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Abstract 
Regulation of mRNA degradation is critical for a diverse array of cellular processes and developmental 

cell fate decisions. Although many methods for determining mRNA half-lives rely on transcriptional 

inhibition or metabolic labelling, these manipulations can influence half-lives or introduce errors in the 

measurements. Here we use a non-invasive method for estimating mRNA half-lives globally in the early 

Drosophila embryo using a total RNA-seq time series and Gaussian process regression to model the 

dynamics of premature and mature mRNAs. We show how regulation of mRNA stability is used to 

establish a range of mature mRNA dynamics during embryogenesis, despite shared transcription 

profiles. Our data suggest that mRNA half-life is not dependent on translation efficiency, but instead we 

provide evidence that short half-life mRNAs are more strongly associated with P-bodies. Moreover, we 

detect an enrichment of mRNA 3’ ends in P-bodies in the early embryo, consistent with 5’ to 3’ 

degradation occurring in P-bodies for at least a subset of mRNAs. We discuss our findings in relation to 

recently published data suggesting that the primary function of P-bodies in other biological contexts is 

mRNA storage. 

 

 

Introduction 
Cells establish their identity by changing their gene expression patterns in response to different signals 

and environments. Critical to this is the ability of a cell to modulate mRNA levels. The abundance of 

mRNAs in a cell depends not only on the transcription rate but also on the stability of each mRNA. In 

eukaryotic cells, the stability of mRNAs is controlled by two major pathways of mRNA degradation: Xrn1 

endonuclease-mediated 5’-3’ decay and exosome catalysed 3’-5’ decay (Mugridge et al., 2018; Weick 

and Lima, 2021). Many mRNA degradation factors and mRNAs can become condensed into processing 

bodies (P-bodies), which are phase separated compartments in the cytoplasm implicated in mRNA 

storage and decay (Ivanov et al., 2019; Standart and Weil, 2018). mRNA stability is also commonly 

regulated by sequences in the 3’ UTR, including binding sites for RNA binding proteins or for miRNAs 

(Mayya and Duchaine, 2019). While the two major decay pathways are responsible for general turnover 

of cytoplasmic mRNAs, there are also mRNA surveillance pathways that degrade aberrant mRNAs. 

These include mRNAs carrying a premature stop codon, lacking a stop codon, or mRNAs with paused 

ribosomes (Morris et al., 2021).  

Regulation of mRNA degradation is essential for diverse cellular processes including 

proliferation, differentiation, apoptosis and immune responses (Akira and Maeda, 2021; Akiyama et al., 

2021; Fraga de Andrade et al., 2020; Luan et al., 2019; Mugridge et al., 2018). Control of mRNA 

degradation is also important for cellular decisions and behaviour during development. For example, 

regulation of myc mRNA stability fine-tunes the proliferation rate of neuroblasts in the Drosophila larval 
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brain (Samuels et al., 2020), an fgf8 mRNA gradient generated by mRNA decay couples differentiation 

to posterior elongation of the vertebrate embryonic axis (Dubrulle and Pourquié, 2004) and Hes1 mRNA 

instability is integral to the Hes1 protein ultradian oscillations that may act as a timer for vertebrate 

neuronal differentiation (Bonev et al., 2012). In addition to these mRNA-specific examples, a conserved 

feature of early embryogenesis is that there is bulk degradation of maternal mRNAs around the time of 

zygotic genome activation (Vastenhouw et al., 2019; Yartseva and Giraldez, 2015). Consistent with the 

key roles of mRNA stability in cell biology, mutations in many components of the degradation pathways 

are associated with human diseases (Fraga de Andrade et al., 2020; Pashler et al., 2016).  

While the half-lives of strictly maternal mRNAs during embryogenesis can be readily measured 

genome-wide (Thomsen et al., 2010), measuring the decay of zygotic mRNAs is more difficult due to 

ongoing transcription. One approach is to inhibit transcription, either chemically or using temperature 

sensitive alleles, and then follow the decline in mRNA levels over time (Brown and Sagliocco, 1996; 

Furlan et al., 2021; Tani and Akimitsu, 2012). A disadvantage of this approach is that inhibiting 

transcription disrupts cellular physiology which can lead to the stabilisation of some mRNAs (Furlan et 

al., 2021; Tani and Akimitsu, 2012). Other methods involve metabolic labelling of the RNA with a 

nucleoside analogue, for example in pulse-chase or approach-to-equilibrium experiments (Furlan et al., 

2021; Lugowski et al., 2018; Tani and Akimitsu, 2012). Related approaches use computational models 

to estimate transcription and degradation rates by sequencing both the total and labelled RNA following 

the pulse (Furlan et al., 2021). However, the choice of pulse-chase labelling times can introduce errors 

in the half-life estimates (Uvarovskii et al., 2019). In addition, efficient metabolic labelling can be difficult 

in vivo, especially on the short timescales needed for high resolution measurements. Single molecule 

fluorescent in situ hybridisation (smFISH) imaging based methods for estimating mRNA half-lives have 

also been described. However, these require steady-state transcript levels (Bahar Halpern and Itzkovitz, 

2016) or a natural shut off of transcription (Boettiger and Levine, 2013) and these imaging based 

approaches are not high throughput.  

In this study we generate a high-resolution total RNA-seq time series across early 

embryogenesis that we then use to estimate half-lives and assign mRNAs into different stability classes. 

Our data support a role for P-bodies in mRNA degradation, as we find that unstable mRNAs are more 

highly colocalised with P-bodies and for some mRNAs we can detect fragments with only the 3’ end in 

P-bodies. Overall, our data reveal the contribution of mRNA stability to shaping mRNA levels during 

early embryogenesis and provide insight into how mRNA stability is regulated. 
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Results 
Isolation of mRNA from early embryos captures high resolution transcriptional dynamics 
To investigate mRNA accumulation dynamics during early Drosophila embryogenesis, we first 

generated a total RNA-seq time series. RNA was isolated from single early Drosophila embryos at 10 

time points, starting at nuclear cycle (nc) 11 prior to the onset of bulk zygotic transcription through to the 

beginning of gastrulation (Figure 1A). As in a previous study (Lott et al., 2011), to stage the embryos we 

used a His2avRFP transgenic line to visualise nuclei during the rapid nuclear cleavage cycles of early 

Drosophila development. Embryos were precisely staged at nc11, nc12, nc13 and nc14 by calculating 

an internuclear distance ratio (Figure S1A). Single embryos were collected in triplicate at 5 min (nc11, 

nc12 and nc13) and 15 min (nc13 and nc14) intervals after the division and finally at cephalic furrow 

formation (Figure 1A). As male and female embryos have differences in X chromosome transcription 

due to dosage compensation (Lott et al., 2011), we used PCR to determine the sex of each embryo and 

only included female embryos as biological repeats. We sequenced total RNA following rRNA depletion, 

rather than selecting for polyadenylated RNA, allowing us to capture intronic reads and other non-coding 

RNA species. The intronic reads are useful for quantifying nascent, unspliced transcripts and also allow 

us to detect early zygotic expression by distinguishing zygotic transcripts containing introns from 

maternally loaded spliced mRNAs.  

Based on the mapped reads we detected a total of 18159 transcripts during early embryogenesis 

representing 9026 unique genes. Using a principal component analysis (PCA) we observed that the first 

two principal components represented 44% and 18% of the variation respectively and the replicates at 

each time point clustered together (Figure 1B). This is consistent with the biological age of the embryos 

explaining the majority of variation within the data rather than other differences between individual 

replicates, indicating the high quality of the libraries. Transcript levels across embryogenesis were 

visualised as a heatmap, with the transcripts ordered based on the time point of peak expression (Figure 

1C). We classified 4897 early peaking transcripts (at the 95 or 105 min time points) as maternal, and 

13262 transcripts peaking after 105 min as zygotic. Of the zygotic transcripts, 23% show peak 

expression early in nc13 or the start of nc14 (between 115 and 160 min time points inclusive) and the 

remainder show late peak expression after 160 min. Analysis of different dynamically expressed genes 

showed that our dataset included well characterised maternal (nos, bcd), maternal and zygotic (Neu3 

and da), early zygotic (upd1 and dpp) and late zygotic expression (wg and hnt) (Figure 1D).  
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Figure 1. Total RNA-seq captures dynamic gene expression during early Drosophila 
development. (A) RNA-seq samples were collected at 10 different developmental time points spanning 
early nc11 through to cephalic furrow (CF) formation. Approximate time after egg lay (AEL) at 20°C for 
each time point is shown, along with a schematic representation of the maternal to zygotic transition 
where the embryo switches from relying on the maternally loaded RNAs (red) to activating its own 
zygotic transcription (blue). (B) Principal component plot of the RNA-seq samples shows tightly 
correlated replicates at each time point of the series. (C) A heat map of all expressed transcripts with 
TPM >1 (18159 transcripts). Data are Z normalised and ordered along the y axis by the time point of 
peak expression. (D) Examples of transcript dynamics captured by the data include maternal, maternal 
and zygotic, early zygotic and late zygotic gene expression. (E) Proportion of normalised intron reads 
(RPKM) throughout the time series.  
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As we sequenced total RNA, we were able to determine the number of reads for each transcript 

that mapped to introns (where appropriate) as well as exons. Only a very small proportion of transcripts 

at time points between 105-125 min have intronic reads (Figure 1E). These data suggest that during 

these stages (nc12 to early nc13) there is only minor zygotic transcription of intron-containing genes. 

