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Abstract

Discriminating distinct objects and concepts from sensory stimuli is essential for survival.
Our brains accomplish this feat by forming disentangled internal representations in deep sen-
sory networks shaped through experience-dependent synaptic plasticity. To elucidate the
principles that underlie sensory representation learning, we derive a local plasticity model
that shapes latent representations to predict future activity. This Latent Predictive Learn-
ing (LPL) rule conceptually extends Bienenstock-Cooper-Munro (BCM) theory by unifying
Hebbian plasticity with predictive learning. We show that deep neural networks equipped
with LPL develop disentangled object representations without supervision. The same rule
accurately captures neuronal selectivity changes observed in the primate inferotemporal cor-
tex in response to altered visual experience. Finally, our model generalizes to spiking neural
networks and naturally accounts for several experimentally observed properties of synaptic
plasticity, including metaplasticity and spike-timing-dependent plasticity (STDP). We thus
provide a plausible normative theory of representation learning in the brain while making
concrete testable predictions.

Recognizing invariant objects and concepts from diverse sensory inputs is crucial for per-
ception. Watching a dog run evokes a series of distinct retinal activity patterns that differ
substantially depending on the animal’s posture, lighting conditions, or visual context (Fig. 1a).
If we looked at a cat instead, the resulting activity patterns would be different still. That we
can effortlessly distinguish dogs from cats is remarkable. It requires mapping entangled input
patterns, which lie on manifolds that “hug” each other like crumpled-up sheets of paper, to
disentangled neuronal activity patterns, which encode the underlying factors so downstream
neurons can easily read them out [1]. Such transformations require deep sensory networks
with specific network connectivity shaped through experience-dependent plasticity (Fig. 1b).
However, current data-driven plasticity models fail to establish the necessary connectivity in
simulated deep sensory networks. At the same time, supervised machine learning algorithms do
yield suitable connectivity [2] in deep neural networks (DNNs) that further reproduce essential
aspects of the representational geometry of biological neural responses [3, 4]. This resemblance
proffers DNNs as potential tools to elucidate neural information processing in the brain [5, 6].

Unfortunately, standard deep learning methods are difficult to reconcile with biology. On
the one hand, they rely on backpropagation, an algorithm considered biologically implausible,
although neurobiology may implement effective alternatives [5, 9–12]. On the other hand,
humans and animals cannot learn through strong label-based supervision, as this would require
knowledge of a label for every input pattern.

Here, self-supervised learning (SSL), a family of unsupervised machine learning algorithms,
may offer a remedy. SSL does not need labeled data but instead relies on prediction, a notion
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Figure 1: Disentangling sensory stimuli with plastic neural networks. (a) Schematic of an evoked
response in sensory input neurons. The neuronal response patterns for distinct stimuli correspond to
points in a high dimensional space spanned by the neuronal activity levels. The response patterns from
different stimulus classes, e.g., cats and dogs, form a low-dimensional manifold in the space of all possible
response patterns. Generally, different class manifolds are entangled, which means that the stimulus
identity cannot be readily decoded from a linear combination of the neuronal activities. (b) Sketch
of a deep neural network (left) that transforms inputs into disentangled internal representations that
are linearly separable (right). (c) Schematic of how predictive learning influences latent representations
(left). Learning tries to “pull” together representations that frequently co-occur close in time (bottom).
However, without opposing forces, such learning dynamics lead to representational “collapse” whereby all
inputs are mapped to the same output and thereby become indistinguishable (right). (d) Self-supervised
learning (SSL) avoids collapse by adding a repelling force that acts on temporally distant representations
that are often semantically unrelated. (e) Plot of postsynaptic neuronal activity z over time (bottom)
and the Bienenstock-Cooper-Munro (BCM) learning rule (top; 7, 8) which characterizes the sign and
magnitude of synaptic weight change ∆w as a function of postsynaptic activity z. Notably, the sign of
plasticity depends on whether the evoked responses are above or below the plasticity threshold θ. Using
the example of Neuron 1 in panel (b), the BCM rule potentiates synapses that are active when a “Cat”
stimulus is shown, whereas “Dog” stimuli induce long-term depression (LTD). This effectively pushes
the evoked neuronal activity levels corresponding to both stimuli away from one another, and thereby
prevents representational collapse.
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also supported by neurobiology [13–18]. Prediction can happen in the input space by, for
instance, reconstructing one part of an image from another, as for autoencoders [19], or by
predicting the next word in a sentence, as done in language models. Alternatively, prediction
can occur in latent space by requiring internal representations of related inputs to predict each
other [20, 21]. Latent space prediction is more compelling from a neuroscience perspective since
it does not require an explicit decoder network that computes prediction errors at the input, i.e.,
the sensory periphery, for which there is little experimental support. Instead, latent prediction
errors are computed locally or at network outputs (cf. Fig. 1) and drive learning by “pulling”
together related internal representations for stimuli that frequently occur close in time (Fig. 1c),
similar to slow feature analysis (SFA) [22, 23].

However, a major issue with this strategy is that without any forces opposing this represen-
tational pull, such learning inevitably leads to “representational collapse,” whereby all inputs
are mapped to the same internal activity pattern which precludes linear separability (Fig. 1c).
One typical solution to this issue is to add forces that “push” representations corresponding to
different unrelated stimuli away from one another (Fig. 1d). This is usually done by invoking
so-called “negative samples,” which are inputs that do not frequently occur together in time.
This approach has been linked to biologically plausible three-factor learning rules [24, 25], but it
requires constantly switching the sign of plasticity depending on whether two successive inputs
are related to each other or not. Yet, it is unknown whether and how such a rapid sign switch
is implemented in the brain.

Another possible solution for avoiding representational collapse without negative samples is
to prevent neuronal activity from becoming constant over time, for instance, by maximizing the
variance of the activity [26]. Interestingly, variance maximization is a known signature of Heb-
bian plasticity [27, 28], which has been found ubiquitously in the brain [29, 30]. While Hebbian
learning is usually thought of as the primary plasticity mechanism rather than playing a sup-
porting role, Hebbian plasticity alone has had limited success at disentangling representations
in DNNs [5, 31, 32].

This article introduces Latent Predictive Learning (LPL), a conceptual learning framework
that overcomes this limitation and reconciles SSL with Hebbian plasticity. Specifically, the
local learning rules derived within our framework combine a plasticity threshold, as observed
in experiments (Fig. 1e; [8, 29, 33–35]), with a predictive component, inspired by SSL and
SFA, that renders neurons selective to temporally contiguous features in their inputs. When
applied to the layers of deep hierarchical networks, LPL yields disentangled representations
of objects present in natural images without requiring labels or negative samples. Crucially,
LPL effectively disentangles representations as a local learning rule without requiring explicit
spatial credit assignment mechanisms. Still, credit assignment capabilities can further improve
its effectiveness. We demonstrate that LPL captures central findings of unsupervised visual
learning experiments in monkeys and in spiking neural networks (SNNs) and naturally yields a
classic spike-timing-dependent plasticity (STDP) window, including its experimentally observed
firing-rate-dependence [29]. These findings suggest that LPL constitutes a plausible normative
plasticity mechanism that may underlie representation learning in biological brains.

Results

To study the interplay of Hebbian and predictive plasticity in sensory representation learning,
we derived a plasticity model from an SSL objective function that is reminiscent of and extends
the classic BCM learning rule [7, 8] (Methods; Supplementary Note S1). According to our
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learning rule, the temporal dynamics of a synaptic weight Wj are given by

dWj

dt
(t) = ηxj(t)f

′(a(t))

−dz(t)

dt︸ ︷︷ ︸
predictive

+
λ

σz(t)2
(z(t)− z̄(t))︸ ︷︷ ︸
Hebbian

 (1)

where η is a small positive learning rate, xj(t) denotes the activity of the presynaptic neuron
j, z(t) = f(a(t)) is the neuronal activity with the activation function f , and the net input
current a(t) =

∑
k Wkxk(t). We call the first term in parentheses the predictive term because

it promotes learning of slow features [22, 23] by effectively “pulling together” postsynaptic
responses to temporally consecutive input stimuli. Importantly, it cancels when the neural
activity does not change and, therefore, accurately predicts future activity. In the absence of
any additional constraints, the predictive term leads to collapsing neuronal activity levels [22].
In our model, collapse is prevented by the Hebbian term in which z̄(t), the running average of
the neuronal activity appears, which is reminiscent of BCM-theory [7, 8]. Its strength further
depends on an online estimate of the postsynaptic variance of neuronal activity σ2

z(t). This
modification posits an additional metaplasticity mechanism controlling the balance between
predictive and Hebbian plasticity depending on the postsynaptic neuron’s past activity.

To make the link to BCM explicit, we rearrange the terms in Eq. (1) to give:

dWj

dt
(t) = ηλ

xj(t)f
′(a(t))

σz(t)2

z(t)−
(
z̄(t) +

σz(t)
2

λ

dz(t)

dt

)
︸ ︷︷ ︸

Sliding threshold Θ(t)

 (2)

where Θ(t) corresponds to a time-dependent sliding plasticity threshold (cf. Fig. 1e). While
the precise shape of the learning rule depends on the choice of neuronal activation function, its
qualitative behavior remains unchanged as long as the function is monotonic (Extended Data
Fig. 1). Despite the commonalities, however, there are three essential differences to the BCM
model. First, in our model, the threshold depends only linearly on z̄(t) (Extended Data Fig. 1b),
whereas in BCM, the threshold is typically a supralinear function of the moving average z̄(t).
Second, the added dependence on the predictive term −dz

dt constitutes a separate mechanism
that modulates the plasticity threshold depending on the rate-of-change of the postsynaptic
activity (Extended Data Fig. 1c,d). Third, our model adds a variance-dependence that has
diverse effects on the sliding threshold when the neuronal output does not accurately predict
future activity and, thus, changes rapidly (Extended Data Fig. 1c,d). We will see that these
modifications are crucial to representation learning from the temporal structure in sensory
inputs. Because the predictive term encourages neurons to predict future activity at their
output, and thus in latent space rather than the input space, we refer to Eq. (1) as the Latent
Predictive Learning (LPL) rule.

