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Abstract: 16 

 17 

A ubiquitous finding in cognitive science across a wide variety of tasks is that humans tend to 18 

slow down after making an error. The dominant account of this post error slowing is that people 19 

engage in adaptive control and are simply more cautious after an error. However, this 20 

explanation is challenged by the fact that, although people are slower, accuracy typically does 21 

not improve following an error. Errors negatively impact cognitive processing, but characterizing 22 

the nature of error-based impairments has been a challenge in standard paradigms. Here, we 23 

adopt a recently developed experimental approach to uncover the time course of stimulus-24 

response processing following an error by exerting tight control over the timing of responses. 25 

This method allows us to apply a computational model of response preparation that allows us to 26 

estimate the latency of cognitive processing underlying responses. In a four alternative forced-27 

choice task with arbitrary stimulus-response mappings, we find that human participants are less 28 

accurate after an error even when given up to two seconds to make a response. Our modeling 29 

results ruled out the possibility that errors lead to a subsequent slowing of the cognitive 30 

processing underlying responses. Instead, we found that the “efficacy” of cognitive processing in 31 

producing an intended response is impaired following errors as people commit more 32 

perseverative slips of action regardless of when a response is made. These results suggest that 33 

prior observations of post-error slowing may be an adaptive response to impaired cognitive 34 

processing rather than a strategic shift in the speed-accuracy tradeoff. 35 

 36 

 37 

Significance Statement: 38 

 39 

What happens after we make a mistake? It has long been established that human behavior 40 

changes after committing an error, but it has been surprisingly hard to establish how our mental 41 

processing is affected. By forcing people to respond at predetermined times, we uncover the 42 

time-course of how we go from a stimulus to a response. We find that errors do not affect the 43 

timing or the variability of stimulus-response processing. Instead, errors lead people to be more 44 

likely to immediately slip up and repeat their past mistakes, even when given ample time to 45 

recover. Our results that even though people may slow down to take their time to get it right, 46 

they are fundamentally less effective after making an error. 47 

 48 

  49 
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We’re taught from a young age that we all make mistakes: “It’s how you bounce back that matters!” But 1 

how do people respond after an error? You can try to take your time to get it right, but do we bounce back 2 

stronger or are there lingering costs when you know you got it wrong?   3 

 4 

A longstanding finding in the field of psychology is that people respond more slowly immediately following 5 

errors in decision-making (P. M. Rabbitt, 1966; P. Rabbitt & Rodgers, 1977). This phenomenon is often 6 

referred to as “post-error slowing” (Fairweather, 1978). Post-error slowing sometimes coincides with 7 

increased response accuracy and has thus been widely assumed to reflect an adaptive strategic 8 

adjustment to prevent future errors. The dominant account of this phenomenon suggests that people are 9 

more cautious in responding after they make an error. Neural network models explain these post-error 10 

effects in terms of a decrease in baseline activation of a response (Botvinick et al., 2001) and evidence 11 

accumulation models explain these post-error effects in terms of an increase in the threshold of evidence 12 

required to make a response(Dutilh et al., 2012). This would all predict that we should be more accurate 13 

after making an error as we shift along the same speed-accuracy tradeoff curve. However, accuracy is 14 

quite often stable or even reduced after an error(Notebaert et al., 2009; P. Rabbitt & Rodgers, 1977). This 15 

has led some researchers to instead conclude that post-error slowing is a maladaptive response 16 

reflecting impaired processing rather than a cognitive control adjustment aimed at improving behavior. 17 

Although some researchers have attempted to reconcile adaptive and maladaptive accounts of post-error 18 
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Figure 1. Forced response SR task. Participants performed a stimulus-response task (4AFC) with forced 
responding. A. Participants were trained and cued to respond when an empty rectangle was completely filled 
(at 2000 ms) and the target stimulus appeared at a random time between 0 and 2000 ms. B. Participants were 
instructed to press the ‘f’ key with their left middle finger, the ‘g’ key with their left index finger, the ‘h’ key with 
their right index finger, or the ‘j’ key with the left middle finger, depending on the symbol (Exp. 1 & 2). C. 
Response preparation model used to predict participants responses as a function of the time available for 
processing (orange dashed line). The model assumes that time at which participant has processed the stimulus 
and prepared the response is normally distributed. The probability that a response is prepared (or not) at a 
given time is determined by the cumulative distribution function (CDF) of the Normal(μ, σ). These probabilities 
are multiplied by weights representing the probability of expressing the correct response given that it is 
prepared (β) or not (α). Summing these products gives the probability of expressing correct response at a given 
time.  
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slowing (Danielmeier & Ullsperger, 2011; Purcell & Kiani, 2016; Wessel & Aron, 2017), characterizing the 1 

nature of impairments in cognitive processing underlying post-error responses has remained a challenge 2 

in standard paradigms. It is currently unknown exactly why accuracy is often so poor following errors 3 

given how much slower people are to respond. 4 

 5 

Post-error effects are almost exclusively examined in tasks that measure free response times (RT) and 6 

error rates that are analyzed separately. A critical issue with free RTs is that they confound the cognitive 7 

processing necessary for response preparation (e.g., stimulus identification and action selection) with 8 

response initiation (i.e. emitting the motor response). Indeed, recent work has shown that responses are 9 

accurately prepared and ready to deploy much more quickly than free RT would indicate (Haith et al., 10 

