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Abstract 10 

Mitochondria are extremely pleomorphic in biology. Automatically identifying each one 11 

precisely and accurately from any 2D or volume electron microscopy (volume EM) dataset is an 12 

unsolved computational challenge. Current deep learning (DL) models are trained within limited 13 

contexts, restricting their widescale utility and potential as a universal or generalist solution for 14 

mitochondrial segmentation. To address this, we amass a highly heterogeneous ~1.5 x 106 15 

unlabeled cellular EM image dataset and a ~22,000, partially crowdsource-labeled, 16 

mitochondrial instance segmentation dataset. We release MitoNet, a DL model trained on these 17 

data, which performs well on new and challenging volume EM benchmarks. An accompanying 18 

Python package and napari plugin, called empanada, can be used for efficient training, inference, 19 

and clean-up of instance segmentations on EM images.  20 
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Introduction 26 

 27 

Electron microscopy (EM) reveals 2D snapshots of cellular and subcellular ultrastructure at 28 

unrivaled resolutions, and more recent volume EM approaches extend these into the third 29 

dimension1,2. Technological advances in volume EM have dramatically increased the size of 30 

volumes that can be interrogated, most notably in connectomics3–5. Developing meaningful 31 

quantitative insights from EM data often requires the segmentation of features of interest. For 32 

these large neuronal datasets, machine learning (ML) or deep learning (DL) based tracing 33 

algorithms have helped generate detailed wiring diagrams6–10. Similar DL approaches have also 34 

provided insights into a variety of sub-cellular structures in other systems11–15.  35 

 36 

As one of the most ubiquitous and morphologically complex organelles in biology16–18 and a 37 

critical player in cellular physiology19–21 and pathological processes22–24, mitochondria are 38 

frequent targets of analyses. Mitochondria have extraordinarily variable sizes, shapes, 39 

distributions and intra-organellar structures, yet they are instantly recognizable by their 40 

ultrastructure. This suggests that a universal DL model that accurately and precisely recognizes 41 

individual mitochondria in any given EM image should be possible.  42 

 43 

Current approaches largely take the following strategy: a region of interest (ROI) from a dataset 44 

is chosen for dense manual segmentation, a model is trained on this ROI and then inference is 45 

run on the larger dataset, often followed by some manual “polishing”6,7,11,13,25,26. This strategy 46 

can lead to visually impressive results11,27; however, the constrained contexts presented during 47 

model training are one reason why such models have failed to generalize. As a result, 48 

segmentation quality drops when the models are presented with unseen cell and tissue types, 49 

sample preparation and imaging protocols, or even in some cases, regions of a dataset spatially 50 

distant from the training ROI11,13,28. Poor generalization limits the usefulness of models, as 51 

unfamiliar datasets require revisiting the cycle of manual annotation, model training, 52 

hyperparameter tuning, and prediction updating. Achieving good generalization is a challenging 53 

task. Mitochondria are present in nearly all eukaryotic cells such that the landscape of cellular 54 

contexts that a generalist segmentation model must account for is immense. This challenge 55 
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fundamentally distinguishes mitochondrial segmentation from other tasks such as tracing 56 

neurites or synapses that exist in a single tissue context (e.g., brain).  57 

 58 

There are several publicly available datasets with segmented mitochondria from a narrow range 59 

of tissues: MitoEM,26 Perez et al.,29 Lucchi++ and Kasthuri++25 are from brain tissue, Guay et 60 

al.30 from human platelets, UroCell13 from urinary bladder and Heinrich et al.11 from three kinds 61 

of in vitro cells (HeLa, Jurkat and macrophage). Only one of these datasets (MitoEM) includes 62 

instance segmentations (i.e., where each mitochondrion is assigned a different label). We 63 

hypothesized that sparse 2D instance segmentations from an eclectic set of EM images would 64 

more effectively expand the range of contexts as compared to dense volumetric segmentation. 65 

Moreover, instance segmentation can unlock methods for the quantification of mitochondrial 66 

morphologies31–34, networks18,35, and fusion and fission dynamics36,37, for which semantic 67 

segmentation is insufficient. 68 

 69 

Here, we have curated a heterogeneous, non-redundant, information-rich and relevant unlabeled 70 

EM image dataset (at ~1.5 x 106 images, the largest of its kind to our knowledge), called 71 

CEM1.5M, for use as a database from which to sample images for mitochondrial segmentation. 72 

Through the unification of existing labeled datasets and crowdsourced annotations of images 73 

from CEM1.5M, we have created a similarly diverse labeled image dataset called CEM-MitoLab 74 

for training ML/DL models. MitoNet is the model resulting from self-supervised pre-training on 75 

CEM1.5M followed by supervised training on CEM-MitoLab. We show that MitoNet 76 

outperforms other candidate datasets when tested on new and challenging benchmarks (we also 77 

share these benchmarks). Finally, in line with our overall mission is to democratize these efforts, 78 

we have created a Python package and napari plugin called empanada, which allows easy model 79 

training and inference as well as prediction clean-ups for MitoNet and any other ML/DL models. 80 

  81 
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Results 82 

 83 

Dataset Collation 84 

 85 

The first step in creating this resource was the generation of a database of unlabeled EM images 86 

of cells and tissues both for self-supervised model pre-training and as a source for sampling 87 

images for mitochondrial annotation. We collected a total of 463 volume EM datasets, of which 88 

352 were produced in-house at the Center for Molecular Microscopy (CMM) and 111 were 89 

generated and publicly deposited by external sources. Datasets larger than 5 GB were randomly 90 

cropped into 320 cubes of 256x256x256 (equaling 5 GB of unsigned 8-bit voxels) to limit their 91 

overrepresentation. Smaller datasets were kept at their original dimensions. In total, this yielded 92 

15,152 ROIs, corresponding to 338 GB. To these we added 5,390 2D EM images acquired at 93 

comparable pixel samplings (traditional TEM and STEM images of stained and resin-embedded 94 

biological samples), of which 1,738 images were from CMM, 2,261 were from the NCI electron 95 

microscopy lab and 1,391 were from external sources. Lastly, 27 video files of volume EM data 96 

from online publications were incorporated. Metadata and appropriate attribution were recorded, 97 

where possible, for all datasets (Supplementary File 1). We then applied the data preparation 98 

and curation pipeline previously developed in our work on the CEM500K dataset38 to generate 99 

approximately 1.5 x 106 2D image patches of 224x224 pixels. Patches from isotropic voxel 100 

datasets were derived from xy, xz and yz planes. The curation pipeline removed near-duplicate 101 

patches within each dataset before a neural network classified patches as “informative” or 102 

“uninformative”, the latter of which were discarded. 103 

 104 

Of the combined 490 volume and video datasets, we selected 478 for annotation. The excluded 105 

volumes were those with pixel sizes greater than 40 nm or severe artifacts that likely would have 106 

made accurate annotation impossible. 20 of the volumes had 2D or 3D ROIs with mitochondrial 107 

instance segmentations (13 externally sourced; seven from CMM). The 3D segmentations were 108 

cropped into 2D patches and combined with 3,289 previously generated in-house segmentations 109 

of 2D data to form the “legacy” portion of the supervised dataset (see Materials and Methods). 110 

For all the remaining volumes, which had no corresponding mitochondrial annotations, we 111 

sampled patches for later manual segmentation. The overall curation process is outlined in 112 
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Figure 1a. Even with the 5 GB cap, the number of patches derived from each dataset within 113 

CEM1.5M varied significantly (Figure 1b) such that a naïve random sampling would have 114 

resulted in drastically oversampling the largest ones. Therefore, when picking annotation targets, 115 

we chose a maximum of 15 random patches from every dataset. For large and heterogeneous 116 

datasets this very sparse sampling likely misses some unique cellular contexts. However, we 117 

decided that for testing our hypothesis and the release of these resources, this level of sampling 118 

would adequately represent the data landscape while avoiding the time and labor cost of denser 119 

annotation. For the 2D images in CEM1.5M, we circumvented unequal sampling by coarsely 120 

grouping sets of 2D images together by known publication or imaging project (see Materials 121 

and Methods). This resulted in the creation of 83 groups of 2D EM images. To compensate for 122 

the possibility that groups may each represent multiple biological contexts, we selected a 123 

maximum of up to 25 instead of 15 random patches. 124 

 125 

At the end of data collation, we had 1,494,389 image patches for self-supervised pre-training, 126 

and for supervised training, nearly 15,897 previously annotated images from legacy data and 127 

5,841 images set aside for crowdsourced annotation. Unlike CEM1.5M and legacy data, which 128 

were significantly imbalanced toward a few large datasets, the images set aside for annotation 129 

almost evenly represented every volume EM dataset. During model training, weighted sampling 130 

from datasets was used to correct for imbalance in the combined legacy and crowdsourced data, 131 

see Figure 1b, Materials and Methods). The total 21,738 annotated images (of various sizes, 132 

