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Abstract

Calibrating model parameters on heterogeneous data can be challenging and inefficient. This

holds especially for likelihood-free methods such as approximate Bayesian computation (ABC),

which rely on the comparison of relevant features in simulated and observed data and are popular

for otherwise intractable problems. To address this problem, methods have been developed to

scale-normalize data, and to derive informative low-dimensional summary statistics using inverse

regression models of parameters on data. However, while approaches only correcting for scale can

be inefficient on partly uninformative data, the use of summary statistics can lead to information

loss and relies on the accuracy of employed methods.

In this work, we first show that the combination of adaptive scale normalization with regression-

based summary statistics is advantageous on heterogeneous parameter scales. Second, we present

an approach employing regression models not to transform data, but to inform sensitivity weights

quantifying data informativeness. Third, we discuss problems for regression models under non-

identifiability, and present a solution using target augmentation. We demonstrate improved

accuracy and efficiency of the presented approach on various problems, in particular robustness

and wide applicability of the sensitivity weights. Our findings demonstrate the potential of

the adaptive approach. The developed algorithms have been made available in the open-source

Python toolbox pyABC.

1 Introduction

Mechanistic models are important tools in systems biology and many other research areas to de-

scribe and study real-world systems, allowing to understand underlying mechanisms [Gershenfeld

and Gershenfeld, 1999, Kitano, 2002]. Commonly, they are subject to parameters that need to

be estimated by comparison of model outputs to observed data [Tarantola, 2005]. The Bayesian
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framework allows doing so by combining the likelihood of data and prior information on parameters.

However, for complex stochastic models, e.g. used in systems biology to describe multi-cellular sys-

tems, evaluating the likelihood is often computationally infeasible [Hasenauer et al., 2015, Tavaré

et al., 1997]. Therefore, likelihood-free methods such as approximate Bayesian computation (ABC)

have been developed [Beaumont et al., 2002, Pritchard et al., 1999]. In a nutshell, in ABC likelihood

evaluation is circumvented by simulating data, and accepting these depending on their proximity to

observed data, according to a distance measure and an acceptance threshold. This way, it generates

samples from an approximation to the posterior distribution. ABC is frequently combined with

a sequential Monte-Carlo scheme (ABC-SMC) [Del Moral et al., 2006, Sisson et al., 2007], which

allows gradually reducing the acceptance threshold while maintaining high acceptance rates.

ABC relies on the comparison of relevant features in simulated and observed data. Prangle [2017]

demonstrate superior performance of distances that adaptively weight model outputs to normalize

contributions on different scales, exploiting the structure of ABC-SMC algorithms. In Schälte et al.

[2021], we extend this approach to outlier-corrupted data. However, an implicit assumption of

scale normalization is that all model outputs are similarly informative of the parameters. It can

worsen performance, e.g. when inflating the impact of data points underlying only background noise.

Therefore, it would be preferable to either only consider informative statistics, or to account for

informativeness in the weighting scheme.

Especially for noise-corrupted high-dimensional data, often lower-dimensional summary statistics

are employed [Blum et al., 2013]. Various methods to construct such statistics have been developed,

e.g. via subset selection or auxiliary likelihoods [Drovandi et al., 2011, Nunes and Balding, 2010]. A

popular line of approaches uses as statistics the outputs of inverse regression models of parameters

on simulated data [Borowska et al., 2021, Fearnhead and Prangle, 2012, Jiang et al., 2017]. Such

regression models can be heuristically motivated as summarizing the information in the data in

a single value per parameter. In addition, Fearnhead and Prangle [2012] argue that the resulting

summary statistics effectively approximate posterior means, which conserves the true posterior mean

in the ABC analysis.

To evaluate proximity of regression-based statistics, e.g. Euclidean distances have been used, or

weighted Euclidean distances using weights based on calibration samples [Fearnhead and Pran-

gle, 2012]. However, here essentially the same problems apply that motivated the use of adaptive

weighting [Prangle, 2017], shifted from the level of data to the level of parameters, or regres-

sion approximations thereof. In fact, the approach by Prangle [2017] is particularly applicable to

regression-based statistics, as all outputs are informative. A further problem with regression-based

statistics is that an inverse mapping may not always exist, e.g. when parameters are not globally

identifiable.

In this work, we present two approaches combining the concepts of adaptive distances and re-

gression models. First, we integrate summary statistics learning in an ABC-SMC framework with

scale-normalizing adaptive distances. Second, the focus of this work, we employ regression mod-

els not to transform data, but in order to inform additional sensitivity weights that account for

informativeness. Moreover, we discuss the problem of non-identifiability of the inverse mapping,
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and present a solution using augmented regression targets. On a dedicated test problem exhibiting

multiple problematic features such as partly uninformative data, heterogeneous data and parame-

ter scales, and non-identifiability, we demonstrate how both scale-normalizing distances [Prangle,

2017], and regression-based summary statistics [Fearnhead and Prangle, 2012] fail to approximate

the true posterior distribution. Then, we demonstrate substantially improved performance of the

newly introduced approaches. We evaluate the proposed methods on further test problems, includ-

ing a systems biology application example and outlier-corrupted data, demonstrating in particular

robustness as well as wide applicability of the sensitivity-weighted distance.

2 Methods

2.1 Background

In this section, we give required background knowledge on the underlying methodology.

2.1.1 Approximate Bayesian computation

In Bayesian inference, the likelihood π(yobs|θ) of observing data yobs ∈ Rny under model parameters

θ ∈ Rnθ is combined with prior information π(θ), giving the posterior π(θ|yobs) ∝ π(yobs|θ) · π(θ).