LPL finds contiguous features in temporal data

To investigate the functional advantages of LPL over BCM and other classic Hebbian learn-
ing rules (Supplementary Note S2), we designed a synthetic two-dimensional learning task in
which we parametrically controlled the proportion of predictable changes between subsequent
observations (Fig. 2a; Methods). The data sequence consisted of noisy inputs from two clus-
ters separated along the x-axis. Consecutive inputs had a high probability of staying within
the same cluster, thus making cluster identity a temporally contiguous feature. By varying
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Figure 2: LPL learns predictive features. (a) Illustration of the two-dimensional synthetic data
generating process. Consecutive data points stay within the same cluster separated along the x-direction
and are drawn independently from the corresponding normal distribution centered in that cluster (left).
These data are fed into a linear neuron that learns via LPL (right). (b) Cluster selectivity of the
features learned by LPL with and without the predictive term and by Oja’s rule for different values of
σy. By varying σy, we obtain a family of sequences with different amplitudes of within-cluster transitions
(top). LPL selects temporally contiguous features and therefore ensures that the neuron always becomes
selective to cluster identity. Oja’s rule finds PC1, the direction of highest variance, which switches to the
noise direction at σy = 1. LPL without the predictive component shows the same behavior. Selectivity
values were averaged over ten random seeds. The shaded area corresponds to one SD. (c) Mean output
activity of the neuron over training time for σy = 1 under different versions of LPL. LPL initially
increases its response and saturates at some activity level, even when the predictive term is disabled.
However, without the Hebbian term, the activity collapses to zero.

the noise amplitude σy in the y-direction, we controlled the amount of unpredictable changes.
We simulated a single rate neuron with different datasets for varying σy, while the two input
connections were plastic and evolved according to the LPL rule (Eq. (1)) until convergence. We
then measured neuronal selectivity to cluster identity (Methods).

We found that LPL rendered the neuron selective to the cluster identity for a large range
of σy values (Fig. 2b). However, without the predictive term, the selectivity to cluster identity
was lost for large σy values. This behaviour was expected because omitting the predictive term
renders the learning rule purely Hebbian, which biases selectivity toward directions of high
variance. To illustrate this point, we repeated the same simulation with Oja’s rule, a classic
Hebbian rule that finds the principal component in the input, and found similar qualitative
behaviour. Thus LPL behaves fundamentally different from purely Hebbian rules, by selecting
predictable features in the input.

To confirm that the Hebbian term is essential for LPL to prevent representational collapse,
we simulated learning without the Hebbian term (cf. Eq. (1)). We observed that the neuron’s
activity collapses to zero firing rate as expected (Fig. 2c). Conversely, learning with the Hebbian
term but without the predictive term did not result in collapse. Therefore, LPL’s Hebbian
component is essential to prevent activity collapse.

Moreover, Hebbian plasticity needs to be dynamically regulated to prevent run-away activity
[36]. In LPL this regulation is achieved by inversely scaling the Hebbian term by a moving
estimate of the variance of the postsynaptic activity σ2

z(t). Without this variance-modulation,
neural activity either collapsed or succumbed to runaway activity depending on which term
was dominant (Supplementary Note S3). Either case precluded the neuron from developing
cluster selectivity. We verified that these findings generalized to higher-dimensional tasks with
more complex co-variance structure (Supplementary Note S4). Hence, the combination of the
predictive with variance-modulated Hebbian metaplasticity in LPL is needed to learn invariant
predictive features independently of the co-variance structure in the data.
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LPL disentangles representations in deep hierarchical networks

As we move through the world, we see objects, animals, and people under different angles and
contexts (Fig. 3a). Therefore, objects themselves constitute temporally contiguous features
in normal vision. We thus wondered whether training an artificial DNN with LPL on image
sequences with such object permanence results in disentangled representations. To that end,
we built a convolutional DNN model in which we “stacked” layers whose synaptic connections
evolved according to the LPL rule. Additionally we included a term to decorrelate neurons
within each layer. Inhibitory plasticity presumably plays this role in biological neural net-
works [37–40]. LPL was implemented in a “layer-local” manner, meaning that there was no
backpropagation through layers (Methods).

To simulate temporal sequences of related visual inputs, we generated pairs of images sam-
pled from a large dataset, by applying different randomized transformations (Extended Data
Fig. 2; Methods). We trained our network model on these visual data until learning converged
and evaluated the linear decodability of object categories from the learned representations using
a separately trained linear classifier.

We found that in networks trained with LPL, object categories could be linearly decoded at
the output with an accuracy of (63.2±0.3)% (Fig. 3b; Table 1), suggesting that the network has
formed partially disentangled representations (Extended Data Fig. 3). To elucidate the roles of
the different learning rule components, we conducted several ablation experiments. First, we
repeated the same simulation but now excluding the predictive term. This modification resulted
in an accuracy of (27.0± 0.2)%, which is lower than the linear readout accuracy of a classifier
trained directly on the pixels of the input images (see Table 1), indicating that the network
did not learn disentangled representations, consistent with previous studies on purely Hebbian
plasticity [5, 32]. We measured a similar drop in accuracy when we disabled either the Hebbian
or the decorrelation component during learning (Fig. 3b).

Convolutional DNNs trained through supervised learning use depth to progressively separate
representations [2]. To understand whether networks trained with LPL similarly leverage depth,
we measured the linear readout accuracy of the internal representations at every layer in the
network. Crucially, we found that in the LPL-trained networks, the readout accuracy increased
with the number of layers until it gradually saturated (Fig. 3c), whereas this was not the case
when any of the components of LPL was disabled. Similarly, readout accuracy decreased,
when the temporal contiguity in the input was broken by shuffling, reminiscent of experiments
in developing rats [17]. Together, these results suggest that LPL’s combination of Hebbian,
predictive, and decorrelating elements is crucial for disentangling representations in hierarchical
DNNs.

STL-10 CIFAR-10
Layer-local (%) End-to-end (%) Layer-local (%) End-to-end (%)

DNN with LPL 63.2±0.3 72.5±0.1 59.4±0.4 70.4±0.2
Raw pixel values 31.6 35.9

Table 1: Linear classification accuracy on the STL-10 and CIFAR-10 datasets for LPL and for a linear
decoder trained on the raw pixel values (Methods). Error values correspond to SEM over four simulations
with different random seeds.

In SSL, the two most common causes for failure to disentangle representations are repre-
sentational and dimensional collapse (Extended Data Fig. 4), due to excessively high neuronal
correlations [41]. To disambiguate between these two possibilities in our model, we computed
the dimensionality of the representations and the mean neuronal activity at every layer (Meth-
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Figure 3: LPL disentangles representations in DNNs. (a) Schematic of the DNN trained using
LPL. We distinguish two learning strategies: Layer-local and end-to-end learning. In layer-local LPL,
each layer’s learning objective (Li) is to predict representations within the same layer, whereas end-
to-end training takes into account the output layer representations only (Lout), and updates hidden
layer weights using backpropagation. (b) Linear readout accuracy of object categories decoded from
representations at the network output after training it on natural image data (STL-10; see Methods for
details) with different learning rules in layer-local (dark) as well as the end-to-end configuration (light).
“Pred. off” corresponds to LPL but without the predictive term in the learning rule (cf. Eq. 7). “Hebb
off” refers to the configuration without the BCM-like Hebbian term. Finally, “Decorr. off” is the same
as the single neuron learning rule (Eq. (1)) without the decorrelation term. LPL yields features with high
linear readout accuracy. In contrast, when any component of LPL is disabled, linear readout accuracy
drops below the pixel-decoding accuracy of ∼32% (dashed line). Error bars indicate standard error of
the mean (SEM) over four trials. (c) Linear readout accuracy of the internal representations at different
layers of the DNN after layer-local training. LPL’s representations improve up to six layers and then settle
at a high level. In contrast, readout accuracy is close to chance level without the Hebbian component,
and similarly remains at low levels when the decorrelating mechanism is switched off. Interestingly, when
the predictive term is off, the readout accuracy initially increases in early layers, but then ultimately
decreases back below the pixel-level accuracy with further increasing depth. Finally, the full LPL learning
rule applied to inputs in which temporal contingency is destroyed (LPL shuffled) behaves qualitatively
similar to the purely Hebbian rule. (d) Dimensionality of the internal representations for the different
learning rule configurations shown in (b). When either the Hebbian or decorrelation term are disabled,
the dimensionality of the representations collapses to one. (e) Mean neuronal activity at different layers
of the DNN after training with the different learning rule variants shown in (c). Excluding the Hebbian
term (dotted line) leads to collapsed representations in all layers.
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ods). We found that disabling either the Hebbian or the decorrelation component led to a
dimensionality of approximately one, whereas the LPL rule with and without the predictive
term resulted in higher dimensionality: ≈ 15 or ≈ 50 respectively (Fig. 3d). Disabling the
Hebbian term silenced all layers (Fig. 3e), demonstrating representational collapse. In contrast,
disabling the decorrelation term resulted in non-zero activity levels, indicating that dimensional
collapse underlies its poor readout accuracy (Fig. 3e). Finally, we verified that excluding LPL’s
predictive component neither caused representational nor dimensional collapse, suggesting that
the decreasing linear readout accuracy with depth was due to the network’s inability to learn
good internal representations. Taken together, these results show that the predictive term is
crucial for disentangling object representations in DNNs (Fig. 3) whereas the other terms are
essential to prevent different forms of collapse.

It is an ongoing debate whether neurobiology implements some form of credit assignment
[5, 9–12]. Above we showed that LPL, as a local learning rule, effectively disentangles represen-
tations without the need for credit assignment, provided mechanisms exist that ensure neuronal
decorrelation [38]. Naturally, our next question was whether a non-local LPL formulation could
improve learning. To that end, we considered the fully non-local case using backpropagation.
Specifically, we repeated our simulations with end-to-end training on the LPL objective defined
at the network’s output (Methods). While we do not know how the brain would implement
such a non-local LPL algorithm, it provides an upper performance estimate of what is possible.
End-to-end learning reproduced all essential findings of layer-local learning while increasing
overall performance (Fig.3b; Table 1). Thus LPL’s performance improves in the non-local set-
ting, further underscoring that biological networks could benefit from credit assignment circuit
mechanisms.

The above simulations used pairs of augmented images. To check whether the key find-
ings generalized to more realistic input paradigms and other measures of disentangling, we
trained DNNs with LPL on procedurally generated videos from the 3D Shapes dataset [42].
The videos consisted of objects shown under a slowly changing view angle, scale, or hue and
occasional discontinuous scene changes, but without additional image augmentation (Extended
Data Fig. 5a,b; Methods). We found that LPL-trained networks reliably disentangle object
identity. In contrast, networks trained without predictive learning failed to do so (Extended
Data Fig. 5c). Finally, the ground-truth latent manifold structure in the procedurally generated
dataset is known. This knowledge allowed us to probe disentangling of the latent manifold di-
rectly instead of using linear classification as a proxy. This analysis revealed that LPL-trained
networks faithfully disentangled the underlying objects and factors. At the same time, they
also learned the topology of the data-generating manifold from the temporal sequence structure
(Extended Data Figs. 5d–g and 6). Thus LPL’s ability to disentangle representations generalizes
to video stimuli and other measures of disentanglement.

