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Abstract
The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate
large-scale monitoring of Anopheles species diversity. Combining information from the 62
nuclear amplicons present in the ANOSPP panel allows for a more nuanced species
assignment than single gene (e.g. COI) barcoding, which is desirable in the light of permeable
species boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and
Variational Autoencoders (VAE), which we apply to k-mers resulting from the ANOSPP amplicon
sequences in order to hierarchically assign species identity. The NN step assigns a sample to a
species-group by comparing the k-mers arising from each haplotype’s amplicon sequence to a
reference database. The VAE step is required to distinguish between closely related species,
and also has sufficient resolution to reveal population structure within species. In tests on
independent samples with over 80% amplicon coverage, NNoVAE correctly classifies to species
level 98% of samples within the An. gambiae complex and 89% of samples outside the
complex. We apply NNoVAE to over two thousand new samples from Burkina Faso and Gabon,
identifying unexpected species in Gabon. NNoVAE presents an approach that may be of value
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to other targeted sequencing panels, and is a method that will be used to survey Anopheles
species diversity and Plasmodium transmission patterns through space and time on a large
scale, with plans to analyse half a million mosquitoes in the next five years.

Introduction
The Anopheles genus contains dozens of mosquito species that are the vectors for the
Plasmodium parasites which cause human malaria, and are thus of global public health interest.
The genus contains nearly 500 formally described species (Harbach and Kitching 2016), which
span more than 100 million years of evolution (Marinotti et al. 2013). Only a subset of these
species has the ability to transmit human malaria; however this vectorial capacity is not limited
to a specific part of the species tree, but found throughout the genus phylogeny. Many species
are members of closely related species complexes or groups, which are morphologically
indistinguishable and share large amounts of genetic variation due to their ability to hybridise in
areas of sympatry (Anopheles gambiae 1000 Genomes Consortium et al. 2017; Harbach and
Kitching 2016). Accurate species identification of Anopheles mosquitoes is difficult yet of crucial
importance. This is because even closely related species may differ in vectorial capacity,
insecticide resistance status and behavioural traits, all of which can influence the efficacy of
malaria control efforts (White, Collins, and Besansky 2011). Novel control efforts like gene drive
are likely to be implemented this decade for An. gambiae, and the success of these efforts will
need to be closely monitored. A thorough understanding of the geographic and temporal
distribution of different Anopheles species and the potential extent of gene flow between species
within the same complex is a necessary condition to implement gene drive technology as a
malaria control tool.

Currently, the typical process of species identification for Anopheles mosquitoes starts by
assigning them to species complexes or groups using morphological keys (Gillies and De
Meillon 1968; Gillies and Coetzee 1987; Rattanarithikul and Panthusiri 1994; Coetzee 2020;
Irish et al. 2020). These morphological keys are usually specific to geographical regions and
hence require in-depth and up-to-date knowledge of the species ranges. Moreover, the keys are
specific to certain life-stages and may require one to grow larvae to a later stage or even
adulthood. Because the morphological features distinguishing one group of species from
another can be very nuanced, the accuracy of morphological classification depends on the level
of experience and expertise of the person carrying out the identification. Species inside species
complexes can be morphologically indistinguishable from each other at the adult stage and
hence molecular assays are required for precise species identification. The most commonly
used method is a PCR-based species diagnostic assay, targeting the highly variable internal
transcribed spacer (ITS2) or similarly variable genomic regions (Cohuet et al. 2003; Scott,
Brogdon, and Collins 1993; Fanello, Santolamazza, and della Torre 2002; Wilkins, Howell, and
Benedict 2006), although other approaches exist, for example based on mass spectrometry
(Nabet et al. 2021). The PCR assays require the use of primers specific to the species complex
or group, hence higher level morphological misclassification can lead to failure to generate PCR
product or even erroneous species classification (Erlank, Koekemoer, and Coetzee 2018).
Mutations in primer or restriction sites can also lead to PCR failures. Moreover, in the case of
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hybrids or cryptic species, species identification based on a single marker can result in
overconfident assignment to a single species, lacking the nuance that is desirable in this case.
There exist panels targeting multiple loci, however, these are also specifically designed to work
on a single species complex (Rongnoparut et al. 1996; Lanzaro et al. 1995; Wang-Sattler et al.
2007; Santolamazza et al. 2008).

To help overcome these challenges, a multilocus amplicon panel called ANOSPP (for
“ANOpheles SPecies and Plasmodium”) was previously designed to amplify loci from any
individual from any Anopheline species (Makunin et al. 2022). In brief, the panel targets 62 loci
in the generic Anopheles nuclear genome, spread over all chromosome arms, including exonic,
intronic as well as intergenic regions. Additionally, it targets two conserved loci on the generic
Plasmodium mitochondrial genome, to simultaneously evaluate Plasmodium presence and
species for each individual mosquito. Sequence data from up to 62 nuclear loci targeted by the
ANOSPP panel for each sequenced specimen increases the resolution to distinguish closely
related species, and to flag potential hybrid or contaminated samples as well as cryptic species.
Moreover, the multilocus approach opens the possibility of population genetic and structure
analyses for single or closely related species.

The ANOSPP panel has been developed to improve accuracy and depth of information as well
as to drive down costs and time required to carry out vector species surveillance (Makunin et al.
2022). Accordingly, all that is required is to identify the individual mosquito as an Anopheline (as
opposed to a Culicine), which requires minimal expertise as it is based on the length of the
maxillary palps. Furthermore, the panel can use an extremely small aliquot of DNA (<1% of
whole mosquito extraction) extracted from each mosquito using a cheap, nondestructive,
high-throughput workflow (Makunin et al. 2022). Each mosquito is stored in the well of a 96 well
plate in ethanol, the non-destructive lysis buffer is added, incubated overnight, and then
removed. Ethanol is then added again to the mosquito carcass to preserve the mosquito and
enable morphological evaluation  of any individual post-sequencing. A dilution of the lysate is
made, which is then PCR amplified with a cocktail of 64 primer pairs in a single well through a
two-step process (Makunin et al. 2022). A single Illumina library is generated containing
amplified and bar-coded material pooled from 768 samples, then sequenced on a single
Illumina MiSeq lane.

The ANOSPP panel originally used a species assignment method based on alignment
distances, using static sequence similarity thresholds fitted per target (Makunin et al. 2022).
Using this method, amplicons contain sufficient information to distinguish between the majority
of the 56 species represented in the original dataset; only samples within some species
complexes could not be accurately assigned. However, this method was only tested on a small
dataset and the test set was also used as the training set to form the haplotype clusters.
Additionally, some targets were extremely divergent between different groups of samples in the
dataset and the distances for these targets appear to be sensitive to the choice of alignment
algorithm. Here we present a new species assignment method that we call NNoVAE, which is a
k-mer based method consisting of an initial step using Nearest Neighbours (NN) that identifies
samples down to a species or, in some cases, a species complex, and a second step using a
Variational Autoencoder (VAE) for species identification within a species complex. The VAE in
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the second step is specifically trained on the species complex to which test samples get
assigned by the NN step. The complex-specific VAE is required because the similarity between
closely related species is too close to detect with a general purpose method like the NN step.
Both assignment steps in NNoVAE work on the same k-mer tables.

