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Abstract 19 

Plasmids are infectious double stranded DNA molecules that are found within bacteria. Horizontal 20 

gene transfer promotes successful spread of different types of plasmids within or among bacteria 21 

species, making their detection an important task for guiding clinical treatment. We used whole 22 

genome sequenced data to determine the prevalence of plasmid replicons in clinical bacterial 23 

isolates, the presence of resistance and virulence genes in plasmids, and the relationship between 24 

resistance and virulence genes within each plasmid. All bacterial sequences were de novo 25 

assembled using Unicycler before extraction of plasmids. Assembly graphs were submitted to 26 

Gplas+plasflow for plasmid prediction. The predicted plasmid components were validated using 27 

PlasmidFinder.  28 

A total of 159 (56.2%) out of 283 bacterial isolates were found to carry plasmids, with E. coli, K.  29 

pneumoniae and S. aureus being the most prevalent plasmid carriers. A total of 27 (87.1%) 30 

combined plasmids were found to carry both resistance and virulence genes compared to 4 (12.9%) 31 

single plasmids. No statistically significant correlation was found between the number of 32 

antimicrobial resistance and virulence genes in plasmids (r =-0.25, p > 0.05). Our findings show a 33 

relatively high proportion of plasmid-carrying isolates suggesting selection pressure due to 34 

antibiotic use in the hospital. Co-occurrence of antibiotic resistance and virulence genes in clinical 35 

isolates is a public health relevant problem needing attention. 36 

Keywords: whole genome sequencing; plasmids; antibiotic resistance; virulence; public health, 37 

Tanzania 38 
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 40 

Introduction 41 

Plasmids are circular, double-stranded DNA molecules that occur naturally in bacterial cells [1], 42 

whose genes often provide evolutionary advantages for bacteria, such as antimicrobial resistance 43 

and/or virulence [2,3]. Plasmids are important vehicles in disseminating and acquiring antibiotic 44 

resistance and virulence, and can thus constitute a major burden on human health [4]. Recent 45 

studies have suggested that the prevalence of antimicrobial resistance (AMR) is higher in Low- and 46 

Middle-income Countries (LMICs) compared to European countries and the United States [5,6]. 47 

There is however, limited knowledge regarding the dissemination of antibiotic resistance genes 48 

(ARGs) and virulence among clinical isolates in Sub-Saharan Africa (SSA). This study was 49 

conducted to determine the proportion of bacterial isolates carrying plasmids, to identify plasmids 50 

that mediate resistance and virulence genes, and to investigate the relationship between 51 

antimicrobial resistance genes and virulence genes within plasmids using whole genome sequence 52 

data from bacterial isolates among inpatients at Kilimanjaro Christian Medical Centre (KCMC) in 53 

Tanzania. 54 

Materials and methods 55 

Study setting, Whole-genome sequencing and library preparation 56 

Kilimanjaro Christian Medical Centre (KCMC) is one of Tanzania’s five zonal referral hospitals, 57 

located in Moshi, northern Tanzania. KCMC has a bed capacity of 650 and serves a catchment area 58 

of about 15 million people. It serves around 500 outpatients daily, from different parts of Tanzania 59 
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[7]. The whole genome sequence data that was analyzed originated from a prospective cross-60 

sectional study that was conducted at KCMC between August 2013 and August 2015. In this study, 61 

a total of  56 stool, 122 sputum, 126 blood  and 286 wound swabs (wound/pus) clinical samples, 62 

with patients’ clinical and socio-demographic characteristics, were collected from 575 patients 63 

admitted to KCMC hospital [8,9]. A written informed consent was obtained from each participant 64 

and from parents or guardians of children before enrolled into the study.  65 

Collected specimens were taken to the microbiology unit at Kilimanjaro Clinical Research Institute 66 

(KCRI) for culture and identification of bacterial isolates. Out of 590 specimens collected, 249 67 

were culture positive, resulting in 377 isolates [8].  All bacterial isolates were sequenced in the 68 