LPL captures invariance learning in the primate inferotemporal cortex

Changing the temporal contiguity structure of visual stimuli induces neuronal selectivity changes
in primate inferotemporal cortex (IT), an unsupervised learning effect described by Li and Di-
Carlo [14]. In their experiment, a macaque freely viewed a blank screen, with objects appearing
in the peripheral visual field at one of two alternative locations relative to the (tracked) center
of its gaze, prompting the macaque to perform a saccade to this location (Fig. 4a). The experi-
menters differentiated between normal exposures in which the object does not change during the
saccade and “swap exposures” in which the initially presented object was consistently swapped
out for a different one as the monkey saccaded to a specific target location Xswap. Hence, swap
exposures created an “incorrect” temporal association between one object at position Xswap and
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a different one at the animal’s center of gaze Xc. For any particular pair of swap objects, either
the location above or below the center of gaze was chosen as Xswap, and transitions from the
opposite peripheral position Xnonswap to the center Xc were kept consistent as a control. The
authors found systematic position- and object-specific changes of neuronal selectivity due to
swap exposures which they attributed to unsupervised learning. Specifically, a neuron initially
selective to an object P over another object N , reduced or even reversed its selectivity at the
swap position Xswap while preserving its selectivity at the non-swap position Xnonswap (Fig. 4b).

We wanted to know whether LPL can account for these observations. To that end, we built
a DNN model and generated input images by placing visual stimuli on a larger gray canvas
to mimic central and peripheral vision as needed for the experiment (cf. Fig. 4a; Methods).
Importantly, we ensured that the network’s input dimension and output feature map size were
large enough to avoid full translation invariance due to the network’s convolutional structure
alone. To simulate the animal’s prior visual experience, we trained our network model with LPL
on a natural image dataset. After training, the learned representations were invariant to object
location on the canvas (Extended Data Fig. 7), a known property of neural representations in
the primate IT [1]. Next, we simulated targeted input perturbations analogous to the original
experiment. For a given pair of images from different classes, we switched object identities
during transitions from a specific peripheral position, say X1, to the center Xc while keeping
transitions from the other peripheral position X2 to the center unmodified. We used X1 as the
swap position for half of the image pairs and X2 for the other half. Throughout, we recorded
neuronal responses in the network’s output layer while the weights in the network model evolved
according to the LPL rule.

We observed that the neuronal selectivity between preferred inputs P , as defined by their
initial preference (Methods), in comparison to non-preferred stimuliN in the model qualitatively
reproduced the results of the experiment (Fig. 4b). Effectively, LPL trained the network’s
output neurons to reduce their selectivity to their preferred inputs P at the swap position while
preserving their selectivity at the non-swap position. Furthermore, we observed that object
selectivity between pairs of control objects did not change, consistent with the experiment
(Fig. 4b). Further analysis revealed that the origin of the selectivity changes between P and
N stimuli at the swap position was due to both increases in responses to N and decreases in
responses to P , an effect also observed in the experiments (Fig. 4c). Thus, LPL can account for
neuronal selectivity changes observed in monkey IT during in-vivo unsupervised visual learning
experiments.

Spiking neural networks with LPL selectively encode predictive inputs

So far we considered LPL in discrete-time rate-based neuron models without an explicit sep-
aration of excitatory and inhibitory neurons. In contrast, cortical circuits consist of spiking
neurons that obey Dale’s law, and learn in continuous time. To test whether our theory would
extend to such a more realistic setting, we simulated a plastic recurrent SNN model consisting of
100 excitatory and 25 inhibitory sparsely connected neurons (Fig. 5a; Methods). The circuit re-
ceived input from five Poisson populations of 100 neurons each, whose temporally varying firing
rates encoded signals with different temporal properties (Fig. 5b; Methods). Input population
P0 had a constant firing rate, whereas P1’s and P2’s firing rates followed two independent
slowly varying signals. We also defined two control populations P1ctl and P2ctl whose firing
rates were temporally shuffled versions of P1 and P2 using bins of 10ms duration. Crucially,
all populations had the same mean firing rate of 5Hz. The input connections to the excitatory
neurons evolved according to the spiking LPL rule (cf. (1)), a local learning rule without the
decorrelation term. Decorrelation was achieved through inhibitory STDP (38; Methods).
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Figure 4: LPL captures invariance learning in the primate inferotemporal cortex (IT).
(a) Schematic of the simulation setup modeled after the experiment by Li and DiCarlo [14]. The inputs
to the model consist of images of objects presented at three different positions X1, Xc, and X2 on a blank
canvas. Following the original experiment, we performed a targeted perturbation in the simulated visual
experience that the model network was exposed to (left and center). Specifically, we switched object
identities during transitions from a specific peripheral position, say X1, to the central position Xc, while
keeping transitions from the other peripheral position to the center unmodified (right). (b) Evolution of
object selectivity as a function of number of swap exposures in the model (top row) and observed in-vivo
(bottom row; data points extracted and replotted from [14], see Methods for details). We differentiate
between pairs of swapped objects at the Swap (left) and Non-swap positions (center) as well as control
objects at the Swap position (right). LPL qualitatively reproduces the evolution of swap position-specific
remapping of object selectivity as observed in IT. Control objects at the Swap position, i.e., images not
used during the swap training protocol, show no selectivity changes in agreement with the experiment.
(c) Average response to objects P and N as a function of number of swap exposures. The change in
object selectivity between preferred objects P and non-preferred objects N is due to both increased
responses to N and decreased responses to P in both our model (top) and the experimental recordings
(bottom).
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Figure 5: LPL in a spiking neural network (SNN). (a)Wiring diagram of the SNN with five distinct
input populations. (b) Snapshot of spiking activity over 100ms after LPL plasticity for the inputs (top
left) and the network (bottom left) separated into excitatory (black) and inhibitory neurons (blue). The
input spikes are organized in five distinct Poisson populations whose firing rates evolve according to five
different temporal input signals (top right). Population activity of two slowly varying signals (P1/2) can
be linearly reconstructed (Methods) with high R2 values from the network activity whereas temporally
shuffled control signals (“ctl”; Methods) are heavily suppressed (bottom right). (c) Distribution of
synaptic connection strengths grouped by input population. Input connections from slowly varying
signals are larger than those from the shuffle controls (left), but not when learning with the predictive
term turned off (right). (d) Signal selectivity as relative difference between signal and control pathway
for networks trained with different learning rule variations (Methods). “LPL” refers to learning with the
spiking LPL rule combined with inhibitory plasticity on the inhibitory-to-excitatory connections. “Pred.
off” corresponds to learning without the predictive term, and “Hebb off” to learning without the Hebbian
term. “Inhib. off” refers to a setting without any inhibitory neurons, whereas “Inhib. fixed” indicates a
setting where the inhibitory-to-excitatory weights are held fixed. The network with LPL and inhibitory
plasticity acquires high selectivity to both signals. Selectivity is lost if the predictive term, the Hebbian
term, or inhibitory plasticity are switched off. When inhibition is removed altogether, selectivity remains
but is significantly reduced. Error bars indicate SEM over all excitatory neurons. (e) Average firing rate
of excitatory neurons in the network for the different configurations in (d). When the Hebbian term is off,
spiking activity collapses to low activity levels in contrast to all other configurations in which it settles
at intermediate activity levels. (f) Dimensionality of the neuronal representations (Methods) for the
different configurations in (d). Inhibition prevents dimensionality collapse, even in cases where inhibition
is not plastic. (g) Averaged weight vectors of all excitatory neurons corresponding to input populations
P1 and P2 (left) and the distribution of relative neuronal selectivities between these populations (right).
Most neurons become selective either to P1 or P2, but few to both signals simultaneously. Color indicates
relative preference of their weight vectors to either signal (Methods). (h) Same as (g), but without an
inhibitory population. Most neurons develop selectivity to P2 or mixed selectivity to both signals, and
their weight vectors are more correlated.
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We ran the SNN model for approximately 28 h of simulated time, at which point the net-
work’s firing dynamics had settled into an asynchronous irregular activity regime from which
the slowly varying input signals could be decoded linearly with high fidelity (Fig. 5b). In con-
trast, the rate fluctuations of the shuffled control signals (P1ctl and P2ctl) and the constant
firing-rate input (P0) could not be reconstructed linearly with high accuracy, consistent with
the idea that the network preferentially represents the slowly varying inputs in its activity.
This notion was further supported by computing the mean connection strength of the afferent
connectivity matrix (Fig. 5c). We further computed the relative difference between the average
afferent weight from each signal in comparison to its associated control pathway. As expected,
we found that neuronal weights were preferentially tuned to the slow input channels (Fig. 5d).
However, this selectivity was lost when we turned either the predictive or the Hebbian term off.
The absence of Hebbian plasticity was further accompanied by activity collapse (Fig. 5e), like
in the rate-based network.

To investigate the role of inhibition in successful representation learning in the SNN, we
repeated the above simulation without the inhibitory population. This manipulation resulted
in excessively high firing rates (Fig. 5e; Extended Data Fig. 8), a notable reduction of the
representational dimensionality (Fig. 5f; Methods), and lower selectivity to the slow signals
(Fig. 5d). The reasons for this reduction can be seen in the distribution of weight vectors. In
the network with plastic inhibition, weights were more decorrelated and exclusively selective to
either P1 or P2 (Fig. 5g). In contrast, removing inhibition resulted in more correlated weights
with few neurons preferentially tuned to one signal or the other (Fig. 5h). Finally, we repeated
the same simulation in a network with inhibitory neurons, but without inhibitory plasticity.
This manipulation led to comparable representational dimensionality as for LPL (Fig. 5f), but
caused a loss of selectivity relative to the shuffled controls (Fig. 5d). These results indicate
that inhibition is needed to prevent correlated neuronal activity and the ensuing reduction in
representational dimensionality. Further, inhibitory plasticity is required to ensure that the slow
signals are preferentially represented (Extended Data Fig. 8). Together, these findings illustrate
that LPL learns predictive features in realistic spiking circuits with separate excitatory and
inhibitory neuronal populations.