We assume that while numerical evaluation of π(yobs|θ) is infeasible, the model is generative, i.e.

allows to simulate data y ∼ π(y|θ). The core principle of ABC consists of three steps [Pritchard

et al., 1999]:

1. Sample parameters θ ∼ π(θ).

2. Simulate data y ∼ π(y|θ).

3. Accept (θ, y) if d(y, yobs) ≤ ε.

Here, the distance d : Rny × Rny → R≥0 compares simulated and observed data, and ε ≥ 0

an acceptance threshold. This is repeated until sufficiently many, say N , particles have been

accepted. For high-dimensional data, the comparison is often in terms of summary statistics

s : Rny → Rns , as d(s(y), s(yobs)) ≤ ε, with d : Rns × Rns → R≥0 and typically ns � ny. Denoting

π(s|θ) ∝
∫
I[s(y) = s]π(y|θ) dy the intractable summary statistics likelihood with I the indicator

function, and sobs = s(yobs), the population of accepted particles then constitutes a sample from

the approximate posterior distribution

πABC(θ|sobs) ∝
∫
I[d(s, sobs) ≤ ε]π(s|θ) ds ·π(θ),

where πABC(sobs|θ) ∝
∫
I[d(s, sobs) ≤ ε]π(s|θ) ds can be interpreted as an approximation to the

likelihood.
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Algorithm 1 A basic ABC-SMC algorithm.

initialize ε1 via calibration samples, let g1(θ) = π(θ)

for t = 1, . . . , nt do

while less than N acceptances do

sample parameter θ ∼ gt(θ)
simulate data y ∼ π(y|θ)
accept θ if d(y, yobs) ≤ εt

end while

compute weights wti =
π(θti)

gt(θti)
, for accepted parameters {θti}i≤N

normalize weights W t
i = wti/

∑
j w

t
j

update gt+1 and εt+1 based on particles from generation t

end for

output: weighted samples {(θnti ,W
nt
i )}i≤N

For ε→ 0, it holds under mild assumptions that πABC(θ|s(yobs))→ π(θ|s(yobs)) ∝ π(s(yobs)|θ)π(θ)

in an appropriate sense [Barber et al., 2015]. Compared to likelihood-based sampling, ABC intro-

duces two approximation errors [Sisson et al., 2018, Chapter 1]. First, it accepts not only particles

with y = yobs, which occur for continuous models with probability zero, but also proximate ones

according to d. Second, only for sufficient statistics, π(θ|sobs) ≡ π(θ|yobs), is the original poste-

rior recovered in the approximate limit ε → 0. In practice, s is however usually insufficient, only

capturing essential information about y in a low-dimensional representation.

2.1.2 Sequential importance sampling

As the above vanilla ABC algorithm, also called ABC-Rejection, exhibits a trade-off between de-

creasing the acceptance threshold ε to improve the posterior approximation, and maintaining high

acceptance rates, it is frequently combined with a sequential Monte-Carlo (SMC) importance sam-

pling scheme [Del Moral et al., 2006, Sisson et al., 2007]. In ABC-SMC, a series of particle popula-

tions Pt = {(θti , yti , wti)}i≤N , t = 1, . . . , nt, are generated, with acceptance thresholds ε1 > . . . > εnt ,

targeting successively better posterior approximations. Particles for generation t are sampled from

a proposal distribution gt(θ) � π(θ) based on the previous generation’s accepted particles Pt−1,

e.g. via a kernel density estimate, only initially g1(θ) = π(θ). The importance weights wti are the

corresponding non-normalized Radon-Nikodym derivatives, wt(θ) = π(θ)/gt(θ).

The underlying ABC-SMC algorithm (Algorithm 1) used throughout this work is based on Toni

and Stumpf [2010], using an adaptive threshold scheme based on the median of distances in the

previous generation [Drovandi and Pettitt, 2011] and multivariate normal proposal distributions

with adaptive covariance matrix [Filippi et al., 2013], see Klinger and Hasenauer [2017], Klinger

et al. [2018] for details. There exist various ABC-SMC sampler variants [Sisson et al., 2018], e.g.

in some cases different threshold schemes [Silk et al., 2013] or proposal distributions [Filippi et al.,

2013] may be beneficial. The distances and summary statistics presented in this work are mostly
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independent of the sequential sampler specifics.

2.1.3 Adaptive distances

A common choice of distance d is a weighted Minkowski distance

d(y, yobs) = ‖r · (y − yobs)‖p =

 ny∑
iy=1

∣∣riy · (yiy − yobs,iy)∣∣p
1/p

, (1)

with p ≥ 1 and weights riy . Frequently, simply unit weights r = 1 are used (e.g. Borowska et al.

[2021], Fearnhead and Prangle [2012], Jiang et al. [2017], Toni and Stumpf [2010]). However,

model outputs can be and vary on different scales, in which case highly variable ones dominate the

acceptance decision. This can be corrected for by the choice of weights riy in (1), commonly as

inversely proportional to measures of variability,

riy = 1/σiy , (2)

with σiy e.g. given via the median absolute deviation (MAD) from the sample median [Csilléry et al.,

2012]. To define weights, calibration samples can be used (e.g. Beaumont et al. [2002], Fearnhead

and Prangle [2012]). However, Prangle [2017] demonstrate that in an ABC-SMC framework, the

relative variability of model outputs in later generations can differ considerably from pre-calibration.

Thus, they propose an iteratively updated distance dt, defining weights for generation t based on

all samples generated in generation t− 1.