2016). This work argues that preparation and response initiation are independent motor control 11 

parameters (Haith et al., 2016; Hardwick et al., 2019). On this view, people not only decide what 12 

response to make, but also when to make it. Prior studies on post-error effects do not directly distinguish 13 

between selection and initiation in their experimental designs or in their theoretical models. This presents 14 

a problem in that slower RTs after errors could be due to strategic delays in response initiation without 15 

any change in the cognitive processes underlying response preparation per se. Although researchers 16 

have used mathematical models such as the drift diffusion model to attempt to tease apart response 17 

caution from maladaptive cognitive processing following an error (e.g., Dutilh et al., 2012; Purcell & Kiani, 18 

2016), this approach fundamentally relies on fitting RT distributions with the assumption that RT is a 19 

reliable indicator of the total duration of cognitive processing necessary to produce a response1.  20 

Additionally, the drift diffusion framework makes fairly strong assumptions about the nature of the 21 

decision-making process (a single evidence accumulation process, a static evidence accumulation rate 22 

per condition, etc.). 23 

 24 

To address these shortcomings, we examined post-error effects using a forced-response paradigm which 25 

controls response time and treats processing time as an independent variable (Haith et al., 2016; 26 

Hardwick et al., 2019). In this paradigm (Figure 1a), participants are cued to respond at the same time on 27 

each trial while the onset of the target stimulus is uniformly varied in a 4-alternative forced choice 28 

stimulus-response task (Figure 1b). This allows us to examine post-error effects on processing per se by 29 

controlling the time of response initiation to query the state of cognitive processing as time unfolds. We 30 

use these data to fit a model that makes minimal assumptions about the cognitive processes leading to a 31 

response: 1) each stimulus leads to the preparation of the appropriate response with some mean latency 32 

and normally distributed trial-to-trial variability; 2) if stimulus-based response preparation is not yet 33 

complete, participants will guess randomly; and 3) the ability of cognitive processing to produce a desired 34 

or intended response isn’t perfect, and slips of action sometimes occur (Norman, 1981).  These 35 

assumptions lead directly to three free parameters in this model: μ, the average speed of cognitive 36 

processing underlying a correct response; σ, the standard deviation (i.e. trial-to-trial noise) of the speed of 37 

cognitive processing; and β, the probability a correct response will be produced when this cognitive 38 

processing is complete (i.e. the “efficacy” of processing). Note that 1- β is the probability that an action 39 

slip occurs even if the correct response has been prepared. When combined, these parameters can be 40 

used to predict accuracy when the amount of time given for stimulus-response processing is known 41 

(Figure 1c; See Methods for complete modelling details). In combination with controlling the time of 42 

response initiation, this modeling framework allows us to distinguish among several distinct ways in which 43 

cognitive processing might be affected following an error. Following an error, stimulus-response 44 

processing might be slower (Figure 2a), more variable (Figure 2b), or simply less effective at producing 45 

the correct response resulting in more frequent slips of action (Figure 2c).  Each of these possibilities 46 

would produce both a different pattern of behavioral results and a quantitative change in one of the 47 

parameters of our model. 48 

 49 

Across four experiments (Figure 1b), we found that accuracy was reduced after errors, even when there 50 

was ample time to prepare a response (up to 2 seconds). Our modeling results revealed that this effect 51 

                                                       
1
 Although the Drift Diffusion Model does include a parameter called ‘non-decision time’ that can influence RT, this 

parameter is not thought to reflect the cognitive processing that leads to a decision being made. Instead, it simply 

shifts the entire RT distribution earlier or later in time. 
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could not be explained by slowed or more variable cognitive processing (i.e., more time required to select 1 

a response or trial-to-trial variability in this processing time) after an error. Instead, the observed behavior 2 

was due to a decrease in efficacy, or the probability of executing prepared responses. In other words, 3 

even when the stimulus timing suggested that a correct response was highly likely to be prepared, 4 

participants had more perseverative slips of action following an error. These results suggest that the 5 

increased response caution observed in prior studies examining post-error slowing is not simply reflecting 6 

a shift along the speed-accuracy curve, but may rather be an adaptive response to impairments in 7 

cognitive processing following an error. 8 

 9 

Results 10 

 11 

Experiment 1 12 

 13 

Following a brief training session to familiarize participants with stimulus-response mappings and the 14 

response timing required, participants completed 400 trials of a four alternative forced-choice stimulus 15 

response task (see Fig. 1 and Methods for complete details). Participants were required to make their 16 

responses between 1900-2100 ms following the start of each trial, but the stimulus presentation varied 17 

randomly between 0-2000 ms. This approach allowed us to investigate participants’ accuracy while tightly 18 

controlling the amount of time available for the cognitive processing required to translate the stimulus 19 

information into a response. 20 

 21 

Overall, there was strong evidence that participants were moderately less likely to perform the correct 22 

response if they made an error on the previous trial (b = -0.28, 95% CI = [-0.41, -0.15], pd = 1.0). 23 

+Δμ
Slower processing

+Δσ
Noisier processing

-Δβ
Lower efficacy

chance

After 
error

After 
correct

A B C

Figure 2. Hypothetical effects of previous error on response preparation. The first row depicts the effects in 
terms of the underlying response preparation distributions posited by the response preparation model used 
in the present study. The second row depicts the effects in terms of behavioral accuracy as a function of 
preparation time. Each column represents the effect of past error on a unique parameter in the model. 
Column A depicts slower response preparation after an error, Column B depicts noisier response 
preparation after an error, and Column C depicts reduced efficacy of prepared responses after an error. 
Efficacy is not a property of the underlying distributions but is instead a probability weight assigned to the 
prepared response—i.e., how likely is the participant to overtly express a response if it has already been 
prepared. A decrease in efficacy can be understood as an increase in the propensity for an action slip. Note 
that these parametric changes are associated with distinct predictions about the observable conditional 
accuracy functions (Row 2).  
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However, a sliding window analysis revealed that the effect of previous error on accuracy depended on 1 

the amount of time available for preparation (Fig. 3a).  For earlier processing times (PT < 500ms), there 2 

was no evidence for an effect of past error on future accuracy (b = 0.06, CI = [-0.25, 0.35], pd = .68). For 3 

later processing times (PT > 1000ms), there was strong evidence that participants were much less likely 4 

to perform the correct response following an error on the previous trial (b = -0.63, CI = [-0.98, -0.25], pd = 5 