LPL qualitatively reproduces experimentally observed rate and spike-timing
dependence of synaptic plasticity

Next, we wanted to examine whether the spike-based LPL rule is consistent with experimental
observations of plasticity induction. Experiments commonly report intertwined rate and spike-
timing dependence presumably mediated through nonlinear voltage- and calcium-dependent
cellular mechanisms [30, 43]. Theoretical work has further established conceptual links between
phenomenological STDP models, SFA, and BCM theory [23, 44–48].

To compare LPL to experiments, we simulated a standard STDP induction protocol. Specif-
ically, we paired 100 pre- and post-synaptic action potentials with varying relative timing ∆t
for a range of different repetition frequencies ρ. During the entire plasticity induction protocol,
the postsynaptic cell was kept depolarized close to its firing threshold and weights evolved ac-
cording to spike-based LPL. We repeated the simulated induction protocol for different initial
values of the slowly moving averages of the postsynaptic firing rate S̄i(t) and variance σ2

i (t)
(Methods). This was done because these variables do not change much over the course of a
single induction protocol due to their slow dynamics. Their presence, however, makes LPL a
form of metaplasticity, i.e., plasticity depends on past neuronal activity.

We found that for small initial values of σ2
i , the induced weight changes followed an antisym-

metric temporal profile consistent with STDP experiments (Fig. 6a). For larger initial values of
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Figure 6: LPL accounts for STDP and predicts metaplasticity of the STDP window. (a) Rela-
tive weight change due to LPL in response to a standard STDP induction protocol with varying spike tim-
ing ∆t for 100 pairings at a repetition frequency of ρ = 10Hz (inset) for an initial value of σ2(t = 0) = 0.1.
(b) Same as (a), but with initial value of σ2(0) = 1. (c) Same as (a), but with σ2(0) = 100. (d) Rela-
tive weight change as a function of repetition frequency ρ for positive and negative relative spike timings
(∆t = ±10ms).

σ2
i , the STDP window changed to a more symmetric and then ultimately an anti-Hebbian pro-

file while the plasticity amplitude was suppressed, as expected due to the variance-dependent
suppression of the Hebbian term in the learning rule (Fig. 6b,c). Next we investigated the
effect of different initial values for S̄i(t), which acts as a moving threshold reminiscent of BCM.
Specifically, we recorded plastic changes at two fixed spike timing intervals ∆t = ±10ms for
σ2
i (t = 0) = 0.1. For intermediate threshold values S̄i(t = 0) = 20Hz, causal spike timing in-

duced long-term potentiation (LTP) with a nonlinear frequency dependence (Fig. 6d) whereas
acausal pre-after-post timings showed a characteristic cross-over from LTD to LTP similarly ob-
served in experiments [29]. In contrast, a low initial threshold S̄i(t = 0) = 0, which would occur
in circuits that have been quiescent for extended periods of time, resulted in LTP induction for
both positive and negative spike timings whereas a high initial value (S̄i(t = 0) ≥ 50Hz), cor-
responding to circuits with excessively high activity levels, led to LTD (Extended Data Fig. 9).
Importantly such slow shifts in activity-dependent plasticity behavior are consistent with the
metaplasticity observed in monocular deprivation experiments [8, 34, 48]. Thus, LPL qualita-
tively captures key phenomena observed in experiments such as STDP, the rate-dependence
of plasticity, and metaplasticity, despite not being optimized to reproduce these phenomena.
Rather our model offers a simple normative explanation for the necessity of different plasticity
patterns that are also observed experimentally [43].

Discussion

In this article, we have introduced LPL, a local plasticity rule that extends BCM theory by
adding a predictive component to Hebbian learning. We demonstrated that LPL disentangles
latent object representations in DNNs through mere exposure to temporal data in which ob-
ject identity is preserved across successive inputs provided neuronal activity is decorrelated.
Crucially, we show that both predictive and Hebbian learning have to work in symphony to ac-
complish this. Moreover, we demonstrated that LPL qualitatively captures the representational
changes observed in unsupervised learning experiments in monkey IT [14]. Finally, we extended
LPL to SNNs and found that the resulting learning rule naturally reproduces STDP and its
experimentally observed rate-dependence, while further predicting a new form of metaplasticity
with distinct variance-dependent changes to the STDP window.

The idea that sensory networks use temporal prediction as a learning objective to form dis-
entangled internal representations has been studied extensively in both machine learning and
neuroscience. The model introduced in this article combines and extends aspects of biologically
plausible plasticity models closely related to BCM theory with central ideas from SFA and more
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recent SSL approaches in machine learning. While SSL has shown great promise in representa-
tion learning without labelled data, it is typically formulated as a contrastive learning problem
requiring negative samples [20, 21] to prevent representional collapse. However, negative sam-
ples explicitly break temporal contiguity during learning and are thus not biologically plausible.
LPL does not require negative samples. Instead, it relies on variance regularization as proposed
previously to prevent collapse [26]. Our model uses virtually the same mechanism, albeit with
a logarithmic variance dependence (Supplementary Note S3), and builds a conceptual bridge
from variance regularization to Hebbian metaplasticity.

Like most SSL approaches, Bardes et al. [26] used end-to-end learning whereby the objective
function is formulated on the embeddings at the network’s output. In contrast, we studied the
case of greedy layer-wise learning in which the objective is applied to each layer individually.
Doing so alleviates the need for backpropagation and permitted us to formulate the weight
updates as local learning rules, similar to work that combined contrastive objectives with greedy
layer-wise training [31]. Furthermore, recent work showed that greedy layer-wise contrastive
learning is directly linked to plasticity rules that rapidly switch between Hebbian and anti-
Hebbian learning through a global third factor [24]. However, both these models required
implausible negative samples, whereas LPL does neither require end-to-end training nor negative
samples.

LPL shares the shape of the BCM rule, which has been qualitatively confirmed in numer-
ous experimental studies both in-vitro [8, 29, 34] and in-vivo [35]. Furthermore, BCM has
been linked to STDP [30] and informed numerous phenomenological plasticity models [44–
47, 49]. However, unequivocal evidence for the predicted supralinear behavior of the firing
rate-dependence of the BCM sliding threshold remains scarce [34] and the fast sliding thresh-
old required for network stability seems at odds with experiments [36, 48]. In contrast, LPL
does not require a rapid nonlinear sliding threshold for stability. Instead, it posits a fast-acting
variance-dependence that ensures stability by suppressing Hebbian plasticity when the variance
of the output activity is too high. This suppressive effect allows the sliding threshold, which
could be implemented by either neuronal or circuit mechanisms [34, 50], to catch up slowly, more
consistent with experiments [48]. Hence, LPL offers a possible explanation for the current gap
between theory and experiment, while suggesting future investigations of plasticity regulation
in neuronal circuits.

The notion of slowness learning has been studied extensively in the context of the Trace Rule
[51] and SFA [22, 40] which have conceptual ties to STDP [23]. However, the former enforces a
hard constraint on the norm of the weight vector to prevent collapse, while SFA enforces a hard
variance constraint. In contrast, LPL implements a soft variance constraint [26] to the same
effect. A similar soft constraint on the variance can be derived from statistical independence
arguments [52] within a mutual information view of SSL [20]. However, these studies used
negative samples, assume rapid global sign switching of the learning rule, and did not connect
their work to biological plasticity mechanisms.

Our study has several limitations which we aim to address in future work. First, our study is
limited to visual tasks of core object recognition, whereas other sensory modalities may use LPL
as a mechanism to form disentangled representations of the external world. For computational
feasibility, we restricted ourselves to artificial data augmentation techniques borrowed from SSL
and procedurally generated videos with a simple structure, which are only crude proxies of rich
real-world stimuli. Finally, there remains a performance gap in classification performance com-
pared to less plausible fully supervised and contrastive approaches (Supplementary Table S1)
showing that there remains room for improvement, possibly by incorporating biological circuit
mechanisms and top-down feedback connections into the model. It is left as future work to
show how LPL can be extended to the circuit level and to more ethologically realistic sensory
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modalities [53] and video input while further combining them with plausible models of saccadic
eye movement.

Despite the limitations, our model makes several concrete predictions about synaptic plas-
ticity. As we have shown, modulating the strength of Hebbian plasticity as a function of the
variance of the postsynaptic activity is essential to LPL. A direct prediction of our model is,
therefore, that the predictive contribution to plasticity should be best observable when post-
synaptic activity is highly variable, while it should be barely observable at low variance levels.
While our model does not make quantitative predictions about the time scale on which each
neuron would have to estimate its output variance, one would expect that a neuron that has
been inactive for a long time, as may be the case in slice experiments, would show stronger Heb-
bian learning than neurons participating in in-vivo activity. Moreover, LPL should manifest
in metaplasticity experiments as a transition from an asymmetric Hebbian STDP window, via
a symmetric window to, to ultimately an anti-Hebbian window (cf. Fig. 6) when priming the
postsynaptic neuron with increasing output variance. Specifically, we expect a neuron which
has remained quiescent for a long period of time to display a classic STDP window, whereas a
neuron whose activity has undergone substantial fluctuations in the recent past should show an
inverted STDP window. Such metaplasticity may account for the diversity of different shapes
of STDP windows observed in experiments [43].

To fathom how established data-driven plasticity models are related to theoretically mo-
tivated learning paradigms such as SFA and SSL is essential to understanding the brain. A
central open question in neuroscience remains: How do the different components of such learn-
ing rules interact with the rich local microcircuitry to yield useful representations at the network
level? In this article, we have only scratched the surface by proposing a local plasticity rule and
illustrating its aptitude for disentangling internal representations. However, a performance gap
remains compared to learning algorithms that can leverage top-down feedback. We expect that
extending predictive learning to the circuit and network level will narrow this gap and generate
deep mechanistic insights into the underlying principles of neural plasticity.

Online Methods

Plasticity model

The LPL rule is derived from an objective function approach. It consists of three distinct parts,
each stemming from a different additive term in the following combined objective function:

LLPL = Lpred + LHebb + Ldecorr (3)

First, the predictive component Lpred minimizes neuronal output fluctuations for inputs that
occur close in time. Second, a Hebbian component LHebb maximizes variance and thereby
prevents representational collapse. Finally, Ldecorr is a decorrelation term that we use in all
non-spiking network simulations to prevent excessive correlations between neurons within the
same layer in a network. In SNNs decorrelation is achieved without this term through lateral
inhibition and inhibitory plasticity.