In Schälte et al. [2021], we demonstrate the L2 norm used in (1) in Prangle [2017] to be sensitive

to data outliers, and show an L1 norm to be more robust on both outlier-corrupted and outlier-

free data. To further reduce the impact of outliers, we complement MAD, as a measure of sample

variability, by the median absolute deviation to the observed value, as a measure of deviation, giving

a normalization term PCMAD (see Schälte et al. [2021] for details).

2.1.4 Regression-based summary statistics

The comparison of simulations and data in ABC is often in terms of low-dimensional, informative

summary statistics. The “semi-automatic ABC” approach by Fearnhead and Prangle [2012] uses the

outputs of a regression model s : Rny → Rnθ , predicting parameters from simulated data (Figure 1):

1. In an ABC pilot run, determine a high-density posterior region H.

2. Generate a population P = {(θi, yi)}i≤Ñ ∼ π(y|θ)I[θ ∈ H], for some Ñ ∈ N.

3. Train a regressor model s : Rny → Rnθ , y 7→ θ, on P .

4. Run the actual ABC analysis using s as summary statistics.
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parameters

mechanistic model

inverse regression model

data

Figure 1: Concept visualization: While, given parameters θ, the mechanistic model π(y|θ) simulates data

y, which are then compared to the observed data (black) via some distance d and threshold ε, we employ

regression models to learn an inverse mapping s, to either construct summary statistics, or define sensitivity

weights for distance calculation.

In step 4, the distance operates on s(y). Step 1 aims to find a good training region, and can

be skipped for informative priors [Fearnhead and Prangle, 2012]. In Borowska et al. [2021], H =

[0.5θ̃, 2θ̃] is used, around a literature value θ̃, based on manual experimentation, which is in practice

only applicable if reliable references exist. In Jiang et al. [2017], step 1 is omitted, using the

prior directly, in one case constrained to an identifiable region. In step 3, Fearnhead and Prangle

[2012] employ a linear regression (LR) model on potentially augmented data. Jiang et al. [2017]

and Borowska et al. [2021] respectively use neural networks (NN) and Gaussian processes (GP)

instead, aiming at a more accurate description of non-linear relationships, and further process

automation. The sufficient performance of LR observed in Fearnhead and Prangle [2012] may be

due to the substantial time spent in the pilot run, identifying a high-density region where a linear

approximation suffices, while e.g. Jiang et al. [2017] observe a clearly better posterior approximation

with NN, and Borowska et al. [2021] better model predictions with GP.

A theoretical justification of regression-based summary statistics is that the regression model serves

as an approximation to the posterior mean, s(y) ≈ Eπ(θ|y)[θ], using which as statistic ensures that

the ABC posterior approximation recovers the actual posterior mean as ε→ 0, see Fearnhead and

Prangle [2012], Jiang et al. [2017], or the Supplementary Information, Theorem 1.

2.2 Adaptive and informative regression-based distances and summary statistics

In this section, we describe the novel methods introduced in this work.

2.2.1 Integrating summary statistics learning and adaptive distances

In previous studies, the regression approach from Section 2.1.4 was used together with uniform, or on

a previous run pre-calibrated, distance weights [Borowska et al., 2021, Fearnhead and Prangle, 2012,

Jiang et al., 2017]. However, to the regression model outputs, approximating underlying parameters,

the same problems apply that motivated the adaptive approach in Prangle [2017]: Parameters
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varying on larger scales dominate the analysis without scale adjustment, with potentially changing

levels of variability over ABC-SMC generations.

We propose to combine the regression-based summary statistics from Section 2.1.4 with the weight

adaptation from Section 2.1.3. The regression model can be pre-trained as previously done. Here,

we however suggest to increase efficiency and automation by integrating the training into the actual

ABC-SMC run (Algorithm 2). We begin by using an adaptively scale-normalized distance on the full

model outputs. Then, in a generation ttrain ≥ 1, the regression model s : Rny → Rnθ is trained on

all particles {(θttrain−1i , yttrain−1i )}i≤Ñ , Ñ ≥ N , generated in the previous generation. From t ≥ ttrain
onward, the regression model outputs s(y) are used as summary statistics, also here using a scale-

normalized distance with iteratively adjusted weights. Like for adaptive distance weight calculation,

the training samples also include rejected ones. First, this increases the training sample size, and

second, it gives a representative sample from the joint distribution of data and parameters, focusing

on a high-density region, but not confined to y ≈ yobs.

The delay of regression model training until after a few generations serves to focus on a high-density

region, similar to Fearnhead and Prangle [2012], such that simpler regression models provide a

sufficient description. While Fearnhead and Prangle [2012] update the prior to a typical range of

values observed in the pilot run, we consider the prior as part of the problem formulation, and thus

do not update it. In generations t ≥ ttrain the proposal distributions gt will usually anyway mostly

suggest values within the training domain range.

2.2.2 Regression-based sensitivity weights

The adaptive scale-normalized distance approach from Prangle [2017], Schälte et al. [2021] is, op-

erating on the full data without summary statistics, not ideal if data points are not similarly

informative. The regression approach from Section 2.1.4 is one solution to focus on informative

statistics. However, it performs a complex transformation of the model outputs, which can hinder

interpretation, and perform badly if the regression model is inaccurate. In this section, we present

an alternative approach, using the regression model to inform additional weights on the full data,

instead of constructing summary statistics. The idea is to weight a data point by how informative

it is of underlying parameters. We quantify informativeness via the sensitivity of how much the

posterior expectation of parameters, or transformations thereof, given observed data yobs, would

vary under data perturbations. As in Section 2.2.1, we use a regression model to describe the inverse

mapping from data to parameters.