Supplementary Figure 1a) that constituted CEM-MitoLab contained 134,812 mitochondrial 133 

instances and represented myriad pixel resolutions, imaging techniques, sample preparation 134 

protocols, cells, tissues, and organisms (Figure 1c-f, Supplementary Figure 1b).  135 

 136 

Our dataset consists exclusively of 2D images and favors a broad but superficial sampling of 137 

very many cellular contexts. Supplementary Figure 1c shows a random sample of patches from 138 

the Heinrich et al.,11  and MitoEM26 datasets, revealing a similar appearance across images. The 139 

mitochondria also showed little variation in contrast (Supplementary Figure 1d), as may be 140 

expected with the standardized sample preparation and imaging techniques used by these groups. 141 

By eschewing 3D segmentation strategies, we were able to quickly annotate widely, building a 142 

significantly larger and more heterogeneous dataset than the current alternatives. As a resource, 143 
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the CEM1.5M dataset can be used to build similarly diverse labeled datasets for other 144 

downstream segmentation tasks.   145 

 146 

Crowdsourced Annotation 147 

 148 

We were inspired by the citizen science project Etch-a-cell15 on the Zooniverse platform, in 149 

which thousands of volunteers annotated organelles like the nuclear envelope, mitochondria and 150 

endoplasmic reticulum (ER) in a single or small number of volume EM reconstructions. To 151 

create crowdsourced segmentations for mitochondria in CEM-MitoLab, we created a “private” 152 

project on Zooniverse, where 34 students recruited from local high schools were briefly trained 153 

to identify and annotate mitochondria in diverse and challenging EM images. Supplementary 154 

Figure 1c demonstrates the difficulty of the task: The appearance of a mitochondrion depends 155 

strongly on cell and tissue type, sample preparation and imaging approach. To give some 3D 156 

context and help resolve ambiguous images and edge cases, we presented images extracted from 157 

volumetric datasets as short “flipbooks” of five consecutive slices. For this task students were 158 

instructed to only annotate the middle slice of the flipbook (screenshots of the user interface 159 

shown in Supplementary Figure 2a). We also implemented three controls to enhance the 160 

quality of annotations. First, a retirement limit of ten was set such that each image was annotated 161 

independently by ten students, and not shown again. These ten annotations were combined to 162 

form a consensus instance segmentation (see Materials and Methods, Supplementary Figure 163 

3). Second, we asked annotators to rate their confidence in their annotation on a scale from 1 to 5 164 

(where 1 was not at all confident and 5 was very confident). Third, all consensus annotations 165 

were reviewed by at least two experienced CMM researchers to create the final ground truth 166 

segmentation. 167 

 168 

For this project, nine sets of 500-1000 images were uploaded to the Zooniverse platform over a 169 

period of six months. These sets were organized into three groups with each group containing 170 

patches from different 2D and 3D datasets. Group 1 contained a mixture of in-house and external 171 

volume EM datasets, Group 2 contained in-house and NCI 2D datasets and Group 3 exclusively 172 

contained in-house volume EM datasets acquired since the launch of the project. As a baseline, 173 

and to test the annotation interface, the first two sets of images (referred to as Group 1a) were 174 
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annotated by seven experienced EM researchers, with an image retirement limit of five. The 175 

remaining three sets of images in Group 1 (referred to as Group 1b) along with Group 2 and 176 

Group 3 were annotated exclusively by students. 177 

 178 

We found that the consensus annotations for mitochondria with clearly defined outer membranes 179 

and cristae were often high-quality, especially at the pixel-level (Figure 2a). 39.6% of consensus 180 

annotations required no corrections upon expert review, 12.5% required cosmetic pixel-level 181 

corrections and the remaining 47.9% required some combination of pixel-level, false positive 182 

and false negative corrections. Among this last set, the average correction added 3.7 false 183 

negatives and removed 0.4 false positives per image. The total number of corrections for each 184 

group of images are tabulated in Supplementary Figure 2b. Annotations in need of the most 185 

corrections were often the result of systematic gaps in the annotators’ knowledge. Such errors 186 

were manifested as annotations with strong mutual agreements which nevertheless were far from 187 

the expert-reviewed ground truth (Supplementary Figure 2c). Nevertheless, student annotation 188 

performance as a whole improved over the course of the project. The students’ first annotations 189 

had much lower F1 scores measured at an intersection-over-union (IoU) threshold of 0.5 190 

(F1@50) than experts (Figure 2b). By Group 3, the median student F1@50 scores had risen 191 

from 0.57 to 0.72, and impressively, the top 50% of students achieved F1@50 scores that were 192 

within the range of experienced annotator scores for Group 1a. This improvement occurred 193 

despite the introduction of previously unseen cellular contexts in each group and may be 194 

attributed to the heterogeneous data encountered earlier in the project. The improvements were 195 

not uniform for all students and this was reflected by a widening range in annotator performance 196 

with each new group of images. Seven of the 29 annotators (five dropped out before the last 197 

group of images) actually did worse over time (Figure 2b).  198 

 199 

Despite the variability in annotator quality, consensus annotations were always near or above the 200 

75th percentile of annotators (Figure 2b). This underscores the effectiveness of acquiring 201 

multiple independent annotations and applying a robust consensus algorithm. Although there was 202 

a slight upward trend with increasing the limit for students, the gains in annotation quality 203 

appeared to start leveling off after five or six regardless of the group of images being annotated 204 

(Figure 2c). The lower limit of five for experienced annotators was sufficient to reach nearly 205 
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perfect annotations, with consensus scores reaching 0.9. With a retirement limit of ten for the 206 

students annotators, we observed that the best consensus annotations on a per-image basis were 207 

created by setting a vote threshold of five (i.e., at least five annotators must have agreed on the 208 

label of a pixel for that label to be used in the consensus) (Figure 2d). This vote threshold also 209 

achieved a reasonable balance between true positive, false positive and false negative detections 210 

(Supplementary Figure 2d). While this vote threshold was set after evaluating results of Group 211 

1, we subsequently observed that F1@50 over all mitochondrial instances that were annotated by 212 

students, instead of over all images, was marginally higher at a threshold of three (Figure 2d). 213 

However, even with a vote threshold of five for all consensus annotations, our approach created 214 

each instance segmentation as accurately as possible, independent of number of mitochondria per 215 

image.  216 

 217 

Lastly, we hoped that self-reporting of annotation confidence could be used to filter out low-218 

quality predictions, instead we found this factor to be a poor proxy for annotation quality. While 219 

there was an increase in average F1@50 with increasing confidence scores, there was also a wide 220 

variance. Thus discarding “low confidence” annotations would have thrown out nearly as many 221 

good as bad annotations. (Figure 2e). There was only a weak correlation (r=0.322) between an 222 

annotator’s average reported confidence score and that annotator’s average annotation quality 223 

(Figure 2f), suggesting different levels of baseline confidence within the student cohort. For 224 

larger crowdsourced datasets where proofreading every annotation is infeasible, confidence 225 

scores may still be useful as a guide for identifying annotations most likely to require correction. 226 

Surprisingly, we also observed that there was no correlation (r=-0.096) between the number of 227 

annotations a student completed and their average F1@50 score (Figure 2g). These findings 228 

highlight the difficulty of gathering annotations from the public even with a motivated and 229 

trained cohort. Future crowdsource projects may benefit from targeted coaching or 230 

exclusion/weighting of lower-performing annotators. Time and resources must be invested to 231 

teach the skills necessary for handling such tasks, and still, reliable and high-performing 232 

annotators can only be identified after expert review and corrections over several rounds.  233 

 234 

Benchmark Datasets 235 

 236 
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To assess how well models trained on the collected mitochondrial data might generalize to future 237 

unseen images, we withheld six instance segmented volumes from the above pipelines. These 238 

volumes were chosen to encapsulate a few different cellular contexts, mitochondrial 239 

morphologies, and sample preparation protocols. Crucially, they also represented varying levels 240 

of difficulty to help identify deficiencies in the training dataset, model architectures and 241 

postprocessing algorithms.  The six volumes, five of which were not previously annotated, 242 

included conventionally fixed, heavy metal stained and resin-embedded samples (different 243 

sample preparation protocols, and imaged independently) of fly39 and mouse brain25,40 tissue, 244 

glycolytic muscle tissue35, mouse salivary gland, and a HeLa cell. The sixth volume was a high-245 

pressure frozen (HPF), freeze substituted C. elegans embryo specimen. The first three of these 246 

were generated externally and the last three were generated in-house. Representative 2D images 247 

and 3D renderings of mitochondria from each dataset are shown in Figure 3a. The mouse brain 248 

volume was the test set from the commonly used Lucchi++ benchmark (we converted the 249 

semantically segmented mitochondria to instance segmentation, see Materials and Methods). 250 