In the following, we consider a network layer with N input units and M output units trained
on batches of B pairs of consecutive stimuli. In all simulations we approximate the temporal
derivative dz/dt which appears in Eqn. (1) by finite differences z(t)−z(t−∆t) assuming a discrete
timestep ∆t while absorbing all constants into the learning rate. In this formulation, the LPL
rule has a time horizon of two time steps in the sense that only one temporal transition enters into
the learning rule directly. We used this insight to efficiently train our models using minibatches
of paired consecutive input stimuli which approximates learning on extended temporal sequences
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consisting of many time steps. Let xb(t) ∈ RN be the input to the network at time t, W ∈
RM×N be the weight matrix to be learned, ab(t) = Wxb(t) ∈ RM be the pre-activations, and
zbi (t) = f(abi(t)) the activity of the ith output neuron at time t. Finally, b indexes the training
example within a minibatch of size B.

Predictive component. We define the predictive objective Lpred as the mean squared dif-
ference between neuronal activity in consecutive time steps.

Lpred(t) =
1

2MB

B∑
b=1

∥zb(t)− SG(zb(t−∆t))∥2

=
1

2MB

B∑
b=1

M∑
i=1

(
zbi (t)− SG(zbi (t−∆t))

)2
(4)

Here SG denotes the Stopgrad function, which signifies that the gradient is not evaluated with
respect to quantities in the past.

Hebbian component. To avoid representational collapse we rely on the Hebbian plasticity
rule that results from minimizing the negative logarithm of the variance of neuronal activity:

LHebb(t) =
1

M

M∑
i=1

− log
(
σ2
i (t)

)
(5)

where z̄i(t) = SG( 1
B

∑B
b=1 z

b
i (t)) and σ2

i (t) =
1

B−1

∑B
b=1

(
zbi (t)− z̄i(t)

)2
are the current estimates

of the mean and variance of the activity of the ith output neuron. Note that we do not
compute gradients with respect to the mean estimate, which would require backpropagation
through time. Assuming that the mean is fixed allows formulating LPL as a temporally local
learning rule (cf. Eq. (3)). To minimize the computational burden in DNN simulations, we
performed all necessary computations on minibatches, which includes estimating the mean and
variance. However, these quantities could also be estimated using stale estimates from previous
inputs, a requirement for implementing LPL as an online learning rule. Using stale mean and
variance estimates from previous minibatches in our DNN simulations did cause a drop in
readout performance (Supplementary Table S2). Still, such a drop could possibly be avoided
either using larger mini batch sizes, by further reducing the learning rate, or by computing
the estimates as running averages over past inputs. All of the above manipulations result in
essentially the same learning rule (see Supplementary Note S1).

Decorrelation component. Finally, we use a decorrelation objective to prevent excessive
correlation between different neurons in the same layer as suggested previously [26, 37, 54]. The
decorrelation loss function is the sum of the squared off-diagonal terms of the covariance matrix
between units within the same layer, which is given as

Ldecorr(t) =
1

(B − 1)(M2 −M)

B∑
b=1

M∑
i=1

∑
k ̸=i

(zbi (t)− z̄i(t))
2(zbk(t)− z̄k(t))

2 (6)

with a scaling factor that keeps the objective invariant to the number of units in the population.
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The full learning rule. We obtain the LPL rule as the negative gradient of the total objective
LLPL plus an added weight decay. For a single network layer, this yields the layer-local LPL
rule where we omitted the time argument t from all present quantities for brevity:

∆Wij = −η

(
∂Lpred

∂Wij
+ λ1

∂LHebb

∂Wij
+ λ2

∂Ldecorr

∂Wij

)
− ηηwWij

= η
1

MB

B∑
b=1

(
−(zbi − zbi (t−∆t))

+λ1
α

σ2
i

(zbi − z̄i)− λ2β(z
b
i − z̄i)

∑
k ̸=i

(zbk − z̄k)
2

)
f ′(abi)x

b
j

−ηηwWij (7)

Here λ1 and λ2 are parameters which control the relative strengths of each objective, α and
β are the appropriate normalizing constants for batch size and number of units, and ηw is a
parameter controlling the strength of the weight decay.

Numerical optimization methods. We implemented all network models learning with LPL
using gradient descent on the equivalent objective function in PyTorch with the Lightning
framework. DNN simulations were run on five Linux workstations equipped with Nvidia Quadro
RTX 5000 graphics processing units (GPUs) and a compute cluster with Nvidia V100 and A100
GPUs. In case of the DNNs, we used the Adam optimizer to accelerate learning. Parameter
values used in all simulations are summarized in Supplementary Table S3.

Learning in the single neuron setup

We considered a simple linear rate-based neuron model whose output firing rate z is given by
the weighted sum of the firing rates xj of the input neurons, i.e, z =

∑
j Wjxj , where Wj

corresponds to the synaptic weight of input j. We trained the neuron using stochastic gradient
descent (SGD) on the corresponding objective function:

L =
1

B
(z(t)− SG(z(t−∆t)))2 − log (σ2

z(t) + ϵ)− ηw
∑
j

W 2
j (8)

Here, and in all following simulations, we fixed the Hebbian coefficient λ1 = 1. We also added a
small constant ϵ = 10−6 to the estimate of the variance σz for numerical stability. In case of a
single rate neuron, the LPL rule (Eq. (7)) simplifies to Eq. (1) without the decorrelation term.

Synthetic two-dimensional dataset generation. The two-dimensional synthetic data se-
quence (Fig. 2a) consists of two clusters of inputs, one centered at x = −1, and the other at
x = +1. Pairs of consecutive data points were drawn independently from normal distributions
centered at their corresponding cluster. To generate a family of different datasets, we kept the
standard deviation in the x-direction fixed at σx = 0.1 and varied σy. Additionally, to account
for occasional transitions between clusters with probability p, we included a corresponding frac-
tion of such “crossover pairs” in the training batch. For each value of σy, we simulated the
evolution of the input connections of a single linear model neuron that received the x and y as
its two inputs, and updated its input weights according to LPL. In the simulations in Fig. 2 we
assumed p → 0, however, the qualitative behavior remained unchanged for noise levels below
p = 0.5, i.e, as long as the “noisy” pairs of points from different clusters were rare in each
training batch (Extended Data Fig. 10).
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Neuronal selectivity measure. After training weights to convergence, we measured the
neuron’s selectivity to the x-input as the normalized difference between mean responses to
stimuli coming from the two respective input clusters. Concretely, let ⟨z1⟩ be the average
output caused by inputs from the x = 1 cluster, and ⟨z2⟩ from the x = −1 cluster, then the
selectivity χ is defined as:

χ =
|⟨z1⟩ − ⟨z2⟩|
zmax − zmin

(9)

with zmax the maximum and zmin the minimum response across all inputs.

Learning in deep convolutional neural networks

For all network simulations, we used a convolutional DNN based on the VGG-11 architecture
[55] (see Supplementary Note S5 for details). We trained this network on STL-10 and CIFAR-10
(Extended Data Fig. 11), two natural image datasets (see Supplementary Table S3 for hyperpa-
rameters). To simulate related consecutive inputs, we used two differently augmented versions
of the same underlying image, a typical approach in vision-based SSL methods. Specifically, we
first standardized the pixel values to zero mean and unit standard deviation within each dataset
before using the set of augmentations originally suggested in [21], which includes random crops,
blurring, color jitter and random horizontal flips (see Extended Data Fig. 2 for examples).

Synthetic video generation. To study LPL in settings with more naturalistic transitions
between consecutive images and without relying on image augmentation, we procedurally gen-
erated videos using images from the 3D Shapes dataset [42]. The dataset has a known latent
manifold structure spanned by view angle, object scale, hue, and object type and is commonly
used to measure disentangling in variational autoencoders. Using the knowledge of the ground
truth factors, we generated continuous video composed of 17-frame clips during which the ob-
ject shape remained fixed and a randomly chosen factor changed gradually. Specifically, we
proceeded as follows: we randomly chose one factor and changed it frame-by-frame such that
transitions between adjacent factor values were more likely. For instance, one such clip shows
a cube under a smoothly varying camera angle (Extended Data Fig. 5a). Furthermore, we
randomly permuted the order of all three hue factors. This was done to break the orderly ring
topology of the hue mappings in the original dataset, which allowed us to test that the structure
is restored through LPL, but not other methods (see Extended Data Fig. 5g). After 17 frames
we randomly chose another shape and factor and repeated the above procedure. This sequence
generation resulted in video with many consecutive latent manifold traversals as captured by the
empirical transition matrices (Extended Data Fig. 6a). Importantly, due to the nature of the
video, which switches between objects periodically, the resulting input sequence also included
occasional transitions between different objects that the LPL rule interprets as positive samples.
Such transitions also appear in real world stimuli when objects leave or enter the scene. Despite
these “false positives” LPL learned disentangled representations of shapes and the underlying
factors.

Network training. We trained our network models on natural image data by minimizing
the equivalent LPL objective function. For both datasets, we trained the DNN using the Adam
optimizer with default parameters and a cosine learning rate schedule that drove the learning
rate to zero after 800 epochs. We distinguish between two cases: layer-local and end-to-end

learning. End-to-end learning corresponds to training the network by optimizing L(out)
LPL at the

network’s output while using backpropagation to train the hidden layer weights. This is the
standard approach used in deep learning. In contrast, in layer-local learning, we minimized the
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LPL objective LLPL at each layer in the network independently without backpropagating loss
gradients between layers similar to previous work [24, 31]. In this case, every layer greedily learns
predictive features of its own inputs, i.e, its previous layer’s representations. To achieve this
behavior, we prevented PyTorch from backpropagating gradients between layers by detaching

the output of every layer in the forward pass and optimizing the sum of per-layer losses
∑

l L
(l)
LPL.

Unless mentioned otherwise, we used global average pooling (GAP) to reduce feature maps
to a single vector before applying the learning objective at the output of every convolutional
layer for layer-local training, or just at the final output in the case of end-to-end training.
Although pooling was not strictly necessary and LPL could be directly applied on the feature
maps, it substantially sped up learning and led to an overall improved linear readout accuracy
on CIFAR-10 (Supplementary Table S2). However, we observed that GAP was essential on
the STL-10 dataset for achieving readout accuracy levels above the pixel-level baseline (cf.
Table 1). This discrepancy was presumably due to the larger pixel dimensions of this dataset
and the resulting smaller relative receptive field size in early convolutional layers. Concretely,
feature pixels in the first convolutional layer of VGG-11 have a receptive field of 3 × 3 pixels
covering a larger portion of the 32× 32 CIFAR-10 images as compared to the 96× 96 STL-10
inputs. This hypothesis was corroborated by the fact that when we sub-sampled STL-10 images
to a 32 × 32 resolution, the dependence on GAP was removed and LPL was effective directly
on the feature maps (Supplementary Table S2).

