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A simple and viable approach to estimate population

trends

Mario Schlemmer

Changes in population abundances over time are of central concern for environmental
conservation and the understanding of population dynamics. The standard slope
estimator has restricting assumptions and lacks a constant range, which makes its
interpretation less intuitive. Herein, more robust measures of trend. It is based on
proportional difference and can be used for data on various scale types. If it is
applied to ranks it yields the correlation coefficient. Related measures of association
are described that assess the relationship between species, including a rank-order
correlation that is sensitive to top ranks and a correlation for continuous data that is
more robust than the correlation coefficient. All proposed measures have a range
between —1 and +1. Furthermore, they can provide a common ground for evaluating
trend strength and strength of association for populations undergoing very different

dynamics.
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Introduction

Measures of trend strength that evaluate changes in population abundances over time
are an important tool in ecologists’ toolkit. A standard measure of trend strength is
based on the slope of the regression line for a linear regression(Gerrodette, 1987; White,
2019). The measure has several limitations. The metric has no constant range, which
makes the values hard to interpret. Different formulas also yield differently standard-
ized values, making results difficult to compare. It is also based on the assumption of
linearity, population growth or decline has to be constant and trends associated with
nonlinear population dynamics are not measured appropriately. Here I introduce a
new measure of trend strength based on proportional differences that address these

limitations before I describe related measures of association.
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Measuring trend in population abundances

Abundance can refer to the number of individuals at a site, biomass, or coverage. A
new measure of trend strength can be calculated from proportional differences between
groups of values and the mean abundance. Beginning with time step 2, the abundance
at each time step is added to the abundances at all later time steps and divided by the
mean abundance (Z), then the number of observations included in each comparison(c)
is subtracted. The proportional difference for each of the n—1 comparisons contributes
a positive or negative value to the sum of differentials D that is standardized by division
through the maximum difference MD, which is calculated the same way as D, but for

values that are ordered from lowest to highest.
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Bounded between —1 and 1, V measures monotonic population trends. Given that
there is at least one difference between abundances, the value will be 1 if abundances
stay the same or increase consistently over time, and —1 if they stay the same or
decrease consistently. If no monotonic association exists between abundances and time

steps the value is 0.
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Figure 1: Proportional difference for sets of abundances at each time step(blue)
relative to the mean abundance(red).
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Monotonic relationships can accurately measure linear trends and various non-linear
trends that are equally relevant to ecology. In the context of population abundances,
this includes exponential population growth if ideal environmental conditions allow
fast population growth, but also logistic growth associated with populations that reach
the carrying capacity of the environment. Through simulations, I found that V has a
high degree of concordant validity with the slope coefficient, but it places a stronger
weight on marked differences between the first and last time step. The strongest
negative trends as measured by V have higher abundances at the first time step and
low abundances at the last time step for a negative trend, compared to the slope
coefficient. Similarly, high positive values have lower abundances at the first time step
and higher abundances at the last. A certain degree of sensitivity to initial and final

abundances is an appealing property in a trend measure.

x;(ranked) Y7z D x;(ordered) "z D

12 — — 1 — —
15 108  —0.5 2 119 0.88
13 93 —1.38 3 117 1.63
8 80 -2 4 114 2.25
10 72 -2 5 110 2.75
6 62  —2.25 6 105 3.13
14 o6 -2 7 99 3.38
D 42 =275 8 92 3.5
11 37 —2.38 9 84 3.5
2 26 —=2.75 10 75 3.38
4 24 -2 11 65 3.13
9 20 —-1.5 12 o4 2.75
1 11 —-1.63 13 42 2.25
7 10 —=0.75 14 29 1.63
3 3 —0.63 15 15 0.88
> 120 644 —24.5 120 1120 35
z 8

Table 1 Evaluation of proportional differences.

