering structure is prevalent across participants (specifically for FFA,
EBA and VWFA, with more variability for RSC), indicating a shared organization. We leave
a thorough characterization of the differences between these clusters for future work.

Next, we turn our focus to voxels that were strongly selective for a different semantic
concept than the conjectured preferred category for the visual area they belonged to. We
specifically examine the ‘head’ selective model neurons identified by the network dissec-
tion procedure within VWFA and EBA. We assessed the correlation between the quanti-
tative agreement of these voxels with the ‘head’ concept over the ‘signboard’ or ‘person’
concept (IoU, as evaluated by our proposed dissection procedure) and the degree of their
face-selectivity over selectivity for words or body parts (as quantified with the indepen-
dent functional localizer experiment); our results suggested a very strong correspondence
between the two (Pearson’s R∼0.34-0.66, p<0.001 for all 4 subjects and both comparisons,
Figure 5B), despite the very different experimental paradigms involved in the two quantifi-
cations. Further, in addition to comparing this relative selectivity, we also compared the
absolute ‘head’ selectivity of voxels in EBA and VWFA against the face-selectivity (t-value)
measured with the localizer agreement. Again, we see a striking pattern of similarity in
these estimated and measured (Pearson’s R∼0.6-0.7 (p<0.001); see Figure 5[C] for qualita-
tive match and Appendix for quantitative agreement). Our computational models are thus
able to successfully capture the spatially overlapping representations of semantic categories
and graded functional organization within human extrastriate cortex.

High selectivity persists in ‘face-deprived’ and ‘body-deprived’ net-
works

The strong semantic selectivity in our response-optimized models raises an important ques-
tion: are the ROIs they model simply functioning as detectors for their preferred category?
For example, training a neural network to predict FFA would then be equivalent to giving
it images associated with a label that indicates the presence of a face. An alternative hy-
pothesis is that category-selective ROIs are sensitive to visual properties that are typical of
their preferred category, even in the absence of that category. In that case, training a neural
network to predict FFA would provide it with a more complex signal that allows it to pick
up on the sensitivity of the FFA to those visual properties.

To differentiate between these alternatives, we focus on FFA and EBA and train response-
optimized models with the same architecture above but with a visual training diet that is
entirely deprived of images containing the ‘person’ category. Surprisingly, we find that,
despite not seeing any image with human faces or bodies during training, the networks
optimized to predict FFA and EBA retain their categorical selectivity, as shown in Figure 6.
The training diet deprivation did result in a drop in the agreement of model voxels with
their respective preferred category (e.g., in FFA, the median IoU with ‘head’ dropped from
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Figure 5: Voxel-level identifiability A shows spatial generalization matrices for every ROI
computed by correlating the predicted response of every voxel against the measured response
of every other voxel belonging to the same ROI (within and across subjects). Black lines mark
subject boundaries. B Scatter plot depicting the difference between IoU of the preferred
category (loosely, ’signboard’ and ’person’ for VWFA and EBA, respectively) and faces
against the difference between the corresponding t-stat values estimated by the functional
localizer experiment. Each point is an individual voxel belonging to the same ROI. C shows
the cortical surface plot of face selectivity as measured by the localizer experiment against
the IoU with the ‘head’ concept as quantified by the dissection procedure for one subject
(Similar plots for remaining subjects are shown in the Appendix)
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∼ 0.13 in the non-deprived network to ∼ 0.08 in the deprived network), indicating a slightly
reduced selectivity. However, the preferred concept was still overwhelmingly ‘head‘, and the
resulting segmentation pictures look qualitatively similar to those in fig. 3. In other words,
we found that networks trained with a visual diet deprived of their preferred category can
still extrapolate the responses to the preferred category.

Indeed, we observe in fig. 6[C] and [D] that models do not incur a severe loss in prediction
performance when data from a new domain (i.e. ‘faces’ and ’bodies’ category) is presented
at test time. Actually, the FFA model achieves even slightly better prediction performance
on held-out images with faces. This example of systematic generalization in the developed
response-optimized models is also interesting from the perspective of modern deep learning,
which is often criticized for its failure to generalize in this systematic, out-of-distribution
way. The ability of these models to generalize to new domains further also validates their
proposed usage as virtual stand-ins for fMRI experiments, supporting their ability to act as
model organisms for large-scale fMRI experiments.

Models reveal important functional distinctions between different
regions

The previous experiment highlights that response-optimized models do not merely act as
detectors for the preferred category of their respective brain voxels but also capture more
complex tuning properties relevant to their preferred category but not uniquely exhibited by
it. Here, we ask if the models meaningfully discriminate between stimuli belonging to their
preferred set? More specifically, we want to test existing accounts of functional specialization
which implicate FFA in face perception, particularly face identity discrimination [45, 46] and
RSC in spatial cognition [39].