Baseline models. As baseline models for comparison (Supplementary Table S1), we trained
the same convolutional neural network (CNN) network architecture either with a standard cross-
entropy supervised objective, which requires labels, or with a contrastive objective, which relies
on negative samples. To implement contrastive learning, the network outputs z(t) were passed
through two additional dense projection layers v(t) = fproj(z(t)), which is considered crucial in
contrastive learning to avoid dimensional collapse [41]. Finally, the following contrastive loss
function was applied to these projected outputs

Lcontrast(t) =
B∑
b=1

−sim(vb(t), SG(vb(t−∆t))) +
B∑

b′ ̸=b

sim(vb(t), vb
′
(t))

 (10)

where sim(v1, v2) =
vT1 v2

∥v1∥∥v2∥ is the cosine similarity between two representations v1 and v2.
The second term in the loss function is a sum over all pairwise similarities between inputs in
a given minibatch. These pairs correspond to different underlying base images and therefore
constitute negative samples. During training the network is therefore optimized to reduce the
representational similarity between them.

For training the layer-local versions of the supervised and contrastive models, we followed
the same procedure as with LPL of optimizing the respective loss function at the output of every
convolutional layer l of the DNN without backpropagation between the layers. Because projec-
tion networks are necessary for avoiding dimensional collapse in case of contrastive learning, we
included two additional dense layers to obtain the projected representations vl(t) = f l

proj(z
l(t))

at every level of the DNN before calculating the layer-wise contrastive loss Ll
contrast. This meant

that gradients were backpropagated through each of these dense layers for training the corre-
sponding convolutional layers of the DNN, but consecutive convolutional layers were still trained
independent of each other.
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Population activity analysis

We adopted two different metrics in order to analyze the representations learned by the DNN
after unsupervised training with LPL on the natural image datasets.

Linear readout accuracy. To evaluate how well the LPL rule trained the DNN to disentangle
and identify underlying latent factors in a given image, we measured linear decodability by
training a linear classifier on the network outputs in response to a set of training images.
Crucially, during this step we only trained the readout weights while keeping the weights of
the LPL-pretrained DNN frozen. We then evaluated the linear readout accuracy (Fig. 3b) on
a held-out test set of images. We used the same procedure to evaluate the representations at
intermediate layers (Fig. 3c), and for the baseline models.

Representational similarity analysis. To visualize the latent manifold structure in learned
network embeddings, we computed average representational similarity matrixs (RSMs). To
obtain the RSM for one factor, say object hue, we first fixed the values of all the other factors and
calculated the cosine similarity between the network outputs as the object hue was changed. We
repeated this procedure for many different values for the other factors to get the final averaged
RSM for object hue (Extended Data Fig. 5f).

Metric for disentanglement. To quantitatively measure disentanglement, we used the met-
ric proposed by Kim and Mnih [42]. This measure requires full knowledge of the underlying
latent factors, as was the case for our procedurally generated videos. In brief, to compute the
measure one first identifies the most insensitive neuron to all except one factor. Next, using the
indices of these neurons, one trains a simple majority-vote classifier that predicts which factor
is being coded for. The accuracy of this classifier on held-out data is the disentanglement score.

Dimensionality and activity measures. To characterize mean activity levels in the net-
work models, we averaged neuronal responses over all inputs in the validation set. To quantify
the dimensionality of the learned representations, we computed the participation ratio [56]. Con-
cretely, if Z ∈ RB×N are N -dimensional representations of B input images, and λi, 1 ≤ i ≤ N
is the set of eigenvalues of ZTZ, then the participation ratio is given by:

Dim. =

(∑N
i=1 λi

)2

∑N
i=1 λ

2
i

(11)

Model of unsupervised learning in inferotemporal cortex

Network model and pretraining dataset. To simulate the experimental setup of Li and
DiCarlo [14], we modeled the animal’s ventral visual pathway with a convolutional DNN. To
that end, we used the same network architecture as before except that we removed all biases in
the convolutional layers in order to prevent boundary effects. This modification resulted in a
drop in linear readout accuracy (Supplementary Table S2). Pre-training of the network model
proceeded in two steps as follows. First, we performed unsupervised pre-training for 800 epochs
on STL-10 using augmented image views exactly as before. Next, we added a fully-connected
dense layer at the network’s output, and trained it for 10 epochs with the LPL objective while
keeping the weights of the convolutional layers frozen. During this second pre-training phase, we
used augmented STL-10 inputs which were spatially extended in order to account for the added
spatial dimension of different canvas positions in the experiment [14]. The expanded inputs
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consisted of images placed on a large black canvas at either the center position Xc or one of
two peripheral positions X1/2 at the upper or lower end of the canvas. Concretely, these images
had dimensions (13 × 96) × 96 which resulted in an expanded feature map at the output of
the convolutional DNN with spatial dimensions 13× 1 (see Supplementary Note S5 for details).
Note that we only expanded the canvas in the vertical dimension instead of using a setup with a
13×13 feature map because it resulted in a substantial reduction of computational and memory
complexity. During this second stage of pre-training, the network was only exposed to “true”
temporal transitions wherein the image was not altered between time steps apart from changing
position on the canvas.

Data generation for simulated swap exposures. To simulate the experiment by [14], we
exposed the network to normal and swap temporal transitions. In the latter case the image
was consistently switched to one belonging to a different object category at the specific swap
position. The swap position for a given pair of images was randomly pre-selected to be either X1

or X2, while the other non-swap position was used as a control. Specifically, we switched object
identities during transitions from one peripheral swap position, say X1, to the central position
Xc, while keeping transitions from the other peripheral position X2 to the center unmodified.
As in the experiment, we chose several pairs of images as swap pairs, and fixed X1 as the swap
position for half the pairs of images and X2 as the swap position for the other half. To simulate
ongoing learning during exposure to these swap and non-swap input sequences, we continued
fine-tuning the convolutional layers. To that end, we used the Adam optimizer we used during
pre-training with its internal state restored to the state at the end of pre-training. Moreover,
we used a learning rate of 10−7 during fine-tuning which was approximately 100× larger than
the learning rate reached by the cosine learning rate schedule during pre-training (4 × 10−9,
after 800 epochs). Finally, we trained the newly added dense layers with vanilla SGD with a
learning rate of 0.02.

Neuronal selectivity analysis. Before training on the swap exposures, for each output
neuron in the dense layer, we identified the preferred and non-preferred member of each swap
image pair, based on which image drove higher activity in that neuron. This allowed us to
quantify object selectivity on a per-neuron basis as P −N , where P is the neuron’s response to
its initially preferred image, and N to its nonpreferred image at the same position on the canvas.
Note that, by definition, the initial object selectivity for every neuron is positive. Finally, we
measured the changes in object selectivity P −N during the swap training regimen, at the swap
and non-swap positions averaging over all output neurons for all image pairs. As a control, we
included measurements of the selectivity between pairs of control images that were not part of
the swap set.

Comparison to experimental data. To compare our model to experiments, we extracted
the data from [14] using the Engauge Digitizer software and replotted it in Fig. 4b.

Spiking neural network simulations

We tested a spiking version of LPL in networks of conductance-based leaky integrate-and-
fire (LIF) neurons. Specifically, we simulated a recurrent network of 125 spiking neurons (100
excitatory and 25 inhibitory neurons) receiving afferent connections from 500 input neurons. In
all simulations the input connections evolved according to the spike-based LPL rule described
below. In our model, neurons actively decorrelated each other through locally connected in-
hibitory interneurons whose connectivity was shaped by inhibitory plasticity.
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Neuron model. The neuron model was based on previous work [28, 57] in which the mem-
brane potential Ui of neuron i evolves according to the ordinary differential equation

τmemdUi

dt
=

(
U leak − Ui

)
+ gexci (t) (U exc − Ui) + ginhi (t)

(
U inh − Ui

)
(12)

where τmem denotes the membrane time constant, Ux are the synaptic reversal potentials (Sup-
plementary Table S4), and the gxi (t) the corresponding synaptic conductances expressed in units
of the neuronal leak conductance. The excitatory conductance is the sum of NMDA and AMPA
conductances gexci (t) = 0.5(gampa

i (t)+ gnmda
i (t)). Their dynamics are described by the following

differential equations

dgampa
i

dt
(t) = −gexci (t)

τampa
+

∑
j ∈ exc

wijSj(t) (13)

τnmdadg
nmda
i

dt
(t) = gampa

i (t)− gnmda
i (t) (14)

whereas the inhibitory GABA conductance ginhi = ggabai evolves as

τgaba
dggabai

dt
= −ggabai +

∑
j ∈ inh

wijSj(t) . (15)

In the above expressions Sj(t) =
∑

k δ(t
k
j −t) refers to the afferent spike train emitted by neuron

j, in which tkj are the corresponding firing times, and τx denotes the individual neuronal and
synaptic time constants (Supplementary Table S4). Neuron i fires an output spike whenever its
membrane potential reaches the dynamic firing threshold ϑi(t) that evolves according to

dϑi

dt
(t) =

ϑrest − ϑi(t)

τ thr
+∆ϑSi(t) (16)

to implement an absolute and relative refractory period. Specifically, ϑi jumps by ∆ϑ = 100mV
every time an output spike is triggered after which it exponentially decays back to its rest value
of ϑrest = −50mV. All neuronal spikes are delayed by 0.8ms to simulate axonal delay and to
allow efficient parallel simulation before they trigger postsynaptic potential in other neurons.