V can be used for the evaluation of trends for data of different scale types: nonneg-
ative metric data, rank data, ordinal data, and binary presence/absence data. If used
for environmental variables that take on negative values the mean may be zero. In that
case, a small constant like 1 x 107 can be added to the mean to avoid indetermination.
A worked example that illustrates the calculation of V is presented in Table 1, where

x; refers to the population abundances for a fictional dataset.
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A new interpretation of Spearman’s rho

The abundance values in the example above have been chosen such they can alter-
natively can represent ranks. The reason for this is that the method used to assess
univariate fluctuations of abundances over time can also be used to obtain the most

widely accepted rank order correlation. Spearman’s Rho is give by:

D
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The ranks of one rank series are ordered from lowest to highest, D is then calculated
for the corresponding values of the other rank series. It does not matter how the roles of
the ordering and ordered rank series are assigned. However, there are slight differences
when the approach is used to calculate the rank order correlation. If there are ties the
familiar technique of taking the mean of the tied ranks is used in the ordered rank series.
But ties can also exist in the ordering rank series, therefore the corresponding ranks in
the ordered rank series are also averaged. For example, if the 3d and 4th ranks in the
ordering series are tied and the corresponding values in the series that has been ordered
are 2 and 8, then both of these values would have to be replaced by 5. The method
yields the same values as the standard approach to correct the value of Spearman’s

correlation which goes back to an attempt by Kendall(Taylor, 1994). The conventional

m(m2—1)
12

group of tied ranks with m tied values. This sum is then added to the sum of squared

method relies on calculating the sum of correction terms of the form for each
differences between ranks. The new approach is more straightforward and works also
if more than 2 values are tied or if tied sets in both rank series overlap. Another
difference to the calculation of V is also related to ties, MD used for standardizing D
is not calculated from ordered ranks, which would include the tied ranks. Instead, the
true maximum is calculated for the sequence of the first n natural numbers, i.e. by
ignoring ties. Furthermore, it is not even necessary to calculate the maximum from
proportional differences. The value of MD for n ranks can simply be calculated with

this formula:

nm*-1) n(n-1)

MD = —
1.5(n+1) 2

(3)

Overall, the new method makes the rank correlation easier to interpret, as it corre-
sponds to the standardized sum of proportional differences between the mean rank and
n — 1 subsets of ranks(2nd to highest, 3d to highest,..., highest) if one series is ordered
according to the other series. The straightforward accommodation of tied ranks is

another advantage over the conventional method.
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Evaluating trends in presence and absence

In certain ecological contexts and for certain taxa, population abundances are measured
as binary data that only assumes one of two values, i.e. "presence" and "absence", where
absence is coded as 0 and presence as 1. A strong positive trend can reflect increasingly

consistent use of a site and a strong negative trend that a site has been abandoned.

x;(time) Y'z D x;(ordered) Y "x MD

0 — — 0 — —
0 7 1 0 7 1
0 7 2 0 7 2
0 7 3 0 7 3
0 7 4 0 7 4
1 7 5 0 7 5
0 6  3.86 0 7 6
0 6  4.86 0 7 7
1 6  5.86 1 7 8
1 5 471 1 6  6.86
1 4 357 1 5  5.71
1 3 243 1 4 457
0 2 1.29 1 3 343
1 2 229 1 2 229
1 1 1.14 1 1 1.14
7 70 45 7 77 60
7 0.46

Table 2 Evaluation of proportional differences

For the example in Table 2, trend measure V is given by 45/60 = 0.75. Without
adjustment V equals 1 (or -1) as long as the observations are ordered. Unbalanced
data (e.g., a far larger proportion of zeros than ones) is common in ecological datasets.
To let V only indicate full correlation if the data is balanced it is possible to calculate
the adjusted measure V, by using a correction factor. The observations not only have
to be in perfect order, the numbers of observed presences and absenced also has to be

as equal as possible in order for V, to assume the value of 1(or -1). If the number of

)

time steps n is even, then V,, is given by:

X
—vi(i-j1-X
Ve V( ’ 0.5
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If n is an odd number, the following formula applies:

()

Here x refers to the arithmetic mean of the observations that are coded as 0 and 1.
For an even number of observations, the mean equals 0.5 if the data is balanced(i.e.
equal number of ones and twos), and V,, will have the same value as V. For a site with
continuous absence for 14 time steps and then a single presence at the last time step
V =1, but V, = 0.20, as the correction factor in that case is 0.2. The same value with
a negative sign is obtained for a time series with continuous presence for 14 time steps
and absence at the last time step. For the example in Table 2 that has 8 observations
without presence and 7 with absence the correction factor is 1 and V, equals V. A
high negative value would reflect a site that was used continuously in the past but
has been abandoned just as long as it was used before. A high positive value that the
site was not used in the past but has continuously been used in the second half of the

observation period.