We first perform a face discrimination task using the response-optimized models of all
four ROIs. We extract for each model the predicted voxel-wise response for a small subset
of facial images from the CelebA dataset, comprising 20 identities, each with 100 train, 30
validation and 30 test images [47, 48]. We compare the face recognition accuracy of these
model predictions against the recognition accuracy of a general-purpose representation from
a CNN trained to perform image classification on the large-scale ImageNet dataset. We also
compare the face recognition accuracy of these models with that of a representation from a
nework trained explicitly to do facial recognition on a large set of VGG face identities [49].
For each of the representations above (the four ROIs’ predictions and the general-purpose and
face specialized representations), we train a linear function to predict the CelebA identities.
We find that FFA predictions significantly outperform the predictions from all other ROI
models (discrimination score of 85% compared to 79-80%), even outperforming the highly
transferable representation of ImageNet trained networks at 78% (however, still falling short
against features from networks trained to discriminate a large number of identities at 96%).
This result supports and provides additional evidence for the role of FFA in face identification
and the ability of our model to pick up these functional capacities.

Next, we perform a room layout prediction task, again using the voxel-wise predictions
generated by the four ROI models and the representations generated by the general-purpose
CNN trained on ImageNet. The objective of this task is to predict the correct layout type
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Figure 6: Selective deprivation in visual diet. A and B show results of the dissection
procedure applied to response-optimized models of FFA and EBA respectively, when trained
using a visual diet entirely deprived of the ‘person’ category; Left panels show the median
IoU computed across all voxels in that ROI against the top 20 concepts identified using the
median IoU metric. Right panels show the matched visual concepts for the respective ROIs.
An IoU threshold of 0.04 is applied to detect matching. Activation of 3 randomly selected
concept detectors in each ROI model to top images are shown below. C and D depict the
mean measured response across all voxels for every test image against the corresponding mean
predicted response, separated into ‘persons’ and ‘no persons’ categories for FFA and EBA
respectively. Pearson’s correlation coefficient between the mean predicted and measured
values is reported inside each scatter plot.
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from the 11 categories described in [50] defined using a keypoint-based parametrization (Fig-
ure 7[B]). The dataset comprises 4,000 natural scenes across diverse indoor scene categories
from the SUN database [51], that are split into sets of 3200 training, 400 validation and 400
test images. We follow the same procedure for quantifying the layout estimation accuracy
as before, i.e., training a linear classifier on top of each representation. Here, we observe a
different trend. The RSC predictions outperform the other ROI models. They perform just
as well as the ImageNet trained representations in solving this task (recall that the RSC
network was trained with ∼ 35,000 images and their associated brain responses, while the
ImageNet network is trained on a million images). This result is highly suggestive of the
role of RSC in scene understanding, particularly aspects relevant to spatial navigation, and
of our model’s ability to pick up these functional capacities.

Discussion

In this paper, we exploit the ability of data-driven, hypothesis-neutral deep neural networks
to model the responses of high-level visual ROIs. Through a large, rich stimulus set afforded
by the Natural Scenes Dataset (NSD), we offer new evidence that generalizes decades worth
of hypothesis-driven results to ethologically valid settings.

Brain response predictivity We found that response-optimized deep neural network
models—trained solely with supervision from fMRI activity—accurately predict activity re-
lated to new images in multiple visual category-selective ROIs. The performance of these
models rivals the predictive performance of state-of-the-art task-optimized models used to
predict brain activity [22]. Many model networks can be consistent with brain activity data
as demonstrated by the number of recent papers in this area [52]. It can be argued that a
good representation would allow for efficient learning (in terms of the number of data points
required) of a linear predictor of brain responses. Thus we ran an analysis in which we
evaluated the trained models on the ability of their representations to predict data for new
subjects while restricting the training set size. We found that the response-optimized models
were better able to generalize to novel subjects at small sample sizes than task-optimized
models. This result suggests that end-to-end optimization solely driven by response measure-
ments can yield better correspondence to brain data than networks optimized on behaviorally
relevant tasks with millions of images.