Previous studies have shown that the earliest zygotic activation of the Drosophila genome is biased 

towards expression of short intronless genes (De Renzis et al., 2007; Heyn et al., 2014), which we 

cannot distinguish from maternally deposited transcripts at any individual early time point in our data. In 

addition, the early nuclear cycles are short, limiting the time period of active transcription. Nonetheless, 

we found that eight genes had detectable levels of intron signal at nc12 and nc13A, indicative of early 

zygotic transcription (Figure S2A-B).  

The proportion of intronic reads increases significantly at 135 min (Figure S2C), then there is a 

further large increase around mid-nc14 (Figure 1E), when bulk activation of zygotic transcription occurs 

(Lott et al., 2011). We detect 7276 zygotically expressed genes, which is similar to a previous estimate 

based on GRO-seq data (Saunders et al., 2013). The benefit of the high temporal resolution of our data 

can be seen in examples of transient peak expression such as the gene runt (run) which peaks in early 

nc13 and is also expressed earlier at nc12 (Figure S2B). run has essential roles in patterning and 

transcriptional control of sex determination in early development, so the precise temporal regulation of 

its expression is likely to be important for these functions (Wheeler et al., 2000). Additionally, we observe 

temporal changes in mRNA isoforms during development, exemplified by the genes Meltrin and 

thickveins (tkv) (Figure S3A and B). In both cases, these isoforms have altered coding sequences, which 

for the BMP receptor Tkv results in a shorter extracellular ligand-binding domain in the zygotically 

expressed isoform. We are also able to detect the expression of non-coding RNA species, such as those 

in the bithorax complex (Figure S3C). Overall due to the high temporal resolution of our data and the 

ability to detect non-coding RNAs we have a high quality dataset to investigate transcriptional dynamics 

in early Drosophila development. 

 

Gaussian process regression provides estimates of transcript half-lives in early embryogenesis 
Previous studies have focused on clearance of maternal transcripts (Thomsen et al., 2010), therefore 

we were interested in the kinetics by which zygotic transcripts are cleared in the early embryo. We used 

the intronic reads in our total RNA-seq dataset to represent pre-mRNA levels as a proxy for the 

transcription rate, while exonic reads reflect mature mRNA levels (Figure 2A). Using the profiles of 

intronic and exonic reads over the time course, we fit a model of mRNA accumulation and degradation 

in order to estimate the mRNA degradation rate.   

We then used a Gaussian process (GP) regression model (Honkela et al., 2015; Lawrence et 

al., 2006) to estimate zygotic transcript half-lives from the intronic (pre-mRNA) and exonic (mature 
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mRNA) time series RNA-seq data (Figure 2B). Before fitting the GP regression, we applied a dynamic 

filter where we a computed log-likelihood ratio test between two GP regression models: a dynamic model 

with a radial basis function (RBF) kernel and a noise model to obtain genes that are differentially 

expressed. We then strictly filtered the dynamic data to select 593 mRNAs, which are purely zygotically 

transcribed and have very low reads at the first time point. From these, we filtered further to select 

transcripts with a correlation between the mRNA and pre-mRNA above 0.4. The model uses a GP which 

specifies a prior distribution over possible underlying functions before observing the data. This non-

parametric prior is governed by ordinary differential equations (ODEs), which describe the transcription 

regulation process. Once the data are observed, Bayesian inference is used to infer the posterior 

distribution. The posterior distribution allows quantifying uncertainty in the model as it reflects possible 

functions which can explain a given data set. Credible regions are derived from the posterior distribution 

to quantify the uncertainty at 95% confidence level. The ODE describing the system is shown in Figure 

2B, which describes the evolution of the mature mRNA levels over time, as a function of the pre-mRNA 

dynamics, with parameters including splicing and degradation rates which are inferred using the GP 

regression.  

The model provides half-life estimates for 279 zygotic transcripts corresponding to 187 genes 

(Supplementary Table 1). The distribution of these, coloured by long, medium or short half-life category 

can be seen in Figure 2C, with the mean half-life at 42 minutes and median at 31 minutes. Figure 2D 

shows examples of a gene with a short (Di) and a long (Dii) half-life, estimated using the GP model. 

Parameters were determined for these genes, along with associated uncertainty, using Markov chain 

Monte Carlo methods and the posterior distributions on the degradation rate D are displayed. RhoU 

mRNA, encoding a Rho GTPase, has a short half-life of just 7 minutes whereas the cv-2 mRNA, 

encoding a BMP binding protein, has a long half-life of 85 minutes. Full parameter estimates and credible 

regions are shown in Figure S4A.  

As the dynamic embryonic mRNAs are not at steady-state, a previously described smFISH 

based method developed in human cells (Bahar Halpern and Itzkovitz, 2016) was unsuitable for 

validation of half-lives in this particular system. An alternative method exploited the aborting of 

transcription during mitosis to calculate the snail mRNA half-life in the Drosophila embryo, based on 

quantitation of mRNA numbers before and after mitosis (Boettiger and Levine, 2013). However, we 

found the variation between transcript numbers in different embryos to be greater than any reduction 

that would be expected over such a short time frame (~ 4 mins) due to degradation (Figure S4B-D). As 

a result, any reduction due to degradation is masked by high embryo to embryo variation, as has 

previously been observed for mRNA numbers for other genes in the Drosophila embryo (Calvo et al., 

2021). The snail mRNA numbers are tightly controlled by negative autoregulation (Boettiger and Levine, 

2013), suggesting that the snail mRNA may be uniquely suited to this method for calculating half-life.  
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Figure 2: Gaussian process regression provides estimates of transcript half-lives in early 
embryogenesis. (A) Reads aligned to intronic regions of genes are used to represent pre-mRNA levels 
(blue). Transcript-level exonic reads represent mature mRNA levels (red). (B) Schematic of Gaussian 
Process (GP) regression and the model implemented in this study. The ODE underlying the model is 
displayed, showing how the evolution of the mature mRNA dynamics is described by the pre-mRNA 
data over time, sculpted by the splicing (S) and degradation (D) parameters. Pre-mRNA and mature 
mRNA are therefore jointly modelled using GPs related by the ODE. (C) Half-life results for 279 
transcripts estimated using the Gaussian process model. Transcripts are divided into short, medium and 
long half-lives from the quantiles of the data and coloured accordingly. (D) Examples of data for a short 
(i) and a long half-life mRNA (ii), RhoU and cv-2, fit using the GP model. Pre-mRNA is shown in blue 
and mature mRNA in red, shaded areas represent credible regions and crosses mark the data for each 
experimental replicate at each time point. Posterior distributions for the degradation parameter D for 
each gene are shown to the right. (E) Gene ontology analysis of groups of short (i) and long (ii) half-life 
mRNAs compared to the full set of dynamic genes in the dataset. 
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In the absence of direct half-life validation, we determined whether the types of factors encoded 

by mRNAs with short and long half-lives have functions that are compatible with their inferred stabilities. 

We therefore used gene ontology (GO) analysis to investigate the functions of proteins encoded by the 

sets of short and long half-life mRNAs (Figure 2Ei). By comparing the GO terms associated with short 

half-life mRNAs compared to all dynamic transcripts in the RNA-seq data, we find an enrichment of 

mRNAs encoding DNA-binding proteins, transcription factors and cell adhesion proteins. Transcription 

factors and other DNA binding proteins have previously been identified as encoded by unstable mRNAs 

(Burow et al., 2015; Edgar et al., 1989; Thomsen et al., 2010). The GO analysis also suggests that 

stable mRNAs encode signalling receptors and transmembrane transporters (Figure 2Eii). Overall, this 

approach has allowed the classification of transcripts into short, medium and long half-life categories 

where groups of mRNAs are enriched for protein functions reflected by their different stabilities. 

 

 

Clustering reveals how degradation shapes mature mRNA dynamics 

We next addressed how post-transcriptional regulation contributes to the range of mature mRNA 

dynamics seen in our data, by combining clustering analysis with our modelling of transcript half-lives. 