Time varying spiking input model. Inputs were generated from 500 input neurons divided
into five populations of 100 Poisson neurons each. All inputs where implemented as independent
Poisson processes with the same average firing rate of 5Hz and neurons within the same group
shared the same instantaneous firing rate. Concretely, neurons in P0 had a fixed firing rate of
5Hz, whereas the firing rates in groups P1 and P2 changed slowly over time. Specifically, we
generated periodic template signals x(t) from a Fourier basis

x(t) =
∑
k

θk
αk

sin

(
2πt+ ϕk

T

)
(17)

with random uniformly drawn coefficients 0 ≤ θk, ϕk < 1. The spectral decay constant α = 1.1
biased the signals toward slow frequencies and thus slowly varying temporal structure. We
chose the period T = 3 s for P1 and (3+1/13)s for P2 respectively. The different periods were
chosen to avoid phase-locking between the two signals. Both signals were then sampled at 10ms
intervals, centered on 5Hz, variance-normalized, and clipped below at 0.1Hz before using them
as periodic time varying firing rates for P1 and P2. Additionally, we simulated control inputs
P1/2ctl of the two input signals by destroying their slowly varying temporal structure. To that
end, we repeated the original firing rate profile for 13 periods before shuffling it on a time grid
with 10ms temporal resolution.
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Spike-based LPL. To extend LPL to the spiking domain, we build on SuperSpike [58], a
previously published online learning rule, which had only been used in the context of supervised
learning in SNNs thus far. In this article, we replaced the supervised loss with the LPL loss
(Eq. (3)) without the decorrelation term. The resulting spiking LPL online rule for the weight
wij is given by

dwij

dt
= η α ∗

(
ϵ ∗ Sj(t)f

′(Ui(t))
)

×
[
α ∗

(
− (Si(t)− Si(t−∆t))) +

λ

σ2
i + ξ

(
Si(t)− S̄i(t)

))]
+ η δSj(t)︸ ︷︷ ︸

transmitter-triggered

(18)

with the learning rate η = 10−2, a small positive constant ξ = 10−3 to avoid division by zero.
Further, α is a double exponential causal filter kernel applied to the neuronal spike train Si(t).
Similarly, ϵ is a causal filter kernel that captures the temporal shape of how a presynaptic spike
influences the postsynaptic membrane potential. For simplicity, we assumed a fixed kernel
and ignored any conductance-based effects and NMDA dependence. Further, we added the
transmitter-triggered plasticity term with δ = 10−5 to ensure that weights of quiescent neurons
slowly potentiate in the absence of activity to ultimately render them active [57]. Finally, λ = 1
is a constant that modulates the strength of the Hebbian term. We set it to zero to switch off
the predictive term where this is mentioned explicitly.

Further, f ′(Ui) = β
(
1 + β

∣∣Ui − ϑrest
∣∣)−2

is the surrogate derivative with β = 1mV−1,
which renders the learning rule voltage-dependent. Finally, S̄i(t) and σ2

i (t) are slowly varying
quantities obtained online as exponential moving averages with the following dynamics

τmeandS̄i(t)

dt
= Si(t)− S̄i(t) (19)

τvar
d

dt
σ2
i (t) = −σ2

i (t) +
(
Si(t)− S̄i(t)

)2
(20)

with τmean = 600 s and τvar = 20 s. These quantities confer the spiking LPL rule with elements
of metaplasticity [34].

In our simulations, we computed the convolutions with α and ϵ by double exponential
filtering of all quantities. Generally, for the time varying quantity c(t) we computed

τ rise
dc̄

dt
(t) = −c̄(t) + c(t) (21)

τ fall
d¯̄c

dt
(t) = −¯̄c(t) + c̄(t) (22)

which yields the convolved quantity ¯̄c. Specifically, we used τ riseα = 2ms, τ fallα = 10ms, τ riseϵ =
τampa = 5ms, and τ fallϵ = τmem = 20ms.

Overall, one can appreciate the resemblance of Eq. (18) with the non-spiking equivalent
(cf. Eq. (1)). As in the non-spiking case the learning rule is local in that it only depends
on pre- and postsynaptic quantities. The predictive term in the learning rule can be seen as
an instantaneous error signal which is minimized when the present output spike train Si(t) is
identical to a delayed version of the same spike train Si(t − ∆t) with ∆t = 20ms. In other
words, the past output serves as a target spike train (cf. 58).
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Microcircuit connectivity. Connections from the input population to the network neurons
and recurrent connections were initialized with unstructured random sparse connectivity with
different initial weight values (Supplementary Table S5). One exception to this rule was the
excitatory-to-inhibitory connectivity which was set up with a Gaussian connection probability
profile

P con
ij = exp

(
−(j − c(i))2

σ2

)
(23)

with c(i) = 0.25i with σ2 = 20 to mimic the dense local connectivity onto inhibitory neurons
due to which inhibitory neurons inherit some of the tuning of their surrounding excitatory cells.

Inhibitory plasticity. Inhibitory to excitatory synapses were plastic unless mentioned oth-
erwise. We modeled inhibitory plasticity according to a previously published inhibitory STDP
model [38].

dwinh
ij

dt
= ζ

(
(xi(t) + 2κτ stdp)Sj(t) + (xj(t)Si(t))

)
(24)

using pre- and postsynaptic traces

dxk
dt

= − xj(t)

τSTDP
+ Sk(t) (25)

with time constant τSTDP = 20ms, learning rate ζ = 1× 10−3, and target firing rate κ = 10Hz.

Reconstruction of input signals from network activity. To reconstruct the input signals,
we first computed input firing rates of the five input populations by binning their spikes emitted
during the last 100 s of the simulation in 25ms bins. We further averaged the binned spikes
over input neurons to provide the regression targets. Similarly, we computed the binned firing
rates of the network neurons but without averaging over neurons. We then performed Lasso
regression using SciKit-learn with default parameters to predict each target input signal from
the network firing rates. Specifically, we trained on the first 95 s of the activity data, and
computed R2 scores on the Lasso predictions over the last 5 s of held-out data (Fig. 5b).

Signal selectivity measures. We measured signal selectivity of each neuron to the two slow
signals relative to their associated shuffled controls (Fig. 5d) using the following relative measure
defined on the weights:

χi =
wi
P − wi

Pctl

wi
P + wi

Pctl

(26)

where wi
P is the average synaptic connection strength from the signal pathways P1/2 onto

excitatory neuron i, and wi
Pctl

is the same but from the control pathways P1/2ctl.

Representational dimension. To quantify the dimensionality of the learned neuronal rep-
resentations (Fig. 5f), we binned network spikes in 25 ms bins and computed the participation
ratio (Eq. (11)) of the binned data.

Neuronal tuning analysis of the learned weight profiles. To characterise the receptive
fields of each neuron (Fig. 5g,h), we plotted wP1 against wP2 for every neuron in the excitatory
population (Figs. 5g,h; left), and colored the resulting weight vectors by mapping the cosine
of the vectors with the x-axis (wP2) to a diverging color map. Furthermore, we calculated the
relative tuning index as follows

χi
rel =

wi
P2 − wi

P1

wi
P2 + wi

P1

. (27)
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STDP induction protocols. To measure STDP curves, we simulated a single neuron using
the spiking LPL rule (Eq. 18) with a learning rate of η = 5 × 10−3. In all cases, we measured
plasticity outcomes from 100 pairings of pre- and postsynaptic spikes at varying repetition
frequencies ρ. The postsynaptic neuron’s membrane voltage was held fixed between spikes at
-51mV for the entire duration of the protocol. To measure STDP curves, we set the initial
synaptic weight at 0.5 and simulated 100 different pre-post time delays ∆t chosen uniformly
from the interval [−50, 50]ms with ρ = 10Hz. To measure the rate-dependence of plasticity, we
repeated the simulations for fixed ∆t = ±10ms while varying the repetition frequency ρ.

Numerical simulations. All SNN simulations were implemented in C++ using the Auryn
SNN simulator. Throughout we used a 0.1ms simulation time step. Simulations were run on
seven Dell Precision workstations with eight-core Intel Xeon CPUs.
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[31] Sindy Löwe, Peter O’Connor, and Bastiaan S. Veeling. Putting an end to end-to-end:
Gradient-isolated learning of representations. Advances in Neural Information Processing
Systems, 32(NeurIPS), 2019. ISSN 10495258.

[32] Thomas Miconi. Multi-layer hebbian networks with modern deep learning frameworks.
arXiv preprint arXiv:2107.01729, 2021. doi: 10.48550/arXiv.2107.01729.
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[46] Claudia Clopath, Lars Büsing, Eleni Vasilaki, and Wulfram Gerstner. Connectivity reflects
coding: a model of voltage-based STDP with homeostasis. Nature Neuroscience, 13(3):
344–352, 2010-03. ISSN 1097-6256. doi: 10.1038/nn.2479.

[47] Julijana Gjorgjieva, Claudia Clopath, Juliette Audet, and Jean-Pascal Pfister. A triplet
spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule

28

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2022.03.17.484712doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/


to higher-order spatiotemporal correlations. Proceedings of the National Academy of Sci-
ences, 108(48):19383–19388, 2011-11. doi: 10.1073/pnas.1105933108.

[48] Taro Toyoizumi, Megumi Kaneko, Michael P. Stryker, and Kenneth D. Miller. Modeling
the Dynamic Interaction of Hebbian and Homeostatic Plasticity. Neuron, 84(2):497–510,
2014-10. ISSN 0896-6273. doi: 10.1016/j.neuron.2014.09.036.

[49] Michael Graupner and Nicolas Brunel. Calcium-based plasticity model explains sensitivity
of synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the Na-
tional Academy of Sciences, 109(10):3991–3996, 2012-06. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1109359109.

[50] Guillaume Hennequin, Everton J. Agnes, and Tim P. Vogels. Inhibitory Plasticity: Balance,
Control, and Codependence. Annual Review of Neuroscience, 40(1):557–579, 2017-07. ISSN
0147-006X. doi: 10.1146/annurev-neuro-072116-031005.

[51] Edmund T. Rolls and Simon M. Stringer. Invariant visual object recognition: A model,
with lighting invariance. Journal of Physiology-Paris, 100(1):43–62, July 2006. ISSN 0928-
4257. doi: 10.1016/j.jphysparis.2006.09.004.

[52] Yazhe Li, Roman Pogodin, Danica J Sutherland, and Arthur Gretton. Self-supervised
learning with kernel dependence maximization. Advances in Neural Information Processing
Systems, 34, 2021.

[53] Johannes Mehrer, Courtney J. Spoerer, Emer C. Jones, Nikolaus Kriegeskorte, and Tim C.
Kietzmann. An ecologically motivated image dataset for deep learning yields better models
of human vision. Proceedings of the National Academy of Sciences, 118(8), 2021-02. ISSN
0027-8424, 1091-6490. doi: 10.1073/pnas.2011417118. Publisher: National Academy of
Sciences Section: Biological Sciences.

[54] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 12310–12320. PMLR, 18–24 Jul 2021.