Sensitive rank correlation

The relationship between abundances of different species and between abundances and
habitat variables is another active research area(Vazquez et al.,2007).To measure the
bivariate relationship between variables correlation coefficients are used. The two most
accepted measures of rank order correlations are Spearman’s Rho and Kendall’s Tau
(Kendall, 1948, Lovie, 1995). Both these measures quantify the degree of the monotonic
relationship between two rank series. A limitation of these rank correlations is that they
lack sensitivity to top ranks (first, second, and so on). In many ecological contexts, top
ranks can be considered to be more important than lower ranks, e.g. two conservation
ecologists ranking the same list of individual species according to their importance for
an ecosystem. Various weighted rank correlations have been described in the literature
that extend existing measures to make them more sensitive to top ranks(see, Dancelli,
2013). Approaches of this kind are based on weights and there is often no justification
for choosing a certain weighting scheme over another. A more straightforward approach
would be to use a measure that is inherently more sensitive to top ranks and not an
extension of an existing measure. Such a measure can be calculated from proportional

differences between ranks.
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Figure 2: Comparison of the sensitivity to top ranks for Kendall’s Tau, Spearman’s
Rho, and Phi. Each simulation was conducted 10.000 times for rank series of different
lengths, with consistent concordance for the top 3 ranks, while the rest of the ranks for
each bivariate distribution was generated randomly and without ties. Values correspond
to mean correlations.

It is calculated as follows: First, one rank series is ordered according to the ranks
of the other series, from lowest to highest. Then proportional differences relative to
higher and lower ranks are computed for each rank. To calculate the difference to later
time steps the sum of ranks that come later in the rank series is divided through the
rank value, subtracting the number of comparisons yields the proportional difference,
i.e. how often the value of the particular rank would need to be multiplied to fill
the positive or negative difference to ranks that come later in the series. If the rank
is on average lower than ranks that come later in the rank series this contributes a
positive value to the proportional difference, denoted PD, if it is higher a negative
value. Similarly, each rank is compared to the sum of ranks that come earlier in the
rank series. Here the contribution to PD is positive if the rank is higher than ranks that
come earlier, and negative if it is lower. To standardize PD the sum of all proportional
differences is divided through the maximum, denoted MPD, that corresponds to the
sum of proportional differences for a series that is ordered from lowest to highest, and
that has no ties. Because the method yields different results depending on how the roles
of ordering and ordered rank series are assigned, proportional differences are calculated

twice, once for each rank series that is ordered by the other rank series. The resulting
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rank order correlation Phi can be written as follows:

_ PDgy +PDy, (4)
o= OMPD , where
n—1 n n i—1
PD, MPD = ((Z M) _C> . (C_ (ZM»
i—1  Li = T
_n(n—1)
€=

Phi is bounded between —1 and 1, reached only if all ranks are concordant or maximally
discordant. The measure uses the whole range of values effectively. If there are tied
ranks the approach described above in the context of Spearman’s rank-order correlation
can be used. I conducted simulations for rank series of different lengths to assess the
sensitivity of Phi and two standard measures of rank-order correlation toward top ranks.
As shown in Figure 3, the new measure Phi indicates a higher correlation if there is
an agreement between the top 3 ranks of both rank series compared to Spearman’s
Rho and Kendall’s Tau. The influence of this concordance also decreases slower as n
increases. Similarly, if there is discordance between top ranks of two rank series the
measure would indicate a stronger negative association than standard rank correlations.
But Phi can also indicate a lower correlation than the other measures, particularly if
medium and lower ranks indicate a certain association that is contradicted by top
ranks. These findings suggest that Phi is a rank order correlation that is inherently

sensitive to top ranks.

Robust correlation for continuous variables

The degree of association between two variables is measured by a correlation coefficient.
If both variables are metric the Bravais-Pearson product-moment correlation, denoted
as 1p, is used. Although the reduction of continuous data to ranks can lead to a
loss of information, it is standard practice to use rank order correlations for originally
continuous data if the assumptions underlying r, are violated. These assumptions
include bivariate normality, linearity, and the absence of outliers. The proportional
approach can also yield a measure of bivariate association that does not have such
limiting assumptions. The same differentials that underly trend measure V are used(see
Equation 1), but each variable is ordered according to the abundances of the other
variable. In this respect, the measure is similar to Phi(Equation 4). To differentiate
the two proportional differences relative to the respective mean abundances they are

denoted as D,, and D,,, the corresponding maxima as MD,, and MD,,.The measure
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of association, referred to as Psi, is then given by:

. Dgy+Dy,
Psi = Mny n MDW , where (5)
(X
nya Dyxv Mnya MDyw = Z (:f - C)
1=2

n
c=)> i
i

Psi takes on values in the range[—1, 1]. The measure can also be used if the data con-
tains zeros or negative values, to avoid indetermination if the mean equals zero a small
constant like 1 x 107 can be added to the mean. If there are ties in the variable that
is used to order the other variable the same approach outlined above in the context of
rank correlations can be used. I conducted simulations that revealed that Psi yields
similar values to the Pearson’s correlation if values are drawn randomly from a normal
or uniform distribution. But Psi has several advantages over r,. One assumption of r, is
that the relationship between variables is linear, that a change in one variable changes
the other variable by a fixed amount. Conversely, the assumption underlying Psi is a
monotonic relationship between variables, if one variable increases (or decreases), the
other variable also increases (or decreases), and the value of one variable stays con-
stant if the value of the other variable stays constant. This is often a more realistic
assumption and a measure of monotonic association can provide a common ground for
studies in variuos ecological contexts.

For r, to be accurate, the data also cannot have outliers. A single extremely de-
viant observation can dramatically influence its value (Campbell, 2021). Such outliers
typically reduce the absolute magnitude of the correlation coefficient and simply ex-
cluding them from the dataset is not considered legitimate(Schober, 2018). To cope
with the problem of outliers and other violations of normality it has been recommended
to use Spearman’s correlation, or conceptually similar methods that entail the trans-
formation of the metric data to ranks, from which the Pearson correlation is then
calculated(Bishara & Hittner, 2012). Figure 3 illustrates the effects of an outlier that
illustrates the effect of a one-time population bonanza on measured correlations, Pear-
son’s correlation indicates a very weak positive correlation while Psi is more robust
and indicates a moderate correlation. Psi is also more robust if there are low outliers,
that correspond to population crashes. Therefore Psi is a viable alternative if there are
outliers in the data, as long as they are not too extreme.

Attempts to apply certain cut-offs to describe the strength of the correlation can also
be used for Psi and Phi. A classical resource on this approach is Evans (1996), and

Evans’s standards for correlation strength are as follows: .00 to .19 is very weak, .20
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Figure 3: Example data with one outlier, r, = 0.10 and Psi= 0.43

to .39 is weak, .40 to .59 is moderate, .60 to .79 is strong, and .80 to 1.00 is wery
strong. Naturally, the rules apply invariably to positive and negative values of the
new measures. The possibility of hypothesis testing with these measures remains to be

investigated.

Code availability

Excel workbooks and Jupyter Notebooks with code used for analyses are available at

https://github.com/FT81/better-trend

References

Campbell, M. J.(2021). Statistics at square one. John Wiley & Sons.

Dancelli, L., Manisera, M., & Vezzoli, M. (2013).0On two classes of Weighted Rank
Correlation measures deriving from the Spearman’s p.
In Statistical Models for Data Analysis (pp. 107-114). Springer, Heidelberg.

Evans, J. D. (1996).Straightforward statistics for the behavioral sciences.
Thomson Brooks/Cole Publishing Co.

Gerrodette, T. I. M. (1987). A power analysis for detecting trends. FEcology, 68
(5), 1364-1372.

Kendall, M. G. (1948). Rank correlation methods.

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate
use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768.

Lovie, A. D. (1995). Who discovered Spearman’s rank correlation?.

10


https://doi.org/10.1101/2022.03.18.484446
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.18.484446; this version posted May 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

British Journal of Mathematical and Statistical Psychology, 48(2), 255-269.
Taylor, W. L. (1964). Correcting the average rank correlation coefficient for ties in
rankings. Journal of the American Statistical Association, 59(307), 872-876.
White, E. R. (2019).Minimum time required to detect population trends: the need for
long-term monitoring programs. BioScience, 69(1), 40-46.
Vazquez, D. P., Melian, C. J., Williams, N. M., Bliithgen, N., Krasnov, B. R., &
Poulin, R. (2007).Species abundance and asymmetric interaction strength in
ecological networks. Oikos, 116(7), 1120-1127.

11


https://doi.org/10.1101/2022.03.18.484446
http://creativecommons.org/licenses/by-nc-nd/4.0/