The pre-mRNA time series data were clustered using GPclust (Figure S5), a package specifically 

designed for clustering noisy time series data using Gaussian processes (Hensman et al., 2015). From 

the set of intronic clusters (Figure S5), six highly populated intronic clusters that together exhibit a variety 

of interesting mRNA dynamics are shown in Figure 3Ai. The genes in each cluster share similar pre-

mRNA profiles, and therefore transcription dynamics. All of the pre-mRNAs in intronic cluster 5 were 

then sub-clustered based on their mature-mRNA profiles (Figure 3Aii), which revealed that a range of 

mature mRNA dynamics arises from this single transcriptional profile. The zygotic mRNA subclusters 

for intronic cluster 2, another well populated cluster, also display a range of mature mRNA dynamics 

and are shown in Figure S6. The Gaussian process model sheds light on how these various dynamics 

arise, due to differences in the half-lives of transcripts in each cluster (Figure 3Aii, Figure S6). It is clear 

that the pattern in the shape of the time series is reflected in the different half-lives of the clusters; 

clusters which have a stronger peak have a shorter half-life and higher degradation rate, whereas those 

which continually increase across the time period have a long half-life and low degradation rate.  
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Figure 3: Degradation regulates mature mRNA dynamics and can be approximated using the 
time delay between peak pre-mRNA and mature mRNA expression. (A) Plots show the clustering 
of pre-mRNA (Ai) and mature (Aii) mRNA time series using GPclust. Plots show the mean expression 
value at each time point for all mRNAs in a cluster and the shaded area shows the standard deviation. 
The intronic cluster ID (Ai) or mean half-life (Aii) is shown in the top left of the plot, the number of 
transcripts in each cluster is in the bottom right. (B) Heatmaps of pre-mRNA and mRNA expression at 
the gene-level for the subset of zygotic transcripts, ordered by the time point of maximum pre-mRNA 
expression. (C) Schematic illustrating the estimation of delays between pre-mRNA and mature mRNA 
peak (arrows) by fitting and sampling (n = 100) from a Gaussian process with a squared exponential 
kernel to give estimates with uncertainty. (D) LOWESS fit of the delay between the peak of pre-mRNA 
and mature mRNA against inferred half-life. Pearson's correlation coefficient of 0.49 with p = 3.2e-10 
for testing non-correlation. Points representing transcripts are coloured by delay category. (E) 
Confusion matrix comparing genes categorised into short, medium and long delays and their respective 
half-life categories. Numbers in the boxes indicate the fraction of genes with a given delay in the 
corresponding half-life category. 
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As the clustering data indicated that mRNA half-life contributes to the shape of the mature mRNA 

profile, we further investigated the relationship between the relative timing of the peak of the pre-mRNA 

and mature mRNA. Visualisation of the gene-level pre-mRNA and mature mRNA data from the zygotic 

subset (by combining reads for all isoforms of a gene) as heatmaps, reveals that for a given pre-mRNA 

peak time, there are a range of mature mRNA peak times with different delays (Figure 3B). The pre-

mRNA and mature mRNA data were modelled using a Gaussian process which was then sampled with 

n = 100, so that the delay between the peaks could be estimated and the uncertainty in the estimate 

quantified (Figure 3C). The relationship between delay and half-life estimated from the model, for each 

transcript that has been modelled, is shown in Figure 3D. There is a moderately positive yet significant 

correlation between the two variables (Pearson’s R = 0.49, p = 3.2e-10). Figure 3E shows the data as 

a confusion matrix in order to assess whether delay is predictive of half-life. Enrichment along the 

diagonal supports that delay is indicative of half-life; 54% of short delay genes have short half-lives and 

67% of long delay genes have long half-lives. The picture is less clear in the medium delay category 

where the proportions of genes with short, medium and long half-lives are comparable, however the 

highest proportion (38%) of genes is in the medium half-life category. Together, these results reveal 

how post-transcriptional regulation is able to shape mature mRNA dynamics through regulation of 

mRNA half-lives and that the time delay between maximum expression of the pre-mRNA and mature 

mRNA can be used as an indicator of mRNA stability. 

 
mRNA stability is related to conformation 
The degradation of an mRNA in the cytoplasm can be closely linked to its translation (Mugridge et al., 

2018). We therefore sought to investigate how mRNA half-lives are shaped by both structural and 

sequence features known to influence translation. Regulatory sequences controlling mRNA 

degradation, translation and localisation are frequently located in the mRNA 3’UTR (Mayr, 2017). We 

found that 3’UTR length does not have any significant correlation with our inferred half-lives (Figure 

S7A), in agreement with previous studies of mRNA stability in late stage Drosophila embryos (Burow et 

al., 2015). Similarly, there is no relationship between transcript length and stability in our dataset (Figure 

S7B).  

Due to the links between mRNA decay, translation efficiency and codon optimality (Hanson and 

Coller, 2018), we investigated whether there was a relationship between half-life and both the translation 

efficiency and codon usage across the transcripts within our dataset. Using a previously published 

dataset obtained by ribosome footprint profiling of 2-3 hour embryos (Eichhorn et al., 2016) we plotted 

the translation efficiency and half-life for each of the transcripts within our dataset (Figure 4A). We 

observed a very slight but significant negative correlation between translation efficiency and half-life 

(Pearson’s R = -0.141, p = 0.028).  
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We also determined the codon stabilisation coefficient (CSC) for each codon which is a measure 

of the correlation between codon usage and stability of mRNAs. We plotted the CSC of each codon 

ordered by this value from highest to lowest (Figure 4B) and examined the identity of optimal codons 

previously defined in Drosophila embryos (Burow et al., 2018) and their occurrence within the CSC plot. 

Although the five codons with the highest CSC values in our dataset are classified as optimal codons 

the proportion of optimal codons is not enriched within the positive and negative CSC groups (40% vs. 

32%, p = 0.5946) (Figure 4B). There was also no significant difference in the proportion of optimal 

codons for transcripts within each of the different categories of half-life (Figure 4C) and clustering 

mRNAs based on codon usage showed that different clusters had similar half-lives (Figure S7C).  

We next used imaging to analyse mRNA compaction in the context of stability. A more open 

conformation has been detected for specific mRNAs when they are being translated (Adivarahan et al., 

2018; Khong and Parker, 2018; Vinter et al., 2021), raising the possibility that a particular conformation 

may also influence mRNA stability. To investigate this, we selected a set of 6 zygotic mRNAs, with 

different half-lives ranging from 6 to 95 minutes (Figure S8A). We used dual-colour smFISH probes to 

visualise their 5' and 3’ ends, and quantitate the distance between them, in fixed embryos (Figure 4Di). 

A representative smFISH image for one of the test mRNAs, Deformed (Dfd), is shown in Figure 4Dii, 

images for the other mRNAs tested are shown in Figure S8B.  
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Figure 4: mRNA properties and stability. (A) Estimated half-lives of each transcript (x-axis) versus 
the translation efficiency from 2-3 hour embryos (Eichhorn et al., 2016). Points representing transcripts 
are coloured by half-life category (Pearson’s R = -0.141, p = 0.028). (B) Codon stabilisation coefficient 
of the codons calculated from our estimated half-lives. Optimal codons are shown in blue and non-
optimal codons are shown in yellow (chi-squared test p = 0.5946). (C) Proportion of optimal codons 
within transcripts from each half-life category. No significant difference was observed in the percentage 
of optimal codons within each category as tested by independent t-test (short vs med p = 1; short vs 
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long p = 1; med vs long p = 0.8). (Di) Schematic showing detection of the 5' (magenta) and 3' (yellow) 
ends of each mRNA with different smFISH probe sets. Spots belonging to the same mRNA are matched 
(see Methods). (Dii) Maximum projection of 6 slices from a confocal image showing smFISH detection 
of the 5’ and 3’ ends of Dfd mRNAs. Scale bars: 5 µm. A higher magnification view of the boxed region 
is shown with lone 5’ ends, 3’ ends and colocalised ends labelled by magenta, yellow and white 
arrowheads, respectively. (E) Graph shows the end-to-end distances of mRNAs with different stabilities, 
n = 3 embryos, data are mean +/- standard error. Genes are ordered by their model half-life along the 
x-axis and coloured by half-life category (p = 0.0215, tested by ordinal regression). 
 