Specifically, before a generation ttrain, we train a regression model s : Rny → Rnθ on samples from

the previous generation. As regression model inputs, we use normalized simulations y/σttrain , with

σttrain the measure of scale used for distance scale normalization, e.g. MAD. Further, we z-score

normalize regression model targets θ, in order to render the model scale-independent. Then, we

calculate the sensitivity matrix

S = ∇ys(yobs) ∈ Rny×nθ (3)

at the observed data. To robustly approximate derivatives, we employ central finite differences with
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Algorithm 2 ABC-SMC algorithm with regression-based summary statistics or sensitivity-

weighted distances.

initialize ε1, σ
1
iy

via calibration samples, let g1(θ) = π(θ)

for t = ttrain, . . . , nt do

while less than N acceptances do

sample parameter θ ∼ gt(θ)
simulate data y ∼ π(y|θ)
if t < ttrain then

accept θ if dt(y, yobs) ≤ εt, where dt uses scale weights rtiy = 1/σtiy
else if s is used as summary statistics then

accept θ if dt(s(y), s(yobs)) ≤ εt, where dt uses scale weights rtis = 1/σtis
else if using s only to define sensitivity weights qiy then

accept if dt(y, yobs) ≤ εt, where dt uses scale and sensitivity weights rtiy = qtiy/σ
t
iy

end if

end while

compute importance weights wti =
π(θti)

gt(θti)
, for accepted parameters {θti}i≤N

normalize importance weights W t
i = wti/

∑
j w

t
j

if t+ 1 == ttrain then

train regression model s on all particles from generation t

if using s to weight model outputs then

define sensitivity weights q1, . . . , qny via s

end if

end if

update gt+1 and εt+1 based on particles from generation t

update inverse scale weights σt+1
iy

or σt+1
is

based on all particles from generation t

end for

output: weighted samples {(θnti ,W
nt
i )}i≤N

automatic step size control [Raue et al., 2013]. We define the sensitivity weight of model output iy

as

qiy =

nθ∑
iθ=1

∣∣Siyiθ ∣∣∑ny
jy=1

∣∣Sjyiθ ∣∣ , (4)

i.e. as the sum over the absolute sensitivities of all parameters with respect to the model output,

normalized per parameter to level their impact. The normalization can be omitted, but yields more

conservative weights, accounting for the fact that the regression model may be inaccurate, by more

evenly distributed weights when all sensitivities with respect to some parameters are small.

The final weight used in the distance (1) is then given as the product of scale weight (2) and

sensitivity weight (4),

riy = qiy/σiy , (5)

with here σiy e.g. again given via MAD, or, also taking bias into account, PCMAD. This separate
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treatment of scale and sensitivity weights allows to e.g. include the error correction from Schälte et al.

[2021] in the scale correction, but not in the normalized data used for regression model training,

which would lead to inversely re-scaled sensitivities. Thus, we can simultaneously account for

informativeness and outliers. As long as riy 6= 0 for all weights, the original posterior π(θ|yobs) can

be conceptually recovered for ε→ 0 [Barber et al., 2015, Prangle, 2017], i.e. no information is lost,

unlike for insufficient summary statistics, while practical convergence is clearly weight-dependent.

2.2.3 Optimal summary statistics to recover distribution features

A problem with inverse regression models of parameters on data is that such a mapping may not

exist. For example, consider a quadratic model y ∼ N (θ2, 0.12), with prior θ ∼ U [−1, 1], and

observed data yobs = 0.7. As an inverse mapping y 7→ θ does not exist globally, a regression model

s : y 7→ θ cannot extract a meaningful relationship. Indeed, the problem is symmetric in θ, such

that the posterior mean is Eπ(θ|y)[θ] = 0, using which as summary statistic as in Blum et al. [2013],

Fearnhead and Prangle [2012] would clearly recover the true posterior mean. However, it would fail

to describe the posterior shape at all.

A solution is to consider transformations λ(θ) of the parameters, e.g. higher-order moments s : y 7→
λ(θ) = (θ1, . . . , θk), which may be better described as functions of the data, or identifiable in the

first place. In the above example, it suffices to consider θ2, giving a linear mapping y ∼ θ2 and

breaking the symmetry. While the use of parameter transformations as regression model targets

is heuristically reasonable, their use can be theoretically further justified: Employing as summary

statistics posterior expectations of transformations of the parameters,

s(y) = Eπ(θ|y)[λ(θ)],

allows under mild assumptions to recover the corresponding posterior expectations for ε→ 0,

lim
ε→0

EπABC,ε [λ(Θ)|s(yobs)] = E[λ(Θ)|Y = yobs],

see Theorem 1 in the Supplementary Information for details.

Obviously, conditional posterior expectations are hardly available in practice. However, we may

interpret the above regression-based summary statistics as approximations, aiming at a sufficiently

accurate description of the underlying expectations by the regression model. Thus, we propose to use

λ(θ) as targets, both for summary statistics (Section 2.2.1), and sensitivity weights (Section 2.2.2).

2.3 Implementation

We implemented all presented methods in the open-source Python package pyABC (https://

github.com/icb-dcm/pyabc) [Klinger et al., 2018], interfacing particularly scikit-learn regression

models [Pedregosa et al., 2011]. The code underlying the application study is on GitHub (https:

//github.com/yannikschaelte/study abc slad), a snapshot of code and data on Zenodo (http:

//doi.org/10.5281/zenodo.5522919).
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3 Results

We evaluated the performance of the proposed methods on various test problems.