KCRI genomics lab, and all sequences were archived on the KCRI compute cluster. In brief, whole 69 

genome sequencing (WGS) was performed for genomic DNA that was extracted from cultures of 70 

bacterial isolates using the Easy-DNA Extraction Kit (Invitrogen®). Short-read WGS was 71 

performed using the Illumina MiSeq platform (Illumina Inc.). Libraries for Illumina sequencing 72 

were constructed using the Illumina Nextera XT kit (Illumina Ltd., San Diego, CA, USA) 73 

according to the manufacturer’s recommendations. The libraries were sequenced on Illumina 74 

MiSeq platform using the  2 x 250bp paired-end protocol,  previously reported by Kumburu et al 75 

[8] & Sonda et al [9].  For the purpose of this study, a total of 283 bacterial whole genomes isolates 76 

with associated metadata were retrieved for analysis. Additional ethical approval was obtained from 77 

the Ifakara Health Institute Research Ethics Committee (IHI/IRB/No: 14-2021) for plasmid 78 

characterization. 79 

 80 

 81 
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Bioinformatics Analyses 82 

Quality Control and Trimming of Illumina Sequences 83 

The following steps were followed: (i) All bacterial raw reads were submitted to in-house bacterial 84 

analysis pipeline (BAP), available at https://github.com/zwets/kcri-cge-bap. Assembly was 85 

performed using SKESA 2.4.0 [10]. (ii) All resulting assemblies were then processed in batch by 86 

the Genome Taxonomy Database Toolkit (GTDB-Tk) 0.3.2 [11] for detailed taxonomic 87 

assignment. (iii) Metrics produced by the BAP and GTDB-Tk were then used to assess the quality 88 

of each assembly. Assessment was based on read counts, coverage depth, assembly structure 89 

(contig count, N1, N50, L50), deviation of assembly length from reference, GTDB alignment 90 

fraction, and GTDB Multi-Locus Sequence Alignment (MSA) coverage. A six-point scale was used 91 

for assembly quality rating: 0 (Unusable), 1 (Mix), 2 (Bad), 3 (Usable), 4 (Good), and 5 (Excellent). 92 

(iv) Finally, categories 0 to 2 were excluded, while categories 3 through 5 were used for subsequent 93 

analysis. Every assembly in these categories was for a single isolate that had (nearly) complete 94 

genome coverage, at sufficient sequencing depth. 95 

Plasmid extraction and validation 96 

Raw reads assembly was repeated with Unicycler 0.4.7 [12] for its ability as a “SPAdes optimiser” 97 

to produce long and, in the ideal case, circular contigs. Assembly graphs (GFA) were submitted to 98 

Gplas+plasflow for plasmid prediction. Gplas 0.6.1 [13] + Plasflow 1.1 [14] take into account the 99 

connected components in the assembly graph when predicting plasmids. The components predicted 100 

to be plasmids were extracted from the assemblies and submitted to PlasmidFinder version 1.3 [15] 101 

for validation. 102 
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Identification of Plasmid-Mediated Antibiotic Resistance Genes (ARGs) and 103 

Virulence genes  104 

To identify antibiotic resistance and virulence genes carried in plasmids, the assembled putative 105 

plasmid sequences for each isolate were submitted to Resfinder 4.0 [16] and VirulenceFinder 106 

1.4[17] respectively. In both Resfinder and VirulenceFinder, 90% identity and 60% coverage 107 

settings to call a gene were selected. 108 

Statistical analysis 109 

Stata 14 (College Station, TX, 77845, USA) was used for descriptive statistics and determination of 110 

the relationship between antimicrobial resistance and virulence genes in plasmids.  111 

Results  112 

Study population 113 

In total, 128 patients whose whole genome bacterial isolates were analyzed were included in this 114 

study (Table 1). One-hundred twenty eight patients were plasmid positive isolates. The mean age in 115 

years (SD) was 46.2 (18.0). Male patients were 77 (60.2%), females were 47 (36.7%) and 4 (3.1%) 116 

missed gender identification. A total of 62 (48.4%) patients were admitted to surgical ward, 9 117 