 

For each image, the number and position of all the 5’ and 3’ probe signals were collected and 

pairs were identified by treating the data as a paired assignment problem (Figure 4Di). For each pair, 

the distance between the 5’ and 3’ signals was then measured; only ends with a distance less than 300 

nm were considered to belong to the same mRNA (Vinter et al., 2021). The distributions of end-to-end 

distances for each of the mRNAs tested reveal that there is a significant (p = 0.0215) trend whereby 

shorter half-life mRNAs are more compact, based on a shorter distance between their 5’ and 3’ ends 

(Figure 4E). We also identified unpaired mRNA ends (see later), which were further apart than the 300 

nm distance threshold used. Similar data were obtained from quantitation of control smFISH 

experiments in which the fluorophore dyes on each set of probes were switched (Figure S8C-D). In 

addition, a precision control for the smFISH dual labelling is included for the otd mRNA, based on 

detection of two different probe sets, labelled with different fluorophores, that hybridise alternately to the 

otd mRNA (Figure S8E). This control confirms that the end-to-end distances we measure are 

significantly above the detection threshold (Figure S8E-F). In contrast, we find no correlation between 

mRNA compaction and mRNA length, as Dfd and golden goal (gogo) are the shortest and longest 

mRNAs tested, respectively. Taken together these results suggest that within early Drosophila 

development, the decay of zygotically expressed genes is not strongly linked to translation efficiency or 

optimal codon content, however unstable mRNAs tend to be more compact than long half-life 

transcripts.  

 

Embryonic P-bodies are associated with unstable mRNAs and enriched in 3’ decay fragments 
As we did not detect any strong relationship between mRNA translation and half-life, we next tested 

whether mRNA localisation influences stability. To this end, we focused on cytoplasmic P-bodies, which 

have been implicated in mRNA degradation and storage in Drosophila (Wang et al., 2017). Therefore, 

we investigated whether mRNAs with distinct stabilities are differentially localised to P-bodies in the 

early Drosophila embryo. We visualised P-bodies using Me31B, which is a general marker of P-bodies, 

including in Drosophila (Patel et al., 2016). To detect Me31B we made use of a fly stock carrying a GFP-

Me31B exon trap in which GFP is inserted into the endogenous Me31B locus (Buszczak et al., 2007). 
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Using smFISH we quantified single mRNAs and P-bodies labelled by GFP-Me31B in fixed embryos. 

The same set of six mRNAs described above was used in these experiments with the addition of Neu2, 

a 1126 nt mRNA which was unsuitable for compaction analysis due to its short length. Many GFP-

Me31B foci were detected in the cytoplasm of early nc14 embryos (Figure 5A, Figure S9A). These foci 

have a mean radius of 200 nm (Figure S9B), consistent with a previous observation that P-bodies in the 

embryo are smaller than those in the oocyte (Sankaranarayanan et al., 2021).  

 
Figure 5: Short half-life mRNAs are more colocalised with P-bodies in the early embryo.  
(A) Confocal images of fixed, early nc14 embryos stained with smFISH probes for the indicated mRNAs 
(magenta) and showing labelled GFP-Me31B P-bodies (green). Scale bars: 5 µm. Image is a maximum 
projection of 7 slices, along with a higher magnification image shown as both a merged image and single 
channels. Individual mRNAs (magenta arrowheads), P-bodies (green arrowheads) and colocalised 
mRNA and P-body signals (white arrowheads) are highlighted. (B) The P-body colocalisation index used 
to calculate the normalised proportion of colocalised mRNAs, facilitating comparison between different 
mRNAs. (C) Graph shows the P-body colocalisation index for the indicated mRNAs in early nc14. 
mRNAs are ordered by their model half-life and coloured by half-life category. Points represent individual 
embryos and overlays display mean and standard deviation across replicates. Unstable mRNAs are 
significantly more colocalised with P-bodies, tested by ordinal regression (p = 0.0002).  
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For each mRNA tested, a proportion of the individual mRNA signals colocalise with P-bodies 

(Figure 5A, Figure S9A). As seen in Figure 5A, orthodenticle (otd) (also called ocelliless) mRNAs appear 

to be more highly colocalised with P-bodies than pxb mRNAs. As otd has a much shorter half-life than 

pxb (6 mins and 95 mins respectively) we examined whether this was a general trend across the set of 

test mRNAs. To quantitate colocalisation, we used a colocalisation index which controls for variation in 

both mRNA and P-body numbers between embryos (Figure 5B). This analysis reveals that short half-

life mRNAs are significantly more colocalised with P-bodies than mRNAs with long half-lives (Figure 5C, 

p = 0.0002), suggesting that P-bodies may be sites of mRNA degradation.  

We noticed in our dual-colour smFISH images that there is a proportion of unpaired 5’ and 3’ 

mRNA ends suggestive of degradation intermediates (Figure 4Dii). Therefore, to further investigate 

whether P-bodies may be sites of mRNA degradation, we performed dual colour smFISH with 5’ and 3’ 

probe sets, in addition to GFP-Me31B as a P-body marker. These data allowed us to identify unpaired 

5’ and 3’ ends and assess whether there is an enrichment of either end in P-bodies. A representative 

image of an early nc14 embryo is shown for the Dfd mRNA in Figure 6A, which reveals that complete 

mRNAs (orange arrowhead) and lone 3’ ends (yellow arrowhead) can be seen to be colocalised with 

the P-body marker Me31B. However, colocalisation of lone 5’ ends with Me31B is less evident. For 

clarity, an equivalent region of an early nc14 embryo is shown as 3 colour images with only either the 5’ 

or 3’ end of Dfd mRNAs, Me31B and DAPI (Figure 6B, the data is shown for the other test mRNAs in 

S10A). Quantitation of the proportion of single 5’ and 3’ signals that localise to P-bodies reveals a 

general trend that there are more unpaired 3’ ends in P-bodies, which is significant for half of the mRNAs 

investigated (Figure 6C). Similar results are obtained when the fluorophores on the otd and Dfd 5’ and 

3’ probes are reversed (Figure S10B). The detection of these lone 3’ signals is consistent with them 

being 5’ to 3’ mRNA decay intermediates. Together, these data suggest that mRNA degradation occurs 

within P-bodies in the early Drosophila embryo.  
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Figure 6: mRNA 3’ end fragments are more associated with P-bodies than 5’ ends.   
(A) Maximum projection (2 slices) of a confocal image showing smFISH staining of an early nc14 embryo 
with probes for Dfd 5’ (cyan) and 3' (magenta) ends, GFP-Me31B (green) and DAPI staining (blue). 
Examples where both the 5’ and 3’ ends or only the 3’ end is colocalised with P-bodies are indicated by 
orange and yellow arrowheads, respectively. Single channels for the smFISH and GFP-Me31B are 
shown with the merged image. Scale bar: 1 µm. (B) As in (A) except the images (7 Z slices) show only 
one mRNA end (5’ in the top panels, 3’ in the lower panels) at a time for clarity. The mRNAs, GFP-
Me31B and DAPI are shown in magenta, green and blue, respectively. A higher magnification image is 
shown as a merge and single channels, with individual mRNA ends (magenta arrowheads), P-bodies 
(green arrowheads) and colocalised mRNA end and P-body signals (white arrowheads) highlighted. 
Scale bars: 5 µm in merge and 2 µm in the higher magnification image. (C) Quantification of the 
percentage of unpaired mRNA 5’ and 3’ ends with P-bodies relative to the total number of lone 5’ or 3’ 
ends. n=3 embryos, paired t-test used to determine significance. 
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Discussion 
Here, using total RNA-seq time series data and Gaussian process regression, half-lives of ~300 mRNAs 

in early Drosophila development were derived. Our data support widespread post-transcriptional 

regulation of gene expression in early development, as we show that shared transcription profiles give 

rise to a range of mature mRNA dynamics due to differences in degradation. The RNA-seq time series 

that we have generated is high resolution with additional time points and over an extended period of 

early embryogenesis compared to published data sets (Graveley et al., 2011; Lott et al., 2011). In 

addition, our libraries are total RNA-seq rather than poly(A) selected, facilitating detection of non-coding 

RNAs and unstable RNA species, such as co-transcriptionally spliced introns. Our RNA-seq data reveal 

how expression of different mRNA isoforms for a given gene varies across early embryogenesis and we 

highlight examples where isoform changes alter the protein sequence of specific domains, potentially 

impacting on function.  

A major advantage of our approach is that it does not require transcription inhibition, which can 

affect mRNA stability, or mRNA labelling, where the estimates can be affected by the labelling time 

chosen (Furlan et al., 2021; Tani and Akimitsu, 2012). A different method that uses RNA-seq data to 

estimate mRNA half-lives has been described previously, which solves ODEs describing the RNA life 

cycle by adopting constraints on RNA kinetic rates (Furlan et al., 2020). An advantage of our approach 

is that, as Gaussian process regression is non-parametric, there is greater flexibility and sensitivity in 

the model to more accurately represent the variety of dynamics observed in the data.  

