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Abstract 18 

Timelapse fluorescence microscopy imaging is routinely used in quantitative cell biology. 19 
However, microscopes could become much more powerful investigation systems if they were 20 
endowed with simple unsupervised decision-making algorithms to transform them into fully 21 
responsive and automated measurement devices. Here, we report CyberSco.Py, Python software 22 
for advanced automated timelapse experiments. We provide proof-of-principle of a user-friendly 23 
framework that increases the tunability and flexibility when setting up and running fluorescence 24 
timelapse microscopy experiments. Importantly, CyberSco.Py combines real-time image analysis 25 
with automation capability, which allows users to create conditional, event-based experiments in 26 
which the imaging acquisition parameters and the status of various devices can be changed 27 
automatically based on the image analysis. We exemplify the relevance of CyberSco.Py to cell 28 
biology using several use case experiments with budding yeast. We anticipate that CyberSco.Py 29 
could be used to address the growing need for smart microscopy systems to implement more 30 
informative quantitative cell biology experiments. 31 

  32 
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Introduction 33 

Microscopy imaging is an invaluable tool in quantitative cell biology. Recent years have seen the 34 

emergence of increasingly sophisticated techniques to probe the dynamics of living systems at 35 

high spatio-temporal resolutions. These technological developments have mostly been obtained 36 

using novel optical methods that structure the illumination of biological samples in space and 37 

time, the rise of optogenetics that facilitates real-time interactions with living samples, and the 38 

development of deep learning algorithms to analyze images and segment cells. Many 39 

microscopes are now powerful semi-automated systems that can acquire pre-programmed 40 

timelapse sequences, usually via a process called Multi-Dimensional Acquisition (MDA), to 41 

observe and characterize the behaviors of single cells over extended periods of time. To define 42 

a MDA protocol, the user typically has to select several locations within the biological sample (X 43 

and Y coordinates) and focal planes (Z positions), as well as the illumination settings that will be 44 

applied to every position (wavelengths, intensities, exposure time) and then, choose how often 45 

images should be captured by the camera. Automation microscopy software is used to ensure 46 

synchronization of the devices attached to the microscope, by periodically looping through these 47 

dimensions (space, time, imaging parameters). MDA has become very popular and is used 48 

routinely in cell biology laboratories. While the value of this approach has been well-49 

demonstrated for the study of time-varying phenomena at play in biological systems, MDA 50 

drastically limits the capacity of fluorescence timelapse microscopy to monitor complex, 51 

multiscale biological processes. Indeed, for every experiment, a balance must be found between 52 

the number of positions imaged, the spatial resolution (magnification of a given objective), the 53 

time resolution, and additional effects such as phototoxicity, the duration of the experiment, cell 54 
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density, etc. The tradeoffs between these factors are not trivial to setup and are usually not known 55 

at the beginning of experiments. Moreover, a simple MDA cannot typically deal with all of these 56 

factors; for example, studies of fast, intermittent processes (e.g., mitotic events) require imaging 57 

at both a high framerate and over a long period of observation, which lead to either phototoxicity 58 

or improper sampling. 59 

 60 

Such basic workflows have become outdated at the time when smart systems and artificial 61 

intelligence are being used to improve the functioning of many (scientific) devices. A key practical 62 

limitation of MDAs is the fact that the images are only analyzed at the end of the experiment, 63 

which sequentially separates the workflows of image acquisition and image analysis. The ability 64 

to employ real-time image analysis to inform and optimize or adjust the settings of ongoing image 65 

acquisition would be a game changer for studying complex, dynamic cellular processes. 66 

Although this strategy requires a deep dive into the software programming and automation of 67 

microscopy devices, transformation of a conventional timelapse automated microscope into a 68 

powerful unsupervised automaton that is able to acquire data from a live biological sample at the 69 

right place and at the right timing could empower researchers in the biomedical sciences.  70 

 71 

Building on existing automation microscopy software, several groups have started to explore how 72 

smart microscopy automate can benefit the life sciences1–5. In 2011, MicroPilot5 used LabVIEW© 73 

(a proprietary systems engineering automation software) to interface µManager (and other 74 

commercial vendor automation software) with a machine learning algorithm to identify and only 75 

focus on cells in a specific phase of mitosis. This strategy increased the throughput and decreased 76 

the time required to screen the desired cells. Since then, the rise of machine learning and the 77 
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popularization of simple automation strategies—using Arduino, Raspberry and Python 78 

programming—have made it easier to build simple open-source solutions to achieve the same 79 

goals. For example, µMagellan4 and NanoJFluidics1 were built directly on µManager to achieve 80 

some level of feedback loop control and automation of image acquisition. µMagellan focuses on 81 

creating content-aware maps to adapt imaging modalities to a 3D biological sample. 82 