(7.1%) surgical ICU, 52 (40.6%) medical ward, 4 (3.1%) medical ICU ward, and 1 (0.8%) missed 118 

ward admission identification. Eighty-seven (67.9%) specimens were swabs, 19 (14.8%) were 119 

stool, 13 (10.2%) were sputum, 8 (6.3%) were blood and 1(0.8%) specimen missed identification. 120 

A total of 28 (21.9%) patients were diabetic, 6 (4.7%) were cancer patients, 6 (4.7%) were suffering 121 

from TB, 2 (1.5%) were HIV positive and 86 (67.2%) were others: Of those 61 (47.7%) had no 122 
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underlying conditions and 25 (19.5%) had other underlying conditions. Of the wound swabs, 123 

twenty-four (18.8%) were from patients with diabetic wounds, 11 (8.6%) were from burn wounds, 124 

10 (7.8%) were from post-surgical wounds, 6 (4.6%) were from motor traffic accidents wounds and 125 

77 (60.2%) were others: Of those 35 (27.3%) other wounds and 42 (32.8%) had no wounds. 126 

Seventy-eight (60.9%) patients had no history of hospitalization, 42 (32.8%) had hospitalization 127 

history and 8 (6.3%) missed identification. A total of 81 (63.3%) patients were transferred from 128 

another hospital, 44 (34.4%) were not and 3 (2.3%) missed identification. Among all participants, 129 

the median number of days stayed in the hospital before the survey was 8 days (Table 1). 130 

 131 
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Table 1. Demographic and clinical characteristics of patients that samples were taken from 142 

Patient characteristics Missing a Total (%) 

Number of patients   128 (100) 
Mean age in years (SD)   46.2 (18.0) 
Gender 4 (3.1)   

  Female   47 (36.7) 
  Male   77 (60.2) 

Ward of admission 1 (0.8)   

  Surgical   62 (48.4) 

  Surgical ICU   9 (7.1) 

  Medical    52 (40.6) 
  Medical ICU   4 (3.1) 

Specimen collected 1 (0.8)   
  Blood   8 (6.3) 
  Sputum   13 (10.2) 
  Stool   19 (14.8) 

  Swab   87 (67.9) 
Underlying conditions     

  Cancer   6 (4.7) 

  Diabetes   28 (21.9) 

  HIV   2 (1.5) 
  TB   6 (4.7) 
  Others   86 (67.2) 

Type of wound     

  Burn wound   11 (8.6) 

  Diabetic wound   24 (18.8) 
  Motor traffic wound   6 (4.6 ) 
  Post-surgical wound   10 (7.8) 
  Others   77 ( 60.2) 

History of hospitalization 8 (6.3)   
  No   78 (60.9) 
  Yes   42 (32.8) 

Patient hospital transfer 3 (2.3)   

  No   44 (34.4) 
  Yes   81 (63.3) 

Patient ward transfer 5 (3.9)   
  No   110 (85.9) 
  Yes   13 (10.2) 

Median time in days stayed in the 
hospital before survey  (IQR) 8 (6.3) 8 (4-11.5) 

SD, standard deviation; ICU, intensive care unit; IQR, interquartile range; Missing a, were the missing values 143 

in each variable. 144 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.17.484711doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484711
http://creativecommons.org/licenses/by/4.0/


 

9 

 145 

Proportion of bacterial species carrying plasmids 146 

A total of 283 whole genome bacterial sequences were analyzed. One hundred fifty-nine (56.2%) 147 

bacterial isolates were detected to carry plasmids. Out of 159 plasmids, 94 non-repetitive plasmids 148 

were predicted. Of 94 plasmids, 48 (51.1%) were single plasmids and 46 (48.9%) were combined 149 

plasmids (two or more recombined plasmids). K. pneumoniae isolates were the most carriers of 150 

combined plasmids (17, 28.3%), followed by S. aureus (15, 25.0%) and E.coli (15, 25.0%). E.coli 151 

isolates were the most single plasmid carriers (23, 23.2%), followed by S. aureus (15, 15.2%) and 152 