This benchmark was useful to calibrate performance because there were established results for 251 

comparison. Importantly, unlike prior research on this dataset, the entire Lucchi++ dataset was 252 

excluded from our training data. Aside from the Lucchi++ benchmark, which was imaged at 253 

isotropic 5 nm voxel resolutions, we intentionally chose or resampled the other volumes to have 254 

intermediate resolutions (10-25 nm) in line with the most common resolutions in the training 255 

dataset. In this range, mitochondria are generally still easy to identify on the whole but may be 256 

small. 257 

 258 

Each of the new benchmark volumes presented unique challenges. The mitochondria in the fly 259 

brain volume were morphologically simple but appeared in two distinct variants: lightly stained 260 

with poorly defined cristae and darkly stained with well-defined cristae (orange and blue 261 

arrows respectively). The HeLa cell volume, in addition to being cluttered with subcellular 262 

features such as Golgi, ER and a variety of vesicles, had areas of localized heavy metal 263 

precipitation from sample preparation (green arrow). The C. elegans embryo volume has a 264 

mixture of two mitochondrial morphologies that are difficult to segment: small puncta and 265 

skinny tubules, with a small median cross-sectional radius of six voxels (Figure 3b). Moreover, 266 

this volume also contained membranous organelles41 that might induce false positive detections 267 
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as they appear similar to mitochondria with swollen cristae at these resolutions (yellow arrow). 268 

Finally, overall contrast was relatively lower, as expected for high-pressure freezing (HPF) and 269 

freeze-substitution used in the sample preparation protocol. The glycolytic muscle volume had a 270 

relatively uncluttered background but more complex and elaborate branched morphologies. 271 

About a third of the mitochondria had more than one branch and ten had four or more long 272 

branches, with the most branched mitochondrion having 11 (Figure 3b). The salivary gland 273 

volume was by far the most challenging. Besides the unusual tissue context, the mitochondria 274 

were weakly stained relative to the cytoplasm, which was packed with ER. Many mitochondria 275 

were also flat or bowl-shaped and tightly pressed against and around acini (red arrow). 276 

Especially difficult for accurate instance segmentation, mitochondria were closely packed 277 

together with the boundaries of over 75% being within just five voxels of the next nearest 278 

mitochondrion’s boundary (Figure 3b). 279 

 280 

Instance Segmentation Algorithm 281 

 282 

For 2D instance segmentation of mitochondria, we adopted the Panoptic-DeepLab42 (PDL) 283 

architecture. PDL is an encoder-decoder architecture, similar to the standard U-Net43. As is 284 

common for biological images, PDL employs a bottom-up approach to instance segmentation. A 285 

key advantage of bottom-up algorithms is that they can segment an arbitrarily large number of 286 

objects within a field of view, in contrast to top-down algorithms like Mask R-CNN44 or 287 

Mask2Former45 that set limits on the number of objects. We trained PDL models to infer 288 

mitochondrial semantic segmentations, centers and per-pixel x and y offsets from each center 289 

(Figure 4a). To create semantic segmentations at resolutions higher than the input image 290 

resolution, we also employed the PointRend46 module. PointRend iteratively interpolates the 291 

segmentation, identifies the most uncertain pixels, and then reevaluates the label for those pixels 292 

to refine the segmentation (Supplementary Figure 4). Thus PointRend allows the model to 293 

accept images that have been downsampled to lower resolutions – preferably in the 10-20 nm 294 

range to match our labeled dataset – and output segmentations with crisp boundaries at the 295 

original resolution without the need for a resolution-specific model architecture. Finally, the 296 

semantic segmentation, offsets and object centers were merged into an instance segmentation 297 

(Figure 4a) via a simple postprocessing algorithm (see Materials and Methods). 298 
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 299 

Next, we generalized the 2D instance segmentation algorithm to handle volume EM data. As 300 

implemented, PDL did not track objects through an image stack. Instead, we matched objects 301 

across consecutive slices by computing IoU scores between all pairs of instances and applying 302 

the Hungarian algorithm47. We observed that long mitochondrial instances in 2D were 303 

sometimes erroneously split into multiple fragments. Since the Hungarian algorithm assumes a 304 

1-to-1 matching, these fragments were left unmatched with an object in the preceding slice. By 305 

computing intersection-over-area (IoA) scores we were able to identify fragments that were 306 

enclosed by a larger object on the preceding slice. These were then merged to the label of that 307 

larger object (Figure 4b). Since the matching algorithm relied only on consecutive slices, a false 308 

negative detection on even a single slice could break the connectivity of that object in 3D. To 309 

correct this, we used median within a short stack of the last 3, 5 or 7 recorded semantic 310 

segmentation probabilities (Figure 4c) to infer the correct segmentation for the current slice. As 311 

a final step, matching was performed in the reverse direction through the stack. This was 312 

essential to correctly merge branched mitochondria (Figure 4d).  313 

 314 

Optionally, for isotropic-voxel volumes, inference may be performed equivalently on images 315 

from the xy, xz and yz planes. Following our previous work48, we refer to this as ortho-plane 316 

inference, although the same idea has been applied elsewhere15,49. In this case, the outputs of 317 

ortho-plane inference were three independent instance segmentations. We merged these into a 318 

single consensus instance segmentation by applying the same algorithm used during 319 

crowdsourcing (Figure 4e). In all experiments, unless otherwise noted, we applied ortho-plane 320 

inference to isotropic-voxel volumes. Other model architectures and postprocessing algorithms 321 

like watershed50 could likely work comparably with the architecture presented here. Our design 322 

decisions were heavily influenced by computational efficiency. We used simple run-length 323 

encoding compression to represent all 2D and 3D instance segmentations. As a result, forward 324 

and backward matching of instances and the consensus algorithm, which must process three 325 

complete volumetric instance segmentations, was run on large datasets using minimal compute 326 

resources. Such considerations are critical for ensuring that this tool can be adopted widely 327 

within the EM community.  328 

 329 
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Model training and evaluation 330 

 331 

Before training any models on the mitochondrial segmentations, we pretrained a ResNet5051 332 

model on CEM1.5M using the SwAV52 self-supervised learning algorithm. This pretrained 333 

model was employed as the encoder network in our experiments. Our best performing PDL 334 

model was trained for 120 epochs on CEM-MitoLab (see Materials and Methods). Our results 335 

showed that our model, MitoNet, was able to segment a variety of mitochondrial instances 336 

accurately in both 2D and 3D (Figure 5a, b). Model performance was best on the brain tissue 337 

datasets (fly brain and Lucchi++) with both semantic IoU and F1@75 scores of about 0.9 and 338 

above (Figure 5c). Detailed performance metrics of MitoNet over all benchmarks are included in 339 

Table 1. The high contrast, simplicity of mitochondrial morphologies, and relative homogeneity 340 

of tissue ultrastructure in these datasets presented an easier challenge. The model also correctly 341 

detected both the lightly and darkly stained variants of mitochondria in the fly brain volume as 342 

described above. Strikingly, the F1@75 score of 0.88 achieved on the Lucchi++ test set by our 343 

generalist model matched the result from models that were trained exclusively on the Lucchi++ 344 

training set53. Moreover, we observed that all false negative detections at an IoU threshold of 0.5 345 

were from small instances that were truncated at the edge of the volume (data not shown). 346 

 347 

MitoNet performance on the HeLa and glycolytic muscle benchmarks was also strong even 348 

though these datasets were more difficult. While semantic IoU scores still held within the 0.8-0.9 349 

range, F1@75 scores were 0.50 and 0.60 respectively. For the HeLa benchmark, the model 350 

successfully ignored most of the intracellular clutter that was expected to be challenging (Figure 351 

5a). Mitochondria in the glycolytic muscle dataset had clearly defined membranes and cristae 352 

that should make them easy to distinguish. That said, model performance was surprisingly good 353 

given that no images of glycolytic muscle were present in the training dataset at all and only a 354 

handful of images were from muscle tissue (mitochondrial ultrastructure is significantly different 355 

depending on the oxidative state of muscle)54. The lower F1 scores observed for instance 356 

segmentation, despite good semantic segmentation, were evidence that individual mitochondria 357 

were harder for our model and postprocessing to distinguish in these datasets. At an IoU 358 

threshold of 0.5, we observed that over 75% of the false negatives in the HeLa volume and about 359 