NCBI GenBank’s BLAST (Altschul et al. 1997) can be used to assess the similarity of any
sequence to those within any INSDC database such as NCBI GenBank (Benson et al. 2018).
BLAST works on a single query at a time, and does not assign species directly, but rather
reports the best hits of the query sequence alongside p-values based on the alignment score
corrected for the size of the database. Similarly, the standard search methods for BOLD
(Ratnasingham and Hebert 2007) performs species assignment based on a threshold of percent
identity between the test sample and the samples in the reference database. The threshold is
informed by extensive knowledge of the divergence of the single marker cytochrome oxidase
subunit I (COI) between different species. In addition, the BOLD analysis toolkit contains a NN
method to explore the relationship between multiple species in the database. Like BLAST and
the BOLD toolkit, the NN step of NNoVAE uses sequence-based distances between the
haplotypes of test samples and samples in a reference database; however this is performed
across all amplicons and uses k-mer distances instead of alignments. By using k-mers, we
avoid the issues associated with alignment of highly divergent sequences and moreover are
able in a natural way to use short indels and small structural variants as well as SNPs. NNoVAE
aims to assign species identity and simultaneously collect information about the relationship of
the test sample to different species or species-groups in the database, which is particularly
useful when the test sample is of a species not represented in the database. Moreover,
NNoVAE combines the information from the 62 different target regions in ANOSPP to build
confidence in the species assignments, or reflect uncertainty in the species assignments where
appropriate.

NNoVAE resolves species identity within the An. gambiae complex using a VAE trained on
samples from this complex. A variational autoencoder is a machine learning method that learns
structure in high-dimensional data by encoding it into a low-dimensional space and
subsequently generating simulated data from the low-dimensional encodings (Kingma and
Welling 2013). VAEs have previously been used for species delineation in spiders
(Derkarabetian et al. 2019) and visualisation of population structure in Anopheles and humans
(Battey, Coffing, and Kern 2021). Both these studies used sequence alignments containing
much more genomic sequence than the amplicon panel provides. In contrast, NNoVAE is k-mer
based, making it robust to alignment ambiguity and enabling it to efficiently make use of all the
available sequencing data.

With the application of the NNoVAE method to data resulting from the ANOSPP panel, we aim
to create a robust and efficient platform for molecular species identification within the entire
Anopheles genus. We present a method that can assign individuals to any of the 62 species
currently represented in the reference database as well as taxonomically place species not yet
represented. We will include more samples from more species in the reference database as
they are sequenced by the amplicon panel, so as to represent the full diversity of the Anopheles
genus. NNoVAE also indicates the uncertainty of the assignment and provides information on
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other closely related species in the dataset, so in particular can flag potential hybrids. It can also
be applied to whole genome shotgun (WGS) data by computationally extracting the amplicon
target regions, allowing to integrate WGS reference panels with amplicon-sequenced field
samples.

Methods

Data processing

Panel sequences

The amplicon sequencing data are processed as described previously (Makunin et al. 2022). In
brief, the fastq files containing the reads are split into one file per target by cutadapt v2.5 (Martin
2011), which uses the primer sequences to do so. Cutadapt also filters for read pairs where both
the forward and reverse read match the appropriate primer and trims the primers. Next, DADA2
v1.10 (Callahan et al. 2016) is used to reconstruct sample haplotypes from these read pairs and
they are filtered using a custom script to include only haplotypes supported by at least 10 read
pairs and with at least 0.1 haplotype frequency per sample-amplicon pair.

Reference genomes

In silico amplicon extraction from reference genomes is done as described previously (Makunin
et al. 2022). Targets are extracted by matching the primer sequences in the reference genome
using SeekDeep v2.6 command ‘genTargetInfoFromGenomes’ (Hathaway et al. 2018).

Publicly available data

Where short read whole genome sequence data are publicly available for Anopheles
mosquitoes, we use these data to pull out target haplotypes to add to our reference index. If the
genomic coordinates of the primers are known (e.g. the reads are aligned to a publicly available
reference genome), we extract the reads overlapping the primer or target sites for each
amplicon separately from BAM files and convert these to fastq files, using samtools v1.9 (Li et
al. 2009). These are used as input for fermi-lite (Li 2015), which creates an assembly graph.
The unitigs from the assembly graph are cleaned up by cutadapt v3.1 (Martin 2011): the
sequences outside the primer sites are trimmed, while the sequences matching the primers are
retained and the unitigs are oriented according to the primers. Next, the unitigs are merged
using the information from the assembly graph with a custom python script, which relies on
MAFFT v7.475 (Katoh and Standley 2013) for sequence alignment. In the final step, the primers
are trimmed from the resulting haplotypes by cutadapt and any haplotypes that do not have
primer sequences on both ends are removed, which helps to get rid of contamination. If the
genomic coordinates of the primers are not known, we align the samples to the most
appropriate reference genome, identify the genomic coordinates of the primer sites if not yet
known and follow the steps above.This pipeline is implemented in Snakemake 5.30.2 (Mölder et
al. 2021). Snakefile and scripts are available on GitHub.
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Data structure

The resulting haplotypes are stored in a table with columns recording the sample name, target,
haplotype sequence, read count of supporting reads (for amplicon data only), fraction of
supporting reads (for amplicon data only). So each row corresponds to a unique haplotype for a
sample target combination, hence samples that are heterozygous at a certain target will have
two rows for the same target.

Implementation

Species labels are assessed and species-groups constructed using custom Python scripts
implemented in python 3.8 (Van Rossum and Drake 2009). The VAE is implemented in keras
2.3 (Chollet and Others 2015) using a custom python script. Convex hull construction and
distance computations rely on scipy 1.6 (Virtanen et al. 2020) and pygel3d 0.2 (Bærentzen
2018). Plots are created with matplotlib 3.3 (Hunter 2007) and seaborn 0.11 (Waskom 2021). All
scripts and environments are available on GitHub.

K-mers

Alignments of amplicon target sequences from highly diverged species are often poor and it is
difficult to define a ‘fair’ distance metric based on these alignments. Moreover, there is not a
straightforward way to account for small indels and structural variants with alignment based
distances. K-mer based distances naturally incorporate indels and structural variation and
account for highly diverged sequences in an objective way and provide a solution to the
problems arising from relying on alignments. Therefore, our species assignment method uses
k-mers to support better comparisons between the sequences in the database and the
sequences of the test sample.

There is a trade-off in the choice of k. For large k there is little tolerance for errors, while for
small k there is a high chance that the same k-mer is found in multiple locations in the
sequence. For example, in a 149bp sequence, 5 evenly spread SNPs result in no 25-mers
matching the reference. On the other hand, the chance that all 4-mers are unique in a sequence
of the same length is incredibly small (<10-22). Based on these trade-offs, we selected 8-mers
as a reasonable length. The total sequence length of the amplicon panel targets for the current
An. gambiae PEST reference genome sequence AgamP4 is 9928 bp, with a mean target length
of 160 bp. There are 65536 unique 8-mers, so the chance that all 8-mers within a target are
unique is 84% on average. Across the nearly 10 kb of amplified sequence, the chance that all
8-mers are unique is vanishingly small, but the expected number of unique 8-mers is
approximately 8533 (sd 46) and the expected number of non-unique 8-mers is approximately
680 (sd 22).

The methods we present here work with k-mer tables created from each haplotype from each
target. A k-mer table consists of 4k columns, each corresponding to a unique k-mer. To translate
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a sequence to a k-mer table, we record in each column how often the corresponding k-mer
occurs in the sequence. This results in a sparse table (the sparsity of course depends on the
choice of k) with non-negative integer entries.

The k-mer distance between two sequences is defined as follows. Translate both sequences to
k-mer tables as described above and call these q1 and q2. Then the k-mer distance between

them is given by , i.e.  the number of non-matching k-mers divided by the𝑑
𝑘

𝑞
1
, 𝑞

2( ) =
Σ 𝑞

1
−𝑞

2| |
Σ 𝑞

1
+𝑞

2| |
total number of k-mers in both sequences. The normalisation is required to correct for a bias
attributing smaller distances to shorter sequences.