NanoJFluidics1 homemade array of Arduino-controlled syringe pumps combined with µManager 83 

can perform automated fixation, labeling and imaging of cells; notably, this system could be 84 

triggered by real-time detection of the rounding of mitotic cells through a basic image analysis 85 

algorithm. More recently, Pinkard et al.3 established a Python library that can interact with 86 

µManager to program a microscope in a very flexible way, though at the expense of a prerequisite 87 

for expert-level python coding skills. Overall, these examples harness the capability of µManager 88 

to pilot microscopy instruments and home-made image-analysis tool suites to trigger pre-89 

programmed actions, and thus facilitate the development of complex or time-consuming 90 

microscopy experiments.  91 

 92 

In addition, recent advances in the application of control theory to biology led to the development 93 

of external feedback loops, in which cells are analyzed and stimulated in real-time to force the 94 

cell state (e.g., expression of a gene6–13, activity of a signaling pathway14) to follow a user-defined 95 

(time varying) profile. Such feedback loops require the ability to perform real-time image 96 

analysis, in order to extract cellular features to feed an algorithm that decides how to stimulate 97 

the cells in live mode via microfluidics10,11 and/or optogenetics6–9,15. This novel and active field of 98 

research, called cybergenetics, harnesses the possibility of creating interactions between cells and 99 

a numerical model in real-time, and thus opens novel areas of both applied and fundamental 100 
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research. To demonstrate the power of cybergenetics, we and others have developed various 101 

software to implement feedback loop-controlled microscopy systems. These solutions combine 102 

µManager and/or MATLAB with dedicated image analysis and control algorithms to close the 103 

feedback loop10,11. However, in practice, these solutions are difficult for non-experts to implement 104 

and cannot be easily transposed to a broad range of biological problems. More recently, several 105 

groups proposed Python and µManager-based software to develop cybergenetic experiments16,17, 106 

though these approaches remain specific to the control of gene expression in cells over time and 107 

do not meet all of the varied needs of cell biologists. 108 

 109 

Here, we present CyberSco.Py software, which is a follow-up to our contributions to piloting gene 110 

expression in real-time in yeast and bacteria10,11. CyberSco.Py is written in Python, has been 111 

designed with automated, real-time feedback loops in mind, and includes deep learning image 112 

analysis methods as an integral part of image acquisition. We focused on achieving a proof-of-113 

concept software with a simple, robust, user-friendly interface that can be deployed as a web 114 

application. Importantly, CyberSco.Py natively includes the ability to control basic microfluidic 115 

devices through an Arduino board that drives electro-fluidic valves (see Materials and Methods). 116 

CyberSco.Py is, by design, oriented towards advanced timelapse experiments that include 117 

triggered events and routed tree scenarios—rather than preprogrammed sequences of image 118 

acquisition. CyberSco.py is still a proof-of-concept and, here, our main goal is to demonstrate the 119 

potential of event-based, conditional microscopy to cell biologists. To this end, we first describe 120 

the principle of Cybersco.py, and then focus on several use case scenarios to exemplify how 121 

event-based microscopy can be applied to perform more informative experiments relevant to 122 

cell biology. 123 
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 124 

Results 125 

CyberSco.py is an open-source web application for timelapse microscopy and microfluidics 126 

automation written in Python (Figure 1). The software employs real-time image analysis and 127 

decision-making algorithms to trigger changes in the imaging parameters in real-time during the 128 

experiment. At present, this proof-of-concept is operational on a fully automated Olympus 129 

microscope (IX81) equipped with brightfield and epifluorescence illumination and linked to an 130 

Arduino-based homemade microfluidic control device (Supplementary Figure S1 and S2). A web 131 

interface allows the user to easily setup an experimental plan and/or to select pre-configured 132 

conditional experimental scenarios, together with the corresponding image analysis solutions. A 133 

local server receives these parameters and launches the experiment. During the experiment, the 134 

acquired images are constantly analyzed and used to trigger events according to the chosen 135 

scenario. In particular, the detected events can feedback on the microscopy settings and the 136 

microfluidic settings to adapt the experimental plan during the experiment (Figure 1). Thus, 137 

CyberSco.Py transforms microscopes and their related devices into an advanced imaging 138 

automaton capable of performing unsupervised time-dependent tasks with the capacity to handle 139 

various user-defined triggers. More details of the CyberSco.Py source code and its documentation 140 

are available on the GitHub page of the project (Supplementary Information). Although the 141 

software has been developed for a given microscopy setup, it can be extended to any equipment 142 

providing there is a driver and/or a documented communication protocol (see Supplementary 143 

Information and the GitHub page of the project on how to proceed). 144 

 145 
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From classic MDA to advanced MDA (aMDA) 146 

