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The advent of machine learning-based structure prediction algorithms such as AlphaFold2 
(AF2) has moved the generation of accurate structural models for the entire cellular protein 
machinery into the reach of the scientific community. However, structure predictions of 
protein complexes are based on user-provided input and may therefore require 
experimental validation. Mass spectrometry (MS) is a versatile, time-effective tool that 
provides information on post-translational modifications, ligand interactions, 
conformational changes, and higher-order oligomerization. Using three protein systems, 
we show that native MS experiments can uncover structural features of ligand interactions, 
homology models, and point mutations, that are undetectable by AF2 alone. We conclude 
that machine learning can be complemented with MS to yield more accurate structural 
models on the small and the large scale. 
 
Introduction 
Machine learning (ML)-based algorithms have been hailed as the solution to the protein 
structure prediction problem and are already being used to predict structures across entire 
proteomes 1. For example, using protein sequence data as the only user input, AF2 2 can 
generate models of ordered, monomeric proteins that rival in quality experimentally derived 
structures 3, which can be assembled into complexes using AF2 Multimer 4. However, it is 
important to remember that the models are generated according to user-provided input. For 
example, AF2 Multimer does not suggest an oligomeric state; instead, the stoichiometry for 
the model has to be specified along with the sequences of the components. Moreover, AF2 
may propose seemingly plausible models for a protein interaction even if this is not 
biologically relevant, for example because the proteins are in different cellular compartments. 
Furthermore, the use of AF2 to predict interactions that involve dynamic regions 5, ligand 
binding sites, or point mutations 6, all of which are major focal points of structural biology, 
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remains challenging 7. In these cases, additional structural data may be required to assess the 
validity of the computed structures, for example from cryo-EM and X-ray crystallography. 
However, obtaining such data is challenging, resulting in a need for alternative strategies. 
 
MS, with its rapidly expanding structural biology toolbox 8, can provide structural data that 
are directly complementary to ML (Figure 1A). Despite not being a stand-alone structure 
determination technique, MS offers a wealth of information for hybrid structural biology 
approaches 8. It has a well-developed capacity to provide proteoform primary structure 
information, such as post-translational modifications, via MS-sequencing. In combination 
with in-solution labeling methods such as hydrogen-deuterium exchange (HDX), MS can 
inform about local structural dynamics. Native MS, where the non-covalent interfaces in 
macromolecules are preserved in the experiment, is still the gold standard to determine 
oligomeric states, which is of particular importance when building models of protein 
complexes. Crosslinking and ion mobility (IM) measurements reveal the spatial arrangements 
of components in a protein complex. Unlike other biophysical methods, MS offers the crucial 
advantage of being able to provide structural data on the proteome scale. For example, 
proteome-wide crosslinking studies can help to filter biologically irrelevant interactions 9. 
Collision-cross sections (CCSs, effectively 2D-projections of the structures) can be calculated 
for entire model proteomes and used to filter complex architectures by IM-MS 10. Lastly, 
hybrid MS methods, such as NativeOmics, can reveal direct connections between primary and 
quaternary structure variations, as well as help to identify ligands or cofactors that may be 
structurally and functionally important 11.  
 
We therefore asked whether native MS, which is widely employed to study protein 
interactions, can be readily used to assess the plausibility of structural models generated by 
AF2. For this purpose, we selected three protein complexes whose interactions involve 
disordered regions, ligands, and point mutations. In all three cases, the native MS data show 
specific effects that are not detectable by AF2 alone, illustrating the complementarity of the 
two approaches. 
 
Results and Discussion 
As a first example, we tested the ability of AF2 to predict the structure of dihydroorotate 
dehydrogenase (DHODH), a mitochondrial enzyme involved in uracil synthesis. Inhibition of 
DHODH selectively kills cancer cells, making it a prime target for the development of novel 
therapeutics 12. When using AF2 to predict the structure of the soluble domain of DHODH, 
the result is nearly indistinguishable from the available X-ray structures 13, with a root mean-
square deviation (RMSD) of 0.5 Å2 (Figure 1B), with the exception that the predicted structure 
contains a central cavity which in the experimental structures is occupied by the cofactor 
flavin mononucleotide (FMN). We have previously used native MS to assess the relationship 
between ligand binding and folding of DHODH 14 and found that the protein exists mostly in 
the holo-form. We also detected a small apo population with higher charge states, indicating 
unfolding in solution. Indeed, IM-MS revealed that FMN-bound protein adopts a compact 
conformation, whereas the FMN-free protein is largely unfolded, as evident from the CCS 
distributions of the 13+ charge state of both populations (Figure 1B) 14. When we computed 
the CCSs of the experimental and the predicted structures, we found them to be virtually 
identical (Figure 1B). Taken together, we find that AF2 predicts the fold of the holo-form of 
DHODH even without the co-factor, whereas native MS shows that the protein cannot adopt, 
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or maintain, the correct conformation in the absence of FMN. This discrepancy could arise 
from co-factor-bound proteins being part of the AF2 training set, yet the co-factors 
themselves are not considered in the prediction. Although alternative computational tools 
may be used to incorporate ligands in AF2 models, the connection between binding and 
folding is not considered in the predictions. As shown for DHODH, native MS can inform about 
the role of the co-factor in promoting the correct fold of DHODH, a role that is not evident 
from the ML-based prediction alone.  
 