3.1 Distances and summary statistics

As distance to compare model outputs or summary statistics, we considered, given its robust per-

formance in Schälte et al. [2021], an L1 norm, with adaptive MAD weights when employing scale-

normalization (denoted “Ada.+MAD”). Acceptance in generation t was only based on dt, but not

previous acceptance criteria, for ease of implementation and as for an L1 norm no substantial

differences were observed in Schälte et al. [2021].

As regression models, we considered LR and NN. We trained the regression model after 40% of the

simulation budget. For comparison, we also considered training the regression model before the

initial generation, ttrain = 1, based on samples from the prior (“Init”). NN models were considered

with a single hidden layer of dimension [(ny +nθ)/2], with ReLU activation function, using ADAM

stochastic gradient descent for optimization, and early stopping to avoid overfitting, with a 10%

validation set. Both regression models were computationally efficient compared to the full ABC-

SMC analyses, with run-times on the order of milliseconds (LR) or few seconds (NN).

When employing parameter augmentation (Section 2.2.3), we used the first four moments, λ(θ) =

(θ1, . . . , θ4) (“P4”). We considered both regression to define summary statistics (“Stat”, Sec-

tion 2.2.1) and sensitivity weights (“Sensi”, Section 2.2.2).

For example, L1+Ada.+MAD+StatNN denotes an analysis using consistently an adaptive distance

with MAD normalized weights, and using a neural network to construct summary statistics after

40% of the total simulation budget, with regression targets λ(θ) = θ. L1+Ada.+MAD+SensiLR+P4

uses an adaptive distance with scale-normalizing weights via MAD, and a linear model to define

further sensitivity weights, with regression targets λ(θ) = (θ1, . . . , θ4), and L1+StatLR uses a linear

model for summary statistics construction, but uses uniform distance weights.

3.2 Performance on dedicated demonstration problem

To illustrate the different problems addressed in this work, we constructed a demonstration problem

with four parameters and five types of data:

• y1 ∼ N (θ1, 0.1
2) is informative of θ1, with a relatively wide prior θ1 ∼ U [−7, 7],

• y2 ∼ N (θ2, 1002) is informative of θ2, with prior θ2 ∼ U [−700, 700],

• y3 ∼ N (θ3, 4 · 1002)⊗4 ∈ R4 is informative of θ3, with prior θ3 ∼ U [−700, 700],

• y4 ∼ N (θ24, 0.1
2) is informative of θ4, with prior θ4 ∼ U [−1, 1], but quadratic in the parameter,

• y5 ∼ N (0, 10)⊗10 ∈ R10 is uninformative.
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Figure 2: ABC marginal posterior approximations obtained using regression-based summary statistics (top,

“Stat”) or sensitivity weights (bottom, “Sensi”) on the demonstration problem, using an underlying L1 norm,

uniformly weighted, or MAD scale-normalized distance weights (“Ada.+MAD”), using a linear (“LR”) or a

neural network (“NN”) regression model, and in some cases augmented regression targets θ1, . . . , θ4 (“P4”).

The model dynamics are purposely simple, such that inverse mappings can be captured easily. The

problem exhibits the following potentially problematic features:

• A substantial part of the data, y5, is uninformative, such that approaches ignoring data

informativeness may converge slower.

• Both data and parameters are on different scales, such that approaches comparing data, or, via

regression-based summary statistics, parameters, without normalization focus on large-scale

variables. Further, e.g. the prior of θ1 is relatively wide, preventing pre-calibration.

• y4 is quadratic in θ4, such that first-order regression models cannot capture a meaningful

relationship.

• While y2, y3 are such that the posteriors of θ2, θ3 are identical, in solely scale-normalized

approaches, the impact of y4 on the distance value is roughly four times as high as that of y3,

resulting in uneven convergence.

We studied the demonstration problem with synthetic data yobs,1, yobs,2, yobs,3, yobs,5 ≡ 0, yobs,4 =

0.7, using a population size of N = 4e3 with a total budget of 1e6 simulations per run. Marginal

posterior approximations obtained using selected distances and summary statistics are shown in

Figure 2.
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Solely scale-normalized distances without informativeness assessment converge slowly

The scale-normalized adaptive distance L1+Ada.+MAD correctly captured all posterior modes and

shapes, in particular the bi-modality of θ4, however with large variances, because the uninformative

model outputs y5 were considered on the same scale as the informative ones (Figure 2 bottom).

Further, while the true posteriors of θ2 and θ3 coincide, L1+Ada.+MAD assigned a substantially

wider variance to θ2, as only a single model output, y2, is informative of it, while four are of θ3, all

on the same normalized scale.

Non-scale-normalized distances converge unevenly

The analyses L1+Stat{LR/NN} without scale normalization described the posteriors of θ2 and

θ3 accurately, which are on the same scale, however yielded substantially wider variances for θ1

(Figure 2 top), because θ1, used as regression target, varies on a smaller scale. In contrast, all

analyses employing scale normalization described θ1, θ2, and θ3 roughly or almost similarly well,

with the exception of L1+Ada.+MAD, as outlined above.

Regression models not accounting for non-identifiability cannot capture posterior

All analyses employing regression models but using the non-augmented regression targets λ(θ) = θ

failed to describe the bi-modal distribution of θ4, because a global mapping y4 7→ θ4 does not exist.

In comparison, analyses considering higher-order regression targets (“P4”) captured the bi-modality,

as for this problem a linear mapping θ24 ∼ y4 exists, or a quadratic one θ44 ∼ y24.

Novel approaches fit all parameters well

The analyses L1+Ada.+MAD+{Stat{LR/NN}/Sensi{LR/NN}}+P4 combining all methods intro-

duced in this work, i.e. scale normalization, informativeness assessment via regression-based sum-

mary statistics or sensitivity weights, and regression target augmentation, provided the overall best

description of all posterior marginals, with roughly homogeneously small variances. Advantages of

NN over LR were not observed.