Results and Discussion

Reference database construction

Species assignment methods commonly work by comparing a query sequence to a reference
database (Ratnasingham and Hebert 2007; Benson et al. 2018). The completeness and quality
of the reference database heavily influence the accuracy of the assignment method. The
reference database we constructed consists of well-curated samples sequenced with the panel,
in silico extracted reference genomes, and in silico extracted whole genome short read data. As
we expect that the reference database will expand to include additional species and populations
over time, we assign a version number to the database. The reference database described
here, which we call NNv1, contains 186 samples, representing 62 species spread over 4
subgenera. The dataset from (Makunin et al. 2022) forms the backbone of the reference panel.
In addition, six species in the An. gambiae complex have been included from publicly available
whole genome data (The Anopheles gambiae 1000 Genomes Consortium 2021; Fontaine et al.
2015) in order to increase the resolution in a group of hard to distinguish species. To maintain
the advantages of multi-locus assignment, we required samples to have at least 10 targets
amplified to be included in the reference database. Ideally, the database would contain several
specimens per species to represent within species variation. This is particularly important for
species with a wide geographical range.

The amplicon panel is designed to improve accuracy of species assignments over
morphological or single-marker methods. However, the species labels supplied by our sample
partners were in most cases obtained by the latter methods, hence it was necessary to
reconfirm them. All label information for the reference database NNv1 is listed in Supplementary
Table 1, and the assignment of species labels is discussed in more detail (Supplementary
Information Section 1), but we present an outline of the principles we used here. For most
samples sequenced by the amplicon panel, two molecular barcodes (COI and ITS2) were also
sequenced and compared to the sequences available in BOLD (Ratnasingham and Hebert
2007) and NCBI (Benson et al. 2018). Here, we used the barcode information as well as the
pairwise k-mer distances between samples in the reference database NNv1 to generate a
consensus species label for each sample. A few samples show inconsistencies between their
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partner labels, molecular barcodes and amplicon assignments; these samples were also
removed or flagged as overly diverged in Makunin et al. (2022). For these samples the
distances to samples of the same species label is much larger than the distance to some other
samples in the database, suggesting they were mislabelled. In some cases there is additional
evidence from molecular barcodes and it was possible to relabel them to the species they
match. Other samples are clearly different from samples with the same species label, but do not
clearly belong to any other species in the database. These are labelled as the species-group
they belong to appended by ‘_sp1’, ‘_sp2’, etc. Hopefully, by extending the reference database
in the future, we can get a better understanding of which species such samples represent. For
some closely related species, the different species labels were supported neither by the
pairwise-distances nor by the barcodes. Samples from these species are assigned to a group of
closely related species and their consensus labels end in ‘_c’ to notify that they are part of a
complex of species that cannot be distinguished by the nearest neighbour method. None of the
in silico extracted samples showed inconsistencies with pair-wise k-mer distances and hence all
retained their published labels.

Species-groups construction

The species-groups are defined based on the pairwise k-mer distances between samples in the
reference database NNv1 and make use of the consensus species labels discussed above. The
k-mer distance between two samples, s1 and s2, is defined as

, where Ti is the set of targets amplified in sample i𝑑
𝑠,𝑘

𝑠
1
,  𝑠

2( ) = 1
𝑇

1
∩𝑇

2| | 𝑡∈𝑇
1
∩𝑇

2

∑
𝑞

1
∈𝑄
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∑
𝑞

2
∈𝑄

2,𝑡

∑
𝑑

𝑘
𝑞

1
,𝑞

2( )
𝑄

1,𝑡| | 𝑄
2,𝑡| |

and Qi,t is the set of unique haplotypes of sample i at target t. So in words, for a given target the
k-mer distance between two samples is the mean k-mer distance between all pairs of
haplotypes from the two samples; e.g. if sample s1 is homozygous and s2 heterozygous at target
t, then the k-mer distance at target t between these samples is the mean of the k-mer distance
of the haplotype from s1 compared to the first haplotype from s2 and the k-mer distance of the
haplotype from s1 compared to the second haplotype from s2. If a sample has more than two
alleles at a single target, we take into account all haplotypes according to the above definition.
The k-mer distance between two samples is defined as the average of the k-mer distance
between these samples at all the targets that were amplified in both samples.

Figure 1 shows the pairwise k-mer distances between all samples in the reference database.
The samples are ordered roughly by phylogeny (as in the tree in Figure 2) and this results in a
visible structure in the distance plot. One can observe dark triangles below the diagonal,
reflecting that samples of the same or closely related species have a smaller 8-mer distance to
each other than to other samples. This effect repeats itself on different scales, mirroring the
multi-level structure in the phylogenetic tree.
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Figure 1: Lower triangle: heatmap of 8-mer distances between pairs of samples in the reference database. Samples
are on the x- and y-axis, roughly ordered by phylogeny and labelled with their consensus species label. Dark colours
correspond to small 8-mer distances and light colours to larger 8-mer distances. Upper triangle: species-groups at
fine, intermediate and coarse levels (see main text for definitions of these).

We identify clusters of samples in the reference database NNv1 and we will refer to those as
species-groups. It is important to emphasise that the way we use the term ‘species-groups’
does not refer to a taxonomic classification, but to the clusters of samples defined by thresholds
on the 8-mer distances between samples. Ideally, a threshold would partition the samples in the
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reference database NNv1 into species-groups, such that the 8-mer distance between each pair
of samples within the group is smaller than the threshold and the 8-mer distance from any
sample within the group to any sample outside the group is larger than the threshold. The
motivating assumption is that the samples in the same species-group share more recent
ancestry with each other than with samples that are members of different species-groups. While
several thresholds satisfy the partitioning condition, they are most useful for the purpose of
species classification when they generate species-groups that (approximately) correspond to
classification at an established taxonomic level. Not surprisingly, there are no thresholds that
perfectly satisfy the partitioning condition and are completely concordant with current taxonomy,
but several thresholds give groups that are close to taxonomic entities and given the paucity of
molecular data for some of these species, it may be that the taxonomic entities are less
phylogenetically accurate than the k-mer based groupings. In exploring different thresholds
(Supplementary Information Section 2), we selected three levels that best matched described
taxonomic entities. The species-groups at each of the threshold levels we’ve selected are listed
in Supplementary Table 1.

For very low thresholds, each sample will form its own species-group, which is not informative.
For a threshold of 0.1 on the sample 8-mer distance, most species-groups satisfy or nearly
satisfy the partitioning condition, and each species-group contains a single species or multiple
species from a known species complex or group, e.g. An. gambiae and An. coluzzii form a
fine-level species-group together. We refer to the species-groups at the 0.1 level as the fine
level species-groups and they are most useful for species assignment, because they provide
the highest resolution. A threshold of 0.3 merges samples representing species from some
well-known complexes, like the entire An. gambiae complex, into a single species-group.
Similarly, many of the species for which we currently only have a single representative in the
reference database NNv1, are merged into larger species-groups. We refer to this level of
species-groups as the intermediate level, which provides insight into the degree of similarity
between different fine level species-groups. Additionally, the intermediate level species-groups
can be informative when we sequence a sample whose species is not represented in the
database because the species assignment at the intermediate level places the sample within its
most closely related species-group in the database. Thresholds higher than 0.3 tend to violate
the partitioning condition to a greater extent, but it is desirable to include a coarse level
classification to get an approximate taxonomic position of unrepresented species and of more
diverged species. We selected 0.51 as a threshold for the coarse level classification because
this gives reasonably clear species-groups that roughly correspond to taxonomic series.
However, it is not perfect, as it groups together the Myzomyia and Neocellia series in the Cellia
subgenus and it splits the Neomyzomyia series into three distinct species-groups. A similar
effect was observed in Makunin et al. (2022), where the Neomyzomyia series did not form a
monophyletic clade.