CyberSco.Py can obviously be used to build classic MDA experiments. A web interface enables 147 

the imaging acquisition settings to be easily defined through a drag and drop interface (Figure 1 148 

and Supplementary Information). The user can define X-Y positions and the corresponding focal 149 

planes and set the illumination parameters, as in conventional microscopy software. CyberSco.Py  150 

makes it easy to perform a classic MDA experiment that follows, for example, the proliferation of 151 

a population of yeast cells in a microfluidic device (Figure 2A). Crucially, the user can define 152 

specific imaging settings for each position (Figure 2B). This modification of how MDA is defined 153 

through the user interface is simple but powerful: by design, the user has full control over the 154 

acquisition settings without having to follow the classic MDA patterns of nested loops, which by 155 

default impose the same imaging acquisition parameters on all time points and positions. The 156 

ability to vary the imaging modalities per position imaged allows, for example, the user to 157 

conveniently and quickly optimize the imaging conditions by varying the exposure time for each 158 

position (to screen for phototoxicity or optimal illumination, for example). To demonstrate its 159 

usefulness, we used this feature to measure the light-dose response of a light-inducible promoter 160 

(Figure 2B and Supplementary Figure S3) with just one timelapse experiment. Setting up this 161 

experiment was quick and simple thanks to the minimal powerful user interface. More generally, 162 

any combination of imaging parameters can be assigned to a given position using the drag and 163 

drop tools within the user interface. For advanced users, the imaging parameters and positions 164 

can also be sent directly through a configuration file to create programmatically complex 165 

acquisition scenarios. More details of the user interface and scripting possibilities are available on 166 

the GitHub repository of the project (see also Supplementary Information). Notwithstanding such 167 

flexibility, CyberSco.Py has been programmed to include several types of protocols relevant to 168 
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quantitative cell biology. Such built-in capabilities include: (1) synchronization of the image 169 

acquisition framerate with the microfluidic valve switches that apply the environmental changes; 170 

(2) detection and tracking of a cell of interest in a microfluidic device over an extended period of 171 

time; (3) cell counting, and triggering of environmental changes when the cell population reaches 172 

a certain size in the field of view; and (4) prediction of the future occurrence of a cellular event 173 

and the corresponding changes in the illumination settings and framerate required to image this 174 

event at an appropriate time interval. 175 

 176 

External triggers and adaptative acquisition framerates enable the observation of cell signaling 177 

at the right pace 178 

Cells use a large set of signaling pathways and gene regulatory networks to process information 179 

from their surroundings. The signaling pathways in yeast are usually activated relatively quickly, 180 

within tens of seconds, while the transcriptional responses are slower (several minutes) and cell 181 

adaptation is even slower (tens of minutes). Therefore, it is difficult to image cell growth and 182 

signaling dynamics with fluorescence microscopy at the same time. Indeed, conventional MDA 183 

only allows image acquisition on one timescale. Fast periodic acquisition is possible, but leads to 184 

phototoxicity. Ideally, several acquisition frequencies need to be defined: a fast frequency to 185 

capture signaling events at the right pace, and slower frequencies, to image physiological 186 

adaptation and monitor cell growth. Moreover, the switch from a slow to fast acquisition 187 

framerate should be synchronized with the changes in the cellular environment through 188 

microfluidics. These technical requirements can be met by a simple scenario within Cybersco.py.  189 

As an example, we studied nuclear import of the MAPK Hog1p following hyperosmotic stress18,19. 190 

Yeast cells were grown inside a microfluidic device (See Materials and Methods) to facilitate 191 
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imaging and facilitate dynamic environmental changes. We observed that an acquisition rate 192 

faster than one fluorescent image every 5-6 minutes led to phototoxicity and cellular arrest if 193 

performed over extended periods of time. This acquisition rate is too slow to capture nuclear 194 

localization of the Hog1p protein, which peaks one to two minutes after cells are subjected to 195 

hyperosmotic stress. We programmed Cybersco.Py to perform pulses of osmotic stress (by 196 

switching the state of an electrofluidic valve) every hour. Sending this command triggered 197 

modification of the acquisition framerate, which was increased from one frame every 6 minutes 198 

to one frame every 45 seconds (Figure 3). No coding/ scripting was required for this modification: 199 

the user just needed to select this predefined scenario and set the desired framerates and 200 

illumination parameters. As shown in Figure 3, we monitored several successive signaling events 201 

using this adaptative sampling rate without any user intervention. This example shows how the 202 

combination of external triggers and advanced MDA enables quantitative, time-resolved data on 203 

cellular responses and stress adaptation to be obtained without user supervision. 204 

 205 

Live cell segmentation enables the use of conditional events to dynamically change the 206 

modalities of image acquisition 207 

CyberSco.py also offers the possibility of operating the microscope and the attached devices in 208 

real-time based on events detected during unsupervised analysis of the cell sample. The central 209 

idea is to let the microscope focus on “interesting” events through adjustment of the imaging 210 

acquisition parameters without supervision. This task requires efficient image analysis to 211 

segment cells, measure their properties and detect cellular events of interest. Image analysis is 212 

conveniently achieved in Python using the U-NET convolutional neural network20 (Materials and 213 