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[56] Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and L. F.
Abbott. Optimal Degrees of Synaptic Connectivity. Neuron, 93(5):1153–1164.e7, 2017.
ISSN 10974199. doi: 10.1016/j.neuron.2017.01.030.

[57] Friedemann Zenke, Everton J. Agnes, and Wulfram Gerstner. Diverse synaptic plasticity
mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nature
Communications, 6:6922, 2015-04. ISSN 2041-1723. doi: 10.1038/ncomms7922.

[58] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer
spiking neural networks. Neural computation, 30(6):1514–1541, 2018. doi: 10.1162/
neco a 01086.

29

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2022.03.17.484712doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484712
http://creativecommons.org/licenses/by/4.0/


Data availability

The deep learning tasks used the STL-10 and CIFAR-10 datasets, typically available through all
major machine learning libraries. The original releases for these datasets can be found at http:
//ai.stanford.edu/%7Eacoates/stl10/, and https://www.cs.toronto.edu/~kriz/cifar.

html respectively. We further used the 3D Shapes dataset [42] available at https://github.
com/deepmind/3d-shapes/.

Code availability

� The simulation code to reproduce the key results is publicly available at https://github.
com/fmi-basel/latent-predictive-learning.

� PyTorch and the Lightning framework are freely available at https://pytorch.org and
https://www.pytorchlightning.ai.

� The Auryn spiking network simulator is available at https://github.com/fzenke/auryn.

� The Engauge Digitizer is available at
http://markummitchell.github.io/engauge-digitizer.
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Extended Data Fig. 1: LPL extends BCM theory by adding a variance- and rate-of-change
dependence. (a) Example of a typical neuronal input-output function with postsynaptic activity z.
(b) Weight change induced by the LPL rule for co-varying input and the postsynaptic activity z for
different values of the plasticity threshold Θ, with σ2

z = 1 and dz
dt = 0. The functional shift of the

threshold is reminiscent of the BCM rule. (c) Same as (b) but for different values of the variance of the
postsynaptic activity with zero prediction error dz

dt = 0 and fixed mean activity z̄ = 30. (d) Same as (c)

but with a positive prediction error dz
dt = +10. (e) Same as (a), but for a rectified linear unit (ReLU)

activation function with positive threshold. (f–g) Same as above but for ReLU. (h) Same as in (d) but
for ReLU and a negative prediction error dz

dt = −10.
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Extended Data Fig. 2: Image augmentation model. (a) Illustration of the image transformations
used to generate natural image sequences as suggested by Chen et al [21]. (b) Sample images from
STL-10 and their transformed versions used for training the DNNs.
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a b c

Extended Data Fig. 3: Disentangling of object representations in the DNN. (a) Data distribution
of the STL-10 validation set along the first two principal components in pixel-space. Data corresponding
to different object classes are highly entangled. (b) Same as (a) but along the principal components of
representations in Layer 3 of the DNN after learning with LPL. Object classes are somewhat disentangled.
(c) Same as (a) but along the principal components of representations in Layer 8 of the DNN. Object
classes are highly disentangled.
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Extended Data Fig. 4: Illustration of collapse modes typifying poorly disentangled features
Effectively disentangled representations (left) separate categories well with different representational di-
rections encoding different relevant features. Purely predictive learning without counteracting Hebbian
plasticity leads to collapsed representations (center), typically to zero activity levels. Dimensional col-
lapse (right) is characterized by highly correlated activity across all neurons, indicating that only one
relevant feature is encoded by all neurons, which is unlikely to be conducive to hierarchical feature ex-
traction for non-trivial tasks such as object recognition.
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Extended Data Fig. 5: LPL finds latent manifold structure of simulated video data. (a) Input
frames from the procedurally generated video using the 3D Shapes dataset [42]. (b) The empirically
measured transition matrix of object hue with latent structure (see Extended Data Fig. 6 for the complete
set of transition matrices). (c) Object classification accuracy of a linear classifier trained on network
outputs of a network with LPL, without the predictive term (Pred. off), and the randomly initialized
network (Random). Values represent averages from ten-fold cross validation. The accuracy is close to
100% for LPL, but lower at initialization or when trained without the predictive term. (d) Disentan-
glement scores computed according to the metric proposed by Kim and Mnih [42] for the final-layer
representations of the three networks in (c) compared to the input pixels (Pixels). LPL yields close to
maximum scores (95.0% ± 0.8%), higher than a randomly initialized network or after training with-
out the predictive term. However, evaluating the metric on the pixels directly also yields high scores
(93.0% ± 0.0%), albeit still slightly lower than LPL. The high scores in pixel space can partially be
explained by the high input dimension and the small number of classes in the dataset. Importantly, the
metric is insensitive to the manifold topology (see below). Different data points correspond to averaging
over ten independent evaluations of the metric. (e) Projections of the representations onto the first
two principal components before (Random) and after training (LPL). Each point corresponds to one
input image, and the color represents the object type. The object class is entangled at initialization and
disentangled after learning. (f) Averaged RSM computed from representations of different object colors
in (d). LPL’s RSM closely resembles the transition structure shown in (b). Without the predictive term,
the RSM becomes diagonal, while the random network’s RSM does not have this structure and roughly
follows the input pixel similarity structure. (g) Network output projected onto the first two principal
components for changing hue sequentially while keeping all other factors fixed. The two lines correspond
to two different object sizes. The trajectories are disentangled for LPL and preserve the topology of
the data manifold (cf. b), whereas this is not the case when the predictive term is off, at initialization
(random), or at the input (pixels).
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Extended Data Fig. 6: Transition matrices and RSMs for all latent factors of the 3D shapes
dataset. (a) Transition probabilities estimated from the generated video. The high values on the
diagonal reflect the fact that within a 17-frame clip, only one factor changes while the others remain
fixed. The off-diagonal values reflect the transition probabilities when a specific factor is changing. For
instance, within a clip cycling through all the object hues, the color may only change to the next or
previous assignments in the color map with a smaller probability for a two-step transition. The hue
mapping was randomly chosen with respect to the original dataset to ensure an entangled topology at
the input (cf. Fig. 5g). The orientation and scale factors are not allowed to transition from the smallest
to the largest values, and vice versa. Furthermore, the direction of change for any factor is fixed within
a given clip, but may reverse for orientation and scale at the extreme values (cf. Fig. 5a). (b) Same
as Fig. 5f, but for all factors at the pixel level. RSM values represent average cosine similarity between
the pixels of images differing only in one factor with all other factors fixed. Some similarity structure
exists along the scale and orientation factors only. (c) Same as (b) but for the final-layer representations
learned by LPL. The RSM closely resembles the transition probability structure that characterizes the
temporal properties of the video sequence. (d) Same as (c) but for learning without the predictive term.
The RSM is diagonal, which shows that the network represents different factors in almost orthogonal
directions. (e) Same as (b), but at random initialization before training. The RSM for all factors is
reflective of the pixel RSM.
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Extended Data Fig. 7: Learned network representations are invariant to object position on
the canvas. Activity of neurons in the pretrained DNN’s output layer in response to images at three
positions on the canvas, normalized by each neuron’s response to the center position, and averaged over
neurons and over images.
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Extended Data Fig. 8: Same as Figure 5 but with detailed controls. (a) Snapshot of spiking
activity (left) and underlying firing rate signals or their reconstructions (right) over 100 ms for the input
and network populations. (b) Same as Fig. 5d showing signal selectivity learned with the different
variations of spiking LPL given in (a). (c) Average synaptic connection strength grouped by input
population for the different configurations in (a). LPL with plastic inhibition results in higher weights
on the slowly varying signals relative to the shuffled controls, but not when the predictive or Hebbian
term are disabled. Without inhibition or without inhibitory plasticity, connections from all populations
are strong with a small preference for P2. (d) Average firing rates over 100 s bins throughout training
for the configurations in (a). Firing rates saturate with the inhibitory neurons settling at a higher
firing rate when learning with spiking LPL with inhibition, even when the predictive term is disabled or
the inhibition is not plastic. Activity collapses without the Hebbian term, whereas firing rates diverge
without inhibition. (e) Averaged weight vectors from populations P1 and P2 onto each excitatory
neuron (left) and distribution of the excitatory neurons’ relative selectivity between the two populations
(right). Different neurons are exclusively selective to either P1 pr P2 under spiking LPL with inhibitory
plasticity. Without the predictive term, or the Hebbian term, few if any neurons are selective to one
population over the other. Moreover, weights collapse to small values without the Hebbian term. When
inhibition is removed altogether, a few neurons become exclusively selective to P2, but the weight vectors
are not well-decorrelated. Without inhibitory plasticity, a few weight vectors are well-decorrelated, but
most neurons are not preferentially selective to either signal.
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Extended Data Fig. 9: Learning threshold determines the sign of plasticity (a) Weight changes
as a function of repetition frequency ρ for positive and negative relative spike timings (∆t = ±10ms)
with σ2(t = 0) = 0 and S̄i(t = 0) = 0. (b) Same as (a) but for S̄i(t = 0) = 50.
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Extended Data Fig. 10: LPL is robust to noise. (a) Same as Figure 1b but for high rates of noisy
transitions between clusters in the training data sequence with p = 0.2 (Methods). A neuron learning
with LPL still consistently becomes selective to cluster identity even with noisy transitions. (b) Cluster
selectivity as a function of the probability of noisy cross-cluster transitions in the data sequence with
σy = 1. LPL drives selectivity to cluster identity only below p = 0.5, i.e, only as long as cluster identity
remains the slow feature.
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Extended Data Fig. 11: Same as Figure 3 but for the CIFAR-10 dataset. (a) Linear readout
accuracy of object categories decoded from representations at the network output after training it on
natural image data for different learning rules in layer-local (dark) as well as the end-to-end configuration
(light). (b) Linear readout accuracy of the internal representations at different layers of the DNN after
layer-local training. (c) Dimensionality of the internal representations for the different learning rule
configurations shown in (b). (d) Mean neuronal activity at different layers of the DNN after training for
the different learning rule variants shown in (b).
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Extended Data Fig. 12: Evaluating readout accuracy without pooling. (a) Same as Extended
Data Fig. 11b above, but with linear readout accuracies evaluated from the full feature map at each
layer instead of after pooling. Results are qualitatively the same as before, but the starting accuracy
at early layers is substantially higher. (b) Effective representation size that would be the input to the
linear classifier at each layer with or without pooling. Without pooling, the number of features at early
layers is very large, and may explain the higher early-layer accuracies in (b).
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