Due to strict filtering we have only derived a proportion of transcript half-lives from the dataset. 

These filters could be loosened to provide half-lives for more mRNAs, but potentially with lower 

confidence in the estimates. As we were unable to study some mRNAs because they lack introns, a Pol 

II ChIP-seq time series could be generated to use instead of intronic reads for the transcription profiles. 

In addition, we show how the stability of transcripts can be classified using the delay between the peak 

of the pre-mRNA and mature mRNA, which represents a simpler approach for estimating stabilities that 

does not require modelling.  

The half-lives we estimated for ~300 zygotic transcripts in the early embryo have a median of 31 

minutes. This is similar to the median half-lives of ~30-40 mins reported for maternal mRNAs degraded 

by only the maternal decay pathway or by both the maternal and zygotic pathways, based on microarray 

analysis of fertilised and unfertilised Drosophila embryos (Thomsen et al., 2010). In addition, the range 

of half-lives we observe is consistent with previous half-life estimates of 7-14, 13 and 60 mins described 

for the zygotic fushi tarazu, snail and hunchback mRNAs, respectively, in the early Drosophila embryo 

(Boettiger and Levine, 2013; Edgar et al., 1986; Little et al., 2013). Moreover, the wide range of half-

lives we observe in the embryo is consistent with mRNA stability being an important checkpoint of control 

in the regulation of gene expression. 
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The median half-life we estimate in the early embryo is shorter than that of 73 minutes calculated 

for older (stage 12-15) Drosophila embryos, in a study that used a 4 hour pulse-chase labelling (Burow 

et al., 2015). While it is possible that the pulse-labelling timing skews some of the half-life estimates 

(Uvarovskii et al., 2019), the shorter median half-life in the early embryo may reflect its rapid initial 

development. Early embryogenesis is characterised by short mitotic cycles (Ferree et al., 2016) and fast 

rates of transcription (Fukaya et al., 2017) and translation (Dufourt et al., 2021), with the resulting 

localised gene expression patterns specifying three tissues along the dorsal-ventral axis in a time period 

of only 90 mins (Levine and Davidson, 2005). Therefore, mRNA degradation rates may be faster than 

at other stages to limit the perdurance of transcripts encoding factors affecting cell fate. 

Gene ontology analysis revealed an enrichment among the short half-life mRNAs for those 

encoding transcription factors and cell adhesion proteins, whereas stable mRNAs encode signalling 

receptors and transmembrane transporters. This is consistent with transient localised expression of key 

transcription factors in the early embryo and the mRNAs encoding transcription factors commonly being 

unstable (Burow et al., 2015; Edgar et al., 1989; Thomsen et al., 2010). In contrast, signalling receptors 

tend to be more ubiquitously expressed, with signalling activation often regulated by ligand tissue 

specific expression and/or availability (Umulis et al., 2009). Future studies will be able to determine how 

particular mRNA half-lives contribute to patterning by exploiting the extensive characterisation of gene 

regulatory networks in the early Drosophila embryo (Stathopoulos and Levine, 2005).  

Previous studies have shown that mRNAs exist in a more open conformation during translation, 

while untranslated mRNAs are more compact (Adivarahan et al., 2018; Khong and Parker, 2018; Vinter 

et al., 2021) regardless of whether they are stress granule associated (Adivarahan et al., 2018; Khong 

and Parker, 2018). We found a trend that the 5’ and 3’ ends are closer for shorter half-life mRNAs. A 

more compact structure may facilitate degradation as 5’ to 3’ decay involves communication between 

deadenylation and decapping factors (Ermolenko and Mathews, 2021). Alternatively, the shorter 

distance between 5’ and 3’ ends could reflect a transient interaction associated with degradation for all 

mRNAs, which our smFISH snapshot images capture more frequently for the less stable mRNAs.  

Codon identity and translation efficiency have previously been shown to be an important 

determinant of mRNA stability in bacteria, yeast, Drosophila, zebrafish and mammalian cells (Hanson 

and Coller, 2018). Optimal codons, which are determined by codon bias in abundant mRNAs and the 

gene copy number of their cognate tRNA, lead to efficient translation and are enriched in stable 

transcripts (Hanson and Coller, 2018). However, our data suggest that codon optimality and translation 

efficiency are not major determinants of mRNA stability for early zygotic transcripts. A correlation 

between codon optimality and mRNA stability was observed for maternal mRNAs during the maternal 

to zygotic transition in the early Drosophila embryo, which likely contributes to clearance of maternal 

transcripts (Bazzini et al., 2016). Optimal codons are also associated with stable mRNAs in late-stage 
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Drosophila embryos, but not in neural tissues, potentially because mRNA stability regulation by RNA 

binding proteins dominates in the nervous system (Burow et al., 2018). The effect of codon optimality 

may also be masked for early spatially regulated zygotic transcripts. This could be due to additional 

regulation by RNA binding proteins and miRNAs, a dependence on a particular distribution of non-

optimal codons and/or tRNA abundance being a poor proxy for aminoacylated tRNA levels for a subset 

of tRNAs. In support of the latter, low aminoacylation of particular tRNAs has been observed in the 

mouse liver that may contribute to inefficient translation (Gobet et al., 2020).  

Our data show that short half-life mRNAs, which are enriched for those encoding transcription 

factors, are more likely to colocalise with the P-body marker Me31B than more stable mRNAs in the 

early embryo. This is consistent with enrichment of mRNAs encoding RNA polymerase II regulators in 

P-bodies purified from mammalian cells, although in these cells P-bodies are associated with mRNA 

storage (Hubstenberger et al., 2017). The stronger association of short half-life mRNAs with P-bodies 

and our ability to detect mRNAs lacking their 5’ end in P-bodies suggests that they may be sites of 5’ to 

3’ mRNA decay in the early Drosophila embryo. In contrast, we detect weaker colocalization of 5’ end 

fragments with P-bodies, suggesting that 3’ to 5’ mRNA degradation by the exosome does not occur in 

P-bodies. In support of this, components of the exosome are largely absent from P-bodies (Standart 

and Weil, 2018).  

A role for P-bodies in 5’ to 3’ decay is consistent both with early studies in yeast following the 

discovery of P-bodies (Sheth and Parker, 2003) and with later work in Drosophila suggesting that P-

bodies are involved in mRNA degradation in the embryo following zygotic genome activation (Wang et 

al., 2017) and in intestinal stem cells (Buddika et al., 2021). In addition, the Xrn1 exonuclease localises 

with P-bodies in yeast, Drosophila and mammalian cells (Jones et al., 2012). However, P-bodies have 

been implicated in mRNA storage and translational repression in mature Drosophila oocytes 

(Sankaranarayanan et al., 2021) and embryos prior to zygotic genome activation (Wang et al., 2017). 

Moreover, many lines of evidence from other systems argue against a role for P-bodies in mRNA 

degradation. These include an absence of detectable mRNA decay intermediates either following 

purification of P-bodies (Hubstenberger et al., 2017) or based on a live imaging approach (Horvathova 

et al., 2017), mRNA degradation when P-body formation is disrupted (Hubstenberger et al., 2017) and 

the ability of P-body mRNAs to re-enter translation (Bhattacharyya et al., 2006; Brengues et al., 2005).  

We speculate that P-bodies are involved in both storage and degradation in an mRNA dependent 

manner, with features of an individual mRNA as well as the proteins present in P-bodies at a particular 

developmental time influencing which function dominates. In support of this, it is known that there are 

changes in P-bodies during Drosophila development, for example from being large and viscous in the 

mature oocyte to smaller, more dynamic structures in the early embryo (Sankaranarayanan et al., 2021). 

Moreover, at the maternal-to-zygotic transition some P-body proteins are degraded, including the Cup 
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translational repressor protein, which may facilitate a switch from a translational repression/storage role 

to an mRNA degradation function prevailing in P-bodies (Wang et al., 2017). Our data suggest that 

zygotic mRNAs exploit the degradation function of P-bodies in their post-transcriptional regulation. 

Future studies exploiting the method developed for determining the protein and RNA contents of purified 

P-bodies (Hubstenberger et al., 2017), along with the power of Drosophila genetics and single molecule 

imaging, will reveal how P-bodies impact on mRNA stability or storage and cell fate decisions during 

development. 

 

 

Materials and Methods 
 
Biological methods 
 
Fly stocks 
All stocks were grown and maintained at 20°C and raised at 25°C for experiments on standard fly food 

media (yeast 50g/L, glucose 78g/L, maize 72g/L, agar 8g/L, 10% nipagen in EtOH 27mL/L and 

proprionic acid 3mL/L). The following fly lines were used in this study, y1 w* (BDSC Stock #6599), y1 w*; 

P{His2Av-mRFP1}II.2 (BDSC Stock #23651) and y1 w*; P{w[+mC]=PTT-GB}me31B[CB05282] (BDSC 

Stock #51530). 

