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Abstract. In biological systems, chemical signals termed morphogens self-organise into patterns
that are vital for many physiological processes. As observed by Turing in 1952, these patterns are in
a state of continual development, and are usually transitioning from one pattern into another. How
do cells robustly decode these spatio-temporal patterns into signals in the presence of confound-
ing effects caused by unpredictable or heterogeneous environments? Here, we answer this question
by developing a general theory of pattern formation in spatio-temporal variations of “pre-pattern”
morphogens, which determine gene-regulatory network parameters. Through mathematical analy-
sis, we identify universal dynamical regimes that apply to wide classes of biological systems. We
apply our theory to two paradigmatic pattern-forming systems, and predict that they are robust
with respect to non-physiological morphogen variations. More broadly, our theoretical framework
provides a general approach to classify the emergent dynamics of pattern-forming systems based on
how the bifurcations in their governing equations are traversed.

Introduction. In biological pattern formation, cells in-
terpret morphogen signals to make developmental deci-
sions based on their location in a tissue, organ, embryo
or population. Such systems have been found to be re-
markably robust to a wide range of sources of variation
between different cells or tissues in morphogen signals
and system components [1, 2]. For example, in recent
work, general principles of biological pattern-forming sys-
tems have been identified that promote robustness with
respect to variations in morphogen and protein produc-
tion rates [1, 3], in tissue or organism size [4, 5], and in
gene-regulatory network architecture [6]. However, less
is understood about how such systems respond to spatio-
temporal variations in morphogen concentrations within
individual cells, populations or tissues, particularly over
timescales faster than or similar to growth.

Recent experimental and theoretical work has demon-
strated how specific gene-regulatory network architec-
tures convert spatio-temporal morphogen signals into a
required static or dynamic response [7–12]. This mor-
phogen “pre-pattern” can arise as a necessary part of
the developmental process [7, 13, 14]. However, un-
predictable morphogen fluctuations in a system may be
caused by intrinsic noise [15], growth [16], cell motility
or rearrangement [17–20], biochemical reactions [21, 22],
or external flows [11, 23–25]. These studies raise the
question of how to quantify the robustness of a system’s
gene-regulatory network output, i.e. emergent spatio-
temporal patterning, with respect to variations in its pre-
pattern morphogen input over a certain timescale.

Analysis of Canonical Equations. Reaction-diffusion
systems, which are thought to underlie various mech-
anisms of biological pattern formation [7], self-organise
in space and time via bifurcations in their governing
equations [26]. Dynamics are typically observed to slow
down near bifurcations [27] (see Supplemental Material),
but the implications of this in the context of biological

pattern formation are not understood. As a reaction-
diffusion system undergoes a bifurcation, its dynamics
can typically be approximated by a (low-dimensional)
canonical weakly nonlinear equation whose form depends
on the type of bifurcation [27]. Under such an approxima-
tion, the effects of spatio-temporal variations in system
parameters are captured by corresponding variations in
the parameters of the related weakly nonlinear equation.
To characterise such systems in general, we analysed the
effects of spatio-temporal variations in the parameters of
the dimensionless equation (see Supplemental Material)

ω
∂A

∂t
= D

∂2A

∂x2
+ a+ k(x, t)A− εAn. (1)