1.0). 6 

 7 

We characterized the observed conditional accuracy functions (Fig. 3a) using a mathematical model of 8 

the underlying response preparation processes (Fig. 1c). Overall, the expected cognitive processing time 9 

required to prepare a response (μ) in this task was 523ms (CI = [502, 544]), the noise in preparation time 10 

(σ) was 140ms (CI = [109, 175]), and the efficacy of the prepared response (β) was .97 (CI = [.96, .98]). 11 

Efficacy was slightly lower after an error (Μ = .96, CI = [.94, .97]) compared to after no error (M = .97, CI = 12 

[.96, .98]. The Δβ parameter was negative for nearly all posterior samples, indicating that efficacy post-13 

error was consistently lower than efficacy following a correct trial (Mdiff = -0.02, CI = [-0.03, -0.01], pd = 14 

.999; Fig. 3c).  There was no evidence that preparation speed was affected by previous errors (Mdiff = -15 

0.01, CI = [-0.04, 0.05], pd = .68) or that preparation noise was affected by previous errors (Mdiff = -0.01, 16 

CI = [-0.06, 0.05], pd = .59; Fig. 3b).   17 

 18 

Experiment 2 19 

 20 

We conducted an exact replication of the first experiment to test the reproducibility of the above finding 21 

that errors reduce efficacy on subsequent trials. There was some evidence that participants were slightly 22 

less likely to perform the correct response if they made an error on the previous trial (b = -0.11, 95% CI = 23 
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Figure 3. Results from Experiment 1. a Smoothed response accuracy as a function of preparation time 
and previous error. Bold lines represent smoothed means and ribbons represent smoothed 95% 
confidence intervals (i.e., standard error times 1.96). Note in the response preparation model, upper 
bound accuracy is controlled by the efficacy parameter β. b Model-estimated probability densities 
representing the time required to prepare responses following correct and incorrect trials. Densities 
were computed using group-level intercepts and slopes for μ and σ. Bold lines represent the posterior 
medians, and ribbons represent the 95% quantile intervals of the posterior. c Posterior (MCMC) 
distribution for group-level effects of previous error (Δ) on efficacy β. 
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[-0.24, 0.04], pd = .93). However, a sliding window analysis revealed that the effect of previous error on 1 

accuracy depended on the amount of time available for preparation (Fig. 3a).  For later processing times 2 

(PT > 1000ms), there was strong evidence that participants were less likely to perform the correct 3 

response following an error on the previous trial (b = -0.50, CI = [-0.93, -0.05], pd = .99). For earlier 4 

processing times (PT < 500ms), accuracy was closer to chance levels and there was only some evidence 5 

that accuracy was higher after an error (b = 0.17, CI = [-0.08, 0.42], pd = .91). 6 

 7 

Next, we accounted for the observed conditional accuracy functions (Fig. 4a) using a mathematical model 8 

of the underlying response preparation processes. Overall, the expected cognitive processing time 9 

required to prepare a response (speed, μ) was 512ms (CI = [481, 542]), the noise in preparation time 10 

(noise, σ) was 141ms (CI = [108, 178]), and the probability of expressing a response if it is prepared 11 

(efficacy, β) was .97 (CI = [.96, .98]). Efficacy was slightly lower after an error (Μ = .97, CI = [.95, .98]) 12 

compared to after no error (M = .98, CI = [.97, .99]. Although the credible intervals overlapped, the Δβ 13 

parameter was negative for nearly all posterior (MCMC) samples, indicating that efficacy post-error was 14 

consistently lower than efficacy post-correct (Mdiff = -0.01, CI = [-0.02, -0.002], pd = .99; Fig. 3c).  There 15 

was little evidence that preparation speed was affected by previous errors (Mdiff = 0.01, CI = [-0.02, 0.05], 16 

pd = .71) or that preparation noise was affected by previous errors (Mdiff = 0.03, CI = [-0.02, 0.07], pd = 17 

.84; Fig. 3b).  These results replicate the finding from Experiment 1 that errors impair subsequent 18 

cognitive processing by reducing the efficacy of a prepared response, thereby leading to an increase in 19 

slips of action. 20 

 21 

Experiment 3 22 

Chance

After error

After correct

D
en

si
ty

Noise (σ)

Speed (μ)

a

b c Δ Efficacy (β)

Figure 4. Results from Experiment 2. a Smoothed response accuracy as a function of 
preparation time and previous error. Bold lines represent smoothed means and ribbons 
represent smoothed 95% confidence intervals (i.e., standard error times 1.96). Note in the 
response preparation model, upper bound accuracy is controlled by the efficacy 
parameter β. b Model-estimated probability densities representing the time required to 
prepare responses following correct and incorrect trials. Densities were computed using 
group-level intercepts and slopes for μ and σ. Bold lines represent the posterior medians, 
and ribbons represent the 95% quantile intervals of the posterior. c Posterior (MCMC) 
distribution for group-level effects of previous error (Δ) on efficacy β. 
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 1 

One possibility for why we did not observe post-error slowing of cognitive processing in the first two 2 

experiments is because the time between trials was too long. Previous research has suggested that post-3 

error slowing is reduced as the duration between a stimulus and a previous response grows (Danielmeier 4 