Methods and Supplementary Information), which is trained on a set of images. Once the training 214 
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is complete, CyberSco.Py can use the resulting model to segment cells, display the segmentation 215 

in the user interface, compute cellular features and trigger user-defined events. At present, 216 

CyberSco.Py comes with two U-NET-trained models for yeast segmentation at different 217 

magnifications that give the following outputs: (1) the number of cells in the field of view; (2) a 218 

segmentation map of the cells in the field of view, as well as (3) their size and (4) their fluorescence 219 

levels. These cellular features can then be used to define conditional statements and adapt the 220 

imaging acquisition parameters in real-time. The segmentation results can be instantly visualized 221 

in “live” mode as a quality control step before launching timelapse experiments (see 222 

Supplementary Material). Below, we describe three different use case scenarios to exemplify the 223 

potential of conditional microscopy. 224 

 225 

Cells of interest can be detected and tracked in real-time 226 

One interesting avenue of event-based microscopy is the ability to detect and focus on a particular 227 

cell of interest displaying a given phenotype at a given time. Instead of imaging many cells to 228 

find the cell of interest a posteriori, one can use real-time image analysis to identify cells with 229 

specific features and study their properties at an appropriate spatio-temporal resolution. There 230 

are two main challenges to overcome: defining the appropriate image analysis method to detect 231 

the cells of interest, and tracking those cells over time. Indeed, in an assembly of cells, growing 232 

cells push against their neighbors, often leading to large-scale displacement of the cells of interest, 233 

which may exit the field of view and be lost to subsequent imaging. Here, we demonstrate that it 234 

is possible to control the position of the X-Y stage to make sure that the cell of interest remains 235 

visible throughout the duration of the experiment. We studied a mixed population of yeast cells, 236 

in which a small fraction of the population (10%) express a fluorescent RFP histone tag. The 237 
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program scans through the cells growing in a microfluidic device and once an RFP-expressing 238 

cell is detected, the scanning stops, the X-Y stage is moved to center the cell of interest and a 239 

timelapse is started to record RFP and brightfield images. The cell of interest is tracked 240 

throughout the timelapse, and the X-Y stage is moved so that this cell is always centered in the 241 

field of view. Figure 4 shows two such experiments, in different contexts, to demonstrate the 242 

efficiency of this detection and tracking scheme. Providing that the phenotype can be identified 243 

through image analysis (for example, a morphological feature or expression of a fluorescent 244 

reporter), this strategy could be employed to study rare phenotypes or, alternatively, to study 245 

long-term cellular behaviors (aging, cell-memory, habituation to repeated stress, etc.). within a 246 

large population of cells without user supervision.  247 

 248 

Improving experimental reproducibility  249 

Above, we showed how to control gene expression in cells based on real-time measurement of a 250 

fluorescent reporter. The same experimental strategy can be used to trigger a change in the 251 

cellular environment as a function of an observable feature in the field of view. This event-based 252 

strategy can be used to stimulate or perturb cells only when they have reached a given state. 253 

Alternative methods would require impractical, constant monitoring of the cells by the user. As 254 

a demonstration, we explored the impact of the number of yeast cells on the dynamics of recovery 255 

of cell division following a metabolic switch from glucose to sucrose. In response to glucose 256 

starvation, yeast cells produce and harbor the invertase Suc2p21 in their cell wall, which 257 

hydrolyzes sucrose into glucose and fructose in the extracellular environment. The yeast growth 258 

rate takes a certain amount of time to recover to normal after a metabolic shift from glucose to 259 

sucrose. Since the benefit of Suc2p production is shared among the yeast population, we 260 
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hypothesized that the size of the population of cells may impact the response time after a 261 

metabolic shift to sucrose21. To test this assumption, cells growing in a microfluidic chamber were 262 

counted in real-time and, as soon as the number of cells in the chamber reached a given value 263 

(N=100, 500 or 2000; Figure 5), CyberSco.Py switched the perfusion from glucose to sucrose by 264 

triggering a microfluidic valve. Again, such experiments require an unsupervised, live method in 265 

order for the switch to be made efficiently. We observed that the duration of the lag phase 266 

decreased as the size of the population in the microfluidic chamber at the time of the metabolic 267 

shift increased, indicating faster production and accumulation of the enzymatic products within 268 

larger yeast populations, and hence a better adapatability of large yeast populations to sucrose 269 

metabolic shifts. Moreover, this experiment demonstrates the capacity of CyberSco.Py to 270 

precisely control the sample size at the start of the experiment, and suggests that cell density is a 271 

biologically relevant parameter that should be considered to improve experimental 272 

reproducibility. 273 

 274 

Switching between two MDAs by event triggering: imaging of mitosis in yeast at high 275 