At the fine level, most species-groups contain all samples from a single species, but there are
some exceptions. For some species, e.g. An. nili and An. hyrcanus, the samples are split into
multiple fine-level species-groups, because they appear much more distinct from each other
than you would expect in a single species (see Supplementary Information Sections 1 and 2 for
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more detailed discussion). In our assignment, these will be treated as distinct species,
highlighting to entomologists and taxonomists that further work to refine species in these groups
is needed. Conversely, there are also species-groups that contain samples from multiple
different species. These do not represent a single species, but instead they represent a complex
of closely related species. Species inside species complexes often share a lot of genetic
variation and the k-mer distance based method that we discuss here does not have sufficient
resolution to reliably distinguish between them. The species-groups at the fine level that contain
more than a single species are the An. marshallii group (contains An. hancocki, An. brohieri and
An. demeilloni), An. gambiae/coluzzii, the An. sundaicus complex (contains An. sundaicus and
An. epiroticus) and the An. coustani group (contains An. coustani, An. ziemanni, An. tenebrosus
and An. paludis).

Nearest neighbour assignment
The first step of the hierarchical assignment method performs nearest neighbour assignments to
samples in the reference database at the three different levels of species-groups introduced
above. The assignment is initially done independently at each target, for each sample,
computing assignment proportions for the species-groups at the chosen level, normalised such
that they sum up to one over all species-groups. The resulting per-target assignment
proportions are then averaged over all targets, resulting in the overall sample assignment
proportions at the chosen level. If the sample assignment proportion is at least 0.8 for one
species-group, the sample is classified as a member of that group. If the classification threshold
of 0.8 is not met at the chosen level, the sample remains unassigned at that level.

For example, to assign a sample s at the coarse level, we translate its target sequence
corresponding to target 1 to an 8-mer count table, denoted as qs,1. Next, we compute its 8-mer
distance, ,  to every target sequence in the reference database corresponding to𝑑

8
𝑞

𝑠,1
, 𝑞

𝑟,1( )
target 1, i.e. to every . The nearest neighbours of the test sequence qs,1 are those sequences𝑞

𝑟,1

in the database that minimise the 8-mer distance between themselves and qs,1. In other words,
the nearest neighbour sequences of qs,1 are the target 1 sequences in the database with the
highest percentage of matching 8-mers. The nearest neighbour sequence of qs,1 can be a
sequence that occurs in a single sample in the reference database, or the nearest neighbour
sequences can be the same sequence occurring in multiple samples in the database, or the
nearest neighbour sequences can be distinct sequences that have the same distance to qs,1.

Now we bring in the species-groups. For each species-group we record the frequency of
nearest neighbour sequences. This can be thought of as an ‘allele-frequency’ when we classify
each target sequence as either a ‘nearest neighbour allele’ or not a ‘nearest neighbour allele’.
But just like allele frequency, it takes into account the zygosity of the samples. The nearest
neighbour frequencies are normalised, such that they are equal to one when summed over all
species-groups. These quantities are the per-target assignment proportions.
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This procedure is repeated for every amplified target in the test sample. Finally the per-target
assignment proportions are averaged over all successfully amplified targets to give the overall
assignment proportions for sample s at the coarse level. If there is a species-group with an
assignment proportion of at least 0.8, the sample is classified as a member of this group,
otherwise it remains unassigned at this level. Assignments to the intermediate and fine levels
are made in the same fashion, starting from the same nearest neighbour assignments, but
based on the relevant species-group memberships.

The per-target assignment proportions are based on the frequency of nearest neighbour
sequences in the species-groups and not simply on the count of nearest neighbour sequences.
The use of frequencies corrects for the different sizes of the species-groups. Suppose a nearest
neighbour sequence occurs in 2 out of 10 samples of species-group A and in 1 out of 2 samples
in species-group B (and assume all samples are homozygous). By using counts, we would
attribute 2/(2+1) = 0.67 and 1/(2+1) = 0.33 assignment proportion to species-group A and B,
respectively. But if we did this, species-group A would only have a higher assignment proportion
because it contains more samples. What we are really interested in, is how similar the target
sequence of the test sample is to the target sequences in the species-groups. So by using the
nearest neighbour frequencies, the assignment proportions are (2/10)/(2/10+1/2) = 0.29 and
(1/2)/(2/10+1/2) = 0.71 for species-group A and B, respectively.

The nearest neighbour frequencies observed for a given target of a given sample at a given
assignment level are normalised to obtain the per-target assignment proportions. This
normalisation ensures that every target is weighted equally. Without the normalisation, the
weight of a target would be determined by a combination of the overall frequency of the nearest
neighbour sequences and their distribution amongst the species-groups, whilst we are more
interested in the distribution than the total frequency.

Targets that did not amplify in the sample are simply ignored. There are different reasons why a
certain target does not get amplified in a sample. It might be that the primer binding sites for the
target are too diverged or altogether absent in the test sample’s genome. Or the target might not
be amplified due to technical reasons like poor DNA quality. In the former case, we are implicitly
using the information contained in the missingness, because we restrict our attention to the
targets that did amplify in the sample, which should be the same targets that amplified in the
samples of the same species contained in the reference database. In the latter case, as long as
the missingness is randomly affecting the targets, ignoring missing targets does not bias the
assignment proportions.

So far we have assumed that the test sample was homozygous at each target. To generalise to
the heterozygous case, we compute the per-target assignment proportions separately for both
target sequences and average them for the final per-target assignment proportions. It does
occasionally happen that a sample has more than two different target sequences. This can be
due to errors in the PCR amplification or sequencing, contamination by other samples, or a
certain target region might be duplicated in the genome of some species. In the NNv1 reference
database on average 1.2% of targets per sample have more than two different sequences; in
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the query datasets discussed later in this article this percentage ranged from 0.3% to 2.3%. We
deemed this small enough to simply extend the per-target assignment proportion computation to
include targets with more than two different sequences, by taking the average assignment
proportions over different sequences as for the heterozygous case.

Figure 2 shows two examples of the nearest neighbour assignment of a test sample. The test
samples are Amou-3-2 and Agam-35, an An. moucheti and An. gambiae individual, respectively.
For Amou-3-2 we see that for most targets, the nearest neighbour sequence is found in all four
An. moucheti samples in the reference database NNv1. For some targets, the nearest
neighbour sequence is only carried by a subset of the An. moucheti samples in the database,
whilst for other targets the nearest neighbour sequence is also carried by individuals of other
species. For Agam-35 the heatmap shows that, for many targets, the nearest neighbour
sequences are not only found in An_gambiae_coluzzii samples, but also in samples from other
species in the An. gambiae complex. There are only two matches to samples outside the
Pyretophorus series, not shown here. This results in a high-confidence assignment to the
Pyretophorus series at the coarse level as well as a high-confidence assignment to the An.
gambiae complex at the intermediate level. At the fine level, the largest assignment proportion is
to the An_gambiae_coluzzii species-group, but it does not meet the 0.8 classification threshold
because of the relatively high assignment proportions to other species-groups within the An.
gambiae complex. So at the fine level, this sample cannot be classified with sufficient
confidence to a single species. Later, we will present a method to resolve the species identities
of samples within the An. gambiae complex.
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Figure 2: Nearest neighbour assignment example. Left panel: The heatmap shows the nearest neighbours of
sample Amou-2-3, an An. moucheti specimen, at its different targets. For clarity, not all samples in the reference
database have been displayed, only those in the Myzomyia and Neocellia series (except Amou-2-3). The samples
from the reference database are arranged along the x-axis and the targets along the y-axis. An entry is coloured pink
if the corresponding sample from the reference database has a nearest neighbour sequence at the corresponding
target. Peach entries indicate that the corresponding sample from the reference database does not carry a nearest
neighbour sequence at the corresponding target. If either the test sample or the reference sample did not amplify at
the corresponding target, the entry is white. The bars at the bottom show the overall assignment proportions for the
displayed species-groups, only assignment proportions of at least 1% are shown. From top to bottom the assignment
proportions are for the fine, intermediate and coarse level. For the three-letter code abbreviations of species-groups,
see Supplementary Table 1. The numeric abbreviations stand for 1: An. marshallii complex sp1, 2: Myzomyia sp1, 3:
An. gabonensis, 4: An. culicifacies, 5: An. maculatus B; none of these species-groups represent more than 1% of the
assignment. Right panel: The heatmap showing the nearest neighbours of sample Agam-35, an An. gambiae
specimen. Not all samples in the reference database are displayed, only those in the Pyretophorus series (except
Agam-35) as well as five samples from the Neocellia series. The numeric abbreviations stand for 6: An. gambiae
complex sp1 (0.06 assignment proportion), 7: An. christyi and MNs stands for Myzomyia_Neocellia_series.