& Ullsperger, 2011; Jentzsch & Dudschig, 2009). We therefore conducted a pair of replication studies to 5 

assess whether the post-error effects observed previously depended on the duration of time between 6 

trials. Whereas in the first two experiments, the inter-trial-interval (ITI) was 1000ms, in the present 7 

Experiment 3, the ITI was 0ms. Overall, there was again strong evidence that participants were less likely 8 

to perform the correct response if they made an error on the previous trial (b = -0.42, 95% CI = [-0.62, -9 

0.22], pd = 1.0). However, a sliding window analysis revealed that the effect of previous error on accuracy 10 

depended on the amount of time available for preparation (Fig. 5a).  For earlier processing times (PT < 11 

500ms), there was little evidence for an effect of past error on future accuracy (b = -0.14, CI = [-0.44, 12 

0.15], pd = .82). For later processing times (PT > 1000ms), there was strong evidence that participants 13 

were much less likely to perform the correct response following an error on the previous trial (b = -0.87, CI 14 

= [-1.20, -0.49], pd = 1.0). 15 

 16 

Again, we characterize the observed conditional accuracy functions (Fig. 5a) using a mathematical model 17 

of the underlying response preparation processes (Fig. 1c, 2). Overall, the expected cognitive processing 18 

time required to prepare a response (μ) in this task was 434 ms (CI = [385, 479]), the noise in preparation 19 

time (σ) was 202 ms (CI = [155, 265]), and the efficacy of the prepared response (β) was .94 (CI = [.92, 20 

.96]). Efficacy was slightly lower after an error (Μ = .91, CI = [.87, .94]) compared to after no error (M = 21 

.96, CI = [0.95, 0.97]. The Δβ parameter was negative for all posterior samples, indicating that efficacy 22 

post-error was consistently lower than efficacy post-correct (Mdiff = -0.05, CI = [-0.08, -0.03], pd = 1.0; Fig. 23 

5c).  There was no evidence that preparation speed was affected by previous errors (Mdiff = 0.00, CI = [-24 

0.05, 0.05], pd = .50; Fig. 5b) or that preparation noise was affected by previous errors (Mdiff = -0.02, CI = 25 

[-0.09, 0.06], pd = .73; Fig. 5b).  26 

Chance

After error

After correct

D
en

si
ty

Noise (σ)

Speed (μ)

a

b c Δ Efficacy (β)

Figure 5. Results from Experiment 3. a Smoothed response accuracy as a function of preparation time and 
previous error. Bold lines represent smoothed means and ribbons represent smoothed 95% confidence intervals 
(i.e., standard error times 1.96). Note in the response preparation model, upper bound accuracy is controlled by 
the efficacy parameter β. b Model-estimated probability densities representing the time required to prepare 
responses following correct and incorrect trials. Densities were computed using group-level intercepts and 
slopes for μ and σ. Bold lines represent the posterior medians, and ribbons represent the 95% quantile intervals 
of the posterior. c Posterior (MCMC) distribution for group-level effects of previous error (Δ) on efficacy β. 
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 1 

Experiment 4 2 

 3 

In this experiment, we imposed an inter-trial-interval (ITI) of 2000ms. If the post-error effects reported 4 

above were due to an orienting response to an unexpected event (Notebaert et al., 2009) or transient 5 

distraction (i.e., flustering), then these effects might disappear during a sufficiently long ITI—however, this 6 

was not the case. Overall, there was strong evidence that participants were less likely to perform the 7 

correct response if they made an error on the previous trial (b = -0.23, 95% CI = [-0.43, -0.04], pd = .99). 8 

A sliding window analysis revealed that the effect of previous error on accuracy was relatively constant 9 

across processing times (Fig. 6a). There was evidence that participants were less likely to perform the 10 

correct response following an error on the previous trial for earlier processing times (PT < 500ms; b = -11 

0.42, CI = [-0.78, -0.10], pd = .995) as well as for later processing times (PT > 1000ms; b = -0.34, CI = [-12 

0.67, 0.04], pd = .97). 13 

 14 

Again, we characterize the observed conditional accuracy functions (Fig. 6a) using a mathematical model 15 

of the underlying response preparation processes (Fig. 1c, 2). Overall, the expected cognitive processing 16 

time required to prepare a response (μ) in this task was 434 ms (CI = [396, 471]), the noise in preparation 17 

time (σ) was 214 ms (CI = [175, 257]), and the efficacy of the prepared response (β) was .96 (CI = [.94, 18 

.97]). Efficacy was slightly lower after an error (Μ = .95, CI = [.93, .97]) compared to after no error (M = 19 

.97, CI = [.95, .98]. The Δβ parameter was negative for nearly all posterior samples, indicating that 20 

efficacy post-error was consistently lower than efficacy post-correct (Mdiff = -0.01, CI = [-0.03, -0.00], pd = 21 

.98; Fig. 6c).  There was some evidence that preparation speed was slower after an error (Mdiff = 0.03, CI 22 

= [-0.01, 0.08], pd = .93; Fig. 6b) but there was no evidence that preparation noise was affected by 23 

previous errors (Mdiff = 0.00, CI = [-0.06, 0.07], pd = .54; Fig. 6b).  24 
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Figure 6. Results from Experiment 4. a Smoothed response accuracy as a function of preparation time and 
previous error. Bold lines represent smoothed means and ribbons represent smoothed 95% confidence intervals 
(i.e., standard error times 1.96). Note in the response preparation model, upper bound accuracy is controlled by 
the efficacy parameter β. b Model-estimated probability densities representing the time required to prepare 
responses following correct and incorrect trials. Densities were computed using group-level intercepts and 
slopes for μ and σ. Bold lines represent the posterior medians, and ribbons represent the 95% quantile intervals 
of the posterior. c Posterior (MCMC) distribution for group-level effects of previous error (Δ) on efficacy β. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2022. ; https://doi.org/10.1101/2022.03.17.484792doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484792
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