temporal resolution 276 

As a final example, we used CyberSco.Py to precisely image mitotic events in a population of 277 

growing yeast cells (Figure 6). We combined cell segmentation, cell tracking, and event-based 278 

modification of the imaging parameters to achieve imaging of mitotic events in yeast at a high 279 

temporal resolution in an unsupervised manner. Cells were observed and segmented at regular 280 

intervals (3 min). We assessed the increase in the size of buds over time to predict when mitosis 281 

will occur. We detected buds using U-NET segmentation and searched for yeast cells with buds 282 

that have grown to reach a threshold size and that have been increasing in size over the past three 283 
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pictures (See Materials and Methods). Both criteria were sufficient to detect mitotic events under 284 

our conditions and to eliminate segmentation artefacts. When all conditions are fulfilled, the first 285 

MDA is stopped and a second MDA with a faster acquisition framerate, along with fluorescence 286 

imaging for the HTB2-mCherry reporter, is initiated. In this manner, mitotic events can be imaged 287 

at a much faster rate than in a classic MDA experiment (Figure 6) without the detrimental long 288 

term effect of phototoxicity. This kind of “search and zoom” scenario is presented for mitotic 289 

events as a proof-of-principle, but could be applied to any rare event that occurs within a 290 

population of cells. 291 

Discussion 292 

The main goal of CybserSco.Py is to enable the design of augmented MDA experiments in which 293 

the imaging settings can be changed in real-time as a function of unsupervised image analysis 294 

conducted during the time course of the experiment. CyberSco.Py has been built as a modular 295 

web application; in addition to the modularity of the device management, both the image analysis 296 

and decision-making algorithm are separate modules that can be adjusted individually and 297 

plugged into the communication modules that drive the microscope and its associated 298 

components. In that respect, CyberSco.Py aims to push forward “low code” or “no code” 299 

strategies, which are becoming increasingly popular, and enable biologists without coding 300 

expertise to create complex, event-based routines and workflows using cloud-based web 301 

applications. Creation of automation protocols that contain simple logical, conditional statements 302 

such as “IF this THEN that” or “WHILE this DO that” are within the reach of CyberSco.Py and 303 

may have an impact for researchers in biology who do not want, nor have the time or expertise, 304 

to dive into programming. This goal could be reached progressively by building on the examples 305 
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proposed here and adding generic scenarios that are driven through the results of real-time image 306 

analysis. For example, the scenario developed in this work that acts on a microfluidic chip based 307 

on the number of cells could be directly reprogrammed by changing the trigger condition. 308 

 309 

Image analysis remains the bottleneck of automation and will continue to require expertise in 310 

machine learning and coding. However, the pace at which deep learning is being adopted in 311 

laboratories and adapted into user-friendly software solutions and online tools22,23 suggests that 312 

an increasing number of easy-to-use methods to create UNET-trained networks will be developed 313 

in the near future and could subsequently be incorporated into CyberSco.Py. While we modified 314 

several classic experiments to demonstrate the potential of event-based microscopy, rethinking 315 

automation software for microscopy and including complete management of triggers and event 316 

detection may provide other important benefits in quantitative cell biology.  317 

 318 

To start with, we can use our conditional microscopy framework to better prepare experiments 319 

and obtain a level of quality control before starting an experiment. Indeed, we showed that the 320 

number of cells may be an important factor when exploring the dynamics of population growth 321 

after a metabolic shift. Other processes related to cell-cell communication, metabolic gradients 322 

and cell-cell contact inhibition are also likely to be dependent on cell density. To increase 323 

experimental reproducibility, it seems reasonable to add a condition (or a set of conditions) on 324 

cell density to start a timelapse experiment. Similarly, only starting experiments, even simple 325 

timelapse studies, when a steady state is reached or when a gene has been expressed at a given 326 

level could improve experimental reproducibility. Only stimulating cells when the system is 327 
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“ready” can also help avoiding phototoxicity and bleaching due to starting an experiment too 328 

early.  329 

 330 

Timelapse experiments are usually long and prone to failures in both the microscopy system (e.g., 331 

loss of focus, improper control of temperature, drift in the stage) and the biological sample (e.g., 332 

contamination). However, in conventional timelapse microscopy, the user only realizes these 333 

issues at the end of the experiment, when it is too late. Our framework can be extended to 334 

regularly communicate the state of both the microscope and the experiment to the user. This 335 

could be in either a trigger mode, with the software sending a status report to the user through 336 

all sorts of classic communication channels (e.g. Slack, Teams, Email, SMS) when something goes 337 

wrong or the experiment reaches a given state, or—even better—the microscope could use the 338 

output of the image analysis to correct the problem automatically (e.g., by relaunching an 339 

autofocus step). Such simple automation workflows will certainly help to achieve high-quality 340 

data, reduce the time and cost of experiments, and improve experimental reproducibility. 341 