The species-group assignment has been tested on the reference database itself, by dropping
out one sample at a time. The majority of samples could be assigned to the correct
species-group at the fine level when using a threshold of 0.8 assignment proportion, see Figure
3, Supplementary Tables 2-4, Supplementary Section 3. To provide context, we have included a
phylogenetic tree constructed from pairwise 8-mer distances using FastME (Lefort, Desper, and
Gascuel 2015) and displayed using TreeViewer (Bianchini, n.d.). If we ignore the samples that
form a species-group on their own, because we do not yet have sufficient representation for
those species, 61.8% of samples are assigned correctly at the fine level, and 98.8% and 100%
at the intermediate and coarse level respectively. In most cases, the fine level species-groups
consist of a single species, although in some cases they comprise multiple species. The jump in
assignment success from the fine to the intermediate level is mostly caused by the An. gambiae
complex, which is well-represented in the reference database. Most samples within the complex
can be assigned to the correct fine level species-group to some extent, but they only meet the
assignment threshold at the intermediate level species-group assignment, where all samples in
the An. gambiae complex are grouped together. This effect is seen in a few other groups as
well, and motivates the VAE part of our assignment procedure (described below).
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Figure 3: Species-group assignment accuracy on reference database NNv1. Samples were dropped out of the
database one at a time to test the assignment accuracy. Left: phylogenetic tree of the samples in the reference
database NNv1 constructed from pairwise 8-mer distances using fastme. Samples are labelled by their fine level
species-group label. Dark-shaded clades are instances of species-groups that contain more than one species. Right:
Samples are placed along the vertical axis, ordered by the species tree. The bars represent the assignment
proportion to the correct species-group and the colours indicate the species-group level. As an example, the first
sample is assigned to the correct species-group with a proportion of 0.88 at the fine level, with a proportion of 0.91 at
the intermediate level and with a proportion of 0.99 at the coarse level. The thin horizontal lines indicate the different
species-groups at the fine level and the thick horizontal lines at the coarse level. The separation of the
species-groups at the intermediate level has not been displayed for clarity. The vertical line represents the
assignment threshold of 0.8.
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For the same group of samples, the average correct assignment proportion per sample at the
coarse level is 99.4%. This shows that for samples of species that are well-represented in the
reference database, there is a near perfect assignment at the coarse level. And in fact, the
average correct assignment proportion of 95.8% at the intermediate level shows that these
assignments are also generally with high confidence. At the fine level the confidence starts to
break down for some samples, in particular the An. gambiae complex, which is responsible for
many samples in the reference database. Then the average correct assignment per sample is
81.3%. This shows that an additional classification method for species complexes is desirable.

In NNv1, 21 species-groups at the fine level consist of a single sample. These cannot be
assigned to the correct species-group in the drop-out assignment experiment. 12 of these
samples are members of a larger species-group at the intermediate level and 11 of them can be
assigned at the intermediate level, the other sample is not assigned at the intermediate, nor at
the coarse level. The remaining nine samples only become a member of a larger species group
at the coarse level. Six of them can be classified at this level, the other three remain
unclassified.

The four unclassified samples are An. christyi, An. atroparvus, An. oryzalimnetes and An. cruzii.
All of these are quite diverged from everything else in the reference database and as such do
not exhibit a strong matching to any of the coarse level species-groups. In particular, the
Kerteszia and Nyssorhynchus subgenus are underrepresented, both in number of species and
number of samples, but also the basal species in for instance the Pyretophorus series are not
well represented and are too diverged from the other species in this series to exhibit strong
similarity to the other samples from this series. In the case of An. cruzii in the Kerteszia
subgenus it is actually impossible to assign it to its coarse level species group with the current
threshold of 0.8, because of its 26 amplified targets, only 15 are also amplified in the single
other sample in the reference database from the Kerteszia subgenus, which results in a
theoretical maximum assignment to the correct species-group of 0.58. Note, this is the only
species-group at the coarse level for which the theoretical maximum correct assignment for a
sample in the reference database is smaller than the threshold. But it again underlines the
necessity to extend the reference database, both in number of species and number of samples
per species.

When a sample is of a species not represented in the reference database, three things can
happen. If its species is much more closely related to a single species in the database than to
all the others, it will likely be assigned to the species it is related to. Alternatively, if the database
contains multiple closely related species, it will be assigned at a higher level to the group that
contains all these closely related species. If the sample is highly diverged from all species
represented in the database, its nearest neighbours will essentially be chosen at random, and
the assignment threshold will not be met. This emphasises the importance of extending the
reference database, both by increasing the number of species represented and by increasing
the number of samples per species, with a particular focus on capturing the within-species
diversity (e.g. representing the geographic species range, representing all karyotypes when
polymorphic chromosomal inversions are present).
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The species-groups with a single representative can be used to explore the three possible
scenarios for when the test sample belongs to a species not present in the reference database:
assignment to a closely related species, assignment to a group of species at the intermediate or
coarse level, or no assignment.

The first scenario is represented by An.bellator. The only other representative of the Kerteszia
subgenus in our reference dataset is a sample representing An. cruzii. At the fine level
species-groups, the An. bellator sample is assigned for 0.875 to An. cruzii and hence meets the
threshold to be classified at the fine level. So it can happen that a sample is classified to the
wrong species, if this species is the only reasonably close species in the database. This
scenario is more likely for diverged groups of species with little representation in the database,
for example the Nyssorhynchus and Kerteszia subgenera.

An example of the second scenario is the sample Amar-3-1, in the Myzomyia series. At the fine
level it has an assignment proportion of 0.474 to the An_marshallii_complex and 0.378 to the
An. theileri species-group. All other species-groups have an assignment proportion of less than
0.06. So this sample is more related to these two species-groups than to anything else in the
reference database, but it does not belong to either of them. At the intermediate level it has an
assignment proportion of 0.850 to the An_marshallii_group species-group, which is the
An_marshallii_complex and An. theileri species-group combined. Now it meets the threshold
and it will be classified as a member of the An_marshallii_group species-group.

An. christyi is an example of a sufficiently diverged sample that does not reach high assignment
proportions for a single species-group at any level. At the coarse level, it is assigned to the
Pyretophorus_series with 0.506 and the Myzomyia_Neocellia_series with 0.392 and other
species-groups have much lower assignment proportions. Hence, it is not possible to classify
this sample as a member of any species-group. Adding more samples from this and other
underrepresented species to the database, would increase its power to classify samples from
those species.

Gambiae complex classifier datasets
The nearest neighbour approach is not able to confidently distinguish between closely related
species that share a lot of genetic variation, but it does identify samples of those species as
members of a species complex at the intermediate assignment level. To resolve the species
identity inside these species complexes, we use a variational autoencoder approach specifically
trained for the complex under consideration. We demonstrate this method for the An. gambiae
complex, both because many of our samples fall within this complex and it is medically relevant
to be able to distinguish them, and also more practically, because we have access to a large
dataset of species-labelled samples. The classifier we present here contains 7 out of 8 formally
named species in the complex (Coetzee et al. 2013), as well as two putative cryptic species
(Tennessen et al. 2021; Barrón et al. 2019). Compared to NNv1, three additional species are
represented in this classifier to present as much of the diversity of the An. gambiae complex as
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possible. We expect that this method can be applied to other species complexes for which large
species-labelled datasets are available.