In Eq. (1), A(x, t) is a measure of the morphogen
concentration (in terms of the deviation from the non-
patterned state for the mode excited over the bifurcation
[47]). The parameter D > 0 represents a strength of dif-
fusion. The parameter a ≥ 0 represents a measure of
base production in terms of the excited mode; a typi-
cally vanishes for noiseless Turing systems (n = 3). The
imposed function k(x, t) represents the net strength of
self-activation in comparison to decay. The parameter
ω > 0 represents a measure of the frequency of k varia-
tion and ε > 0 represents the strength of nonlinear sat-
uration effects. The exponent n = 2 or 3, corresponding
to the canonical weakly nonlinear form of an imperfect
transcritical or a (supercritical) pitchfork bifurcation, re-
spectively. Each of these characterises a minimal gene-
regulatory motif (Fig. 1a). The case with n = 2 (n = 3)
can be thought of as a modified version of the Fisher-
KPP (Ginzburg-Landau) equation. Generally, to obtain
the significant ‘on-off’ type effects seen in biological sig-
nalling, the system must be weakly nonlinear i.e. ε ≪ 1.
For ease of exposition, it is also convenient to impose
ω ≪ 1 and D ≪ 1. At this point, we make no fur-
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FIG. 1: General asymptotic framework for classifying dy-
namics of pattern-forming systems. a) Bifurcation dia-
grams and related minimal gene-regulatory network motifs
for two classes of pattern-forming system. Top: autoinduc-
tion loops are associated with transcritical bifurcations. Bot-
tom: activator-inhibitor systems are associated with pitchfork
bifurcations. b) Examples of predicted dynamics in three dif-
ferent regions of parameter space (see panel c) for a travel-
ling gradient (Eq. 2), which is a linearized form of a more
general spatio-temporal variation. Results were generated by
solving Eq. (1) numerically, with n = 3 and k(x, t) speci-
fied via Eq. (2); results are similar for n = 2. The dashed
line shows reaction-dominated results obtained by solving
the steady form of Eq. (1) for each x without diffusion. c)
General parameter space that classifies the system dynam-
ics in each region for a spatio-temporal variation of the form
Eq. (2). The boundary between Regions B and C occurs when

Λ2/3/|χ| = O(1) and Λ, |χ| ≫ 1.
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FIG. 2: Examples of predicted dynamics for a spatio-temporal
oscillation in k(x, t) of the form Eq. (S70), shown at a fixed
x (left). Results were generated as in Fig. 1b and plotted at
x = 0.5 in a domain of size x = 1 (right; y axis log scale). In
Region B, the system becomes locked in the patterned state
despite large oscillations in k(x, t).

ther assumptions on the relative sizes of ε, ω, and D;
our general results will allow us to understand the sig-
nificant change in system behaviour as the relative sizes
of these parameters vary. Then, in the spatio-temporally
uniform system, k < 0 represents the unpatterned region
and k > 0 the patterned region, with k = 0 defining the
position of the bifurcation in homogeneous conditions.

As a simple form of spatio-temporal parameter varia-
tion, we considered the parameter k(x, t) in Eq. (1) to

take the form of a travelling gradient

k(x, t) = (x− s(t))η(t), (2)

which can travel into the patterned region (ṡη > 0)
or into the unpatterned region (ṡη < 0). This can be
considered a linearized form of arbitrary spatio-temporal
variations in the vicinity of a bifurcation, where we as-
sume that η never crosses zero to avoid degeneracy. We
then transformed into the frame around the moving point
x = s(t), at which k = 0. With the appropriate scaled
quantities C = (ε/a)1/nA and Z = (η/(an−1ε)1/n)(x−s),
this yielded the leading-order governing equation (Sup-
plemental Material):

0 = Λ(t)
∂2C

∂Z2︸ ︷︷ ︸
(i)

+χ(t)
∂C

∂Z︸ ︷︷ ︸
(ii)

+ 1︸︷︷︸
(iii)

+ ZC︸︷︷︸
(iv)

− Cn︸︷︷︸
(v)

, (3)

where

Λ(t) :=
η2D

(an−1ε)3/n
, χ(t) :=

ηωṡ

(an−1ε)2/n
. (4)

Broadly, Λ quantifies the importance of diffusion and χ
quantifies the importance of spatio-temporal changes in
the parameters, both in comparison to base production.
Eq. (3) can be reduced further in systems with a = 0 in
Eq. (1), which exhibit a perfect (as opposed to imperfect)
bifurcation (Supplemental Material).
We analysed Eq. (3) to characterise all possible dy-

namical regimes and their dependence on Λ and χ. While
the quantitative results differ depending on the type of
bifurcation and the direction of the travelling gradient in
Eq. (2) (see Supplemental Material), we found that the
qualitative behaviours split into three regions in param-
eter space (Fig. 1c), with key differences in the dynami-
cal position of the bifurcation Z∗ (the position at which
C = 1 in Eq. 3):
Region A. Reaction-dominated and quasi-steady pat-

terning. In this case, Λ ≪ 1 and |χ| ≪ 1, and the reaction
terms (iii)-(v) dominate in Eq. (3). The dynamical po-
sition of the bifurcation corresponds to its quasi-steady
position, i.e. Z∗ = 0 (Fig. 1b,c).
Region B. Critical slowing down. In this case |χ| ≫ 1

and Λ2/3/|χ| ≪ 1, and terms (ii)-(v) dominate in Eq. (3)
– saturation, i.e. term (v), can be ignored in the unpat-
terned part of the domain, and base production, i.e. term
(iii), can be ignored in the patterned part. The dynami-
cal position of the bifurcation lags behind its quasi-steady
position, and scales as |Z∗| = O(

√
|χ| log |χ|) (Fig. 1b,c).