50% in the glycolytic muscle volume occurred for mitochondria within five or fewer voxels of 360 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.17.484806doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484806
http://creativecommons.org/licenses/by-nc/4.0/


their nearest neighbor (Supplementary Figure 5). Figure 5b shows examples of the over 361 

merging errors that our method was prone to make. It should be noted, however, that the model 362 

still correctly detected 78% of the closely apposed mitochondria in the HeLa volume and 52% in 363 

the glycolytic muscle, and performed well with branched mitochondria. As an example, aside 364 

from one minor split, the model and postprocessing correctly handled a heavily branched 365 

mitochondrion in the glycolytic muscle volume (Figure 5b, blue arrow).  366 

 367 

The C. elegans dataset presented a number of challenges for our model. The mitochondria were 368 

low contrast, and small and tightly packed together; this was made worse by the low pixel 369 

sampling (24 nm). To get the best performance on this dataset we found that it was necessary to 370 

use a lower vote threshold of only one plane for ortho-plane inference. With this lower vote 371 

threshold, the IoU score increased to 0.60 from 0.42, though the F1@75 score was lower at 0.35 372 

(still a substantial increase from 0.19). An IoU threshold of 0.5, the model failed to accurately 373 

detect any mitochondria at that were smaller than 1,000 voxels, or ~ 0.25 µm3, in size 374 

(Supplementary Figure 5); such small instances accounted for about 25% of all false negatives. 375 

The model also performed slightly worse on mitochondria with lower contrast (mean grayscale 376 

of correctly identified mitochondria (True Positive), 75.9; wrongly missed mitochondria (False 377 

Negative), 70.5, p=3x10-4).  Supplementary Table 1 lists the mean mitochondrial parameters 378 

corresponding to TP and FN detections across all benchmarks. Again, closely apposed instances 379 

accounted for over 75% of all false negatives. A cluster of a few tightly packed mitochondria 380 

could induce multiple false negatives and false positives – and rapidly decrease F1 scores – even 381 

when the voxel-level segmentation appeared quite good (Figure 5b, black arrow). The model 382 

did manage, however, to mostly avoid erroneously labeling the so-called membranous 383 

organelles, but occasionally labeled some vesicles as mitochondria (Figure 5a). 384 

 385 

On the most challenging of the benchmarks, the salivary gland volume, MitoNet achieved an IoU 386 

score of just 0.1 and consequently negligible F1 scores. The unusual appearance and 387 

morphologies of the mitochondria and abundance of ER made this benchmark extremely 388 

difficult. Therefore, here we tested the ability of the model after minimal fine-tuning, i.e., after a 389 

second round of training on a small subset of the volume's data. We extracted a small fraction of 390 

ground truth data, 64 random patches of 224x224 pixels from this salivary gland dataset (~0.2% 391 
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of the total volume). Even with a very brief finetuning step of 500 iterations (~5 minutes on our 392 

system), we achieved dramatically improved semantic segmentation quality with IoU increasing 393 

to 0.65 (Figure 5d). F1@50 scores also improved, from 0.04 to 0.22. The lower F1 score overall 394 

was because, uniquely among these benchmarks, a large fraction of the mitochondria in this 395 

dataset were part of a network of closely apposed instances; our model and postprocessing 396 

merged nearly all of these mitochondria into a single large instance (Figure 5a, Supplementary 397 

Figure 5). However, we underscore an important point: Even when the generalist model fails on 398 

a given dataset, it is still a strong starting point for training a specialized model, and can succeed 399 

with a modest number of examples and compute power. The main challenges that remain for 400 

these benchmarks appear to be the handling of small objects and tightly packed instances 401 

(Supplementary Table 1). We found that instance branch length, measured in voxels, was not a 402 

significant factor that led to false negative detection (Supplementary Figure 5), meaning that 403 

MitoNet and our 3D postprocessing algorithms were able to track mitochondrial instances over 404 

many slices of volume EM datasets without losing connectivity.  405 

 406 

Finally, we directly probed the efficacy of CEM-MitoLab against other training datasets by 407 

measuring performance of models across all benchmarks except the salivary gland volume. Since 408 

each dataset included a different number of patches, for this experiment we trained all models for 409 

approximately 10,000 iterations to control bias toward larger training datasets (the 120 epochs 410 

used for MitoNet was the equivalent of about 40,000 iterations). The labeled datasets for training 411 

included MitoEM26 and Heinrich et al.11, which were the largest and most heterogeneous 412 

publicly available datasets, respectively, plus our legacy dataset and the crowdsourced dataset 413 

both with and without proofreading. We found that the Heinrich et al. dataset was not useful for 414 

our benchmark volumes, likely because of its small size and limited breadth. The model trained 415 

on it achieved F1 scores of zero at all IoU thresholds and the highest IoU score was 1 x 10-3 on 416 

the Lucchi++ benchmark. The model trained on MitoEM achieved respectable – but expected 417 

since they were similar neuronal data – F1@75 scores of 0.86 and 0.75 on the fly brain and 418 

Lucchi++ volumes, but scores of 0, 0.07, and 0.01 on the C. elegans, HeLa cell and glycolytic 419 

muscle volumes. The average performance metrics over all benchmarks for MitoNet versions 420 

trained on various annotated datasets is shown in Table 2. 421 

 422 
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Our legacy dataset, described above, was 5x larger than the crowdsourced dataset and reasonably 423 

heterogeneous with data from 17 volumes, over 500 TEM images and over 2,000 small 2D 424 

patches from CEM500K. Still, we observed that the model trained on this dataset had slightly 425 

lower F1 and IoU scores than the model trained on the expert proofread crowdsourced data 426 

(which excluded images in Group 1a). This surprising finding underscores how critical data 427 

diversity is to training generalist models. A dataset of nothing but small 2D patches sparsely 428 

sampled from numerous datasets was more effective on our benchmarks than any of the much 429 

larger but somewhat less heterogeneous datasets. As a corollary to this finding, we observed that 430 

the student consensus annotations, despite over 50% requiring some expert correction, yielded a 431 

more general model than training on the MitoEM dataset. This suggests that even noisy and 432 

inaccurate, but heterogeneous, labeled data contains enough training signal for a model to learn a 433 

better representation of mitochondrial ultrastructure than could be achieved from large, high-434 

quality but homogeneous data.   435 
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Discussion 436 

 437 

In this paper we have reported several resources for the growing volume EM community: a 438 

highly heterogeneous ~1.5 x 106 unlabeled cellular EM image dataset (CEM1.5M), a well-439 

described, large and heterogeneous dataset with instance labeled mitochondria (CEM-MitoLab), 440 

a model trained on this dataset (MitoNet), a set of diverse benchmarks to test this and future 441 

models, and a Python package and napari plugin (empanada) for immediate use of MitoNet. 442 

Increases in throughput enabled by technological advances and the application of volume EM 443 

techniques to a wider range of biological systems have exacerbated the segmentation and data 444 

analysis bottleneck in the field. Recent DL-based results have been spectacular in narrow 445 

contexts, but researchers risk getting stuck in the cycle of “manually label and train a model on a 446 

sub-volume, run inference and polish on the full volume”. The models that result from such 447 

workflows generalize poorly to unrelated datasets and are usually obsolete as soon as the 448 

relevant segmentation is completed. With the ultimate aim of breaking out of this cycle and 449 

creating reusable tools that benefit the community, we show that very broad but shallow 450 

sampling of cellular contexts is a robust strategy to create general organelle segmentation 451 

models. We present these datasets for use as-is or for future expansion or versioning for 452 

specialized tasks. To this end, the organization and appropriate description of datasets is crucial. 453 

We have created a simple and practical implementation of REMBI protocols55 in the form of a 454 

spreadsheet (Supplementary File 1) and have filled in metadata fields at minimum 455 

corresponding to image descriptors and basic biological information, so that users can search this 456 

release or future iterations of the dataset using metadata terms. 457 

    458 

We made the important decision to forego 3D approaches, knowingly trading accuracy for 459 

generalization and efficiency. Native 3D models are expected to perform better for instance 460 

segmentation because of their expanded spatial context. However, it is exceedingly time-461 

consuming to generate sufficient annotation datasets to adequately train a model. For example, 462 

our crowdsourced dataset of ~6,000 2D labeled images is equivalent to roughly 30 3D labeled 463 

images of the same size (224 pixels to a side). Choosing to create such a 3D dataset would have 464 

left a great variety of contexts unsampled and would have excluded thousands of TEM and 465 

STEM images. Here we attempted to thread the needle. We collected annotations in 2D but gave 466 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.17.484806doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484806
http://creativecommons.org/licenses/by-nc/4.0/


annotators the extra context of a flipbook. We ran model inference in 2D but developed instance 467 

matching, median filtering, and ortho-plane techniques to propagate and incorporate 3D 468 

information. Moving beyond 2D will likely be necessary to achieve human-level annotation 469 

quality on some volumetric datasets. Indeed, one use-case of MitoNet is that it can be 470 

incorporated into human-in-the-loop workflows to rapidly produce 3D segmentations needed to 471 

train this next-generation of models.  472 

 473 

Regardless of dimensionality, our results demonstrate that heterogeneity is a central 474 

characteristic for a training dataset. The version of MitoNet trained on noisy and often inaccurate 475 

crowdsourced annotations from students was measurably better on our benchmarks than the 476 

equivalent model trained on the much larger and expertly labeled MitoEM dataset (Figure 5d). 477 