 342 

Another important aspect is the huge amounts of data acquired in conventional, uninformed 343 

MDA. In many cases, this is due to the fact that image analysis is performed a posteriori, which 344 

requires as much data as possible to be acquired given the constraints of the imaging system and 345 

the biological sample. The ability to perform real-time analysis and conditional acquisition will 346 

make it possible to collect much sparser data, by focusing only on precisely what matters for a 347 

given study. This would speed up the analysis, facilitate data storage and sharing, and more 348 

generally improve the life cycle of imaging data.  349 

 350 
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We envision that advanced automation could be further used to perform online learning and 351 

automatically adjust the imaging parameters and stimulation of the biological system to obtain a 352 

model of the system under study. Such applications, which we are presently developing in the 353 

field of cancer research, may represent a game changer that increases the throughput of rare event 354 

detection and the quality of the resulting analysis by “zooming in” in time and space and/or 355 

sending drugs to perturb cells as soon as these rare events are detected among a large population 356 

of cells. 357 

 358 

Our motivation to develop this proof-of-concept software with a simple user-friendly interface 359 

was to introduce conditional microscopy to a large audience. While this first step is relatively 360 

limited, the initial framework we propose here can be improved and developed further. Ideally, 361 

a global effort to develop application programming interfaces (APIs) for lab automation would 362 

facilitate the development of no-code workflows that are accessible to all researchers and 363 

integrate with commonly used collaborative online tools such as Slack and Teams. We believe 364 

that researchers could benefit from such advanced ways of conducting experiments, especially 365 

the ability to perform event-based automated imaging. CyberSco.Py is a first step to bring such 366 

concepts to the attention of biologists.  367 

  368 
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Materials and Methods 369 

Yeast strains and growth conditions 370 

All yeast strains used in this study are derived from the BY4741 background (EUROSCARF 371 

Y00000). The list of strains can be found in Supplementary Table 1. Yeast cells were picked from 372 

a colony in an agar plate, grown overnight in 2 mL YPD media, then the culture was diluted 1/100 373 

in 5 mL of filtered synthetic complete media (SC; 6.7 g Yeast Nitrogen Base w/o amino acid [Difco 374 

291940] and 0.8 g complete supplement mixture drop-out [Formedium DCS0019) to 1 L] 375 

supplemented with 2% glucose and cultured for 4-6 h at 30 °C with orbital shaking at 250 RPM 376 

(Innova 4230 incubator). The media used to perfuse the microfluidic chips during the experiments 377 

was SC supplemented with either 2% glucose or 1% sucrose. The microfluidic chips were made 378 

following a previously published protocol11 (see Figure S8). Liquid perfusion was performed 379 

using an Ismatec IPC (ISM932D) peristaltic pump at 50 µL/min (or 120 µL/min for the osmotic 380 

shock experiment). A homemade Arduino-based system was used to switch the state of an 381 

electrofluidic valve to change the media that perfuses the microfluidic chip. The microfluidic chip 382 

(Supplementary Figure S2) allows yeast cells growing in a monolayer to be imaged and has been 383 

described in previous works24. Another microfluidic design25,26 was used (in Figure 4E) to 384 

constrain cell displacement in one direction. 385 

 386 

Microscopy imaging 387 

We used a fully automated Olympus IX81 inverted epifluorescence microscope equipped with a 388 

motorized stage (Prior Pro Scan III), Photometrix Evolve512 camera, and a pE-4000 CoolLed as a 389 

fluorescent light source. The objectives used in this study were either a 20X UPlanSApo or 60X 390 
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PlanApo N. For the RFP channel, we used the 550 nm LED through a filter cube (EX) 545 nm/30; 391 

(EM) 620 nm/60 (U-N49005) with a 150 ms exposure time. For the GFP channel, we used the 460 392 

nm LED through a filter cube (EX) 545 nm/30; (EM) 620 nm/60 (U-N49005) with a 150 ms exposure 393 

time. For the YFP channel, we used the 525 nm LED through a filter cube (EX) 514 nm/10; (EM) 394 

545 nm/40 (49905 – ET) with a 500 ms exposure time. Microscopy experiments were carried out 395 

in a thermostat chamber set to 30 °C.  396 

 397 

CyberSco.Py software 398 

CyberSco.Py is written in Python for the backend and HTML/CSS/ JS for the frontend, connected 399 

by a WebSocket channel. Communication to the different devices is made directly through serial 400 

communication and whenever necessary, the drivers provided by the vendors or a generic 401 

version from the µManager community. CyberSco.Py is installed on computer software that must 402 

be equipped with a recent GPU to benefit from U-NET deep learning segmentation of cells. A 403 

server can interface several microscopes running CyberSco.Py and be extended with a user 404 

manager database and image database management program such as OMERO. The current open-405 

source release of CyberSco.Py can be found on GitHub (https://github.com/Lab513/CyberSco.Py) 406 