Verbalization of voxel selectivity with network dissection Neuroscience is gradu-
ally adopting naturalistic stimuli not amenable to parametrization and neural networks to
model brain responses. This trend requires concomitant methodological advances to derive
trustable conceptual understanding from brain response models. The perspective is that
accurate and generalizable computational models of brain function can serve as a reasonable
proxy to biological visual systems and can be probed or interrogated to understand better
the properties of the system they model. Here, we developed a systematic methodological
framework to understand the tuning properties learned by our response-optimized networks.
Our framework aligns the recent progress in understanding neural networks using large-scale
annotated datasets and network dissection procedures [30] with the longstanding goal of
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Figure 7: Task performance of neural representations. A and B show sample stimuli
along with their classification labels for the two visual discrimination tasks considered in
this study, namely face identity recognition and room layout classification. In B, the ground
truth layout planar segmentation of indoor scenes in the room layout estimation task are
depicted below the respective scenes and the definition of their corresponding room layout
types are illustrated in the bottom panel. C depicts the transfer performance of neural
representations from response-optimized networks of each individual ROI on the two tasks.
Intriguingly, representations from FFA achieve the best face individuation accuracy and
those from RSC perform best on the layout estimation task, remarkably consistent with the
previously hypothesized functional roles of these visual areas.
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understanding the brain by characterizing neuronal tuning properties. This alignment pro-
cedure capitalizes on the usage of a factorized readout that disentangles the spatial (“where”)
and feature (“what”) dimensions of the voxel’s response properties and fully characterize the
“what” dimension using dissection procedures applied on the ‘model neuron’ corresponding
to the voxel.

Using complex stimuli like cluttered natural scenes with multiple objects in context to
probe neuronal response properties poses multiple challenges. For instance, if a set of images
that highly activates a voxel is identified, several competing interpretations can be ascribed
to that voxel’s tuning function. There can be multiple low-level (e.g., visual features) or
high-level (semantic properties) consistent with the identified images. Indeed, as stimuli
become more complex, it is increasingly more challenging to recognize the consistent pattern
implicit among any given set of images due to the tangling of visual features (textures,
shapes, edges, etc.). The dissection procedure in this study helps simplify this problem by
not just recognizing ‘which’ natural images elicit higher responses but also systematically
and quantitatively characterizing ‘what’ part of each image leads to increased responses.
Effectively, we can verbalize the functional role of voxels in each candidate region. We
demonstrated that emergent concepts in response-optimized networks are highly specific
and aligned with each regions’ previously hypothesized functional role. E.g., we reported an
exclusive presence of face detectors in the model for FFA. If the learned category-selectivity
were in reality due to low- or mid-level features correlated with the category of interest,
those features would have likely become apparent because of the dataset used in the network
dissection analysis. That dataset is one of the largest densely-annotated natural image
datasets in computer vision research. For instance, if the selectivity of FFA to faces could be
explained by the unique structure of eyes or skin-colored textures, response-optimized models
would have caught on to these simpler features. The segmentation-based dissection procedure
would have revealed this pattern of selectivity as it scores units against category-level labels
and thousands of other concepts, including different textures and object parts (including eyes,
nose, etc.). Nonetheless, with our dissection procedure, we see an almost exclusive selectivity
for full faces in the FFA voxels. The results of our dissection procedure also highlight that,
while solely optimized for brain response prediction, the proposed computational models
also solve the challenge of perceptual invariance. The models respond selectively to their
preferred category despite tremendous variation in the precise physical characteristics of the
preferred objects.

Visualization of voxel selectivity with image synthesis Next, we used an optimization-
based image synthesis technique to construct the stimulus that causes synthetic neurons
modeling individual voxels to activate maximally. Several recent studies have attempted to
describe the tuning properties captured by DNN models of visual cortex using such image
syntheses algorithms [53, 23, 54], and have even demonstrated the abilities of these methods
for controlling neural firing activity in mouse primary visual cortex and macaque V4 [55, 56].
However, several distinctions between groundlaying work in this direction and our results are
worth consideration. Unlike some prior studies that use the hypothesis space of generative
adversarial networks, we do not impose a ‘naturalness’ prior on the optimized images. We
neither employ a task-optimized model trained on large-scale object databases to derive the
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features that map onto brain activity. Both these choices may bias the features to contain
high-level semantic content (especially since task-optimized models are trained with explicit
category-level pressures), even if the neurons/voxels primarily encode low-level or mid-level
features that are not naturalistic or neatly verbalizable. Moreover, existing fMRI studies
apply such techniques at the ROI level. Despite the fact that our optimal inputs were syn-
thesized de novo from random pixel noise to activate single voxels in our study, we find that
the optimized images still contain human recognizable complex patterns consistent with the
hypothesized functional role of these voxels. The images appear to capture critical functional
properties of voxels in these high-level visual regions. We argue that encoding models fitted
directly to neural data with no prior training, offer a useful, complementary perspective for
understanding the visual system to hypotheses-driven, task-optimized models. Any set of
features that emerge in the empirically-estimated response-optimized networks are optimized
to explain representations in the brain, and are not tangled with confounds from top-down
constraints unrelated to neural activity.