Region C. Diffusively enhanced, quasi-steady pat-
terning. In this case Λ ≫ 1 and Λ2/3/|χ| ≫ 1, and
terms (i), (iii)-(v) dominate in Eq. (3) – saturation can
be ignored in the unpatterned part of the domain, and
base production can be ignored in the patterned part.
The dynamical position of the bifurcation is shifted via
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FIG. 3: Effect of spatio-temporal morphogen variations on Turing patterns. a) We model Turing patterns during digit formation
(top; reproduced from [14] with permission). The system’s pattern can be represented as an activator-inhibitor system, with
the self-activation parameter fA modulated by a morphogen called Fgf (bottom). b) The parameter fA (min−1) at t = 0
(top) and throughout the spatio-temporal oscillations Eq. (11) (bottom; Movie S1). c) Top: Effect of time period T of spatio-
temporal oscillations in Fgf on the mean concentration of the activator morphogen (line), and the range of concentration (grey
area) during the oscillations. Bottom: Oscillations in the activator morphogen concentration for fast (T = 1 min) and slow
(T = 104 min) oscillations in Fgf (Movie S1). d) For oscillations that are filtered out, patterning remains the same (top). For
oscillations that are not filtered out, patterning completely disappears (bottom). Images correspond to the black dots in panel
c. Concentrations in the figure are non-dimensional and represent deviation from a base state at x = 0 [16].

diffusion towards the unpatterned part of the domain,
and scales as |Z∗| = O((Λ log2 Λ)1/3) (Fig. 1b,c).

These results suggest that the emergent dynamics of
pattern-forming systems are determined in time and
space by the regime in which the parameters lie (Fig. 1b-
c). Furthermore, the results quantify how the location
of a dynamic bifurcation is determined in each regime -
either purely by a balance between the reaction terms for
Region A, or otherwise for Regions B and C (Fig. 1b,c).
In Regions B and C, diffusion and temporal variations in
the parameters promote shifts in the location of the bi-
furcation that require an asymptotic analysis to quantify
(see Supplemental Material).

Analysis for oscillatory parameters. A striking exam-
ple of a shift in the bifurcation caused by temporal pa-
rameter variations is the “critical slowing down” regime,
Region B, in which dynamics are slowed by passage
through the bifurcation [29, 30]. We wondered whether
this critical slowing down could cause a pattern-forming
system to ignore the presence of a bifurcation for certain
oscillatory parameter variations, even if a local balance
between reaction terms would predict repeated cycles of
bifurcation onset and offset. Therefore, we performed
an analysis of the effect of such oscillatory variations in
the system Eq. (1) (Fig. 2; Supplemental Material). We
found that there is an effective inertia associated with os-
cillating over the bifurcation, and so each system may in-
deed become stuck in the unpatterned or patterned state
(Fig. 2) for parameters oscillating quickly enough, even
at large amplitudes. This demonstrates that the bifurca-
tions in each system can act as low-pass filters on param-
eter variations (see also Fig. S1). Taken together, these

analytical results suggest that pattern-forming systems
with spatio-temporally varying parameters exhibit uni-
versal dynamics that are determined by the underlying
bifurcations in their governing equations.
Biological systems: Models. We explored the implica-

tions of our analytical results to two paradigmatic bio-
logical pattern-forming systems with variations in pre-
pattern morphogens, which affect parameters in the sys-
tem gene-regulatory network [7]. The first system we
considered is a model for digit formation via activator-
inhibitor Turing patterns [14], in which the pre-pattern
morphogen is fibroblast growth factor (Fgf), which af-
fects the self-activation of the activator (Fig. 3a). The
system is associated with a pitchfork bifurcation, and is
described by the equations

∂A

∂t
= ∇ · (DA∇A) + fA(x, t)A− fII − fcA

3, (5)