P. mirabilis (14,14.4%) (Table 2).  153 

 154 
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 163 

Table 2. Proportion of bacterial isolates carrying plasmids 164 

 
 
 
  Plasmids 
 Isolates Single  Combined b 

Species N  % N  N  
Enterobacter asburiae 1 0.6 1 0 
Enterobacter cloacae 3 1.9 1 2 
Enterobacter hormaechei 10 6.3 6 4 
Enterobacter kobei 1 0.6 0 1 
Enterobacter roggenkampii 1 0.6 1 0 
Enterobacter soli 1 0.6 1 0 
Enterobacter sp. n18-03635 1 0.6 1 0 
Enterococcus faecalis 7 4.4 5 2 
Enterococcus faecium 3 1.9 2 1 
Enterococcus gallinarum 1 0.6 1 0 
Escherichia coli 38 23.9 23 15 
Klebsiella Michiganensis 2 1.3 1 1 
Klebsiella oxytoca 2 1.3 1 1 
Klebsiella pneumoniae 25 15.7 8 17 
Klebsiella variicola 2 1.3 2 0 
Micrococcus sp. Kbs0714 1 0.6 1 0 
Morganella morganii 4 2.5 4 0 
Proteus columbae 1 0.6 1 0 
Proteus mirabilis 14 8.8 14 0 
Proteus penneri 1 0.6 1 0 
Proteus vulgaris 1 0.6 1 0 
Pseudomonas aeruginosa 2 1.3 2 0 
Shewanella algae 1 0.6 1 0 
Staphylococcus aureus 30 18.9 15 15 
Staphylococcus capitis 1 0.6 1 0 
Staphylococcus epidermidis 1 0.6 1 0 
Staphylococcus haemolyticus 3 1.9 3 0 
Staphylococcus hominis 1 0.6 0 1 

  N, total number of isolates/plasmids; combined b, two or more plasmids merged or fused together. 165 

 166 

 167 
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 168 

Plasmids concurrently mediating resistance and virulence genes  169 

A total of 31 plasmids were identified to carry both resistance and virulence genes, of which 27 170 

(87.1%) were combined plasmids and 4 (12.9%) were single plasmids (Tables 3 and 4). All four 171 

single plasmids were carried by E. coli. Resistance gene Sul1 was found the most common across 172 

three single plasmids IncFII, IncQ1 and IncFII(pRSB107). Virulence genes iucC and iutA were also 173 

seen the most common across three single plasmids such as IncQ1, IncFII(pRSB107) and IncFIA   174 

(Table 3).  175 

Among the 27 combined plasmids, 12 (44.4%) were carried by E.coli isolates, 10 (37.1%) by K. 176 

pneumoniae isolates, 2 (7.4%) by E. hormaechei isolates, 1 (3.7%) by E. cloacae isolate, 1(3.7%) 177 

by K. oxytoca isolate and 1 (3.7%) by K. michiganensis isolate. Virulence gene traT was seen in 19 178 

(70.4%) of the 27 combined plasmids, followed by terC which was identified in 7 (25.9%) 179 

plasmids. Resistance genes in combined plasmids, sul2 was observed in 17 (62.9%) plasmids, 180 

followed by blaTEM-1B in 15 (55.6%) plasmids, followed by blaCTX-M-15 in 14 (51.9%) 181 

plasmids and blaOXA-1 in 13 (48.1%) plasmids (Table 4). 182 

 183 
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Table 3. Single plasmids mediating both resistance and virulence genes 184 

Single plasmids  Resistance genes  Virulence genes 

IncFII aac(3)-IIa,aadA5,blaCTX-M-
15,dfrA17,qacE,sul1,tet(B) 

traT 

IncQ1  aph(3'')-Ib,aph(6)-Id,blaTEM-
1B,dfrA7,qacE,sul1,sul2 

cea,focCsfaE,focG,focI,iha,ireA,iucC,iutA,mchB,mchC,mchF,mcmA,papA_F48,papC,sat 

IncFIA sitABCD,tet(A) iucC,iutA,sitA 

IncFII(pRSB107) dfrA5,qacE,sul1,sul2 capU,iroN,iss,iucC,iutA,mchB,mchC,mchF,mcmA,vat 