 1 

Next, we explored the persistence of post-error effects over time. In particular, we examined the effect of 2 

inter-trial-interval on the post-error effect by comparing the results from Experiment 3 (0ms ITI) with that 3 

of Experiment 4 (2000ms ITI) in terms of the size of the post-error effect on response efficacy (β) (Fig. 4 

7b). We observe that the post-error effect was greater in Experiment 3 (Δβ = -0.0535, CI = [-0.0802, -5 

0.0314]) compared to Experiment 4 (Δβ = -0.0141, CI = [-0.0312, -0.00097]). This result suggests that 6 

although providing more time for stimulus processing and response preparation during a trial does not 7 

eliminate post-error deficits, these post-error effects may dissipate during the time between trials.  8 

 9 

 10 

Exploring the nature of post-error processing deficits 11 

 12 

Experiments 1-4 established that post-error deficits in performance are not due to the slowing (Δμ) of 13 

cognitive processing underlying response preparation or an increase in trial-to-trial variability (Δσ) in the 14 

speed of cognitive processing. Instead, we observed more slips of action (Δβ) at all time points where a 15 

correct response was likely to be prepared. What could be driving this static impairment in executing the 16 

correct response? One possibility is that people are simply biased away from repeating a response that 17 

just resulted in an error. We explored whether incorrect responses after an error were driven by a 18 

response bias—that is, a tendency to avoid/repeat the same key as on the previous trial. This analysis 19 

focused on incorrect trials for which the preparation time was greater than 1000ms because this was the 20 

locus of the post-error effect. We fit hierarchical Bernoulli regression models to these data with repetition 21 

as the outcome and previous error as the covariate. Across all four datasets, we found that people were 22 

more likely to repeat the previous keypress after an error compared to after a correct trial (Fig. 8).  We 23 

found strong evidence for increased perseveration after an error in Experiment 1 (b = 1.03, CI = [0.03, 24 

1.96]), Experiment 2 (b = 0.87, CI = [0.19, 1.53], Experiment 3 (b = 1.33, CI = [0.76, 1.90]), and 25 

Experiment 4 (b = 1.72, CI = [1.03, 2.43]). These results suggest that an increase in perseverative action 26 

slips following an error could at least partly explain post-error deficits in performance. 27 

 28 

Figure 8. Post-error perseveration. Proportion of incorrect trials (PT > 1000ms) in which the participant 

pressed the same key as on the previous trial, grouped by previous trial accuracy and experiment. Points are 

means and error bars are 95% confidence intervals (+/- SEM * 1.96) 

Figure 7. ITI modulation of post-error effects. Posterior distributions of post-error effects 

on response efficacy (β) for Experiment 3 (0 ms ITI) and Experiment 4 (2000ms ITI).  
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 1 

Experiments 3 and 4 established that performance recovers somewhat when there is more time to 2 

recover from an error before the start of the next trial.  However, our participants were still more prone to 3 

slips of action after an error when given a full two seconds between trials.  When does performance fully 4 

recover? To address this question, we explored the persistence of post-error effects across trials. In 5 

particular, we examined the lingering effect of errors on the subsequent two trials. We were especially 6 

interested in whether post-error effects persisted when there was an intervening correct trial. We re-fit the 7 

response preparation model with N-2 error as the covariate, separately for N-1 correct and N-1 error 8 

trials. For trials preceded by a correct response (N-1), we found little evidence for N-2 error effects (Exp. 9 

1: Δβ = -0.008, CI = [-0.021, 0.001]; Exp. 2: Δβ = -0.002, CI = [-0.013, 0.009]; Exp. 3: Δβ = -0.017, CI = [-10 

0.036, 0.0001]; Exp. 4: Δβ = -0.017, CI = [-0.033, -0.004]). However, for trials preceded by an error (N-1), 11 

we found evidence for N-2 error effects on current trial response efficacy (β) in Experiment 1 (Δβ = -0.024, 12 

CI = [-0.053, -0.005) and Experiment 4 (Δβ = -0.055, CI = [-0.095, -0.024]), but not in Experiment 2 (Δβ = -13 

0.015, CI = [-0.040, 0.004) or Experiment 3 (Δβ = -0.033, CI = [-0.075, 0.002]). These results suggest that 14 

post-error effects are ‘reset’ if there is an intervening correct response, but they may persist (or even 15 

compound) if there is an intervening incorrect response.  16 

 17 

 18 

 19 

Discussion 20 

 21 

In the present study, we examined post-error effects in a stimulus-response task in which the time 22 

available for response preparation was manipulated. Across four experiments, we found that participants’ 23 

response accuracy was lower if they made an error on the previous trial. This deficit was observed even 24 

when participants were given ample time to prepare their responses. A model-based analysis revealed 25 

that the post-error effect on accuracy was driven by a decrease in the probability of expressing a 26 

response given that it was highly likely to be prepared (β). These erroneous slips of action were 27 

predominantly perseverative repeats of the button pressed on the previous trial. Our analyses ruled out 28 

that the post-error effect on accuracy are due to a slowing of the cognitive processing required to prepare 29 

a response (μ) or variability in the latency of cognitive processing (σ). These results suggest that previous 30 

findings of post-error slowing are unlikely to be due to a decrease in the speed of cognitive processing 31 

underlying the preparation of responses to stimuli. Furthermore, our results indicate that delaying initiation 32 

of a prepared response could be an adaptive response to impaired efficacy of cognitive processing after 33 

an error rather than a strategic shift along the speed-accuracy curve.  34 

 35 

Our conclusions rely on the view that response preparation and response initiation are independent motor 36 

control parameters(Haith et al., 2016; Hardwick et al., 2019; Wong et al., 2017). People not only decide 37 

what response to make, they also decide when to make their response. Prior studies on post-error effects 38 

do not directly distinguish between selection and initiation, in their experimental designs or in their 39 

theoretical models. One issue is that these studies use free RT, which is some combination of the 40 

duration of time spent selecting a response and the duration of delay after selection before initiation. 41 