Specific versus non-specific mechanisms in shaping categorical selectivity Next,
we analyzed the role of visual experience in shaping response selectivity by training response-
optimized models with a visual diet completely deprived of faces or bodies. Despite this
selective deprivation, units in models of FFA and EBA retained strong selectivity for their
preferred semantic content. How do we interpret these findings? The models effectively
became face and body selectors, which means that they could generalize their predictions to
stimuli that were not included in training and learn that those stimuli will cause maximal
firing. The models could infer the preferred category of their corresponding ROI through
training with a dataset devoid of this preferred category. The models were able to go this
generalization because of the properties of the representations of FFA and EBA voxels.
These voxels appear to respond to visual configurations characteristic to faces or body parts,
respectively. These configurations could be present in parts of images that do not correspond
to a person but happen to have face-like (e.g., circles) or body-like (e.g., elongated, curved
shapes). One potential mechanistic explanation is that these visual category-selective ROIs
act like filters that constantly look for matches to specific visual properties. While faces or
bodies can activate these filters maximally, other visual patterns that resemble them also
activate the filters, perhaps to a lesser extent. For the FFA, these other visual patterns could
act like pareidolia, or perhaps a subtle version of pareidolia that is hard to detect by humans
but that the FFA could still pick up on.

Our computational models’ systematic generalization and extrapolation ability suggests
that they may enable us to discover functional specialization in underexplored parts of the
visual system. Most claims regarding functional specialization and domain-specificity in
the brain are grounded in hypothesis-driven contrast-based experiments, which might not
include stimuli relevant for these regions. Even a large dataset such as NSD might exclude
certain categories that are important for a given brain region. After training our models on
the under-explored regions, the generalization ability portrayed here can help us characterize
selectivity post-hoc.

Our results also relate to important questions related to statistical learning in artificial
and natural systems. In fact, out-of-distribution generalization is an important unsolved
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problem in many parts of machine learning. But here we find that our models are robustly
able to generalize to unseen categories, which only pays tribute to the strong semantic selec-
tivity of the ROIs themselves, and the fact that they response to features characteristic of
their preferred category even in the absence of that category. Another question is whether de-
veloping a selectivity for faces requires experience with the unique structure of faces? Exist-
ing behavioral evidence from some face deprivation studies [57] suggests that face-processing
abilities can persist without any face-specific experience. While subsequent studies have
provided counter-evidence in favor of the necessity of face experience for face-domain forma-
tion, the dispute remains far from settled given current evidence. Our experiments highlight
that face and body selectivity can emerge spontaneously in computational models with no
face and body experience, and this high selectivity is maintained across diverse naturalistic
variations (see segmentation maps in Figure 6). Though one important caveat is that our
models were trained using supervision from brain regions that have experience faces and
bodies.

Link between emergent representations and their functional properties We have
shown that our models learn to accurately predict their respective ROIs, and that the rep-
resentations they learn allow them to select for a small number of preferred categories. We
further put these representations to a stricter test and evaluated their functional capabilities.
We tested existing functional specialization accounts which implicate FFA in face identifi-
cation [5] and RSC in spatial cognition [39] by simulating these fine-grained discrimination
tasks using the representations from response-optimized models of all ROIs. We found that
the representations from the FFA network beat the other representations and a representa-
tion from a task-optimized network at the face identification task. We also found that the
RSA network beat the other representations and a representation from a task-optimized net-
work at the spatial task. The observation that these complex visual capacities are realized
spontaneously in neural networks optimized solely to predict brain activity suggests that
these networks are learning a representation that is faithful to the information represented
by their respective regions.

Conclusion Probing computational models of the brain imposes several challenges that
may lead to confounded conclusions about neural representations and computations. The
most critical confound is that any conceptual insights gained from a computational model are
helpful insofar as the model is a good approximation of the biological system. The prediction
accuracy of response-optimized DNN models is not yet perfect. This may be due to significant
limitations in the model architecture, insufficient stimulus-response data for fitting complex
neural network models, supervision from noisy fMRI signals, or a combination of these and
other factors. The work presented in this study, nevertheless, was able to (1) replicate
decades of hypothesis-driven work, (2) show robustness of the learned representations even
in the absence of the category of interest, and (3) show that these representations could
achieve important functional roles characteristic of their respective ROIs. This work also
reveals a new empirical space to improve the ability to predict brain activity, by considering
different model architectures, other high-level cortical regions (particularly along the dorsal
visual pathway where the current task-optimized models have not yielded the same level of
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predictive success), or other imaging techniques (fMRI, MEG, EEG) etc.
An important caveat of network dissection, as employed in this study, is that it studies

units in isolation; in several cases, semantic concepts may be encoded by a combination
of multiple units (voxels). We could extend network dissection techniques to understand
the properties of simulated population responses in the underexplored regions of the visual
cortex, whose precise functional characterization remains elusive. Even though single neu-
rons or single voxels don’t appear to exhibit high selectivity for object categories in those
areas of the brain, we can ask whether populations of neurons or voxels in these regions
encode and represent human-understandable concepts using novel network interpretability
techniques [58].