Still, proofreading the annotations for accuracy was necessary to achieve our best results. Getting 478 

high-quality crowdsourced segmentations without expert intervention is challenging, even with 479 

powerful tools like Zooniverse. Accumulating the knowledge necessary to recognize 480 

mitochondria across many tissues, organisms and sample preparation protocols takes time and 481 

training. Relatively few experienced annotators (3-5) are enough to create strong consensus 482 

segmentations, meaning that broader expert participation in shared segmentation efforts would 483 

be beneficial to the field. 484 

 485 

The value of training data heterogeneity is only apparent when the test data is also 486 

heterogeneous. There are few volume EM benchmarks, and those derived from connectomics 487 

data are all quite similar to each other; possibly the best known of these, Lucchi++25,40 has now 488 

been mined to the point that it is difficult to track improvements in DL performance25,53,56, and 489 

until this report, only one benchmark, MitoEM, provided instance segmentations. Our 490 

benchmark with six instance segmented volumes aims to correct these deficiencies. It is still just 491 

a small sampling of the entire cellular landscape, but appears to be the most stringent test 492 

available, with a range of mitochondria, contexts, quality and overall difficulty. We suggest that 493 

future benchmarks should comprise relatively small ROIs from many volume EM datasets to 494 

best test generalization. Training and test datasets must also evolve to accurately measure 495 

progress of automated solutions and prevent misleading reports of success.  496 
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 497 

Finally, at least within the volume EM field, we are acutely aware of the gap between research 498 

groups that have ample resources and computational expertise, and smaller labs that do not. Most 499 

groups deal with small, discrete, and one-off 3D reconstructions, so it is important to have tools 500 

that are relatively easy to use and not compute heavy. We designed our Python package, 501 

empanada, and the corresponding napari plugin, with this in mind. Empanada and the MitoNet 502 

model are optimized for compute and memory efficiency and our plugin is easy to install and 503 

use. Additionally, it can run on consumer-grade laptops without GPUs or on HPC clusters with 504 

many. MitoNet can be incorporated into other established image analysis platforms and will 505 

ideally give users a better model that can be quickly deployed or finetuned to meet their 506 

segmentation needs. We did not focus on trying to get the absolute best architecture possible for 507 

MitoNet and we hope and expect others will supersede our results. Rather, we used an efficient 508 

architecture and postprocessing scheme that scales well to large images and images with very 509 

many objects, as would be expected for mitochondrial instance segmentation in EM. 510 

 511 

Volume EM has been suggested to be in the midst of a “quiet revolution” in cell biology57. A raft 512 

of papers in connectomics and in cell biology have revealed insights into a variety of systems by 513 

enabling the high-resolution 3D imaging of cellular and subcellular features. These imaging 514 

techniques record ultrastructural information in a largely unselective manner, meaning that the 515 

data, once collected, need to be parsed out to extract features of interest for visualization and 516 

analysis. This step, segmentation, must be accurate and precise to faithfully represent the 517 

underlying biology and it must also be efficient to match the speed of data generation. Recent 518 

developments in DL approaches show great promise, yet these tools can be held back by the lack 519 

of large-scale and relevant data resources. In this report we directly address this problem as it 520 

pertains to universal segmentation of mitochondria in EM images. With an eye towards creating 521 

a universal mitochondrial model, we employ a strategy of sparse sampling of widely 522 

heterogeneous datasets and show that the resulting model, MitoNet, when trained on these data, 523 

yields promising results on challenging tasks. We release the resources to the community with 524 

the hope that continued work on this approach will expand the EM segmentation toolkit and 525 

further accelerate discoveries in this exciting field. 526 

  527 
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Materials and Methods 528 

 529 

Unlabeled dataset creation 530 

 531 

The expansion of CEM500K to create the CEM1.5M dataset followed the data standardization 532 

and curation protocols presented in our previous work58. External datasets were either 533 

downloaded in their entirety or, for large datasets stored online in next generation file formats 534 

(n5 or zarr), accessed either with the CloudVolume or fibsem-tools APIs. Any datasets larger 535 

than 5 GB were randomly cropped into 320 cubes of 256x256x256 (equivalent to 5 GB). When 536 

available, to ensure that the randomly chosen crops included cellular content and not empty 537 

image padding or resin, a low-resolution overview image volume of the dataset was downloaded 538 

and used to identify the extents of informative ROIs. Lastly, cellular EM images from videos 539 

were converted to mrc files after removing all frames that showed non-EM content. Metadata, 540 

and proper attribution, for each dataset following REMBI59 standards is available in 541 

Supplementary file 1. 542 

 543 

In-house 2D EM images were collected from the National Cancer Institute’s Electron 544 

Microscopy Laboratory database. The database included over 2x105 TEM images. A sample of 545 

5,000 images with magnifications between 1000x (~16 nm) and 3000x (~6 nm) that excluded 546 

negative stain and immunogold label images was randomly selected. This sample represented the 547 

output of collaborations with 76 NIH investigators from over the last 12 years. Metadata for each 548 

image was limited. Therefore, images were grouped by investigator before further sampling. 549 

Additionally, seven more groups of 2D STEM images were added from previous in-house 550 

imaging projects; because metadata was available for these images they were grouped by 551 

biological context and not investigator. 552 

 553 

Zooniverse Workflow 554 

 555 

Our  Zooniverse workflow closely approximated the Etch-a-cell project15.Patches in the 556 

CEM1.5M dataset extracted from volume EM images were reconstructed into short “flipbooks” 557 

(tif stacks of five consecutive images of 224x224), where each patch from the CEM dataset was 558 
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the center image (the adjacent patches were typically filtered out by the CEM deduplication 559 

pipeline). Before uploading to Zooniverse each flipbook had its 8-bit intensity range rescaled 560 

from 25 to 235 and was interpolated to a size of 480x480 for easier viewing. For 2D images, 561 

crops of 512x512 were used. Intensity was rescaled to the same range as the flipbooks but no 562 

resizing was performed. 563 

 564 

The first two sets of images uploaded to Zooniverse (Group 1a) had an annotation retirement 565 

limit of five (i.e., every image was annotated independently by five people) and were annotated 566 

by a mixture of lab members familiar with cellular EM and inexperienced student annotators. 567 

Consensus annotations from these sets only used annotations from experts; the students’ 568 

feedback on the project helped refine the Zooniverse tutorials and interface. For all remaining 569 

sets, which were annotated entirely by an expanded cohort of students, the retirement limit was 570 

set to ten. For the first two of these sets, 5-10% of images were annotated by a team of at least 571 

three EM experts. These “gold-standard” annotations were used to measure the performance of 572 

the student annotators and to provide them with training examples via a Google CoLab 573 

notebook. Later, as the students’ annotations became more accurate, the non-proofread 574 

consensus annotations were shared. In addition to this, feedback via the Zooniverse message 575 

channel and a formal instruction session was used to review challenging examples and explain 576 

common mistakes. 577 

 578 

Consensus annotation algorithm 579 

 580 

The input to the algorithm was a set of N annotations (the retirement limit) containing K 581 

mitochondrial detections. An undirected graph was initialized where each node corresponded to 582 

one of the K detections. Pairwise bounding box IoU scores were calculated for all detections to 583 

form a KxK matrix. For all pairs of detections with non-zero bounding box intersections, pixel-584 

level mask IoU scores were calculated. Edges were added to the graph to connect detection 585 

nodes with mask IoU scores that exceeded a small threshold value of 0.1 (the same algorithm, 586 

when applied during ortho-plane inference, used a threshold of 0.01). The resultant connected 587 

components in the detection graph were processed independently to determine the consensus 588 

object instances.  589 
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 590 

Nodes in a connected component were organized into cliques where all detections within a clique 591 

had IoU scores greater than 0.75. An iterative algorithm was then applied to determine whether 592 

cliques should be merged or remain split. First, the clique whose detections shared the most 593 

edges with other cliques, i.e. the most connected clique, was selected (node C in Supplementary 594 

Figure 3 ii, A in 3 iii). Second, if any of the most connected clique’s neighbors contained more 595 

detections, then the most connected clique was dissolved and its detections were pushed out to 596 

each of its neighbors (Supplementary Figure 3 iv). Otherwise, all the most connected clique’s 597 

neighbors were dissolved and their detections were pulled in by the most connected clique 598 