 185 
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Table 4. Combined plasmids mediating both resistance and virulence genes 201 

Combined plasmid Resistance genes  Virulence genes 
IncFIB(K),IncFII(pKP91),IncR ARR-2,aac(3)-IIa,aac(6')-Ib-cr,aadA1,aph(3'')-Ib,aph(6)-Id,blaCTX-M-

15,blaOXA-1,catB3,cmlA1,dfrA14,ere(A),qacE,sul1,sul2,tet(A) 
traT 

IncFIB(K)(pCAV1099-
114),IncHI2,IncHI2A,IncX3 

aac(6')-Ib-cr,aadA5,aph(3'')-Ib,aph(6)-Id,blaCTX-M-15,blaOXA-1,blaTEM-
1B,catB3,dfrA17,qacE,qnrB1,sul1,sul2,tet(A),tet(B) 

terC 

Col156,IncFIA,IncFIB(AP001918),IncFI
I(pRSB107) 

aac(3)-IIa,aac(6')-Ib-cr,aadA5,aph(3'')-Ib,aph(6)-Id,blaCTX-M-15,blaOXA-
1,catB3,dfrA17,mph(A),qacE,sul1,sul2,tet(A) 

hra,iha,iucC,iutA,sat,senB,traT 

IncFIB(K),IncFII(K),IncQ1,IncR ARR-2,aac(3)-IIa,aadA1,aph(3'')-Ib,aph(3')-Ia,aph(6)-Id,blaCTX-M-
15,blaTEM-1B,cmlA1,ere(A),qacE,qnrB1,sul1,sul2 

traT 

IncFIA(HI1),IncFIB(K),IncFII(Yp),IncH
I2,IncHI2A,IncN3,pKP1433 

aac(3)-IIa,aac(6')-Ib-cr,aph(3'')-Ib,aph(6)-Id,blaCTX-M-15,blaOXA-1,blaTEM-
1B,catB3,qacE,qnrB1,sul1,sul2,tet(A) 

terC 

IncFIB(K),IncFII(K) aac(3)-IIa,aac(6')-Ib-cr,aph(3'')-Ib,aph(6)-Id,blaCTX-M-15,blaOXA-1,blaTEM-
1B,catB3,dfrA14,qnrB1,sul2,tet(A) 

traT 

IncHI2,IncHI2A  aac(3)-IIa,aac(6')-Ib-cr,aph(3'')-Ib,aph(6)-Id,blaCTX-M-15,blaOXA-1,blaTEM-
1B,catB3,dfrA14,qnrB1,sul2,tet(A) 

terC 

Col156,IncFIA,IncFIB(AP001918),IncFI
I 

aac(3)-IIa,aac(6')-Ib-cr,aadA5,blaCTX-M-15,blaOXA-
1,catB3,dfrA17,mph(A),qacE,sitABCD,sul1,tet(A) 

capU,fyuA,irp2,iucC,iutA,senB,s
itA,traT     

IncFIB(pECLA),IncFII(pECLA),IncHI2,
IncHI2A 

aac(3)-IIa,aac(6')-Ib-cr,aph(3'')-Ib,aph(6)-Id,blaCTX-M-15,blaOXA-
1,catB3,dfrA14,qnrB1,sul2,tet(A) 

terC 

Col156,IncFIA,IncFIB(AP001918)  aac(6')-Ib-cr,aadA5,blaCTX-M-15,blaOXA-
1,catB3,dfrA17,mph(A),qacE,sitABCD,sul1,tet(A) 

iucC,iutA,senB,sitA,traT 

IncFIA,IncFIB(AP001918) aac(3)-IIa,aac(6')-Ib-cr,aadA5,blaCTX-M-15,blaOXA-
1,catB3,dfrA17,qacE,sitABCD,sul1 

fyuA,irp2,iucC,iutA,sitA,traT 

IncFIA,IncFII aac(6')-Ib-cr,aadA5,blaCTX-M-15,blaOXA-
1,catB3,dfrA17,mph(A),qacE,sul1,tet(A) 

afaA,afaC,afaD,iha,iucC,iutA,nf
aE,papA_F43,sat,traT 

IncFIA,IncFIB(AP001918),IncFII(pAM
A1167-NDM-5) 

aac(3)-IId,aadA2,blaTEM-1B,catA1,dfrA12,mph(A),qacE,qepA4,sul1 traT 

 202 
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Table 4. Continued  209 