Our work demonstrates that a less hypothesis-committed approach can complement
hypothesis-driven study of the visual cortex in meaningful ways. This empirical approach,
enabled by the new data revolution in neuroscience and large-scale compilation and dissem-
ination of neural data, can offer a complementary basis for building broader theories about
neural computations, that generalize to a range of ethologically relevant scenarios.

Materials and Methods

Natural Scenes Dataset

A detailed description of the Natural Scenes Dataset (NSD; http://naturalscenesdataset.org)
is provided elsewhere [27]. Here, we just briefly summarize the data acquisition and pre-
processing steps. The NSD dataset contains measurements of fMRI responses from 8 par-
ticipants who each viewed 9,000–10,000 distinct color natural scenes (22,000–30,000 trials)
over the course of 30–40 scan sessions. Scanning was conducted at 7T using whole-brain
gradient-echo EPI at 1.8-mm resolution and 1.6-s repetition time. Images were taken from
the Microsoft Common Objects in Context (COCO) database cite Lin 2014, square cropped,
and presented at a size of 8.4° x 8.4°. A special set of 1,000 images were shared across sub-
jects; the remaining images were mutually exclusive across subjects. Images were presented
for 3 s with 1-s gaps in between images. Subjects fixated centrally and performed a long-term
continuous recognition task on the images. The fMRI data were pre-processed by performing
one temporal interpolation (to correct for slice time differences) and one spatial interpolation
(to correct for head motion). A general linear model was then used to estimate single-trial
beta weights. Cortical surface reconstructions were generated using FreeSurfer, and both
volume- and surface-based versions of the beta weights were created. The 4 ROIs considered
in this study, namely, the Fusiform face area (FFA, includes FFA1 and FFA2), Extrastriate
body area (EBA), Visual word form area (VWFA) and Retrosplenial cortex (RSC), were
manually drawn based on the results of the functional localizer (fLoc) experiment after a
liberal thresholding procedure.

Response-optimized encoding model architecture

We trained separate voxel-level predictive models for each of the above category-selective
regions with the same backbone architecture. The predictive model comprises a shared con-
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volutional neural network core common across all subjects that represents the feature space
unique for specific visual areas. We employ a linear readout model on top of the feature
space to predict the responses of individual voxels in a specific region of interest under the
assumption that the feature space likely represents the input received by these areas and
these regions perform close-to-linear transformations on this input. A linear readout on
a shared feature space is further based upon the often made assumption that the activity
across a set of neurons or voxels in one individual can be related to the activity of the
second individual in the homologous functional region by a linear transform [59]. Further,
the linear readout is also factorized into spatial and feature dimensions following popular
methods for neural system identification. This allows us to separate spatial tuning or recep-
tive field locations (i.e., what portion of the sensory space is the voxel most sensitive to?)
from feature tuning (i.e. what features of the visual input is the voxel sensitive to?). The
base feature extraction network or the core thus performs all nonlinear transformations to
convert the raw sensory stimuli (i.e., pixels) into a representation characteristic of a partic-
ular visual area, whereas the readout linearly maps this extracted representation into voxel
responses. The core consists of four sequential convolutional blocks, with each block com-
prising the following feedforward computations: two convolutional layers each followed by an
inner batch norm and nonlinear activation (ReLU) operations and an anti-aliased AvgPool
operation at the end. Instead of regular convolutions, we employ E(2)-steerable convolutions
in the core of all our models to compute orientation dependent activations for many differ-
ent orientations, thereby achieving joint equivariance under translations and rotations by
design [60, 61, 35]. This enables us to apply filters not just in every spatial location, as in a
standard convolutional layer, but also in every orientation, increasing parameter sharing and
improving the statistical efficiency of deep learning. This modeling choice is also inspired
by neural computations in early visual areas where it is hypothesized that groups of neu-
rons perform similar computations at different orientations, e.g., edge or curve detection at
different orientations. From an implementation perspective, the filters in these equaivariant
convolutional operations are constructed as a linear combination of a fixed system of atomic
filters, which helps avoid artifacts and enables arbitrary angular resolution with respect to
sampled filter rotation [60]. The readout contains all voxel-specific parameters and maps the
extracted representation to individual voxel responses. Weights of the readout are a sum of
outer products between a spatial filter and a feature vector. The spatial filter further had
a positivity constraint (enforced using rectification) and was normalized independently for
each voxel by dividing each spatial weight by the square-root of the sum of squared spatial
weights across all locations.