(between B and D in Supplementary Figure 3 iv, and B and C into A in 3 v). These two steps 599 

were repeated until no cliques had outgoing edges. Each clique represented a segmented object 600 

instance. The detection masks within a clique were added together to form an image where each 601 

pixel had a value from 1 to N denoting the number of annotators who labeled it. A vote threshold 602 

of 3 when the retirement limit was 5 or 5 when the retirement limit was 10 was applied to create 603 

the final binary instance mask. In cases where there was weak instance-level consensus between 604 

annotators, the binary instance masks from separate cliques within the same connected 605 

component could have non-trivial overlaps with each other. If these overlaps resulted in IoU 606 

scores greater than 0.1 between binary instance masks, then those masks were combined into a 607 

single mask. In the final consensus instance segmentation, all non-zero binary masks were 608 

assigned new labels and merged. A schematic of this algorithm is shown in Supplementary 609 

Figure 3. In summary, this algorithm assumed that the most connected clique at each step 610 

roughly corresponded to a maximally merged instance. When one of this clique’s neighbors 611 

contained more detections, this implied that more votes were in favor of splitting than maximal 612 

merging. Pushing the most connected clique to its neighbors ensured that no detections were 613 

deleted before being counted towards the final pixel-level majority vote. Conversely, when the 614 

most connected clique had the most detections, this implied that more votes were in favor of 615 

maximal merging and therefore all detections in neighboring cliques were pulled into the most 616 

connected clique. 617 

 618 

Proofreading 619 

 620 
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Once all images in a set were retired, a consensus strength and instance segmentation were 621 

calculated for each. The consensus strength was the average F1@50 score of each individual 622 

annotation relative to the consensus instance segmentation. Lower consensus strengths indicated 623 

greater disagreement between annotators. Next, all images and instance segmentations were 624 

ordered by consensus strength and stacked into a single tif file for later proofreading. If the set 625 

used flipbooks, then the images and their consensus instance segmentations were resized from 626 

480x480 back to their original sizes. Padding was added as needed to ensure that all images in 627 

the stack had the same dimensions. Typically, the single proofreading stack was split into chunks 628 

of 40-50 images/flipbooks such that multiple experts could perform proofreading in parallel. 629 

Proofreaders were instructed to emphasize the correction of false positive and false negative 630 

detections over fine-grained instance boundary corrections. Annotations in each chunk of images 631 

were verified by a second proofreader and disagreements were discussed and resolved by at least 632 

three proofreaders. 3D Slicer60 was used to visualize and correct annotations. The chunks of 633 

proofread images and annotations were again combined into a single large stack. Every image, or 634 

every third image for flipbooks, and corresponding instance segmentation was stored as a tiff 635 

image with any padding cropped out. Importantly, all annotations were passed through a 636 

connected components filter to guarantee that there were no disconnected instances.  637 

 638 

Training dataset creation 639 

 640 

The training dataset included all consensus annotations gathered from Zooniverse as well as the 641 

legacy data. The latter included annotations from publicly available mitochondrial segmentation 642 

benchmarks (Kasthuri++25,61, Guay30, UroCell62, MitoEM26, Heinrich et al.11 and Perez et al.29) 643 

and previous in-house projects. Of the benchmark datasets, only the MitoEM benchmark had 644 

individual instances labeled; instance segmentations for all others were generated manually after 645 

applying a connected components filter. In-house annotations for various unrelated projects 646 

included 11 volume EM image reconstructions (see Supplementary File 1) as well as 529 TEM 647 

images and 2,231 image patches from the CEM500K dataset. None of these images were derived 648 

from any of the above, or from benchmark datasets. The 11 volume EM images had previously 649 

been annotated by a different deep learning model and then manually corrected, while all the 2D 650 

images were manually annotated from scratch. Legacy volume EM images and instance 651 
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segmentations were cropped into patches of 512x512 and passed through the deduplication and 652 

filtering pipeline from CEM500K58 to remove redundant and uninformative patches. Patches 653 

from isotropic voxel volumes were taken from xy, xz and yz planes while patches from 654 

anisotropic volumes were taken from xy only. For external data comprising the legacy datasets, 655 

all images were used as-is, except: prior to cropping patches, the MitoEM-H and MitoEM-R 656 

volumes were binned by a factor of two in x and y (from 8 nm to 16 nm pixels), and all Heinrich 657 

et al. images were downloaded at 8 nm resolution. 658 

 659 

Benchmark dataset creation 660 

 661 

Four of the six benchmark volume EM datasets were independently annotated by ariadne.ai 662 

(HeLa cell, C. elegans, fly brain, salivary gland). The glycolytic muscle35 dataset was binned by 663 

a factor of 2 in all dimensions (from 9 nm to 18 nm voxels) and then automatically annotated by 664 

a deep learning model that was trained solely on patches from the volume, and then manually 665 

corrected. The remaining benchmark is derived from the Lucchi++25,40 benchmark. First, the 2D 666 

images and labelmaps were stacked to form volumes. Then, the binary mitochondrial labelmaps 667 

were converted to rough instance segmentations by applying a connected components filter and 668 

then manually corrected to derive the final instance segmentation. 669 

 670 

Not only were all benchmark volumes excluded from both CEM1.5M and crowdsourced 671 

annotation, we also excluded any images related to them to rigorously test generalization, 672 

Supplementary Figure 6. OpenOrganelle39, which was the source of the fly brain benchmark, 673 

included multiple volumes of fly brain tissue from different brain areas. We chose the 674 

“Drosophila brain: Fan-shaped body” volume and excluded the “Drosophila brain: Entire alpha 675 

and alpha' lobes of a mushroom body” and “Drosophila brain: Accessory calyx” volumes. For 676 

the C. elegans volume, a related FIB-SEM and STEM dataset were excluded. And lastly, for the 677 

Lucchi++25,40 benchmark, the Lucchi++ training set was excluded.  678 

 679 

Benchmark datasets measurements 680 

 681 
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Mitochondrial volumes were calculated by trivially counting the number of voxels per instance. 682 

Minimum distances between neighboring mitochondria were calculated by computing the 683 

distance transform of each instance’s complement (i.e., set of all voxels not inside the instance). 684 

These results were stored in a new volume (called “distance volume”) where each voxel was 685 

updated to the minimum distance calculated so far from all the measured complements at that 686 

location. The minimum distance to a mitochondrion’s nearest neighbor was then the minimum 687 

value enclosed by that instance in the distance volume. Branch lengths and cross-sectional 688 

diameters were calculated by first skeletonizing63 each mitochondrion and computing its distance 689 

transform. Branches shorter than 60 nm were pruned. Lengths were simply the number of voxels 690 

in each branch, and the mean cross-sectional diameter was the average of all values in the 691 

distance transform that overlapped with the skeleton. 692 

 693 

CEM1.5M Pretraining 694 

 695 

Unsupervised pretraining followed the SwAV algorithm64. A ResNet5065 model was trained for 696 

200 epochs with a batch size of 256. All other hyperparameters used the default values defined in 697 

https://github.com/facebookresearch/swav. Image augmentations included 360-degree 698 

rotations, randomly resized crops (following SwAV defaults), brightness and contrast jitter, 699 

random Gaussian blur and noise, and horizontal and vertical flips. To correct for the imbalance 700 

in the number of patches per dataset, weighted random sampling was applied. Weights per 701 

dataset were calculated by: 702 

�� �  
��

��

∑ ��
�
���

 

� was a float from 0 to 1, ��  was the number of patches from the ��	 dataset, and N was the total 703 

number of datasets. Each patch was assigned a sampling weight based on its source dataset. 704 

When � � 0, patches from all datasets were sampled with the same probability (true random 705 

sampling) and when � � 1 the sampling was perfectly balanced between datasets. During 706 

pretraining we set � � 0.5 (i.e., the square root of the number of patches per dataset).  707 

 708 

Deep learning model architecture 709 

 710 
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The model was based on Panoptic-DeepLab42 (PDL). In brief, PDL is an encoder-decoder style 711 

network that uses atrous spatial pyramid pooling (ASPP) to integrate features that occur over 712 

multiple scales. A ResNet50 encoder, pretrained as detailed above, was used in all experiments 713 

unless otherwise noted. To preserve more spatial information, strides in the last downsampling 714 

layer were replaced with dilation such that the output from the encoder was 16x smaller than the 715 

input (compared to 32x smaller with strides). The baseline model configuration included two 716 

ASPP modules and decoders; one for semantic segmentation prediction and the other for 717 

instance center and offsets prediction. Since input patches used during training were just 718 