The An. gambiae complex classifier has been constructed using a training set (GCref v1) and a
validation set (GCval v1) of species-labelled samples. We included as many described species
in the An. gambiae complex as we could find or generate sequence data for. For species with
wide geographic ranges and a large amount of genomic data available, we also aimed to
represent the diverse geography where possible.

Both GCref v1 and GCval v1 consist of amplicon sequences and in silico extracted published
samples (Fontaine et al. 2015; Neafsey et al. 2015; Tennessen et al. 2021; The Anopheles
gambiae 1000 Genomes Consortium 2021). The samples from Nigeria and Madagascar were
not species-labelled, but they were unambiguously classified by an earlier version of this
classifier and we included these samples because Nigeria and Madagascar fill geographic gaps
in our sampling dataset. The species represented in GCref v1 are An. gambiae (406), An.
coluzzii (222), An. arabiensis (94), An. quadriannulatus (11), An. melas (3), An.merus (6), An.
bwambae (3), An. tengrela (38) and putatively An. fontenillei (4). These samples are generally
high coverage: 97% of samples have at least 55 of 62 targets amplified. The average number of
targets tends to be lower for the samples representing species other than An. gambiae, An.
coluzzii or An. arabiensis, which are also those species represented by fewer samples, but the
geographic ranges of these other species are also much more restricted so the samples we do
have are likely good representatives of the species. The species represented in GCval v1 are
An. gambiae (80), An. coluzzii (15), An. arabiensis (30), An. melas (1), An. merus (5) and An.
tengrela (12). The average number of amplicons for the species other than An. gambiae, An.
coluzzii or An. arabiensis is lower than in GCref v1 set. Given that for those species, there is
only a small number of samples available, we decided to use ones with at least 45 targets
amplified in GCref v1 and the ones with at least 30 targets in GCval v1. Sample information for
these datasets can be found in Supplementary Tables 5 and 6.

The input for the VAE is one 8-mer count table per sample, summed over all targets. If a test
sample is heterozygous at a given target, we translate each of its haplotypes to an 8-mer count
table and sum them to get the test sample’s 8-mer count table for the corresponding target. If a
test sample is homozygous at a given target, we translate its haplotype to an 8-mer count table
and double the counts to obtain its 8-mer count table at the corresponding target. The counts
are doubled in order to represent the target sequences as diploid sequences, and not introduce
artificial differences in the total number of 8-mers between homozygous and heterozygous
target sites. If the test sample has more than two different haplotypes at a given target, two
haplotypes are chosen at random and the sample is treated as a heterozygote. It happens on
average in less than 1% of the amplified targets that there are more than two different
sequences, so we expect that this inexact way of dealing with those cases does not have a
major impact on the results. Because we model the 8-mer counts as the observations of a
Poisson distribution, the counts have to be integers, hence we cannot average over all observed
alleles as in the nearest neighbour method. If a given target did not amplify in the test sample,
the associated 8-mer count table will just contain zeroes, equivalent to simply ignoring missing
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data. To obtain the VAE input, we sum the 8-mer tables over all 62 targets. This results in a
single table per sample, with 65,536(=48) integer entries, roughly summing to twice the number
of basepairs covered by the amplified targets, so a little under 20,000 for a sample in which all
targets amplified.

Variational Autoencoder

The within-complex assignment is based around a variational auto-encoder. The VAE consists
of an encoder, a latent space projection and a decoder. The specific design we used was
inspired by popVAE (Battey, Coffing, and Kern 2021). The encoder is a fully-connected neural
network that takes high-dimensional data as input and encodes that as a point in a latent space
of much lower dimension. The decoder is also a fully-connected neural network, and it takes as
input a point in the latent space and outputs ‘simulated’ data of the same dimensions as the
input data. The VAE learns a ‘good’ encoding by adjusting the weights in the encoder and
decoder to obtain an output similar to the original input. To prevent overfitting, the input of the
decoder is not the exact output of the encoder, but a nearby point in latent space. Furthermore,
the loss function used to update the encoder and decoder weights contains a regularisation
term on the latent space, in addition to the term measuring the similarity of the decoder output
and the original input. Because of the introduced sampling noise and the regularisation
constraint, the most efficient way to encode the data is to represent samples that are similar in
the high-dimensional data by nearby points in the low-dimensional latent space. In summary, we
expect that species identity shapes the structure in the 8-mer count tables and that the VAE
projects this structure to the low-dimensional latent space, resulting in clustering by species in
the latent space.

In our case the encoder input is the 8-mer count table of the training set, so a table of dimension
n x 65536 with non-negative integer entries, where n is the number of samples in the training
set. The output of the encoder is a set of 2d parameters for each sample, where d is the
dimension of the latent space. For each dimension, one parameter corresponds to the mean
position in latent space and one parameter corresponds to the variance of the position in latent
space. In our case we use a three-dimensional latent space (d = 3). The input of the decoder is
a position in latent space for each sample, sampled from the distribution determined by the
encoder output. The decoder output is an n x 65536 dimensional table of strictly positive entries,
however, unlike the input table, the entries are not necessarily integers.

The loss function is the sum of two terms: one measuring the difference between the input and
output data and one acting as a regulariser on the latent space. The relative weight of these
terms can be adjusted. If we model the count tables as observations of independent Poisson
variables, the difference between the input and output can be measured as the Kullback-Leibler
divergence (KL divergence) of the Poisson distribution with the means given by the output from
the Poisson distribution with the means given by the input. The KL divergence is the same up to
a constant as the negative of the Poisson loglikelihood with the input as the observed counts
and the output as the means. So minimising the KL divergence is equivalent to maximising the
loglikelihood with respect to the output. The difference term of the loss function is obtained by
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summing over all unique 8-mers. The theoretical minimum of the difference term of the loss
function is zero, and this is attained if the output is exactly the same as the input. However, this
theoretical minimum cannot be attained in practice, because the sparsity of the input implies
that there will be entries equalling zero and the activation function of the decoder generating the
output results in strictly positive entries.

The regularisation term of the loss function is based on the KL divergence of the normal
distribution parameterised by the encoder output from a standard normal distribution, i.e.

The regulariser is computed for each latent space dimension separately. Again, the𝑁(0, 1).
theoretical minimum equals zero and is attained when the mean outputted by the encoder is
zero and the variance outputted by the encoder is one. The regularisation term of the loss
function is defined as the KL divergence summed over the latent space dimensions. This
effectively enforces the distribution specified by the encoder output to look like a
multi-dimensional Gaussian distribution with mean zero, variance one and covariance zero. In
layman's terms, it pulls the projected positions of the samples in latent space towards the origin
and establishes a natural scale for them. The regulariser prevents overfitting by making it
expensive for the encoder to place samples far away from the origin. The loss function used to
train the VAE is the weighted sum of the similarity term and the regularisation term described
above, with a parameter w that controls the relative strength of the two terms.

We set most of the parameters involved in training the VAE by comparing the latent-space
projections for different parameter values, using a subset of GCref v1 containing only samples
from An. gambiae, An. coluzzii and An. arabiensis. The criteria we used to pick parameter
values were species classification accuracy of the reference set and the validation set, using
assignments based on convex hulls (described below), visible within-species structure, and, as
a secondary criterion, useful visualisation. Further detail on the choice of parameter values is
provided in Supplementary Information Section 4. The latent space projection is also affected by
the training dataset. We observed that the presence or absence of most countries does not
affect the classification, except for the Gambia and Guinea-Bissau. When these countries are
removed, the accuracy to distinguish between An. gambiae and An. coluzzii considerably
reduces. This is not surprising, since these samples lie on the boundary of the An. gambiae and
An. coluzzii clusters and as such are crucial for assigning those species. The complete results
can be found in Supplementary Information Section 5.