Typical models used to explain post-error effects, such as the drift diffusion model, are models of how 42 

people decide what to do—i.e., response selection. However, recent work in motor control shows that 43 

people initiate responses (in a free RT task) long after they have prepared those same responses as 44 

revealed in a forced-RT task (Haith et al., 2016). Thus, free RTs could be used to disentangle selection 45 

and initiation only with a more complete model that also describes the processes underlying the decision 46 

about when to initiate a selected response. Absent such a model, an alternative approach is to control 47 

response initiation using a forced-RT task, as in the present study.  48 

 49 

Several studies in the past have shown that people respond more slowly after an error (Danielmeier & 50 

Ullsperger, 2011; Laming, 1979; P. Rabbitt & Rodgers, 1977). A prominent account of these effects is that 51 

participants are more cautious after an error(Danielmeier & Ullsperger, 2011). For example, evidence 52 

accumulation models have been used to argue that participants alter their decision thresholds to 53 

accumulate more evidence before deciding on a response(Dutilh et al., 2012). On this view, responses 54 

might take longer to prepare after an error. In the present study, we found that participants responded 55 

less accurately after an error, even if they were given up to two seconds to prepare their response. 56 
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Contrary to some previous accounts, we found no evidence that the cognitive processing required to 1 

prepare responses occurred more slowly after an error. That is, our estimate of the latency at which a 2 

response is prepared (μ) was unaffected by errors. Our data provide evidence against the view that post-3 

error effects on performance are only due to an increase in the evidence required to select a particular 4 

response. Instead, post-error slowing effects might be better explained by adaptive delays in response 5 

initiation to compensate for impairments stimulus-response processing that lead to more frequent action 6 

slips.  7 

 8 

Other researchers have similarly suggested that there are unavoidable negative consequences to errors 9 

and unexpected events (Notebaert et al., 2009; Purcell & Kiani, 2016; Wessel & Aron, 2017). Notebaert 10 

and colleagues (Notebaert et al., 2009) proposed that infrequent, surprising events might cause an 11 

‘orienting response’ that distracts participants from the processing of a subsequent stimulus. Another 12 

account advanced the idea that errors trigger a transient global inhibitory response which affects both 13 

motor and cognitive function (Wessel & Aron, 2017).  Although similar in providing evidence for a 14 

maladaptive response following errors, our results do not fully support either of these accounts.  From this 15 

prior work, one would expect that when ample time is given to make a response we should observe 16 

identical levels of accuracy following both correct and incorrect responses.  An orienting response and a 17 

transient inhibitory response should resolve relatively quickly and performance should recover. Although 18 

we did find some evidence that a longer inter-trial interval lessened the deleterious impact of errors on 19 

subsequent performance (Experiments 3 and 4), participants’ accuracy did not improve when they were 20 

given up to two seconds to respond following stimulus presentation. Purcell and Kiani observed more 21 

slowed responses following errors at low stimulus strength in a motion discrimination task (Purcell & 22 

Kiani, 2016). Using drift diffusion modeling of response time distributions, they described this result as a 23 

combination of an increase in the response threshold and a decrease in sensory signal-to-noise ratio 24 

(SNR) following errors. This would make the preparation of response less accurate, but also either slower 25 

or more variable. However, here we did not observe any slowing in the estimated latency (μ) of the 26 

cognitive processing underlying response preparation following an error.  We also did not find evidence of 27 

any increase in variability in the time it takes to complete this cognitive processing (σ). Instead, regardless 28 

of the amount of time given to prepare, participants were less accurate and were more prone to 29 

perseverative slips of action. Although the stimulus remained on the screen until a response was made in 30 

our task, it is possible that errors cause an initial impairment in subsequent stimulus-response processing 31 

that cannot be corrected online.  32 

 33 

The experiments used in the present study differ in one critical way from previous experiments examining 34 

post-error effects: the time at which participants initiate their responses was controlled. This so-called 35 

interrogation method disables participants from strategically delaying the initiation of their responses, 36 

including after an error(Bogacz et al., 2006). We found that, under this constraint, participants were less 37 

accurate after an error. A response preparation model explained this effect in terms of a decrease in the 38 

efficacy of the cognitive processing underlying prepared responses. Here efficacy was defined as the 39 

probability that a participant will express a response after it has been prepared. A natural psychological 40 

interpretation of efficacy is participants’ confidence in their selected response. It may be that if people are 41 

led astray by decisions in the past, they become less confident about their decisions in the future. This 42 

reduced confidence would make them less likely to act on their decisions and potentially more prone to 43 

make random responses. Note that this is distinct from requiring more processing time to prepare a 44 

response. As noted above, we found little evidence to support post-error slowing of processing demands 45 