Estimates for θ3 were with L1+Ada.+MAD+Sensi{LR/NN} consistently slightly worse than with

L1+Ada.+MAD+Stat{LR/NN}. This can be explained by the latter approaches employing a one-

dimensional interpolation of y3 ∈ R4, and thus e.g. an approximation of the sufficient statistic
1
4

∑4
i=1 y3,i. Meanwhile, approaches that do not transform but only weight, are more subject to

random noise. This illustrates that when low-dimensional sufficient statistics exist and are accu-

rately captured, employing explicit dimension reduction can be superior to mere re-weighting.
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Figure 3: Exemplary normalized absolute data-parameter sensitivities for the demonstration problem, using

LR (left) and NN (right), for all regression targets θ1, . . . , θ4 with θ = (θ1, . . . , θ4) (respectively on the right),

with respect to all data coordinates y (respectively on the left). The absolute sensitivity matrix |S| (3) was

normalized per regression target, as in (4). The widths of lines connecting data and parameters, and corre-

sponding endpoints, are proportional to their respective values. In particular, the heights of the respective

left end-points are proportional to the assigned sensitivity weights qiy (4). Data types, e.g. y5,1, . . . , y5,10,

and parameters with their exponents, e.g. θ11, . . . , θ
4
1, are grouped by colors.

Sensitivity weights permit further insights

In Figure 3, normalized absolute sensitivities (4) of parameters with respect to model outputs

are visualized. Overall, both regression models captured the relationship of model outputs and

parameters well, and assigned large, albeit not completely homogeneous, sensitivity weights to

y1, . . . , y4, and lower ones to y5, with roughly q1 ≈ q2 ≈
∑4

i=1 q3,i. The description provided by

NN was overall slightly better than LR, assigning lower weights to y5, and capturing the non-linear

mappings θ21 ∼ y1 and θ41 ∼ y1 better. As seen above, LR nevertheless sufficed to yield good posterior

approximations. Sensitivities of θ14 and θ34 were, as expected, comparably small with respect to all

variables.

The weight assigned to y4 was roughly half the ones assigned to y1, y2 and y3, because θ14 and θ34
could not be accurately described. Correspondingly, the variance of θ4 was slightly wider under

sensitivity-weighted analyses, compared to using summary statistics (Figure 2). This could be
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Table 1: Test model properties: Identifier, short description, number of parameters nθ and data points ny,

population size N and maximum number of model simulations after which an analysis was terminated.

ID Description nθ ny N Max. sim.

T1 Conversion reaction ODE model 2 10 1000 250000

T2 One informative and one uninformative variable 1 2 1000 25000

T3 g-and-k distribution order statistics, small 4 7 1000 250000

T4 Lotka-Volterra Markov jump process model, small 3 32 500 125000

T5 g-and-k distribution order statistics, large 4 100 1000 250000

T6 Lotka-Volterra Markov jump process model, large 3 200 500 125000

improved by not employing parameter-wise normalization in (4), which however makes the analysis

less robust to regression model misspecification, or by an alternative normalization.

An analysis such as performed here may generally allow evaluating regression model plausibility,

and to obtain insights into parameter-data relationships, e.g. eliciting uninformative data.

3.3 Performance on general test problems

To evaluate robustness and general performance of the proposed methods, we next considered six

test problems T1-6, not tailored to the challenges discussed in Section 3.2. Core model properties

as well as employed ABC-SMC population sizes N and total budgets of numbers of simulations are

given in Table 1.

T1, T3, and T4 are problems M3, M4, and M5 from Schälte et al. [2021], respectively an ODE model

of a conversion reaction, and, based on application examples in Prangle [2017], g-and-k distribution

samples, and a Markov jump process model of a Lotka-Volterra predator-prey process. T2 consists

of two observables, thereof y1 ∼ N (θ, 0.12) informative and y2 ∼ N (0, 12) uninformative, with wide

prior θ ∼ N (0, 1002), also from Prangle [2017]. T5 and T6 are variations of T3 and T4 with higher-

dimensional data, based on application examples in Fearnhead and Prangle [2012]. T5 employs 100

order statistics out of 10,000 samples from a g-and-k distribution, with U [0, 10] priors on the four

parameters A,B, g, k, considering ground truth values (A,B, g, k) = (3, 1, 2, 0.5). T6 employs noise-

free observations of predators and prey at 200 evenly-spaced time-points over the interval [0, 20],

estimating the three reaction rate coefficients on linear scale, considering tight independent priors

θ1 ∼ U [0, 2], θ2 ∼ U [0, 0.1], θ3 ∼ U [0, 1], and ground truth values (θ1, θ2, θ3) = (0.5, 0.0025, 0.3).

We ran 10 repetitions of different inference scenarios on problems T1-6 on different data sets. To

measure fit quality, we reported root mean square errors (RMSE) of the weighted posterior samples

from the last ABC-SMC generation, with respect to ground truth parameters (note all problem

considered here are uni-modal). The results are visualized in Figure 4.
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Figure 4: Median RMSE (smaller is better) for the parameters of models T1-6 (columns) obtained for 15

inference methods (rows), using an L1 distance, either uniformly weighted if unspecified, or with adaptive

MAD scale normalization (“Ada.+MAD”). As regression models we considered linear regression (“LR”) and

neural networks (“NN”), both to define summary statistics (“Stat”) and sensitivity weights (“Sensi”). Some

inference settings further used parameter transformations λ(θ) = (θ1, . . . , θ4) as regression targets (“P4”).