 

Staging and collection of embryos for RNA-seq 
Flies carrying His-RFP were allowed to lay on apple juice agar plates in small cages for 1 hour. Embryos 

were dechorinated in 50% bleach (2.5% final concentration of sodium hypochlorite diluted in distilled 

water) for 3 minutes and washed thoroughly in distilled water. Individual embryos were carefully 

transferred into a droplet of halocarbon oil (Sigma-Aldrich; a mix of 700 and 27 oil at a ratio of 1:4) on a 

rectangular coverslip (Deltalab, 24X50mm, Nr. 1) and inverted over a cavity slide (Karl Hecht). Embryos 

were visualised and imaged with a Leica optigrid microscope at 20X magnification using a Texas red 

filter. Embryos were timed following the observation of a nuclear division, an image was taken and the 

embryo was immediately picked out of the oil droplet with a pipette tip and transferred to Eppendorf 

tubes containing 50µL TRIzol Reagent (Invitrogen). Single embryos were crushed and homogenised 

using a pipette tip and an additional 450uL Trizol added. Samples were immediately snap frozen in 

liquid nitrogen and stored at -80°C until processing for nucleic acid extraction. 

Ten timepoints were collected spanning early Drosophila embryonic development from nc11 

through to cephalic furrow formation (Table 1). Embryos were collected 5 minutes after nuclear division 

for nc11 and nc12, 5 and 15 minutes following the nc13 nuclear division and every 15 minutes following 
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the nc14 nuclear division as well as embryos that showed clear cephalic furrow formation. This yielded 

samples covering every 10-15 minutes through development from nc11 to cephalic furrow formation. 

The internuclear distance of 15-20 nuclei pairs per embryo was measured in Fiji and normalised to the 

whole embryo length to obtain an average internuclear distance per embryo (Figure S1A and B). This 

was compared to the internuclear distance of embryos of known stages to accurately confirm the nuclear 

cleavage stage and age of embryos. All embryos were collected at 20°C with approximate time after 

egg lay in minutes shown in Table 1. 

 

Table 1: Drosophila embryo samples collected for RNA-seq time course 

Sample collection time 

information 

Sample stage ID Approximate time after egg lay at 20°C 

(mins) 

nc11 + 5mins nc11 95 

nc12 + 5 mins nc12 105 

nc13 + 5 mins nc13A 115 

nc13 + 15 mins nc13B 125 

nc14 + 15 mins nc14A 145 

nc14 + 30mins nc14B 160 

nc14 + 45mins nc14C 175 

nc14 + 60 mins nc14D 190 

nc14 + 75 mins nc14E 205 

CF CF >220 

 

Nucleic acid extraction and embryo genotyping 
Samples stored in Trizol (Invitrogen) were used for RNA and DNA extraction performed according to 

the manufacturer’s protocol and resuspended in 10µL (RNA) or 20µL (DNA) nuclease free water. 

Extracted DNA was PCR amplified to sex the embryos by using Y chromosome specific primers to a 

region of the male fertility factor gene kl5, forward primer 5’ GCTGCCGAGCGACAGAAAATAATGACT 

3’ and reverse primer 5’ CAACGATCTGTGAGTGGCGTGATTACA 3’ (Lott et al., 2011) and control 
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primers to a region on chromosome 2R forward primer 5’ TCCCAATCCAATCCAACCCA 3’ and reverse 

primer 5’  CCTACCCACAAGCAACAACC 3’. PCR reactions were performed in triplicate. 

Total RNA was treated with TURBO DNA-free Kit Dnase (Invitrogen) and depleted of rRNA using 

the Ribo-Zero Magnetic Kit HMN/Mouse/Rat 24 Rxn (Illumina; Cat# MRZH11124) according to the 

manufacturer’s protocol using a low input protocol with 2-4µL rRNA removal solution yielding a 20µL 

final sample volume added to 90µL magnetic beads. Beads were resuspended in 35µL resuspension 

solution and ribo-depleted total RNA was ethanol precipitated and resuspended in 18µL FPF mix prior 

to RNA-seq library preparation.  

 

RNA-seq library preparation and sequencing 
Three female embryos from each time point were used as replicates to make 30 individual RNA-seq 

libraries. Individual total RNA-seq libraries were prepared from ribo-depleted RNA using a TruSeq 

stranded library prep kit (Illumina) according to the manufacturer’s protocol. Unique dual index adaptors 

were used for each library and they were pooled in equimolar concentration and run across 8 lanes on 

the flow cell of the HiSeq 4000 to obtain paired end sequence reads. The average number of reads 

obtained per library was 105 million reads. 

 

Embryo fixation and smFISH 
Flies were allowed to lay on apple juice agar plates in small cages for 2 hours at 25°C. After ageing for 

another 2 hours, 2-4 hour old embryos were dechorinated in 50% bleach for 3 minutes and washed 

thoroughly in distilled water. Embryos were fixed as previously described (Kosman et al., 2004) and 

stored in methanol at -20°C until required. Fixed embryos were placed in Wheaton vials (Sigma, 

Z188700-1PAK) for the smFISH reaction as described previously (Hoppe et al., 2020). mRNA targets 

were detected in embryos using smiFISH probes designed to exonic sequence with 5’ end X flap 

sequences (Tsanov et al., 2016) and using secondary detection probes labelled with Quasar 570 or 

Quasar 670 fluorophore dyes (LGC Biosearch Technologies). Probe sequences are listed in 

Supplementary Table 2. DAPI (500µg/ml) was added to the third of the final four washes of the protocol 

at a concentration of 1:1000 and embryos were mounted onto slides in Prolong Diamond to set overnight 

before imaging. To visualise the membrane to age the embryos a mouse a-Spectrin antibody (DSHB, 

3A9 (323 or M10-2)) with an Alexa Fluor 647 Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed 

Secondary Antibody (Thermo Fisher Scientific, A-31571) was used or a brightfield image was taken.  

For compaction experiments at least 24 probes were designed to each end of the mRNA (5’ and 3’) 

separated by at least 1.3kb. As a control, fluorophore dyes were switched and the images from stained 

embryos analysed and quantified. Additional controls for otd used adjacent probes with alternating 

Quasar dyes to determine the precision of detection of single mRNAs.  
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Confocal microscopy of fixed embryos 
A Leica TCS SP8 gSTED confocal was used to acquire images of the transcription sites (TSs), single 

mRNAs and P-bodies within cells of fixed embryos using a 100x/ 1.3 HC PI Apo Cs2 objective with 3X 

line accumulation and 3X zoom for compaction and P-body colocalisation experiments, and 2X zoom 

for quantifying mRNAs for the half-life validation. Confocal settings were ~0.6 airy unit pinhole, 400 Hz 

scan speed with bidirectional line scanning and a format of 2048 x 2048 or 4096 x 4096 pixels. Laser 

detection settings were collected as follows: PMT DAPI excitation at 405nm (collection: 417-474nm); 

Hybrid Detectors: AlexaFluor 488 excitation at 490nm (collection: 498-548nm), Quasar 570 excitation 

at 548nm (collection: 558-640nm) and Quasar 670 excitation at 647nm (657-779nm) with 1-6ns gating.  

All images were collected sequentially and optical stacks were acquired at system optimised 

spacing. Imaging of the membrane using brightfield or anti-Spectrin antibody at the mid-sagittal plane 

of the embryo with 40x objective at 0.75X zoom and 1024 X 1024 format was used to measure the 

average length of membrane invagination from at least 5 cells. These measurements were used to 

select embryos of a similar age in early nuclear cycle 14 (10 µm membrane invagination). For all 

analysis, 3 separate embryos were imaged and quantified as independent replicates. smFISH images 

were deconvolved using Huygens professional deconvolution software by SVI (Scientific Volume 

Imaging). 

 

Image analysis 
The spot detection algorithm Airlocalize (Trcek et al., 2017) was used to detect and quantify TSs, single 

mRNAs and P-bodies within confocal microscopy images. This software fits a 3D gaussian mask and 

gives the coordinates in X, Y and Z of each spot and its intensity. Z stack images were first subsetted 

to detect TSs within the range of Z slices around the nuclei. Images were then processed again to detect 

single mRNAs in the full image. The TS data was then used to remove these high intensity spots from 

the single mRNA data. Detection of 5’ and 3’ single mRNA ends and P-bodies was performed separately 

on each corresponding channel image as appropriate. 