(μ).  46 

 47 

 48 

It is well-known that free RTs are not normally distributed and instead tend to follow distributions 49 

incorporating some skewness such as the an ex-gaussian distribution (Heathcote et al., 1991). Although 50 

allowing us to easily interpret modeling outcomes, one potential limitation of our study is that we assume 51 

that the amount of time it takes to complete the cognitive processing necessary to select a response can 52 

be approximated well by a normal distribution. However, we do not believe this limitation greatly affects 53 

the conclusions drawn here. The fit of our model to the data is quite good, perhaps specifically because 54 

the time deadlines do not allow for the long tail sometimes observed in RT distributions. Additionally, if it 55 

were the case that errors caused an increase in the skewness of the latency of cognitive processing, this 56 
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would not come out as a reduction in the efficacy of cognitive processing (β) as we observed here. 1 

Instead, we would have observed a shift in the mean (μ) and/or standard deviation (σ) of our estimates of 2 

the response preparation distributions to try to account for a longer tail.  We found no evidence of this 3 

across our four experiments. 4 

 5 

Our interpretation of the results relies on the assumption that cognitive processing in free RT tasks is 6 

similar to that seen in the forced response paradigm used here. We believe this assumption is 7 

reasonable. In the context of conflict tasks (e.g. the Simon task), we have previously observed similar 8 

effects on accuracy in a forced response paradigm as is observed in response time in free RT tasks 9 

(Adkins & Lee, 2021). However, it is possible that forcing participants to respond at a predetermined time 10 

changes the nature of the task and the cognitive processes underlying responses. For example, a forced 11 

response paradigm might lead to more task engagement and leave individuals less prone to 12 

inattentiveness.  Nevertheless, there is no particular reason to privilege data from free RT tasks when 13 

attempting to understand post-error effects on performance. The results presented here are not readily 14 

explained by prevailing theories of post-error effects that have been developed from free RT tasks. The 15 

forced response paradigm provides a window into post-error impairments in cognitive processing that 16 

have been difficult to examine with standard techniques. 17 

 18 

In sum, we provide evidence against the view that cognitive processing is slower after an error. Instead, 19 

our data suggest that decisions about what to do are less likely to be translated into the appropriate motor 20 

responses after an error and lead to more perseverative slips of action. Previous observations of post-21 

error slowing may reflect strategic delays in response initiation to compensate for this impaired efficacy in 22 

cognitive processing underlying response preparation.  23 

 24 

 25 

 26 

Methods 27 

 28 

Participants 29 

 30 

Participants were recruited online using the online platform Prolific with the following inclusion criteria: US 31 

or Canadian nationality, fluent English speaker, approval rate >95%. In Experiment 1 there were 46 32 

participants (24 female) with a mean age of 33 years old. In Experiment 2 there were 37 participants (33 33 

female) with a mean age of 27 years old. In experiment 3 there were 47 participants (24 female, 1 34 

declined to answer) with a mean age of 29 years old. In Experiment 4, there were 46 participants (22 35 

female, 3 declined to answer) with a mean age of 32 years old.  36 

 37 

Experiments 38 

 39 

First, participants trained for 60 trials in a stimulus-response task. For this task, participants were 40 

instructed to press ‘f’, ‘g’, ‘h’, or ‘j’ depending on the identity of the stimulus (see below). At the start of 41 

each trial (t = 0ms) a stimulus was presented, and the identity of the stimulus was randomly sampled from 42 

a uniform categorical distribution over four unique stimuli (colors or symbols). During each trial, the four 43 

possible stimulus-response mappings were presented at the bottom of the screen to help participants 44 

learn these mappings. After each trial, participants were given feedback for 500ms about the accuracy of 45 

their response. Response times were unconstrained during this phase of the experiment. 46 

 47 

Next, participants trained for 20 trials in a fixed response timing task. For this task, participants were 48 

instructed to press a key exactly when two empty white rectangles were filled h color, exactly two seconds 49 

after the trial began. At the beginning of each trial, two empty rectangles (PsychoPy height unit: .35*0.03 50 

% of screen) were shown above and below where the stimuli had appeared in the previous training block. 51 

Every 500ms, the rectangle was filled in by an additional 25%. After 2100ms, all stimuli were removed 52 

from the display. The purpose of this cuing was to guide participants to respond at the same time on 53 

every trial. Participants were encouraged beforehand to alternate between ‘f’, ‘g’, ‘h’, and ‘j’ to practice 54 

timing with all keys. After each trial, participants were given feedback for 500ms about whether they 55 

responded too quickly (RT < 1900ms), too slowly (RT > 2100ms), or with perfect timing.  56 
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 1 

Finally, we turned to the main experimental task, illustrated in Figure 1. Participants performed 10 blocks 2 

of 40 trials in the stimulus-response task a fixed response timing and a stimulus presentation time that 3 

was parametrically varied. As in the first phase of training, participants were instructed to press one of 4 

four keys depending on which one of the four stimuli was shown. The onset and identity of the stimulus 5 

was varied randomly as in the first phase of training. However, there was no prompt showing the S-R 6 

mappings during the trial. As in the second phase of training, participants were instructed to respond only 7 

when the rectangle timing cue was filled. This approach allows us to measure the accuracy of responses 8 

when the exact amount of time allowed for stimulus processing and response preparation is known. After 9 

each trial, participants were given feedback, but the exact specifications of this feedback varied across 10 

experiments.  11 

 12 

In Experiment (Exp.) 1, the target stimuli were letters in the Armenian alphabet (�, �, �, �; PsychoPy 13 

height unit: 0.2% of screen) and participants were given feedback for 1000ms about whether they were 14 

too slow, too fast, or had perfect timing, followed by a 1000ms inter-trial-interval (ITI). Exp. 2 was an exact 15 

replication of Exp. 1. 16 

 17 

In Experiments 3 and 4, the target stimuli were color-filled circles (orange, blue, red, or purple; PsychoPy 18 