∂I

∂t
= ∇ · (DI∇I) + gAA− gII, (6)

where A and I are the concentrations of the activator
and inhibitor, respectively, DA and DI are diffusion coef-
ficients, and fA, fI , gA, gI and fc are kinetic parameters
(Fig. 3a, Supplemental Material). To simulate variations
in Fgf [14], we let fA(x, t) vary in space and time:

fA(x, t) = f b
A + kAf(x, t), (7)

where f b
A is the base self-activation of the activator, kA

is a typical increase in the self-activation, and f(x, t) is
a non-dimensional concentration of Fgf.
The second system we considered is bacterial quorum

sensing (QS) in Vibrio fischeri, which causes biolumines-
cence in the Hawaiian bobtail squid [31]. An autoinducer
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FIG. 4: Effect of spatio-temporal morphogen variations on
bacterial quorum sensing in a small biofilm or cell popula-
tion. a) We model quorum sensing in V. fischeri, which
causes bioluminescence in the Hawaiian bobtail squid (top;
images adapted from [28], with permission). We model the
LuxR system, in which an autoinducer, 3OC6HSL, promotes
its own synthesis by binding with a protein, LuxR, to form a
transcription factor (bottom left). The binding parameter k+
is modulated by competitive binding with a second autoin-
ducer, C8HSL. Bottom right: the parameter k+ (nM−1s−1)
throughout the spatio-temporal oscillations Eq. (11) (see also
Movie S2). b) Top: Effect of the time period T of the spatio-
temporal oscillations in C8HSL on the mean 3OC6HSL con-
centration (line), and the range of 3OC6HSL concentration
(grey area) during the oscillations. Bottom: Oscillations in
3OC6HSL concentration, for fast (T ≈ 30 min) and slow
(T ≈ 3 · 104 min) oscillations in C8HSL. For oscillations that
are filtered out, the system remains at low 3OC6HSL concen-
tration. For oscillations that are not filtered out, the cell pop-
ulation fills with 3OC6HSL during the oscillation (see Movie
S2). Concentrations in the figure are scaled by the quorum
sensing activation threshold of 5 nM [11].

self-activates its own expression via the canonical LuxR
network; the pre-pattern morphogen is a cross-talking
autoinducer [32], which interferes with self-activation of
the LuxR-associated autoinducer (Fig. 4a). The system
is associated with a transcritical bifurcation, and is de-
scribed by the equations

∂A

∂t
= ∇ · (D∇A) + ρfA(A, I,R,C;x, t)− κA, (8)

∂I

∂t
= fI(I, C),

∂R

∂t
= fR(A,R,C),

∂C

∂t
= fC(A,R,C).

(9)

where, D is the diffusivity of the autoinducer, ρ is the cell
volume fraction, κ is the autoinducer decay rate, and the
reaction terms inside each bacterium, including the effect
of cross-talk, are defined by the gene-regulatory network
(Fig. 4a, Supplemental Material).

In each system, we considered two types of spatio-
temporal variation in the pre-pattern morphogen f(x, t).
For analysis, we used a linear gradient in space travelling

with constant speed,

f(x, t) = x/L− t/T, (10)

to relate the system dynamics to the analytical results
in Fig. 1. In simulations, performed in the finite-element
computational software COMSOL Multiphysics in 2D,
we used a linear gradient in space and a sinusoidal oscil-
lation in time

f(x, t) = (x/L) (1 +K sin (2πt/T )) , (11)

to investigate numerically the robustness of each system
to spatio-temporal fluctuations (see Movies S1 and S2).
In Eq. (10) and Eq. (11), T quantifies the timescale of
variation, and K in Eq. (11) quantifies the relative mag-
nitude of the oscillation.
Biological Systems: Analytical Results. By analysing