 

Half-life validation 
For validation of half-lives as previously described (Boettiger and Levine, 2013), embryos were imaged 

at various time points during the 13th nuclear division (Figure S4) using the DAPI channel and reference 

movies of His-RFP (Hoppe et al., 2020) to carefully time the images. Single mRNAs were quantified 

using Airlocalize and the number per cell was calculated by dividing by the total number of pre-division 

cells in the images. The counts per cell were fitted with an exponential function, from which the half-life 

was determined. The signal to noise ratio in the data was then calculated from the change in the mean 
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over the time course, divided by the average variance in mRNA numbers at each timepoint with sufficient 

data. 
  

Computational methods 
 
RNA-seq data processing and data filtering 
The RNA-seq data were processed at the transcript level by alignment-free methods using Kallisto (Bray 

et al., 2016) and the Drosophila melanogaster Ensembl v96 reference transcriptome to infer transcript 

expression levels for modelling mature mRNA dynamics. Transcripts were filtered to remove any that 

had <1 TPM (transcripts per million) across the time course yielding 18159 remaining transcripts. The 

transcript-level reads were then filtered for dynamic transcripts using GPcounts (BinTayyash et al., 

2021). This approach fits the data for each gene using a GP with a dynamic kernel, and a GP with white 

noise kernel which exhibits no variation over time. The transcripts where the dynamic kernel is a better 

fit, measured via likelihood ratio test, are then extracted. For the transcript data this reduced the numbers 

of mRNAs from 18159 to 8791. 

The whole-embryo total RNA-seq dataset was also processed at the gene level in order to 

quantify the intronic reads, by aligning data to BDGP6 (dm6) using STAR with default parameters. 

FeatureCounts was used to get the counts data for exons and introns, respectively. Modified RPKM 

(reads per kilobase of transcript per million reads mapped) normalisation was applied to exon and intron 

counts data, where the total mapped reads for each library were used to address the sequencing depth 

for exon and intron counts from the same sample yielding 11,587 genes with a detectable level of 

expression (RPKM > 0).  

To model the pre-mRNA dynamics, any genes without introns, or with zero intronic reads across 

all timepoints were removed to give a set of 5035 genes and the intron sizes were then used to obtain 

length-normalised reads. For modelling the mature mRNA dynamics the transcript-level alignment was 

used. A set of strictly zygotic transcripts were extracted from the dynamic dataset (n = 8791) by filtering 

for transcripts with TPM < 0.5 at the first time point (t = 95) to give a set of 593 zygotic transcripts which 

were used in subsequent analysis. For the GP model, transcripts were subjected to a further filtering 

step where the correlation between pre-mRNA and mRNA was computed to extract transcripts where 

the correlation was above 0.4. For more details on filtering see Supplementary Methods. 
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Modelling 

We model dependence between pre-mRNA, 𝑝(𝑡), and mature mRNA, 𝑚(𝑡), through a Gaussian 

processes regression which follows dynamics of an ODE of the form 

𝑑𝑚(𝑡)
𝑑𝑡

	= 𝑆𝑝(𝑡) − 𝐷𝑚(𝑡), 

where 𝑝(𝑡),  is assumed to be a Gaussian process with RBF kernel (Honkela et al., 2015; Lawrence et 

al., 2006). This differential equation can be solved in closed form and it can be shown that 𝑚(𝑡) is also 

a Gaussian process with a certain kernel. For more details and specification of this kernel we refer to 

Supplementary Methods. As the results, 𝑚(𝑡) and 𝑝(𝑡) can be modelled jointly as a Gaussian process 

regression with a block kernel which depends on biologically interpretable parameters such as S and D. 

It is assumed that we observe 𝑚(𝑡) and 𝑝(𝑡) at discrete times with measurement noise terms which 

have variances 𝜎!"  and 𝜎#" for mRNA and pre-mRNA respectively. Thus, we have six parameters which 

we estimate: two parameters of RBF kernel (𝑙 – lengthscale, 𝜎 – variance, which correspondingly define 

smoothness and amplitude of possible functions underlying pre-mRNA dynamics), two parameters 𝑆 

and 𝐷, which describe the relationship between mRNA and pre-mRNA, and two measurement noise 

variances 𝜎!"  and 𝜎#". 

We assign priors to these six parameters and perform sampling from the posterior distribution 

using Metropolis-adjusted Langevin algorithm (MALA). By using gradient information this algorithm 

allows exploring posterior distribution more efficiently than standard MCMC methods. After inferring the 

posterior distribution using sampling with MALA, we can quantify uncertainty about all six parameters of 

the model and uncertainty about the underlying functions for pre-mRNA and mRNA dynamics. The 

details of the implementation, including the assumptions on prior distributions, are discussed in 

Supplementary Methods. 

From parameter estimates of D, half-lives were obtained using the following relationship: 

  

𝑡$/" =	
ln(2)
𝐷

 

 

Transcripts were then grouped into short, medium and long half-life groups, setting the 

boundaries from the 33% and 66% quantiles of the data, in this instance 22 and 45 minutes. 

Python implementation of the model is available from 

https://github.com/ManchesterBioinference/GP_Transcription_Dynamics. 
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Clustering 
The intronic data (n = 5035) was z-transformed and clustered using GPclust (Hensman et al., 2015). 

Intronic clusters of interest exhibiting a range of expression profiles were selected (clusters 2 and 5) 

(Figure S5). The zygotic transcripts (n = 593) corresponding to the genes in each selected intronic 

cluster were then normalised and clustered (Figure S6). Summary statistics for the half-lives of the 

genes in each zygotic cluster were then computed for clusters with >2 transcripts with estimated half-

lives. A list of the transcripts for intronic clusters 2 and 5 and their corresponding zygotic clusters can 

be found in Supplementary Table 3. 

 

Analysis of time delays 
Delays between peak of pre-mRNA and mature mRNA time series from the zygotic set (n = 593) were 

estimated by fitting a Gaussian process with RBF kernel to each time series. 100 samples from each 

GP were taken and the delay between the peak of each sampled function of premature and mature 

mRNA were computed to provide estimates of the delay with uncertainty. Any transcripts with delays ≤ 

0, or with mature mRNA profiles peaking at the final timepoint (t = 220), were removed. Transcripts were 

then grouped into short, medium and long delay groups, setting the boundaries from the 33% and 66% 

quantiles of the data (17.55 and 36.16 mins respectively). A gene was classified as short if there was 

90% probability that the delay for that gene was in the short delay interval. All statistical analysis was 

carried out in Python using the scipy, sklearn and statannot libraries. 

 
Gene ontology analysis 

Gene ontology analysis was conducted using Gorilla (Eden et al., 2009). Enrichment of short and long 

half-life genes was performed using the half-life set as the target set and the entire group of dynamic 

genes from the RNA-seq dataset (n = 8791) as the reference set with default parameters. 

 

Codon usage and translation efficiency analysis 
For further analysis we removed transcripts with half-lives of less than a minute and greater than 150 

minutes. The codon stabilisation coefficient (CSC) value was calculated for each codon as previously 

described (Burow et al., 2018; Presnyak et al., 2015). The CSC is equivalent to the Pearson correlation 

coefficient, calculated by plotting the frequency of each codon per transcript within our dataset against 

its half-life. Classification of optimal Drosophila codons used are as in (Burow et al., 2018). A chi-square 

test of association between optimal and non-optimal codons in positive and negative CSC groups was 

determined. The codon optimality score was determined by adding the proportion of optimal codons 

within each transcript. Transcripts were grouped by their half-life category and an independent t-test 

was used to determine significance in codon optimality between groups. Translation efficiency data was 
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obtained from previously published data of 2-3 hour embryos (Eichhorn et al., 2016). 3’UTR and 

transcript lengths were obtained from Flybase (Larkin et al., 2021). 

 
 
Quantification of mRNA end-to-end distance 
mRNA compaction, the distance between the 5′ and 3′ ends of the transcripts, was analysed using 

smFISH images where the 5′ and 3′ ends are bound by probes labelled with different fluorophores. After 

quantifying the number and position of the mRNA ends in both channels and removing transcription 

sites (see Image analysis), the spot position data was analysed with a custom Python script to find 

optimal spot pairs by solving a paired assignment problem. The distance between n 5′ spots and m 3′ 

spots are computed and stored as a distance matrix. The optimal assignment of 5' and 3' pairs is then 

found by minimising this distance matrix to give a set of paired spots with a minimum total distance 

between all pairs. Spot pairs are then filtered for distances less than 300 nm where the ends are 

considered to be colocalised and belonging to the same RNA. This 300 nm upper threshold was selected 

as described in a previous study (Vinter et al., 2021). For all colocalised 5' and 3' spots the distribution 

of distances was then analysed and summary statistics extracted.  
 