256x256, the dilation rates in the ASPP modules were set to 2, 4 and 6 with 256 channels per 719 

convolution and dropout with probability 0.5 applied to the output. The semantic and instance 720 

decoders each had a single level at which the output from the first layer in the encoder (4x 721 

smaller than the input image) was fused via depthwise separable convolution with the 722 

interpolated output from the ASPP module. Following the standard for PDL, the convolution 723 

channels in the instance decoder were half of those in the semantic decoder (16 compared to 32). 724 

The semantic segmentation, instance center and offset heads used a single depthwise separable 725 

convolution with kernel size of 5.  726 

 727 

PointRend: During training, the semantic segmentation logits predicted by PDL were upsampled 728 

by a factor of 4 to the original image resolution and then refined for a single step by the 729 

PointRend66 module. For a batch of images, a set of 3,072 points were randomly sampled from 730 

anywhere within the dimensions of the images and the segmentation logits were evaluated at 731 

these points. From these sampled logits, 1,024 were selected for each image where 25% of the 732 

logits were randomly chosen and the other 75% were the logits with the smallest absolute values. 733 

The same 1,024 points were also used to sample features from the semantic decoder output. 734 

Sampled features and logits were concatenated and fed through a three-layer fully connected 735 

network. When evaluating the loss, the 1,024 points were also used to sample the ground truth 736 

semantic segmentation. Loss was calculated as the (binary) cross-entropy between the sampled 737 

and refined logits and the sampled ground truth. During evaluation, two refinement steps were 738 

applied with the semantic segmentation logits being upsampled by a factor of 2 at each step. 739 

Points corresponding to the center of all logit pixels were used to sample the logits. From these, 740 

points corresponding to the 8,192 logits with the smallest absolute values were selected. The 741 
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logits and semantic decoder output were sampled at these points and passed through the fully 742 

connected network. The refined logits then replaced the unrefined logits in the upsampled 743 

segmentation. Since the number of sampled points was fixed, the cost of running PointRend 744 

refinement was approximately constant with respect to the size of the input. 745 

 746 

Model training parameters 747 

 748 

The overall loss function during training was: 749 

� �  �
�� 
  � � �
����� 
 � �  ����
�� 
  � � ��� 

�, �, � were constants used to weight the relative contributions of each loss and were set to 200, 750 

0.01 and 1. �
�� was the semantic segmentation loss computed as the bootstrapped (binary) 751 

cross-entropy where only the top 20% of largest cross-entropy values were averaged across a 752 

batch. �
����� was the instance center regression loss and ����
�� was the center offset loss 753 

calculated as mean squared error and absolute error (L1), respectively. ��� was the PointRend 754 

loss calculated as the (binary) cross-entropy. 755 

 756 

All models were trained using the One Cycle learning rate policy67 with AdamW68. The max 757 

learning rate was set of 0.003 with weight decay of 0.1 and momentum was cycled from 0.85 to 758 

0.95. Learning rate warmup lasted for the first 30% of training epochs. Weighted sampling of 759 

patches from datasets was implemented as above (� � 0.3 here) to correct for overrepresented 760 

datasets in CEM-MitoLab. Image augmentations included large scale jitter69, where images were 761 

zoomed in by a maximum of 2x and zoomed out by a maximum of 10x, random cropping to a 762 

256x256 patch, 360-degree rotations, brightness and contrast adjustments and vertical and 763 

horizontal flips. Like CEM1.5M pre-training, images were selected from datasets based on 764 

weighted sampling. Unless otherwise noted, � � 0.3 was used for all training runs.  765 

 766 

Panoptic-DeepLab Postprocessing 767 

 768 

First, values in the instance center heatmap that were less than the center confidence threshold 769 

(0.1 in all experiments) were zeroed. Non-maximum suppression with a kernel size of 7 was 770 

applied to filter out peaks in the heatmap that occurred within the same 7x7 grid. The non-zero 771 
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coordinates that remained in the heatmap were extracted. Next, the instance center offsets were 772 

added to their absolute (x, y) positions within the image such that all pixels belonging to the 773 

same object ought to be equal to the coordinate that defines the center of that object. The 774 

Euclidean distance between this map of each pixel’s corresponding object center and the centers 775 

extracted from the heatmap were used to group pixels into instances. The index of the center 776 

with the minimum distance at each pixel was adopted as the instance label for that pixel. After 777 

applying the sigmoid activation to get probabilities from the semantic segmentation logits and 778 

hardening the result over a threshold, the instance labels and semantic segmentation were merged 779 

to form the final panoptic segmentation.      780 

 781 

Stack instance matching 782 

 783 

To match object instances between consecutive slices in a 2D stack, intersection-over-union 784 

(IoU) scores were first calculated between instance bounding boxes. Second, for each pair of 785 

instances with non-zero bounding box IoU, a mask IoU was calculated and stored in a matrix of 786 

size KxN, where K is the number of instances in slice j and N is the number of instances in slice 787 

j+1. At this stage, mask intersection-over-area (IoA) scores were also calculated and stored in a 788 

separate KxN matrix. The Hungarian algorithm47 was then applied to the mask IoU matrix to 789 

determine the assignment of instances in slice j to instances in slice j+1 that maximized the total 790 

IoU. Any unassigned instances in slice j+1, or assigned instances with IoU less than a threshold 791 

value (IoU threshold), were considered unmatched. Unmatched instances with a IoA score 792 

greater than a threshold value (IoA threshold) were matched to the instance in slice j with which 793 

they shared the highest IoA. The remaining unmatched instances were assigned new labels in the 794 

stack. After forward matching (i.e., from slice j to slice j+1) was completed for all images in the 795 

stack, a backward pass of matching was conducted (i.e., from slice j to slice j-1). No new labels 796 

were assigned in the stack during the reverse pass. 797 

 798 

Benchmark Set Inference 799 

 800 

Ortho-plane inference48 on xy, xz and yz planes was applied to each volume in the benchmark 801 

test set. During inference over each plane, semantic segmentations were generated from the 802 
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median probabilities within a short queue of previous and subsequent segmentation results. A 803 

queue length of 3 was used for the C. elegans and fly brain volumes, 5 for the HeLa and 804 

glycolytic muscle volumes and 7 for the Lucchi++ and salivary gland volumes. These queue 805 

lengths roughly track with voxel size (in nm) such that smaller voxels corresponded to longer 806 

queues. Median probabilities were hardened at a confidence threshold of 0.3. Since mitochondria 807 

were never occluded in any of our benchmark volumes, mitochondrial instances on each 2D slice 808 

were required to be connected components. Instance matching across slices used IoU and IoA 809 

thresholds of 0.25. After a forward and backward matching pass, a simple size and bounding box 810 

extent filter were applied to eliminate likely false positives. The minimum object size was set at 811 

the 5th percentile of mitochondrial volume for each benchmark while the minimum bounding box 812 

extent was fixed at eight voxels for all datasets. Finally, the same algorithm that was used to 813 

generate consensus segmentations during crowdsourced annotation was applied to ensemble the 814 

three segmentation stacks created by ortho-plane inference (Supplementary Figure 3). A clique 815 

IoU threshold of 0.75 was used for all volumes and a vote threshold of 2 out of 3 was used for all 816 

benchmarks except the C. elegans and salivary gland volumes. For those a vote threshold of 1 817 

out of 3 was used. This was in response to the relatively low consensus strength between each 818 

stack and the final ortho-plane result. Lowering the threshold gave a significant increase in 819 

performance on the C. elegans volume and a modest increase for the salivary gland volume.  820 

 821 

Salivary gland finetuning 822 

 823 

The salivary gland volume was first cropped into patches of 224x224 and then deduplicated and 824 

filtered (see Training dataset creation section above). 64 patches (~0.2% of the volume) were 825 

randomly selected from the filtered subset and set aside as the finetuning training set. The best 826 

performing segmentation model was retrained on the finetuning training set for 500 iterations 827 

using the same parameters outline in the Model training parameters section above. 828 

 829 

Benchmark Evaluation 830 

 831 

Ground truth instance segmentations were stored in json files where each entry contained an 832 

instance id, bounding box and run-length encoded segmentation. Equivalent json files were 833 
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created for all predictions. Instances between the ground truth and prediction were assigned as 834 

matches using the Hungarian algorithm to maximize IoU over all possible pairs of instances. In 835 

addition to the F1, IoU, and PQ scores reported in results, average precision (AP) scores for 836 

future comparison.  837 

 838 

Test Set Evaluation by Training Dataset 839 

 840 

To prepare datasets for fair comparison, the MitoEM and Heinrich et al. ground truth ROIs were 841 

sliced to 2D images. Since the MitoEM volumes were large and anisotropic, patches of size 842 