Next, we asked whether native MS and AF2 could capture the effect of a flexible segment on 
the formation of a protein complex. For this purpose, we turned to the homologous small 
heat shock proteins 17.7 and 18.1 from Pisum sativum. Both form highly similar homodimers 
via a conserved dimerization interface and swapping of a flexible loop, which are correctly 
predicted by AF2 (Figure 1C) 15. Using AF2, we could also predict the HSP 17.7-18.1 
heterodimer with a per-residue confidence (pLDDT) score equal to those of the homodimers, 
and an RMSD of 0.73 Å2 and 0.66 Å2 for the 17.7 and 18.1 heterodimer, respectively. However, 
upon refolding a mixture of denatured HSP 17.7 and 18.1, native MS revealed homodimer 
formation and assembly into dodecamers, and despite no direct steric hindrance, 
heterodimerization is practically impossible (Figure 1C). This preference is due to an inability 
of the heterodimer to bind the flexible loops due to differences in non-interfacial residues, 
which provides a penalty for hetero-oligomerization 15. Such a preference of homo- over 
hetero-oligomerization is likely a wide-spread phenomenon 15. However, as it is mediated by 
a flexible region outside of the well-defined dimerization surface, it has no significant impact 
on the confidence of the AF2 model, but can be readily detected by MS. 
 
Lastly, we investigated the ability of MS and AF2 to capture the impact of point mutations on 
protein complex formation. Mutations that do not introduce significant steric hindrance yield 
near-identical AF2 structures 6 that nonetheless show measurable differences in stability 7. 
However, it is unclear to what extent AF2 can inform about the effect of mutations on protein 
interactions. We chose the N-terminal domain (NT) of the spider silk protein Major ampullate 
Spidroin 1 (MaSp1) from Euprosthenops australis, which is monomeric above, and dimeric 
below, pH 6.5 16,17. This pH sensitivity is in part due to a conserved salt bridge between 
D39/D40 and K65 on the opposing subunit 18,19. We used AF2 to predict the structure of the 
dimeric wild-type protein, as well as a point mutant with a weakened salt bridge, D40N (Figure 
1 C). Importantly, AF2 does not explicitly address the protonation state of ionizable residues, 
but may indirectly reflect the interactions observed under the solution conditions used to 
solve the structures in the training set. Comparison of the pLDDT scores of the top five models 
for each variant showed no discernable differences (Figure 1D) with an RMSD of 0.2 Å2, 
indicating highly similar structures. Native MS analysis of both proteins at pH 6.0, on the other 
hand, showed that the D40N mutation abolished dimerization nearly completely (Figure 1D) 
16. In summary, mutating aspartate 40 to asparagine does not introduce structural changes or 
steric clashes and does not appear to have notable consequences for the F2 model of the 
dimer. The impact of losing this salt bridge on dimer formation therefore requires 
experimental validation, such as through native MS analysis. 
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Figure 1. (A) The structural MS toolbox offers information that is directly complementary to ML-based 
structure prediction. MS can inform about proteoforms (MS sequencing), structural dynamics (HDX-
MS), the spatial arrangements of proteins in a complex (ion mobility and crosslinking MS), and 
oligomeric states (native MS). (B) Left: Experimental and predicted structures for holo- (left) and apo-
DHODH show near-identical three-dimensional folds. Middle: Native MS reveals the presence of a 
small population of apo protein 14. Right: IM-MS of the 13+ charge states of apo- and holo-DHODH 
shows that the protein with co-factor has a native-like CCS, whereas the protein without co-factor is 
unfolded. (C) Left: Crystal structures for the HSP17.7 and 18.1 homodimers are virtually 
indistinguishable from the AF2-predicted heterodimer. Native MS of a mixture of HSP17.7 and 18.1 
under denaturing conditions (middle) and after refolding (right) reveal that no heterodimer formation 
takes place 15. (D) Left: AF2 predicts that the D40N mutant of MaSp1 NT forms a homodimer that 
closely resembles the dimeric structure of wt MaSp1 NT, despite showing partial loss of the 
D39/D40/K65 salt bridge. Middle: pLDDT plots indicate that the D40N mutation does not affect the 
prediction confidence for the subunits in the NT dimer. Right: Native MS analysis of both NT variants 
at pH 6.0 shows that the D40N mutation abolishes NT dimerization 16. All AF predictions were carried 
out using Colab Fold with AMBER step and without templates 21. 
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Conclusions 
Here, we examined the ability of MS to provide complementary information to ML-based 
structure predictions of protein complexes. While AF2 predictions are generally of very high 
accuracy, they do not specifically address the influence of bound ligands, flexible regions, and  
point mutations on protein interactions. Native MS, on the other hand, does not provide 
structural details, but can capture a wide range of protein interactions with a single 
measurement. Of particular importance for structure prediction is the ability of MS to provide 
accurate information on protein oligomeric states. While MS is unrivalled in the detail of the 
mass measurements it provides, reliable mass measurement of multimeric stoichiometries 
can be obtained from various alternative techniques, opening up even more ways to 
complement ML predictions. Going forward, MS should be combined with ML either by 
defining the modelling question a priori using MS data (MS/AI), or by using MS data to identify 
a likely model a posteriori (AI/MS). We anticipate that whole-proteome structural MS data, 
and even mass measurements in physiological solutions, such as analytical ultracentrifugation 
and small-angle X-ray scattering, but also new methods like mass photometry 20, could be 
incorporated into large-scale ML predictions, for example in the form of constraints, to 
generate accurate structural maps of the entire cellular environment. 
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