Training and testing models

Combined across all 4 subjects, the dataset comprises 37,000 natural scene images, among
which 1,000 images are shared across all subjects and the rest are mutually exclusive. We
used the 1,000 shared images for testing our models and split the remaining stimulus set
into 35,000 training and 2,000 validation images. All parameters of the response-optimized
model were optimized jointly to minimize the mean squared error between the predicted
and measured response. Since for every image in the training set, the response is measured
from only a single subject and not all subjects, we use a masked mean squared loss to train
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the model across multiple subjects. Let rpred.s,v and rmeas.s,v denote the predicted and measured
response of voxel v in subject s to image i, respectively. Then, the loss function during
training is given, as

L =
∑

i∈Batch

S∑
s=1

ns∑
v=1

1i∈Is(r
pred
s,v − rmeas.s,v )2,

where 1i∈Is is the indicator variable specifying if image i was shown to subject s. The
proposed method allows us to propagate errors through the shared network even if the sub-
jects are not exposed to common stimuli since we can always exclude the subjects/voxels
for which the response is not present from mean error calculation within each batch. The
shared network thus benefits from diverse, varying stimuli across subjects with less exten-
sive constraints on data collection from single subjects. Models were trained for a maximum
of 100 epochs using Adam with a learning rate of 1e-4, a batch size of 16 and early stop-
ping (patience = 20) based on the Pearson’s correlation coefficient between the predicted
and measures responses on the validation set; validation curves were monitored to ensure
convergence.

We measure performance (‘predictive accuracy’) on the 1,000 test images by computing
the Pearson’s correlation coefficient between the predicted and measured fMRI response at
each voxel.

Baseline models

Task-optimized models : We compared response-optimized models against standard
task-optimized models which have shown state-of-the-art performance in predicting neural
responses in the primate visual cortex. In all comparisons, we employed an AlexNet ar-
chitecture [62] optimized for object recognition on the large-scale ImageNet dataset [63].
We extracted features from intermediate layers of this network and employed the same
spatial x feature factorized readout as used in the response-optimized networks to linearly
map layer activations to brain voxel responses in each region. We selected the model layer
that maximally predicted the brain responses in each region on a validation set(Conv-5 for
all considered high-level visual areas). The readout parameters for task-optimized models
were optimized independently for each visual region using the same training protocol as the
response-optimized models. Thus, the readout models were trained for a maximum of 100
epochs using Adam with a learning rate of 1e-4 and a batch size of 16. We further applied
an early stopping criterion (patience = 20) based on the Pearson’s correlation coefficient
between the predicted and measures responses on the validation set.

Categorical models : Category ideal observer models, employ the category membership
of labeled objects in the image to predict the responses evoked by the image. Unlike task-
optimized and the proposed response-optimized models, categorical models are not image-
computable and rely on annotations generate by human observers. These oracle models
have absolute access to the categories present in an image and have previously been shown to
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explain substantial variance in image representations in both macaque and human IT [64, 22].
One might expect their performance to be even higher for explaining image representations
in category-selective visual clusters in high-level cortex. We obtained object category labels
for every NSD image from the MS COCO database [65]. The input to the categorical model
is thus an 80-D binary vector corresponding to the 80 object categories annotated in the
database, where each element indicates whether the corresponding category was present in
the image or absent (note that NSD images contain multiple objects per image). We fitted
l2 regularized linear regression models (known as ridge regression) on this representational
space to find weights corresponding to different categories for every voxel. The regularization
parameter was optimized independently for each subject and for voxels in each visual area
by testing among 8 log-spaced values in [1e-4, 1e4].

Quantifying the semantic selectivity of voxels

High-level visual concepts are generally verbalizable, and throughout this paper, we refer
to voxels that encode and represent these concepts as ‘semantically selective’. To quan-
tify the selectivity of voxels for different human-interpretable concept categories, we adapt
the previously proposed framework of ‘Network dissection’ to our brain response-optimized
models [30, 31]. We see this as a fine-grained approach to characterize voxels that looks
at not just the image-level category labels but rather dense pixel-level segmentations across
thousands of cluttered natural scenes to characterize a voxel. The probe dataset used for
quantifying the semantic selectivity of voxels comprises 36,500 held-out images from the
validation set of the large-scale Places365 dataset. The reference segmentation for these
probe images comes from the Unified Perceptual Parsing image segmentation network [66]
previously trained on 20,000 scene-centric images from the ADE20k dataset [67]. The lat-
ter is exhaustively and densely annotated with objects, parts of objects and in some cases,
even parts of parts. This reference segmentation assigns every pixel a semantic label from a
large vocabulary of human-interpretable concepts, comprising 335 object classes, 1,452 ob-
ject parts and 25 materials. A unique advantage of the factorized readout employed in this
study is that it allows us to disentangle spatial selectivity from feature selectivity. To enable
the network dissection procedure to be applicable to our models, we first discard the learned
spatial selectivity of every voxel and use the learned feature tuning of every voxel to create
an additional 1x1 convolutional layer, so that every voxel is represented by an independent
unit in this convolutional layer. These units are used to characterize the semantic selectivi-
ties of voxels irrespective of the position of the respective semantic categories in the visual
field. This yields a model that is entirely convolutional and dissecting the last layer of this
model (which has as many units as the number of voxels in the ROI) reveals the semantic
selectivities of all voxels. As proposed in [30], the selectivity of a particular unit (or voxel in
our case) is quantified by computing the Intersection over Union (IoU) of the corresponding
thresholded activations of that unit for a large number of images from the probe dataset
against the reference segmentation. A voxel is termed as semantically selectivity for a con-
cept if its IoU with the reference segmentation of that concept is greater than 0.04. Further
details about the dissection procedure employed in this study are described elsewhere [31].
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Synthesizing maximally exciting inputs