512x512 were cropped from xy slices only. The Heinrich et al. volumes being small and 843 

isotropic were cropped into patches of 224x224 or smaller from xy, xz and yz planes. As above, 844 

mitochondrial instances were relabeled on each 2D slice to guarantee that they were connected 845 

components. All models were trained for approximately 10,000 iterations. 846 

  847 
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Figure Legends 868 

 869 

Figure 1: Creation of a diverse and representative dataset for mitochondrial instance 870 

segmentation. a. Schematic of the data curation pipeline. Volume EM reconstructions and 2D 871 

EM images were curated58 to create CEM1.5M, an unlabeled dataset of ~ 1.5 x 106 image 872 

patches used for self-supervised pretraining. Approximately 6,000 randomly sampled patches 873 

from CEM1.5M (green) were uploaded to the Zooniverse platform for crowdsourced annotation. 874 

These, and 16,000 randomly selected patches from previously labeled data (legacy annotations, 875 

red) were combined to form the supervised mitochondrial training dataset CEM-MitoLab. b. 876 

Lorenz plots for CEM1.5M (blue, Gini coefficient = 0.802), crowdsourced data (green, 0.209), 877 

legacy data (red, 0.840), CEM-MitoLab (dashed gray, 0.686). Black line, perfect equality in 878 

distribution (Gini = 0). c. Distribution of imaging plane pixel sizes for volume EM images in 879 

CEM-MitoLab. The dashed lines denote pixel sizes for 2D EM images in the dataset. d. Imaging 880 

technique, e. Source organism, f. Source tissue (vertebrates only, in vitro cells grouped under 881 

Not Defined) of datasets in CEM-MitoLab (n=478).  882 

 883 

Supplementary Figure 1:  a. Distribution of longest image side in pixels for patches in the 884 

supervised mitochondrial dataset, CEM-MitoLab. b. Breakdown of isotropic versus anisotropic 885 

data (left) and sample fixation method (right) in source datasets that make up CEM-MitoLab c. 886 

Random selection of image patches from CEM-MitoLab (left), Mito-EM (middle) and Heinrich 887 

et al d. Comparison between 2D mitochondrial instance label maps in CEM-MitoLab (blue), 888 

MitoEM (purple) and Heinrich et al. (pink) labeled datasets, with respect to (left to right) area in 889 

pixels, contrast, eccentricity, perimeter to area ratio, and clustering. 890 

 891 

Figure 2: Crowdsourced annotation of CEM-MitoLab. a. Ground truth (top left), consensus 892 

annotation (bottom left) and ten independent student annotations of an image showing high 893 

degree of consensus. b. Instance segmentation quality measured by F1@50 over time. Left, 894 

Group 1a (expert annotation), 1b, 2, 3 (students). Blue dots, individual scores, pink, consensus 895 

score, box denotes median, 25th and 75th percentile. Right, change in individual annotator 896 

performance over time. c-f Instance segmentation quality measured by F1@50 plotted against c. 897 

Increase in retirement limit. Blue, purple, student scores (retirement set at 10); green, expert 898 
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score (retirement set at 5), d. Vote threshold. Blue, F1 per instance; pink, F1 per image; dashed 899 

line, vote threshold of 5 chosen for consensus calculation, e. Self-reported confidence score over 900 

all instances (connected line, average F1), f. Student mean confidence score, f. Number of 901 

images annotated by each students.  902 

 903 

Supplementary Figure 2: a. Screenshots from Zooniverse project, showing the crowdsource 904 

annotation user interface b. Total count of instance False Positive and False Negative errors 905 

made by student annotators. c. Ground truth (top left), consensus annotation (bottom left) and ten 906 

independent student annotations of an image showing a low degree of consensus; the all-or-907 

nothing pattern suggest differences in individual knowledge or experience. d. Trends of true 908 

positive (blue), false positive (red), false negative (green) for total instances of mitochondria, 909 

plotted against vote threshold. A threshold of 5 was chosen for consensus calculation.  910 

 911 

Supplementary Figure 3. Example of consensus algorithm splitting and merging instance 912 

votes to create accurate consensus label maps. See Materials and Methods for details.  913 

 914 

Figure 3: Challenging and diverse benchmarks for evaluating automatic instance 915 

segmentation performance. a. 2D representative images (left) and 3D reconstructions (right) 916 

for the benchmark test sets. From top to bottom: C. elegans, Fly brain, HeLa cell, Glycolytic 917 

muscle, Salivary gland, Lucchi++. Yellow arrow, membranous organelle, orange and blue 918 

arrows, lightly and darkly stained mitochondria, green arrow, heavy metal precipitate, red arrow, 919 

mitochondrion and tightly apposed salivary granule in the acinus b. Comparison of individual 920 

mitochondria and box plots across benchmarks by (top to bottom): volume, branch length, cross-921 

section radius, minimum distance to neighbor (all in voxels) and contrast. Pink, C. elegans 922 

n=241; yellow, Fly brain n=91; green, HeLa cell n=68; teal, Glycolytic muscle n=104; blue, 923 

Salivary gland n=131; purple, Lucchi++ n=33.  924 

 925 

Figure 4: Deep learning model and postprocessing pipeline to create 2D or 3D instance 926 

segmentations. a. Schematic of Panoptic-DeepLab. A grayscale image (left) is passed through 927 

the model architecture: blue boxes denote outputs from the encoder layers, black boxes output 928 

from atrous spatial pyramid pooling (ASPP) layers, gray boxes output from decoder layers. 929 
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Outputs of the network are (left to right) semantic segmentation, up-down offsets, left-right 930 

offsets and instance centers. Far right, instance segmentation created from the outputs. b. 931 

Instance matching across adjacent slices with partially overlapping segmentation uses 932 

intersection-over-union (IoU) and intersection-over-area (IoA) scores. Top row: predicted 933 

segmentation of slice j (left), j+1 (right), bottom row: IoU only merging (left), IoU and IoA 934 

merging (right). c. Merging of labels with completely missing segmentation uses a median 935 

prediction over 3-7 stacks, in direction of black arrow, depending on size of gap  d. From top to 936 

bottom: Stacked 2D segmentations before matching, after forward matching only and after 937 

forward and backward matching, to merge falsely split mitochondria. Black arrows denote 938 

direction of matching. e. An example of 3D instance segmentation of mitochondria after running 939 

inference in (left to right) xy, xz, and yz directions, and far right, merged instance segmentation 940 

after combining inferences from orthogonal planes.  941 

 942 

Supplementary Figure 4. Example image showing difference in semantic segmentation borders 943 

of closely apposed mitochondria, after linear interpolation (top) or PointRend (bottom). Blue 944 

dots, PointRend sampling locations. 945 

 946 

Figure 5. MitoNet results on benchmarks. a. Representative 2D images showing MitoNet 947 

segmentation performance. Top to bottom: C. elegans, Fly brain, HeLa cell, Glycolytic muscle, 948 

Lucchi++, Salivary gland before model finetuning, Salivary gland after model finetuning. b. 949 

Representative ground truth and predicted segmentations from MitoNet. Red and green, 950 

predicted mitochondrial instances, blue and orange, ground truth instances. Blue arrow, highly 951 

branched mitochondrion, black arrow, example of segmentation expected to return a high IoU 952 

but low F1 score. c. Left, MitoNet F1score on each of the benchmarks as a function of IoU 953 

threshold; right, IoU scores d. Left, comparison of mean F1 score for models trained on different 954 

datasets plotted against IoU threshold, right, comparison of mean IoUs achieved by models 955 

trained on various datasets. All benchmarks except the salivary gland are included. 956 

 957 

Supplementary Figure 5. Analysis of True Positive and False Negative detections by 958 

MitoNet on benchmarks, grouped by different mitochondrial attributes. Top to bottom: 959 

mitochondrial volume, minimum distance to nearest neighbor, branch length, branch mean cross-960 
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sectional diameter (measurements by voxel) and mitochondrial contrast. Branch length and cross 961 

section plots exclude the Lucchi++ benchmark, as the branches for these mitochondria were 962 

shorter than the pruning threshold. Fine tuned model results are plotted for salivary gland. 963 

 964 

Supplementary Figure 6. Representative images of datasets that were excluded from 965 

CEM1.5M and CEM-MitoLab datasets, in order to maintain integrity of the test set. 966 

Images to the left of the black line are volumes in the test set (fly brain, C. elegans and 967 

Lucchi++). Images to the right show datasets that were excluded because they were considered 968 

too similar to the benchmarks. 969 

 970 

Supplementary Figure 7. Screenshot of the napari plugin empanada.  971 

 972 

Table 1: Performance metrics of MitoNet across benchmarks. AP, Average Precision, PQ, 973 

Panoptic Quality 974 

 975 

Table 2: Average performance of MitoNet versions pre-trained on CEM1.5M but trained 976 

on various annotated datasets 977 

 978 

Supplementary Table 1: Average mitochondrial measurements for true positive, false 979 

negative MitoNet predictions across various benchmarks.   980 
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 981 
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