IncFIA(HI1),IncFIB(K),IncFII(pKP91),IncR aac(6')-Ib-cr,aph(3'')-Ib,aph(6)-
Id,blaCTX-M-15,blaOXA-1,blaTEM-
1B,catB3,dfrA14,sul2 

traT 

IncFIA,IncFIB(AP001918),IncFII  aac(6')-Ib-cr,aadA5,blaOXA-
1,catB3,dfrA17,qacE,sul1,tet(B) 

traT 

IncFIB(K),IncFII(K),IncQ1 aph(3'')-Ib,aph(3')-Ia,aph(6)-
Id,blaTEM-1B,dfrA14,mph(A),sul2 

traT 

Col156,IncFIB(AP001918),IncFII aph(3'')-Ib,aph(6)-Id,blaTEM-
1B,catA1,dfrA7,sul2,tet(D) 

afaA,afaB,afaC,afaD,afaE,hra,iha,iss,iucC,iutA,papA_F43,sat,senB,traT 

Col156,IncFIA,IncFIB(AP001918),IncQ1 aph(3'')-Ib,aph(6)-Id,blaTEM-
1B,dfrA17,sul2,tet(B) 

iha,iucC,iutA,papA_F43,sat,senB 

IncFIB(K)(pCAV1099-
114),IncHI1B(pNDM-MAR) 

aph(3'')-Ib,aph(6)-
Id,dfrA15,qacE,sul1,sul2 

terC 

IncFIB(K),IncFII(K),IncR  aac(3)-IId,blaCTX-M-15,blaTEM-
1B,dfrA30,sul2 

traT 

IncFIB(K)(pCAV1099-
114),IncHI1B(pNDM-MAR),IncR  

blaTEM-1B,dfrA5,qacE,sul1,tet(D) fyuA,irp2,traT 

IncFII(K),IncR aac(3)-IId,blaCTX-M-15,blaTEM-
1B,dfrA30,sul2 

traT  

IncFIB(AP001918),IncFII,IncQ1 aph(3'')-Ib,aph(6)-Id,blaTEM-
1B,dfrA5,sul2 

cia,cvaC,etsC,hlyF,ireA,iroN,iss,iucC,iutA,mchF,ompT,papA_F11,papC,tr
aT 

IncFIB(K)(pCAV1099-114),IncY sul2,tet(D) terC 

IncFIB(AP001918),IncFII dfrA5 cia,cvaC,etsC,hlyF,ireA,iroN,iss,mchF,ompT,papA_F11,papC,traT 

IncFIB(pHCM2),IncHI2,IncHI2A blaTEM-1B terC 

IncFIB(pB171),IncFII(pCoo) mdf(A) eae,espA,espF,nleB,nleC,perA,tir,traT 

.
C
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Correlation between antimicrobial resistance and virulence genes  210 

We explored the relationship between the number of antibiotic resistance genes and virulence genes 211 

in 27 combined plasmids using Pearson correlation. There was an inconclusive negative 212 

relationship between antibiotic resistance and virulence genes existence in plasmids (r =-0.25, p > 213 