In some settings, the regression model was trained before the initial generation (“Init”), or after 40% of

the simulation budget if unspecified. The first row contains solely scale-normalized L1+Ada.+MAD as a

reference, followed by two blocks of four rows using summary statistics, using firstly LR and secondly NN,

and then by two blocks of three using sensitivity weights, using firstly LR and secondly NN. Reported values

are medians over 10 replicates, with horizontal grey error lines indicating MAD.

Delay of regression model training advantageous on complex models

For the considered LR and NN models, regression model training on prior samples (“Init”) gave for

most problems substantially worse results than when trained after 40% of the simulation budget.

One reason may be that only N prior samples were used for training, compared to potentially more

samples, including rejected ones, in later generations. However, also when using only N training

samples in the later-trained approach (not shown here), results were better than based on the

prior. Thus, an explanation is that after multiple generations the bulk of samples is restricted to

a high-density region, in which a simpler model is sufficiently accurate. This justifies empirically

the approach by Fearnhead and Prangle [2012] of using a pilot run to constrain parameters. Jiang

et al. [2017], who base their regression model on the prior, use firstly more complex NN models,

and secondly up to 1e6 training samples, far more than entire analyses here. An exception was

T2, where sometimes initial training improved performance. This can be explained by the global

linear parameters-data mapping, such that accurate regression models can be easily learned and

thereafter be beneficial.
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Scale normalization improves performance for regression-based summary statistics

As the comparison of L1+Stat{LR/NN} and L1+Ada.+MAD+Stat{LR/NN} shows, the use of

scale normalization improved performance for many problems, particularly for T5+6, while it was

roughly similar for T1. An exception was again T2, where in fact a uniformly weighted L1 distance

would be preferable over L1+Ada.+MAD at least in the first generations, as the uninformative

observable happens to vary less there.

Sensitivity-weighted distances perform highly robustly

The approaches L1+Ada.+MAD+Sensi{LR/NN}(+P4) using regression models to define sensi-

tivity weights performed reliably, with RMSE values generally not far higher, but in some cases

consistently lower, than those obtained by L1+Ada.+MAD. This indicates that, while the sensitiv-

ity weighting could in those cases not improve performance, as sole scale normalization was efficient

already, the approach is highly robust. In some cases, specifically T2, which had one clearly uninfor-

mative statistic, and arguably T5, which is a high-dimensional collection of order statistics, did the

sensitivity weighting improve performance. In other cases, specifically T1, T3, T4, and T6, RMSE

values for some parameters decreased, but slightly increased for others, indicating that the weighting

scheme re-prioritized data points, while no overall uninformative ones could be disregarded.

Regression-based summary statistics can be superior but also less robust

In various cases, e.g. when trained in the initial generation, and consistently for T4, as well as

using LR on T6, summary statistics were inferior to both L1+Ada.+MAD and sensitivity weights.

Arguably, in those cases the regression model was not accurate enough to allow using its outputs as

low-dimensional summaries. However, in some cases, specifically for T1, and two parameters of T6

using NN, RMSE values obtained using summary statistics were smaller than with both L1+Ada.+-

MAD and sensitivity weights. This again indicates that if the lower-dimensional summary statistics

representation is accurate and informative of the parameters, then its use can be beneficial and

superior to mere re-weighting.

No clear preference for regression model or target augmentation

For both regression-based summary statistics and sensitivity weights, we found overall no clear

preference for LR or NN, with LR more robust in many cases, but NN clearly preferable in some.

Further, the use of augmented parameters as regression targets did not substantially worsen, but

also not notably improve performance for any test problem, however performed inferior e.g. on T2,

which has a clear linear mapping, such that the consideration of higher-order moments may have

complicated the inference. This indicates that using augmented parameters as regression targets

is robust, but if further information is available, a restriction to e.g. first or second order may be

beneficial.
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Figure 5: Posterior marginals for 5 out of the 7 model parameters of the tumor problem with interesting

behavior. Without (top) and with (bottom) outliers. Ground truth parameters are indicated by vertical grey

dotted lines. Plot boundaries are the employed uniform prior ranges, except the ECM production rate is

zoomed in for visibility.

3.4 Performance on application example

Next, we considered an agent-based model of tumor spheroid growth (model M6 from Schälte et al.

[2021]), considering both outlier-free and outlier-corrupted data. We employed the same simulated

data as in Schälte et al. [2021], a population size of N = 500, and a computational budget of

150,000 simulations per analysis. Given its computational complexity, we considered on this prob-

lem only selected approaches: Besides the reference L1+Ada.+PCMAD, we employed, given the

robust performance of LR before, L1+Ada.+PCMAD+SensiLR(+P4) using sensitivity weights,

L1+Ada.+PCMAD+StatLR(+P4) using summary statistics, both with and without augmented

regression targets λ(θ) = (θ1, . . . , θ4), further L1+Ada.+PCMAD+StatNN and L1+Ada.+PC-

MAD+SensiNN+P4 using NN. Here, to facilitate outlier detection, we used PCMAD instead of

MAD.

Sensitivity weights identify uninformative model outputs

Using regression models to define sensitivity weights improved performance on the tumor model

with outlier-free data over L1+Ada.+PCMAD, giving lower variances for the division rate and

depth parameters, with otherwise similar results (Figure 5 top), and accepted simulations closely

matching the observed data (Figure 6 top, simulations). No differences could be observed between

using only the parameters, or also higher-order moments, as regression targets.