 407 

Acquisition, segmentation and tracking 408 

Image acquisition is preceded by an autofocus algorithm that optimizes the quality of the 409 

segmentation, as well as the sharpness of the object under scrutiny. Cell segmentation is achieved 410 

via a machine-learning algorithm based on the U-NET architecture. Twenty images of cells at 411 

different positions and containing different numbers of cells were taken to produce the training 412 

set. This dataset was then augmented as it is classicaly done. (see supplementary information). 413 
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For the main model for yeast segmentation, the neural network was trained on five periods using 414 

a GPU NVIDIA GeForce GTX 1080; this training only took five minutes. Predictions with this 415 

model are obtained in around 0.2 seconds. Cell tracking is performed using both image 416 

correlation in real-time and using a simple proximity relationship between the predicted 417 

contours. 418 

 419 
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Figure 1 483 

Figure 1. CyberSco.Py 
framework. A. Architecture. 
CyberSco.Py is built in Python 
and uses the web application 
library Flask to create a web user 
interface. Microscopy protocols 
are written into a YAML (human 
readable data serialization 
language) file, which can be 
interpreted by the Python core 
module of CyberSco.Py, which 
drives the various components 
of a IX81 fully automated 
microscope. The core module 
also drives a set of fluidic valves 
that can be used to switch the 
media flowing into a 
microfluidic device. A class in 
Python is associated to each 
device. Images obtained from 
the camera are analyzed in real-
time by a U-NET deep learning 
model to segment yeast cells 
and/or detect specific events, 
depending on the pre-trained 
model selected by the user. The 
result of the analysis is used by 

the core module to update the current state of any devices under its control (See Materials and Methods for 
more information). B. Snapshot of the current user interface. The user interface is very simple by design 
and allows the user to choose between several pre-programmed event-based scenarios, for which the user 
must define various relevant parameters and condition switches. The simple drag and drop interface can 
be used to modify a given Multi-Dimensional Acquisition protocol to give more flexibility and to create 
more advanced protocols. The same interface can be used in “live mode” to view what is currently being 
imaged and check that the live image analysis is performing correctly. Once the program is launched, the 
computer takes control of the microscope and will adjust the image acquisition parameters based on the 
event-based scenario that has been selected. It is possible to code a novel scenario directly in Python and/or 
to manually adjust the thresholds and parameters used to detect events (e.g., number of cells, size of cells, 
etc.). The structure of a scenario consists of a list of instructions for the microscope (“make the autofocus”, 
“take a picture”, etc.) to be serially executed at each iteration, a conditional block, and an initialization 
block. Each scenario corresponds to a unique Python file with the same consistent structure. The user can 
also enter information about the projected experiment, as well as selecting modalities for monitoring the 
experiment remotely via email (selecting where to send the emails and at which frequency) and/or through 
a discussion channel (e.g., Microsoft Teams or Slack).   
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Figure 2 484 

Figure 2. From simple to advanced MDA. A. Example of a classic Multi-Dimensional Acquisition (MDA) 
protocol to observe yeast proliferation in a microfluidic chamber, with two imaging channels (brightfield 
and RFP) imaged every 6 min for several hours. The HTB2 protein of the yeast cells is tagged with a 
mCherry fluorescent reporter. A sketch of the program (nested loops) is shown on the left side: the imaging 
parameters are identical for every position and timepoint. B An advanced MDA, in which the user has 
defined several positions, but set different illumination settings in the blue channel (LED intensity: 0%, 5%, 
10% and 20%). This programming was done without scripts, by just using the drag and drop interface (see 
Supplementary Materials). Yeast cells bearing an optogenetic gene expression system (pC120-venus) were 
imaged for 15 hours. Each position is exposed to a different level of light stimulation, which alters the 
expression of a yellow fluorescent reporter both in terms of cell-cell variability, the maximum level of 
expression and dynamics. Thus, in one experiment, it was possible to quantitatively calibrate the pC120 
optogenetic promoter using our settings without any requirement for coding (objective 20X). Fluorescence 
levels are averaged across the field of view and the error values are the standard deviation of pixel intensity. 
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Figure 3 487 