Analysis of mRNA colocalisation with Processing bodies 
mRNA localisation within Processing bodies (P-bodies) was determined from confocal images using a 

custom script in Python. This script uses the position data for the mRNAs and P-bodies output from 

Airlocalize and calculates the distance between a given mRNA and every P-body. The minimum 

distance is then selected so that an mRNA is assigned to its closest P-body. If this distance is less than 

200 nm (a typical radius of a P-body) then the RNA is considered to be colocalised with the P-body. The 

proportion of mRNAs located within and outside of P-bodies is then analysed to determine whether a 

given gene is enriched within P-bodies in the cytoplasm. In order to do this, we derived the P-body 

colocalisation index, a measure of the degree of colocalisation with P-bodies of an mRNA of interest: 

 

𝐶& =	
𝑚'()('

	𝑚*(*+) ∙ 𝑁&
 

 

 

Where CP is the P-body colocalisation index, mcoloc is the number of mRNAs colocalised with P-bodies, 

mtotal is the total number of mRNAs and NP is the number of P-bodies.  

For analysis of unpaired ends, any 5’ or 3’ spot which was unpaired from the optimal assignment, 

or was more than 300 nm away from its assigned pair, was considered. The colocalisation of these with 
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P-bodies was then analysed using a more conservative threshold of 150 nm, to ensure a sufficient 

proportion of the mRNA was located inside the P-body. The enrichment of unpaired ends in P-bodies 

was then derived by dividing the number of unpaired ends in P-bodies by the total number of unpaired 

ends for each channel.  
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Supplementary Table 1: Table of half-lives  

 

Supplementary Table 2: Table of smFISH probes used in this study 

 

Supplementary Table 3: Intronic and zygotic clusters and IDs  

 

Supplementary Methods: Filtering of the genes, model formulation and Bayesian inference with MCMC  

 

 

 

Supplementary Figures 
 

 

Figure S1. Staging of early embryos for RNA-seq. (A) Images of embryos were captured immediately 

prior to collection and the internuclear distance and embryo length were measured for each to give an 

internuclear ratio. (B) The internuclear ratio at nuclear cleavage cycles (nc) can be used to accurately 

stage embryos. (C) Timing of each nc at 20°C used in experiments. 
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Figure S2. Intronic read counts of early zygotic genes. Intronic read counts (RPKM) of genes that 

show early transcription in our dataset, grouped depending on peak expression at (A) nc12 (105 min), 

(B) nc13A (115 min) or (C) nc13B (125 min), based on timings at 20°C.  
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Figure S3. Examples of alternative isoform and non coding RNA expression during development 
in Drosophila embryos. (A) Quantification of the two different transcripts (TPM) of the Meltrin gene. 

The FBtr0301499 isoform (purple) is not detected in embryos <160 min AEL but is detected at later time 

points in addition to the FBtr0301498 (green) transcript. Mapped reads are shown below with a region 

highlighted in purple depicting the increase in the alternative transcript at time point 190 and 220 min. 

(B) As in (A) but for the gene tkv. Transcription of the FBtr0079086 (purple) and FBtr0079089 (orange) 

isoforms switches during the time course of development, as highlighted on the mapped reads below. 

Expression of non coding RNAs, including two copies of the tRNA-Asp and a pseudogene (CR14033), 

overlap the tkv locus as shown in the expanded region below from time point 220 min. (C) Expression 

of the non-coding RNAs bithoraxoid and iab-8. Gene level counts (RPKM) show dynamic expression 

across the time course of these two non-coding genes. Gene regions for the ncRNAs (red) are shown 

with the genome browser tracks below.  
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Figure S4: High embryo to embryo variation in transcript numbers masks variation due to 
degradation over cell division. (A) Parameter estimates for degradation rates and credible regions of 

short and long half-life genes shown in Figure 2D. (B) RNA-seq data for gogo fitted with the Gaussian 

process model. A half-life of 30 minutes is inferred for this gene. (C) Confocal images of pre- and post-

division during the 13th and 14th nuclear cycles showing nuclei stained with DAPI (blue) and single 

mRNAs (white). (D) Data for the number of mRNAs per cell for embryos at various time points during 

the cell division, fitted with an exponential function from which a half-life of 30 min was calculated. The 

data has a low signal to noise ratio of 0.0013, meaning that the reduction in transcript numbers over 

time due to degradation (signal) is much smaller than the natural embryo to embryo variation in transcript 

numbers (noise). (E) Theoretical data demonstrating the reduction in transcript numbers that would be 

expected for a gene with a 30 min half-life over a 220 second time frame, which is a reduction of less 

than 10%.  
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Figure S5: Output from clustering of 5035 intronic transcripts using GPclust. Data for all pre-

mRNAs in the cluster are shown with shaded credible regions and inferred function as a solid line. The 

number of pre-mRNAs in each cluster is shown in the top right corner of each plot and graphs are 

arbitrarily coloured. Clusters that show interesting dynamics and contain high numbers of pre-mRNAs 

(1,2,3,5,18,20) are highlighted and also displayed in Figure 3Ai.  
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Figure S6: Sub-clustering of zygotic transcripts with intronic data in intronic cluster 2 and 5 
using GPclust. Data for all mRNAs in the cluster are shown with shaded credible regions and inferred 

function as a solid line for (A) intronic cluster 2 and (B) intronic cluster 5. The number of mRNAs in each 

cluster is shown in the top right corner of each plot and graphs are arbitrarily coloured. The mean half-

lives of the transcripts in the cluster are shown where the cluster has >2 transcripts with estimated half-

lives. 
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Figure S7: mRNA properties and stability. (A) Graph showing the correlation between mRNA half-

life and 3’ UTR length. Data fit with linear regression model, Pearson’s R = 0.1, p = 0.1 (B) Correlation 

between mRNA total length and half-life. Transcripts are coloured by half-life category short (green), 

medium (orange) or long (blue). Data fit with linear regression model, Pearson’s R = -0.07, p = 0.3 (C) 

Transcripts were clustered for transcripts with similar codon usage using K-means and the level of 

enrichment of each codon within the transcript is shown in the heatmap. The average half-life of each 

cluster is shown. Codons are coloured by whether they are optimal (blue) vs non-optimal (yellow) with 

stop codons shown in black. 
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Figure S8: Compaction of mRNAs in early embryos. (A) A table of the transcripts used in smFISH 

experiments. (B) Confocal images of fixed embryos showing smFISH detection of the 5’ (magenta) and 

3’ (yellow) ends of the gogo, cv-2, ths and pxb mRNAs used in compaction experiments. (C) Graph 

shows the end-to-end distances of mRNAs with different stabilities in the reverse fluorophore experiment 

to Figure 4E, n = 3 embryos, data are mean ± standard error. (D-E) Confocal images of fixed embryos 

stained with smFISH probes for otd mRNAs. Full length mRNAs were detected using probes for 5’ and 

3’ ends with switched fluorophores (D), or with alternating labels used as a precision control (E). The 

schematics above each set of confocal images show the experimental probes and relevant colours in 

the images. (F)  Quantification of the otd mRNA compaction data in D-E, data are mean ± standard 

error, independent unpaired t-test: * p < 0.05, ** p < 0.01. All images are maximum projections of 7 Z 

slices. Scale bars: 5 µm. 
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Figure S9: Confocal images of mRNAs with various stabilities and their colocalisation with the 
P-body marker Me31B. (A) Confocal images of early nc14 Me31B-GFP embryos showing smFISH 

staining of the indicated test mRNAs. DAPI marks the nuclei (blue), mRNAs are shown in magenta 

(magenta arrowhead), GFP-Me31B marking P-bodies in green (green arrowhead) and mRNAs 

colocalising with P-bodies in white (white arrowhead). All images are MIP of 7 Z slices of a confocal 

image. Scale bar: 2µm (B) Analysis of P-body sizes reveals an average radius of 0.2 µm. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.17.484585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484585
http://creativecommons.org/licenses/by/4.0/


44 
 

 
Figure S10: Confocal images of mRNAs and their 5’ and 3’ end colocalisation with the P-body 
marker Me31B. (A) Confocal images of early nc14 Me31B-GFP embryos showing smFISH staining of 

the indicated test mRNAs with 5’ and 3’ probe sets. For each test mRNA, the same region of the embryo 

is shown with the 5’ and 3’ mRNA probe sets separately for clarity. mRNAs are shown in magenta, GFP-

Me31B marking P-bodies in green and DAPI labelling nuclei in blue. All images are MIP of 7 Z slices of 

a confocal image. Scale bar: 2µm. (B) Quantification of the percentage of unpaired mRNA 5’ and 3’ 

ends with P-bodies relative to the total number of lone 5’ or 3’ ends in the switched probe fluorophore 

experiments for otd and Dfd (see also Figure 6C). Paired t-test used to determine significance. 
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