On this problem, regression-based summary statistics performed substantially worse, which may in-

dicate that the employed regression models did not provide a sufficiently informative low-dimensional

representation (L1+Ada.+PCMAD+StatLR(+P4), Figure 5 top), simulations did visibly not match
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Figure 6: Fits, scale and sensitivity weights for the tumor problem on outlier-free (top) and outlier-corrupted

(bottom) data. The respective upper rows show the observed data (black), and, for each approach, 20

accepted simulated data sets (light lines) as well as the sample means (darker lines) from the last ABC-

SMC generation. The respective middle rows show the scale weights assigned to each data point in the

last generation, normalized to unit sum, and the bottom rows the sensitivity weights, respectively only for

distances employing such weights, and operating on the full data.

the observed data (Figure 6 top, 1st row).

The overall structure of sensitivity weights assigned via LR with and without parameter augmen-
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tation, as well as NN, was roughly consistent across multiple runs (Figure 6 top, 3rd row). Low

weights were assigned to the fraction of proliferating cells at large distances to the rim, indicating

these to be uninformative, and counteracting the large weights resulting from scale normalization

(Figure 6 top, 2nd row). While the sensitivity weights exhibit some variability between adjacent

points and across runs, consistent and reasonable overall patterns can be observed.

Robust on outlier-corrupted data

Using sensitivity weights improved performance also on outlier-corrupted data (Figure 5 bottom).

Given its previously good performance, here we only considered L1+Ada.+PCMAD+SensiLR+P4.

Accepted simulations in the final generation matched the observed data more closely than for

L1+Ada.+PCMAD (Figure 6 bottom, 1st row). The PCMAD scheme assigned low weights to

outliers, independent of the regression-based sensitivity weights (Figure 6 bottom, 2nd and 3rd

row). Thus, the combination of both methods allowed to simultaneously account for outliers and

informativeness.

4 Discussion

In this work, we discussed problems arising in ABC (1) from partly uninformative data for scale-

normalized distances, (2) from heterogeneous parameter scales for regression-based summary statis-

tics, and (3) from parameter non-identifiability for regression model adequacy. To tackle these prob-

lems, we presented multiple solutions: First, we suggested employing adaptive scale-normalizing

distances on top of regression-based summary statistics, to homogenize the impact of parameters.

Second, as an alternative to the first solution, we introduced novel sensitivity weights derived from

regression models, measuring the informativeness of data on parameters. Third, we introduced

augmented regression targets to overcome parameter non-identifiability.

We showed substantial improvements of the novel methods over established approaches on a simple

demonstration problem. For the sensitivity-weighted distances, we showed robust performance on

various further test problems, in particular on a complex systems biological application problem.

Yet, there are numerous ways in which the presented methods can be improved:

While simple linear models often sufficed, especially when trained on a high-density region, in

some cases more complex models were superior. A systematic investigation of alternative and more

complex model types, e.g. neural networks tailored to the data types, as well as model selection,

would be useful.

Larger training sample sets may be beneficial especially for complex models, and lead to more

robust estimators. While increasing the training set is straightforward, as it only requires continued

sampling from the forward model, there is a cost trade-off of the actual ABC inference and regression

model training.

While in many cases delaying regression model training to later generations and a high-density
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region was advantageous, for simple models we observed benefits of early regression. Criteria on if

and when to train or update regression models, also repeatedly, would be of interest.

This work may be regarded as an extension of the approaches of Prangle [2017], Schälte et al. [2021]

as well as Fearnhead and Prangle [2012]. An alternative weighting scheme is presented by Harrison

and Baker [2020], who maximize a distance between samples from the prior and the posterior

approximation. While using a different notion of informativeness and a specific underlying sampler,

a comparison in terms of efficiency, robustness to outliers, and information gain would be of interest.

All methods presented in this work have been implemented in the Python package pyABC, facili-

tating their straightforward application. We anticipate that such approaches, which automatically

normalize and extract or weight features of interest without extensive manual tuning, will substan-

tially improve performance of ABC methods on a wide range of applications problems.
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Csilléry, K. et al. abc: an R package for approximate Bayesian computation (ABC). Methods in

ecology and evolution, 3(3):475–479, 2012.

Del Moral, P. et al. Sequential Monte Carlo samplers. J. R. Stat. Soc. B, 68(3):411–436, 2006.

Drovandi, C.C. and Pettitt, A.N. Estimation of parameters for macroparasite population evolution

using approximate Bayesian computation. Biometrics, 67(1):225–233, 2011.

Drovandi, C.C. et al. Approximate bayesian computation using indirect inference. Journal of the

Royal Statistical Society: Series C (Applied Statistics), 60(3):317–337, 2011.

Fearnhead, P. and Prangle, D. Constructing summary statistics for approximate Bayesian compu-

tation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. B, 74(3):419–474,

2012.

Filippi, S. et al. On optimality of kernels for approximate Bayesian computation using sequential

Monte Carlo. Stat. Appl. Genet. Mol., 12(1):87–107, 2013.

Gershenfeld, N.A. and Gershenfeld, N. The nature of mathematical modeling. Cambridge university

press, 1999.

Harrison, J.U. and Baker, R.E. An automatic adaptive method to combine summary statistics in

approximate bayesian computation. PloS one, 15(8):e0236954, 2020.

Hasenauer, J. et al. Data-driven modelling of biological multi-scale processes. Journal of Coupled

Systems and Multiscale Dynamics, 3(2):101–121, Sept. 2015. doi: 10.1166/jcsmd.2015.1069.

Jiang, B. et al. Learning summary statistic for approximate bayesian computation via deep neural

network. Statistica Sinica, pages 1595–1618, 2017.
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