We performed a qualitative feature visualization analysis to find the visual pattern that would
maximally activate individual model neurons emulating brain voxels. Neural networks are
differentiable with respect to their inputs. Starting from a random noise input, we use
these gradients to iteratively move the input towards the goal of maximizing activation in
individual model neurons. This visualization technique is commonly employed in neural
network interpretability research to find the featural drivers of model neurons [68]. Most
visualization techniques further employ an image prior in the form of a regulariser to restrict
the maximally exciting input to a suitable subset of the image space [69, 70]. Formally, the
goal of finding the maximally exciting input (MEI) x∗ is then expressed as the following
optimization problem.

x∗ = arg max
x∈RH×W×C

Aij(θ, x) +R(x)

where A(i, j)(θ, x) denotes the activation of unit i from layer j in the neural network to
input x (H: Height, W: Width, C: Channels), and θ denotes the parameters of the network.
The latter are fixed during the above optimization procedure. R(x) denotes regulariser . In
order to generate MEI for the jth voxel, we set i to the network output layer and j to be the
index of the model neuron in the output layer that emulates voxel j. The above optimization
problem is, in general, a non-convex optimization problem but we can find (at the very least)
a local minimum by performing gradient ascent in the input space and updating x iteratively
in the direction of the gradient of Aij(θ, x) +R(x)

Transfer learning on fine-grained visual disrimination tasks

To formally test existing functional specialization accounts which implicate FFA in face per-
ception and RSC in spatial cognition, we simulated face discrimination and spatial layout
prediction tasks with independent stimuli in response-optimized models of all brain regions.
For the face identity discimination task, we included stimuli from the MiniCelebA dataset
which comprises facial images of 20 identities, each having 100/30/30 train/validation/test
images [47]. For the spatial layout estimation task, the stimuli include 4,000 diverse indoor
scenes from the SUN database [51]. These stimuli were split into sets of 3200 training, 400
validation and 400 test images. Each stimulus image has a corresponding label for the room
layout type, where the layout categories were defined using a keypoint-based parametriza-
tion (as illustrated in Figure 7). This helps us frame the room layout estimation task as a
classification problem. We use response-optimized models to extract the predicted responses
of voxels in every region for stimuli from these fine-grained visual categorization tasks. To
ensure that the differences in performance of response-optimized models on fine-grained vi-
sual categorization are not driven by the differences in the number of voxels in every region,
we selected the top 512 voxels in every region based on test correlations (i.e., correlation be-
tween the predicted and measured responses on 1,000 test images). This number was chosen
to match the dimensionality of representations from the pre-trained VGG16 architecture [49]
optimized for face-recognition on the large-scale VGGFace2 dataset [71]. We consider the
performance of this representation on the MiniCelebA dataset as an estimate of the upper
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bound on performance expected by these models on face recognition as we did not have access
to human face recognition performance on this dataset. We also consider the 512-D dimen-
sional representation from a VGG16 architecture trained on image categorization using the
large-scale ImageNet database as an additional baseline for both visual discrimination tasks.
This baseline was chosen because ImageNet-trained networks yield highly transferable rep-
resentations that perform well in a range of vision-based tasks [72]. We fitted l2 regularized
linear classification models (known as ridge classifiers) on these different representational
spaces to predict the class label (e.g. facial identity or room layout type) of held-out stimuli.
We vary the size of each transfer dataset from 60-100% of the maximum training set size
and report the corresponding classification accuracy on the held-out set as a function of the
transfer dataset size. For each of the above representational models (response-optimized,
ImageNet-optimized or VGGFace2-optimized), the regularization parameter was optimized
independently for each task (face recognition or spatial layout estimation) and each training
set size (60-100%) by testing among 10 log-spaced values in [1e-5, 1e5]. We selected the
regularization parameter value that yielded best classification accuracy on the validation
dataset.