each system, we found that with pre-pattern morphogen
variations of the form Eq. (10), each model reduces to the
appropriate version of Eq. (3), and Λ(t) and χ(t) written
in terms of the kinetic parameters (Eqs. S36 and S74).
Therefore, both of the paradigmatic pattern-forming sys-
tems considered here are subject to the universal regimes
we have identified, a consequence of their bifurcation
structures. We therefore used our analytical results to
predict the effect of physiological spatio-temporal vari-
ations in pre-pattern morphogens in each system. We
chose physiologically relevant values of the parameters in
both systems (Tables S1, S2), with the timescale of vari-
ation T in Eq. (10) corresponding to the relevant growth
timescale, in line with experimental evidence that sug-
gests physiological changes to patterning in each system
are induced by growth [14, 16, 33]. Our analysis predicts
that for such parameters, each system sits in Regime C
of parameter space (diffusively enhanced patterning; see
Fig. 1c), with significant quantitative differences between
the two systems. In the Turing system, the diffusive en-
hancement to patterning is less than 10% of the domain
(Table S1) – patterning would be expected to be con-
trolled relatively locally by the concentration of the pre-
pattern morphogen Fgf. This prediction is in line with
recent analyses of Turing systems in steady pre-pattern
morphogen gradients, in which patterning was found to
be controlled relatively locally in space [10]. By contrast,
our analysis predicts that diffusive enhancement to pat-
terning is much stronger in the bacterial quorum sensing
system. We found that diffusive enhancement causes the
patterned (or QS-activated) region to be larger than the
size of the population (Table S2) – any local activation
in QS caused by changes over a growth timescale would
be expected to cause the entire population to activate.
This would benefit the population by ensuring all cells
commit together to a multicellular program of gene ex-
pression, as was recently found in fluid flows [11]. These
results demonstrate that biological pattern-forming sys-
tems can tune via diffusion the extent of patterning.
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Biological Systems: Numerical Results. Interestingly,
by varying the timescale T in Eq. (10), in each system
we found that if pre-pattern morphogen changes occur
fast enough, the system transitions to Region B (criti-
cal slowing down) of parameter space. This suggested
exploring the biological relevance of our analytical pre-
diction of low-pass filtering for fast oscillatory morphogen
variations. To this end, we simulated oscillations of the
form Eq. (11) in each system (Fig. 3b; Fig. 4b). In
agreement with our analysis, we found a critical oscil-
lation timescale, which we calculated to be around 3-10
hours, depending on the kinetic parameters in each sys-
tem (Fig. 3c; Fig. 4c; Fig. S1) – surprisingly, this is a few
hours faster than the timescale of growth in both sys-
tems (Tables S1, S2). Our simulations confirmed that,
for oscillations over faster timescales, morphogen varia-
tions occur fast enough to cause the system to remain
stuck in the unpatterned or patterned state, because
of the critical slowing down in the system (Fig. 3c,d;
Fig. 4c,d). Therefore, we expect changes in the pre-
pattern morphogen concentration to be ignored if they
occur much faster than a growth timescale, allowing the
system to avoid repeated cycles of complete removal of
patterning (Fig. 3d, Fig. 4d). Remarkably, this suggests
that the gene-regulatory parameters in each biological
system are tuned such that each system is robust to non-
physiological variations in pre-pattern morphogens.

Discussion and Conclusion. In modelling these biolog-
ical systems we have performed significant simplifications
for clarity and generality. In particular, we have not mod-
elled the effect of white noise, which we expect to have
effects that are not captured by our analysis [34, 35].
Furthermore, our models are effective macroscopic rep-
resentations of microscopic processes, and the process of
coarse-graining the microscopic dynamics to obtain effec-
tive macroscopic dynamics is often not trivial [36].

To conclude, we have presented a general framework
that classifies and quantifies the dynamic response of
pattern-forming systems to spatio-temporal variations in
their parameters. The framework complements recent
work on pattern formation in various systems of equa-
tions with spatio-temporally varying parameters (e.g. [10,
37–44]). We have applied our framework to simple mod-
els of two biological pattern-forming systems, each with
variations in a pre-pattern morphogen that affects kinetic
parameters: digit formation via Turing patterns, and
bacterial quorum sensing. Our theory predicts that both
systems filter out spatio-temporal morphogen variations
that occur much faster than growth. We demonstrate
that the type of bifurcation in the system, which is deter-
mined by the gene-regulatory network, controls emergent
patterning dynamics and structure. Predictions such as
these are testable in newly developed systems that al-
low spatio-temporal control over gene-expression and the
external environment, such as synthetic model organ-
isms [45], organoids [46] and microfluidic devices [23].

Owing to the generality of the canonical equations that
we have analysed, our theoretical framework is extend-
able to a wide class of pattern-forming systems.
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