Figure 3. Synchronization of the acquisition framerate with dynamic perturbations to capture yeast cell 
signaling dynamics. A. Time course of nuclear accumulation of Hog1p in yeast cells growing as a 
monolayer in a microfluidic chamber subjected to an osmotic stress (1 M sorbitol). The insets show 
localization of Hog1-GFP before and after the osmotic stress. The acquisition framerate (orange bars) is 
automatically adjusted from one frame every 5 minutes to one frame every 15 seconds (20 times faster) just 
before the cells are stressed osmotically. The autofocus was turned off during the first 4 min of rapid Hog1 
nuclear import. Recovery of the cells was then monitored at one frame every minute for 20 min, and finally 
the framerate was set back to its initial value (one frame every 5 minutes) until the next stress. The grey 
area represents the ± standard deviation of nuclear localization across 13 tracked cells from one microfluidic 
chamber. B. The adaptive sampling rate used in A was repeated three times to demonstrate that cells exhibit 
reproducible dynamics in response to every stress. This experiment allowed the timescales of activation 
(fast) and deactivation (slow) of the HOG cascade to be measured in an unsupervised manner. C. Sketch of 
the adaptive sampling MDA, which consists of three MDA experiments: one with a fast acquisition rate 
(nuclear import dynamics), one with a medium acquisition rate (nuclear export dynamics), and one with a 
slow acquisition rate (cell division after recovery). The switch from MDA#1 to MDA#2 is synchronized to 
activation of an electrofluidic valve that delivers an osmotic stress of 30 minutes duration (repeated every 
60 minutes). Nuclear localization is computed as the mean of GFP fluorescence in the nucleus normalized 
to the mean of GFP fluorescence in the entire cell. 
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Figure 4 489 

Figure 4. Detection and tracking of a cell of interest. A. Sketch of the “detect and track scenario”. Once a 
cell of interest is found in the field of view, the field of view is centered on that cell and the stage is 
periodically moved to maintain this cell in the center of the field of view. B. We mixed two populations of 
yeast cells in a microfluidic chamber, one of which express a HTB2-mCherry fluorescent reporter (1:10 cell 
ratio). The algorithm scans through several positions and when it detects cells with a signal in the RFP 
channel, picks one such cell randomly and centers it on the field of view. This cell is then tracked using 
brightfield segmentation, and the stage position is corrected through a feedback loop to compensate for 
cell displacement. (C) The cell of interest moves because it is pushed by the growth of neighboring cells, 
traveling approximately 20 µm during the course of the experiment. The real-time stage compensation 
keeps the cell in the center of the field of view. The duration of the experiment (around 9 h) is long enough 
to observe the appearance of the progeny of the cell of interest. (D) Tracking a non-fluorescent yeast cell 
growing in a dead-end narrow microfluidic chamber, leading to global directed motion of all cells. The 
tracked cell remains in the field of view, even though it travels approximately 80 µm; in contrast, the field 
of view is only ~25 x 25 µm.  
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Figure 5 492 

Figure 5. Conditional perturbation based on the number of cells. A. Sketch of the protocol, showing that 
different positions have a different conditional statement (<IF>) on the number of cells to trigger the switch 
from glucose to sucrose independently of each other. B. Sucrose conversion by yeast. The Suc2p invertase 
produced by cells is secreted extracellularly and can degrade extracellular sucrose into diffusible hexose. 
C. Following a shift from glucose to sucrose, cells need some time to convert sucrose to glucose and restart 
division. We show here that this time depends on the initial cell density (the higher the number of cells, the 
shorter the lag phase). The duration of the lag phase was estimated as the time it took the population to 
reach 130% of its initial size after the switch from glucose to sucrose. Error bars represent ± one standard 
deviation over three biological replicates (two replicates for the *). D. Temporal evolution of the number of 
cells for different initial densities: 100 (1), 500 (2) and 2000 (3) cells (grey arrows). E. Population growth 
shifted temporally to the switch time (i.e., switch  = t0), demonstrating that the lag time increases as the 
initial cell density decreases. (F) Cell counting is achieved by real-time segmentation, shown here as an 
overlay of the brightfield image with single cell masks at the time of the valve switch. 
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 495 

Figure 6 496 

 497 

Figure 6 – Bud detection and high-temporal-resolution imaging of mitosis. A. Scenario used to detect 
and “zoom in” on a particular event (in this case, mitosis). Several positions are monitored and when a 
condition is fulfilled, image acquisition is performed on only this position at an adapted sampling 
framerate. B. Cell cycle progression in yeast. The mitosis event to be captured represents a small-time 
fraction of the cell’s life cycle (~10%). C. In practice, the acquisition of brightfield images of a population of 
budding yeast leads to a coarse timelapse with an acquisition framerate of 3 min to search for the next 
mitotic event. Cell segmentation is used to identify buds (size filtering), shown here as a white overlay. 
When a bud has reached a given size (and has been growing for at least three frames), we consider that a 
mitotic event is about to occur. D. Then, the acquisition software “zooms in” on that cell by increasing the 
framerate to one frame every 30 seconds for 20 minutes and RFP imaging is added to image the nucleus 
(HTB2-mCherry reporter). As shown in panel D, this scenario allows the complete mitotic event and 
nuclear separation between the mother and daughter cells (around 10 minutes, as expected) to be captured 
at an appropriate framerate. Once this image acquisition sequence is complete, the program resumes its 
search at the lower framerate for another mitotic event.  
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