Noise ceiling estimation

Imperfect predictions of models are not solely due to model imperfections, but may arise due
to the inherent noise in the fMRI signal, which biases the prediction accuracy downward.
Noise ceiling for every voxel represents the performance of the “true” model underlying the
generation of the responses (the best achievable accuracy) given the noise in the measure-
ments. They were computed using the standard procedure followed in [27] by considering
the variability in voxel responses across repeat scans. The dataset contains 3 different re-
sponses to each stimulus image for every voxel. In the estimation framework, the variance
of the responses, σ2

response, are split into two components, the measurement noise σ2
noise and

the variability between images of the noise free responses σ2
signal.

σ̂2
response = σ̂2

signal + σ̂2
noise

An estimate of the variability of the noise is given as σ̂2
noise = 1

n

∑n
i=1 Var(βi), where i

denotes the image (among n images) and Var(βi) denotes the variance of the response across
repetitions of the same image. An estimate of the variability of the noise free signal is then
given as,

σ̂2
signal = σ̂2

response − σ̂2
noise

Since the measured responses were z-scored, σ̂2
response = 1 and σ̂2

signal = 1− σ̂2
noise. The noise

ceiling (n.c.) expressed in correlation units is thus given as n.c. =

√
σ̂2
signal

σ̂2
signal+σ̂

2
noise

. The models

were evaluated in terms of their ability to explain the average response across 3 trials (i.e.,
repetitions) of the stimulus. To account for this trial averaging, the noise ceiling is expressed

as n.c. =

√
σ̂2
signal

σ̂2
signal+σ̂

2
noise/n

. We computed noise ceiling using this formulation for every voxel

in each subject and expressed the noise-normalized prediction accuracy (R) as a percentage
of this noise ceiling.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.16.484578doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.16.484578
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154,
1962.

[2] Jack L Gallant, Jochen Braun, and David C Van Essen. Selectivity for polar, hyperbolic,
and cartesian gratings in macaque visual cortex. Science, 259(5091):100–103, 1993.

[3] Corey M Ziemba and Jeremy Freeman. Representing “stuff” in visual cortex. Proceedings
of the National Academy of Sciences, 112(4):942–943, 2015.

[4] Nancy Kanwisher, Josh McDermott, and Marvin M Chun. The fusiform face area: a
module in human extrastriate cortex specialized for face perception. Journal of neuro-
science, 17(11):4302–4311, 1997.

[5] Doris Y Tsao, Winrich A Freiwald, Roger BH Tootell, and Margaret S Livingstone.
A cortical region consisting entirely of face-selective cells. Science, 311(5761):670–674,
2006.

[6] Mark A Pinsk, Kevin DeSimone, Tirin Moore, Charles G Gross, and Sabine Kastner.
Representations of faces and body parts in macaque temporal cortex: a functional mri
study. Proceedings of the National Academy of Sciences, 102(19):6996–7001, 2005.

[7] Russell Epstein and Nancy Kanwisher. A cortical representation of the local visual
environment. Nature, 392(6676):598–601, 1998.

[8] Shahin Nasr, Ning Liu, Kathryn J Devaney, Xiaomin Yue, Reza Rajimehr, Leslie G
Ungerleider, and Roger BH Tootell. Scene-selective cortical regions in human and non-
human primates. Journal of Neuroscience, 31(39):13771–13785, 2011.

[9] Andrew H Bell, Nicholas J Malecek, Elyse L Morin, Fadila Hadj-Bouziane, Roger BH
Tootell, and Leslie G Ungerleider. Relationship between functional magnetic resonance
imaging-identified regions and neuronal category selectivity. Journal of Neuroscience,
31(34):12229–12240, 2011.

[10] Paul E Downing, Yuhong Jiang, Miles Shuman, and Nancy Kanwisher. A cortical area
selective for visual processing of the human body. Science, 293(5539):2470–2473, 2001.

[11] Marius V Peelen and Paul E Downing. Selectivity for the human body in the fusiform
gyrus. Journal of neurophysiology, 93(1):603–608, 2005.

[12] Kevin S Weiner and Kalanit Grill-Spector. Sparsely-distributed organization of face
and limb activations in human ventral temporal cortex. Neuroimage, 52(4):1559–1573,
2010.

[13] Linda L Chao, James V Haxby, and Alex Martin. Attribute-based neural substrates
in temporal cortex for perceiving and knowing about objects. Nature neuroscience,
2(10):913–919, 1999.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.16.484578doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.16.484578
http://creativecommons.org/licenses/by-nc-nd/4.0/


[14] Laurent Cohen, Stanislas Dehaene, Lionel Naccache, Stéphane Lehéricy, Ghislaine
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