Within-complex species classification
We use the trained and tuned VAE to assign species as follows. We input the summed 8-mer
table of the test samples into the encoder of the VAE. The encoder outputs a position in latent
space for each sample. Importantly, the VAE is agnostic to species labels; the species
assignment happens based on the position in latent space of the test samples in relation to the
latent space positions of the species-labelled reference dataset GCVAEv1.

The top two panels of Figure 4 show the latent space projection of GCVAEv1. While most
species form nicely isolated clusters, An. gambiae and An. coluzzii border each other closely.
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Interestingly, the boundary is formed by mosquitoes from The Gambia and Guinea-Bissau.
These mosquitoes are labelled as An. gambiae by conventional molecular barcoding, but they
cannot be confidently assigned to either An. gambiae or An. coluzzii using over 500 ancestry
informative markers (AIMs) or whole genome PCA (Anopheles gambiae 1000 Genomes
Consortium et al. 2017; Clarkson et al. 2020). The clusters containing An. bwambae and the
putative new species An. fontenillei are placed very close to each other, and can also not be
reliably distinguished. These species are closely related, but up until now they have only been
discovered in Uganda and Gabon, respectively, and so, since they do not seem to have
overlapping geographic species ranges (Barrón, 2019), the species identity of samples falling
into either of these two clusters can be resolved by their geographic origin.

Figure 4: VAE projection of the gambiae complex reference dataset. Top panels: the samples are represented by
dots at the inferred mean position in three-dimensional latent space and coloured by their species label. The left
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panel shows latent dimension 1 versus latent dimension 2 and the right panel shows latent dimension 1 versus latent
dimension 3. Bottom panel: the same projection as above, but here the samples are coloured by the country of
collection revealing structure related to geography.

We perform species classification using the convex hulls of species clusters. A convex hull is
the mathematical notion of the smallest convex set containing all points of interest. A nice
metaphor is to imagine that you are wrapping all points corresponding to samples of a single
species together in such a way that requires the minimal amount of wrapping paper. We
constructed one convex hull for each species represented in the dataset, using latent space
positions of the samples from GCref v1 as well as of 363 additional species-labelled samples
that were not used in training the VAE, to account for possible effects caused by projecting the
samples to the latent space (sample to be found information in Supplementary Table 7). For our
classification procedure it is important that the convex hulls of different species do not overlap.
When constructing convex hulls from the full sample set, only the convex hulls corresponding to
An. gambiae and An. coluzzii overlap. We trimmed these hulls by iteratively removing samples
from the set of points used to construct them until they didn’t overlap. In total we removed 17
An. gambiae and 6 An. coluzzii samples. The samples from An. bwambae and An. fontenillei
are combined in one convex hull because they are so close together in latent space.

The classification of new samples happens as follows. If the latent space position of the test
sample falls inside a convex hull, the sample is classified as that species. If the latent space
position of the test sample falls outside all convex hulls, there are two options. If the sample is
much closer to one convex hull than to all others, it is classified as the species corresponding to
the hull it is closest to. To be precise, this happens if the euclidean distance to the closest
convex hull is at least 7 times smaller than the distance to all other convex hulls. This allows for
‘fuzzy’ boundaries of the convex hulls that are proportional to the separation between the
different hulls. We fitted the parameter value 7 on the dataset from Gabon to reflect the
assumption that An. tengrela is not believed to be found in Gabon. If the latent space position of
the test sample falls outside all convex hulls and outside their fuzzy boundaries, the sample is
assigned ‘uncertain’ followed by the labels of all the species whose convex hulls are within a
radius of 7 times the distance to the closest convex hull, in order of proximity. This assignment
reflects the uncertainty in our classification of samples that fall in an area in latent space where
no species-labelled samples fall. At the same time it gives information on our best guess or
guesses for the species identity and leaves open the possibility to modify the assignments
based on prior knowledge, e.g. species ranges or habitat restrictions.

There is one exception to the above assignment procedure: if the closest two convex hulls are
from An. gambiae and An. coluzzii and the euclidean distance to both of these hulls is less than
14 then the test sample is classified as uncertain_gambiae_coluzzii or
uncertain_coluzzii_gambiae, depending on which convex hull is closer, because we cannot
reliably distinguish between these species in this part of the latent space.

In addition to structure driven by species, the latent space projection of GCref v1 also exhibits
geographical structure. Within the An. gambiae species cluster, there is a distinct subcluster of
samples from Madagascar. Similarly, there is a distinct subcluster of samples from Madagascar
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in the An. arabiensis species cluster. As mentioned before, the boundary between the An.
gambiae and An. coluzzii species clusters is formed by samples from the far West of Africa.
These samples also stand out as a separate group in a study on whole genome data (Caputo et
al. 2021; Clarkson et al. 2020). There also appears to be a cluster of East African An. gambiae
samples that are distinct from the main cluster of An. gambiae as well as the Madagascar
samples. It is promising to see signatures of geographic structure within species from the
amplicon panel data, because this suggests that the panel can also be useful to explore
population structure within species.

VAE classification accuracy
We applied the species assignment procedure to GCval v1 (Figure 5). 134 out of 142 samples
(94.4%) samples are assigned to a single species and 132 of those (98.5%) are assigned to the
species concordant with their species label. One sample labelled as An. coluzzii is classified as
An. gambiae and one sample labelled as An. gambiae is classified as An. coluzzii. For all eight
samples classified as uncertain, the reference species label is among the set of assigned labels.
Seven of the samples classified as uncertain had fewer than 45 targets and we know that the
proportion of missing targets affects the position in latent space of the projected samples. The
other sample classified as uncertain falls in the space between An. gambiae and An. coluzzii.
Further information can be found in Supplementary Table 6.

Case studies
Ag1000G whole genome sequenced samples that are too diverged from the reference
genome

The Ag1000G project removes samples from its analysis that appear not to be An. gambiae, An.
coluzzii or An. arabiensis based on their divergence from the PEST (An. gambiae) reference
genome. We ran NNoVAE on all samples that fail the divergence filter from data releases v3
and v3.1 through v3.5. In these datasets, 212 of nearly 10,000 samples were filtered due to high
divergence from the PEST reference genome; we assign 166 of those to An. funestus at the fine
level and 17 to the An. gambiae complex at the intermediate level. Furthermore, we assign one
sample to An. nili gp sp3 and one to An. jebudensis at the fine level, and one to An. marshallii
group at the intermediate level. There are 20 samples that get assigned only at the coarse level
to the Myzomyia Neocellia series and six samples do not get assigned at any level. See
Supplementary Table 8 for all sample and assignment information.

All 17 samples that are assigned to the An. gambiae complex had at least 50 targets. We
assigned 5 samples to An. merus, 11 to An. melas and 1 to Uncertain_melas_quadriannulatus
(Figure 5). The geographic origin of the samples assigned to An. merus and An. melas is
compatible with the known ranges of these species (Wiebe et al. 2017).

Two of the unassigned samples stand out by their assignments: one sample appears to be from
the An. gambiae complex but contaminated by an An. funestus sample; the second appears to
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be a member of the Culex genus rather than the Anopheles genus, based on mitochondrial
analysis (data not provided). For this sample we extracted only 13 targets. The remaining
unassigned samples and those only assigned at the coarse level have at least 42 targets. They
can be split into four groups of samples that are similar to each other in assignment proportions
and mitochondrially. Because of the high amplicon recovery rate and the similarity of
assignment proportions, often found in different countries, we believe that these samples
represent species that are not present in NNv1. We aim to confirm the species identity for these
groups by morphology and genomic comparison to publicly available data and, assuming this is
successful, to include them in the next update of the reference database..