0.05).  214 

Discussion 215 

In the present study a high proportion of clinical bacterial isolates from inpatients at KCMC 216 

hospital was found to carry plasmids. The present findings are in concordance with previous 217 

studies  elsewhere [18]. The observed high carriage of plasmids by the analyzed isolates might 218 

plausibly be a reflection of resistance selection pressure due to high antibiotic exposure in hospital 219 

settings [19].  220 

E. coli isolates were the most prevalent carriers of single plasmids followed by S. aureus and P. 221 

mirabilis. On other hand, K. pneumonia were the most prevalent carriers of combined plasmids, 222 

followed by S. aureus and E. coli. The present study findings are in line with a study results in a 223 

tertiary care hospital in south India [18]. Possible explanation could be that the mentioned bacterial 224 

species have great medical relevance and thus are relatively highly isolated in hospital settings 225 

compared to other species [20,21]. However, the present study findings show a larger proportion of 226 

P. mirabilis carrying plasmids than the study in south India. This difference might be due to the fact 227 

that majority of the present study isolates were from wound specimens in which P. mirabilis were 228 

identified [22,23]. 229 
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This study identified bacterial species with low plasmid prevalence including Enterobacter sp. n18-230 

03635, Enterobacter kobei, Klebsiella variicola and Klebsiella oxytoca. The study findings are 231 

consistent with other studies conducted in Canada, Greece and Mexico [24–26]. Interestingly, the 232 

study  observed other low plasmid prevalence species that were reported elsewhere in soil samples, 233 

fish flesh samples [27–29] and pigeon flesh specimens [30] such as Micrococcus sp. Kbs0714, 234 

Enterobacter soli and Proteus columbae. The observed species with low plasmid prevalence might 235 

be due to rarity and in most cases misidentification [31,32]. However, reports of bacterial species 236 

with low plasmid indicates the possible emerging and transmission of bacterial pathogens in 237 

humans both in community and hospital settings [33].  238 

Contrary to previous studies reporting IncF plasmid group in E.coli to carry resistance and 239 

virulence genes often [34] the present study, however shows  IncQ1 carried the highest number of 240 

both resistance and virulence genes in E.coli, but the finding is in line with study conducted in 241 

Brazil [35,36]. This is possibly due to the fact that IncQ1 plasmids have high-level mobility, 242 

stability, replication at high copy number and transferred in wide range of bacterial species through 243 

conjugative plasmids [37–40]. 244 

In this study it was also identified that there are different combined plasmids ranging from two to 245 

seven plasmids. This is probably an indicative of bacterial evolution to adapt and thrive in hospitals 246 

where they are excessively exposed to antimicrobials, antiseptics and disinfectants [41–43]. A 247 

similar distribution of some combined plasmids in other regions carrying similar or different 248 

antibiotic resistance and virulence genes was noted in the present study. This suggests resistant 249 

bacteria arising in one geographical area can spread countrywide/worldwide either by direct 250 

exposure or through the food chain or climate change and the environment [6]. 251 
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There was no significant relationship found in the present study between numbers of antibiotic 252 

resistance and virulence genes in plasmids (r = -0.25, p > 0.05), indicating acquisition of antibiotic 253 

resistance can induce the loss of virulence factors. Previous studies support this study finding [44], 254 

but does not agree with a study by Dionisio  [45]. This discordance might be due to the fact that in 255 

other studies the relationship between resistance and virulence genes was determine at species level 256 

and were from gut and environmental samples [34].  257 

Limitations 258 

We acknowledge there are a number of limitations in the present study that warrant careful 259 

interpretation. Bioinformatics analysis was performed on Illumina short reads, which limited the 260 

ability to assemble completed plasmid genomes, and consequently the ability to ‘tease out’ 261 

individual plasmids from assembled contigs. Assembly graphs were classified by Gplas+PlasFlow 262 

for plasmid prediction. As for any machine learning-based approach or indeed any method based on 263 

inference from similarity with known sequences, including tools such as PlasmidFinder, the 264 

predictive ability of the model is strongly dependent on the data in its reference database or training 265 

set. A bias toward plasmids in well-studied organisms is therefore likely.  266 

Conclusion 267 

There is a high proportion of isolates carrying resistance and virulence plasmids. This shows a 268 

significant concern of AMR development and spread in Tanzanian health settings and other LMIC 269 

settings. With limited resources and health service capacities, the increasing AMR trends are 270 

expected to high impact on bacterial-associated mortalities and morbidities. 271 
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