size: 0.2 x 0.2). Here the response keys were ‘d’, ‘f’, ‘j’, and ‘k’. Participants were given 400 ms feedback 19 

if and only if they responded too quickly or too slowly; no feedback if their timing was perfect. Feedback 20 

was followed by an ITI of 0ms in Exp. 3 and an ITI of 2000ms in Exp. 4.  21 

 22 

All experiments were built using PsychoPy/JS and run online using Pavlovia.  23 

 24 

Pre-processing 25 

 26 

Our analyses focused exclusively on behavior in the test phase of the experiment. We excluded trials in 27 

which participants responded too quickly (RT < 1900 ms) or slowly (RT > 2100 ms) because we were 28 

interested in how people behaved when their response times were fixed to the imperative cue. Since we 29 

were interested in the effects of immediately preceding errors, we also excluded trials for which there was 30 

no immediately preceding trial (i.e., the first trial of each block for each participant). Response accuracy 31 

(y) was set to 1 if the response was correct and 0 if the response was incorrect. Preparation time (PT) 32 

was defined as the duration between the stimulus onset and the response time. PT was re-scaled range 33 

from zero to one by dividing by 2000 to facilitate prior specifications. Each trial was labeled with the 34 

outcome on the previous trial. Previous-error (errn-1) was set to 0.5 if the previous response was incorrect 35 

and -0.5 if the previous response was correct, so that the intercepts in models with post-error slopes can 36 

be interpreted as the average across levels of the condition. 37 

 38 

Analysis 39 

 40 

We used a sliding window technique to visualize the mean of response accuracy as a function of PT. The 41 

sliding window was performed separately for each level of errn-1. The width of the sliding window was 42 

100ms, the step-size was 1ms, and the window moved from 0 to 2000ms.  43 

 44 

We used Bernoulli regression models to assess the credibility of apparent effects in the smoothed 45 

conditional accuracy functions. The models had hierarchical slopes and intercepts (i.e., participant-level 46 

variables sampled from group-level distributions) and focused on specific contiguous intervals over PT 47 

(e.g., 0ms < PT < 500ms). We used the R-package brms (Bürkner, 2017) to specify the models and to 48 

approximate posterior distributions over unobserved variables, given the observed data.  49 

 50 

We used a response preparation model to explain the observed time-courses of performance (Hardwick 51 

et al., 2019). This model enables inferences about the speed with which responses were prepared (μ), 52 

the noise in this preparation (σ), the probability that a prepared response will expressed if it is prepared 53 

(efficacy, β), as well as effects of covariates (Δ) on these variables. We specified the model using Stan 54 

(Carpenter et al., 2017). In this model, the unobserved variables mentioned above were computed as 55 

linear functions of errn-1 and the effects of errn-1 were captured by a set of delta parameters. All intercepts 56 
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and slopes in the model (μ0, Δμ, σ0, Δσ, β0, Δβ) were hierarchical (i.e., participant-level variables sampled 1 

from group-level distributions) and we assigned weakly informative priors to the group-level variables. The 2 

model specification is reported below, where � is the observed response accuracy, � is the probability of 3 

correct response, � is the response preparation function which computes � given the observed 4 

preparation time � and the unobserved variables � � ��, 
, �, �, and ��� is the unobserved variable � for 5 

participant � and condition � (i.e., post-error level). 6 

 7 

� ~ Bernoulli���
 

� � ���, ���, 
�� , ���, ��� 

� � �  ! 

� � "1 $ Normal�����, ���, 
���, Normal�����, ���, 
���( 

! � ) ��
���* 

 8 

As mentioned above, unobserved variables (except for α) were computed as linear functions of errn-1. 9 

Below is the specification of these variables, where ��� is the intercept for the variable � and participant �, 10 

+ is the value of errn-1, Δ�� is the effect of + on � for participant �. Inverse-logit link functions were used to 11 

constrain the values of the variables between 0 and 1 (seconds for � and 
, probability for � and �).  12 

 13 

��� � logit�	���
� / Δ�
 0 +� 


�� � logit�	�
�� / Δ�� 0 +� 

��� � logit�	���� / Δ�� 0 +� 

��   � logit�	����� 
  14 

The slopes and intercepts of the variables above were defined hierarchically. Below is the specification of 15 

these hierarchical variables, where ���
�  is the group-level mean of the intercepts for a parameter �, �����

�  16 

is the group-level standard deviation of the intercepts, Δ��
�  is the group-level mean of the errn-1 effects on 17 

�, and Δ����
�  is the group-level standard deviation of the errn-1 effects. Note that in the stan code we used 18 

a non-centered parameterization, despite presenting the centered parameterization below for ease of 19 

comprehension.  20 

 21 

��
� ~ Normal����

� , �����
�  � 

Δ�
  ~ Normal�Δ��


 , Δ����


  � 


�� ~ Normal�
��
� , 
����

�  � 

Δ��  ~ Normal�Δ��
� , Δ����

�  � 

��� ~ Normal����
� , �����

�  � 

Δ�� ~ Normal�Δ��

� , Δ����

�  � 

��� ~ Normal����
� , �����

�  � 
 22 

Finally, we assigned weakly informative priors to group-level location and scale variables. Scale variables 23 

were constrained to be positive and assigned Normal (0, .5) priors. Location variables were left 24 

unconstrained. The prior was Normal (-.5, .5) for the location of the μ intercept, Normal (-2, .5) for the σ 25 

intercept, Normal (2, .5) for the β intercept and Normal (-1, .5) for the α intercept. Delta location variables 26 

were assigned Normal (0, .5) priors. Note that these normal distributions are akin to beta distributions 27 

after being transformed by the inverse logit function.  28 

  29 
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