Burkina Faso

We collected 950 mosquitoes from three different locations in Burkina Faso. All individuals were
morphologically assigned to the An. gambiae complex. For 905 individuals (95.3%) we obtained
at least 10 amplified targets, the minimum number required for NN assignment. 901 samples
are indeed assigned to the An.gambiae complex at the intermediate level, 2 samples are
assigned to An. nili group sp3 at the fine level, one sample could only be assigned at the coarse
level to the Myzomyia Neocellia series and one sample could not be assigned at any level. The
latter two samples require more detailed morphological investigation, which is made possible by
the non-destructive extraction approach we used on these mosquitoes.

For 770 of the samples assigned to the An. gambiae complex (85.5%) we obtain at least 50
amplified targets, the minimum number required for VAE assignment. We find three species in
this dataset: An. gambiae, An. coluzzii and An. arabiensis (Figure 5). Most samples (91.6%)
could be assigned to a single species, but we also find some samples labelled as uncertain
shared between An. gambiae and one other species. The two samples that fall in the space
between the An. gambiae and An. arabiensis reference samples are remarkably far away from
all other samples. We cannot exclude the possibility that contamination between samples plays
a role here, especially because these samples were stored with 10 individuals in ethanol in a
single 1.5 mL tube in the years before sequencing. All metadata and assignment information
can be found in Supplementary Table 9.

Gabon

We collected 1,056 mosquitoes by human landing catch from different locations in Lopé village
in Gabon. All individuals were morphologically identified as members of the An. gambiae
complex. 11 mosquitoes were identified as An. fontenillei by a species diagnostic PCR (Fanello,
Santolamazza, and della Torre 2002) and those clustered with the An. fontenillei and An.
bwambae samples in the VAE projection as expected. Those samples were used to construct
the convex hulls. For 1002 (95.9%) of the unidentified samples we obtain at least 10 targets and
these are classified by the NN step of NNoVAE. The vast majority (993 samples; 99.1%) is
assigned to the An. gambiae complex. The other species we find in this dataset are An.
funestus (2 individuals) and An. coustani complex (2 individuals), plus 5 individuals that could
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not be assigned at any level. The 5 unassigned individuals had a high proportion of multi-allelic
targets, suggesting contamination may have occurred at some point in the process.

Of the 993 mosquitoes assigned to the An. gambiae complex, 890 (89.6%) have sufficiently
many targets to be run through the VAE (Figure 5). Most of these are assigned to a single
species: 632 to An. coluzzii, 130 An. gambiae and 1 An. fontenillei (the latter is actually
assigned to the combined convex hull of An. fontenillei and An. bwambae, but are assumed to
be An. fontenillei because of the non-overlapping species ranges). An. fontenillei was first
discovered in the forest of La Lopé National Park, 10-15km south of the sampling locations
presented in this study (Barrón et al. 2019). Although the species strongly prefers forested
habitats, it is not surprising to find one of them in the village given the small distance. It is
noticeable that a large number of samples fall in between the An. coluzzii and An. tengrela
clusters. Judging from the projection, we suspect that the whole cluster is An. coluzzii, but it may
be interesting to explore what drives the variation within this large cluster and why so many
samples are projected to an area where none of our reference samples are. Four other samples
are projected close to the An. arabiensis cluster, although they are assigned to a large set of
species labels. Independent PCR species diagnostics confirmed these four samples as An.
arabiensis (Fanello, Santolamazza, and della Torre 2002). This was surprising because An.
arabiensis has not been observed in Gabon before, despite extensive sampling efforts. The fact
that we see only four such specimens in this set of more than 1,000 with sufficient data,
demonstrates that whatever species these mosquitoes are, they are probably quite rare or less
likely to be caught by human landing catches. We plan to generate whole genome sequencing
data for these individuals to investigate their species and their relationship to An. arabiensis
from other geographic locations and to other sympatric species. All sample information and
assignment results are listed in Supplementary Table 10.
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Figure 5: VAE projections of A) validation set GCval v1 B) diverged samples from Ag1000G C) sample set from
Burkina Faso D) sample set from Gabon. The samples from the reference set GCref v1 are displayed as half
transparent circles, coloured by species as in Figure 4. The samples from each of the projected sample sets are
coloured by their assigned labels. The numbers behind each label corresponds to the number of samples in that
category. Samples with more than 3 species-labels are listed as ‘other’. The two samples from GCval v1 for which the
species label does not match the assigned species are marked with a red cross.

Conclusion
In this paper we presented NNoVAE, a method for robust species identification for the entire
Anopheles genus from multilocus targeted amplicon sequencing data. This integrated approach
removes the need for sorting the specimens into species groups or complexes based on
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morphology, which is labour intensive and error prone, particularly in the case of damaged
mosquitoes, for instance when collected with CDC light traps. The NN step can distinguish
between most species in our reference database. But equally importantly, it gives an indication
of the uncertainty of the assignment, using the same thresholds for the entire genus, enabling
us to quantify confidence in assignment in a meaningful way allowing for comparison between
all species groups. For individuals from species not yet represented in the reference dataset, we
can often assign to a species-group at the intermediate level (corresponding to taxonomic
species groups or complexes) or at the coarse level (corresponding to taxonomic series or
subgenera). A few samples did not meet the threshold to be assigned at the coarse level, but
the assignment results do give an indication of the position of these samples in the phylogeny.
Initial explorations of the mitochondrial sequences for those samples do not indicate a close
match to publicly available mitochondrial data of any Anopheles species. We hope to resolve
the species identity of these samples by extending our reference database and collaborating
with morphological experts, but until then we retain the groups of unresolved species to
compare future samples against them.

The NN step alone struggles to differentiate closely related species within species complexes.
For the An. gambiae complex we developed a high resolution species identification method
based on a variational autoencoder. This VAE step should be easily extendable to other species
complexes for which a sufficient amount of species-labelled data is available, which we expect
to be the case soon for An. funestus and An. coustani. The VAE can accurately distinguish
between eight species in the An. gambiae complex; only An. bwambae and An. fontenillei are
too close together in the projection to reliably separate them, but geographic origin helps with
this. The species assignments for the VAE are currently quite conservative; only if the VAE
projection of the test sample falls within the cloud of training samples from a single species, or
much more close to it than to any other cluster, is it assigned to that species. Otherwise it gets
assigned all the species labels of nearby clusters. This way, we flag potential outliers or
unexpected species, as for the An. arabiensis in Gabon, but entomologists can still decide to
exclude certain species labels if they are sure that they are not appropriate for their collection
location and time, for instance the An. tengrela label in Gabon.

The VAE projection of the An. gambiae complex also shows some population structure within
species clusters. Some of the structure reflects the geography of the collection locations, e.g.
Madagascar stands out as a separate subcluster both for An. gambiae and An. arabiensis.
However, the sample sets from Burkina Faso and Gabon show that samples from the same
location can be projected to different positions in latent space and it would be interesting to
investigate what is driving this observed diversity.

NNoVAE relies on a reference database and therefore the accuracy of the species assignments
also depends on the quality and completeness of the reference database. We expect that
version 2 of the reference database will contain approximately fifty additional species, as well as
more individuals of species that are underrepresented in NNv1 and we are seeking further
well-characterised samples.
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NNoVAE can characterise vector populations in a uniform way across the Anopheles genus and
as such contributes to our understanding of Anopheles species composition, population
structure, species ranges, and transmission potential. The combination of ANOSPP and
NNoVAE offers a cheaper, more robust, more informative, and more reliable way to carry out
malaria vector surveillance that we hope will be embraced over the coming years by the medical
entomology community and National Malaria Control Programs.
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