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Abstract
Quantitative modelling has become an essential part of the drug development pipeline. In
particular, pharmacokinetic and pharmacodynamic models are used to predict treatment
responses in order to optimise clinical trials and assess the safety and efficacy of dos-
ing regimens across patients. It is therefore crucial that treatment response predictions
are reliable. However, the data available to fit models are often limited, which can leave
considerable uncertainty about the best model to use. Common practice is to select the
model that is most consistent with the observed data based on the Akaike information
criterion (AIC). Another popular approach is to average the predictions across the subset
of models consistent with the data. In this article, we argue that both approaches can
lead to unreliable predictions, as treatment responses typically display nonlinear dynam-
ics, so models can be consistent with the observed dynamics, whilst predicting incorrect
treatment responses. This is especially the case when predicting treatment responses for
either times or dosing regimens that go beyond the observed dynamics. Across a range
of experiments on both real laboratory data and synthetically derived data on Neisseria
gonorrhoeae response to ciprofloxacin, we show that probabilistic averaging of models
results in more reliable treatment response predictions.
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1 Introduction

Modelling of pharmacological processes has become an essential tool in the pharmaceu-
tical drug development pipeline [1–3]. In the early stages of development, models are,
for example, used to optimise clinical trials by predicting clinical efficacy and safety of
dosing regimens [4]. In later stages, models help to quantify the inter-individual treatment
variability across patients and assess the need for dose adjustments in specific populations
[5, 6]. More recently, it has also been suggested that models could be used to recommend
personalised dosing strategies in clinical practice [7, 8].

While the potential of modelling for accelerated drug development and better treat-
ment of patients has been demonstrated [9], the availability of time-resolved preclinical
or clinical data, needed for the training of models, is often limited. This impairs our ability
to use models to learn and predict the nonlinear treatment response dynamics of patients.
To overcome the shortage of data, mechanistic PKPD models incorporate biological and
pharmacological mechanisms informed by previous experiments [10–13]. These mecha-
nistic models are able to learn treatment response dynamics more efficiently from limited
data.

However, frequently it is not clear which pharmacological processes are the most
relevant for assessing the treatment response of patients and, thus, multiple candidate
models exist [14]. In these situations, we can be left with considerable uncertainty about
the correct model choice, which can have far-reaching consequences for the reliability of
model predictions [15]. Common practice is to select the model for predictions that is the
most consistent with the available data based on the AIC score [16]. More recently, it has
also been proposed to average the predictions of candidate models according to their AIC
scores. Uster et al. introduce, for example, the model averaging algorithm (MAA) where
treatment responses are predicted based on the weighted average of the mean predictions
of candidate models [17]. In contrast, other authors have proposed to average the full
treatment response distributions [18]. We will refer to the latter as probabilistic averaging
of models (PAM), and describe both MAA and PAM in more detail in Sections 2.3 and
2.4.

In this article, we argue that optimal consistency with the observed treatment response
does not imply that a model extrapolates well to the future or to unobserved dosing reg-
imens. In particular, we demonstrate that model selection frequently fails to identify the
correct candidate model when multiple models are close approximations of the observed
treatment response. We also show that MAA only improves over model selection in spe-
cial cases, where all candidate models with substantial weights reduce to the qualitatively
similar dynamics. For more reliable treatment response predictions, we propose the use of
the PAM framework as this approach is the only one that reflects the uncertainty of treat-
ment response predictions. We show that PAM outperforms model selection and MAA
in the analysis of in vitro time kill data, where cultures of N. gonorrhoeae are exposed to
ciprofloxacin. In a subsequent synthetic study we analyse this behaviour in more depth.
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2 Methods

In this section, we introduce PAM, after describing the standard PKPD modelling frame-
work and common model selection/averaging strategies. Subsequently, in Sections 2.6-
2.7, we present a typical PKPD modelling example — the treatment of bacterial infections
— which we use to demonstrate the predictive performance of PAM and other model se-
lection/averaging strategies.

2.1 Modelling framework

Pharmacokinetic and pharmacodynamic (PKPD) models are (semi-)mechanistic or em-
pirical descriptions of dose-exposure-response dynamics in terms of ordinary differential
and algebraic equations

dx

dt
= f(x, ψ, r) and ȳ = g(x, ψ) (1)

with initial conditions x(t = 0) = x0 [19–21]. x denotes the dynamical states, ψ
the model parameters, r the dosing regimen and t the time.1 Typical dynamical states
in PKPD models include the drug amount in the blood or other tissues and biomarkers
for the disease progression. Common model parameters are biological, physiological or
drug-specific properties. In general, not all dynamical states x can be observed directly
(or at all). We therefore denote the measurable quantities of the treatment response by
ȳ(ψ, t, r), whose time-course are determined by the dynamical states through the map-
ping g. For example, in the bacterial infection use case in Section 2.5, only the total count
of the bacterial population can be measured, whereas x may model the bacterial count
of specific subpopulations. While Equation 1 may be of semi-mechanistic or empirical
nature, we will refer to it as the mechanistic model.

In order to estimate the parameters ψ from n observations of the treatment response
D = {(yobs

j , tj , rj)}nj=1, it is customary to model the discrepancy between the mechanis-
tic model predictions and the observations with an error model. This error model converts
the PKPD model to a probabilistic model

y(ψ, σ, t, r) = ȳ(ψ, t, r) + ε(σ, ȳ), (2)

where ε models the random deviations of the measurable values y from the mechanis-
tic model predictions ȳ. The observed values yobs are assumed to be realisations of the
measurable values y. The randomness of the measurable values with respect to the mech-
anistic model predictions reflects measurement noise and possible misspecifications of
the mechanistic model [22, 23]. A common error model choice is, for example, to assume
that the discrepancies ε are i.i.d. Gaussian distributed. Equation 2 defines a distribution
p(y|ψ, σ, t, r) of measurable values, whose expectation is equal to the predictions of the
mechanistic model E[y|ψ, σ, t, r] = ȳ(ψ, t, r).2 σ denotes the additional parameters of

1Note that x, ψ and ȳ are vector-valued, i.e. x ∈ Rd, ψ ∈ Rp and ȳ ∈ Ro, where d is the number of
dynamical states, p is the number of mechanistic model parameters and o is the number of observed quantities.

2The expectation of y is only equal to ȳ under the common assumption that the model error is on average
zero. Other choices are also possible.
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the error model.3

From this probabilistic model, maximum likelihood estimates (MLEs) of the model
parameters (ψ̂, σ̂) can be derived by maximising their log-likelihood

log p(D|ψ, σ) =
n∑
j=1

log p(yobs
j |ψ, σ, tj , rj) (3)

with respect to the data D.4 These MLEs are often used for prediction, e.g. using
the mechanistic model predictions, ȳ(ψ̂, t, r), or the probabilistic model distributions,
p(y|ψ̂, σ̂, t, r) [11, 12, 24].

However, the data D leaves uncertainty about the model parameter estimates, which
is unaccounted for by the MLEs. More reliable predictions can be obtained by estimating
the effect of this parametric uncertainty for the model predictions [25]. The parametric
uncertainty can, for example, be quantified by profiling the likelihood surface or by using
Bayesian inference techniques [25, 26]. Regardless of the approach, the uncertainty of the
parameters can be expressed in terms of a distribution of parameter values p(ψ, σ|D).5

Averaging the treatment response predictions over all parameter values results in more
reliable predictions

p(y|D, t, r) = Eψ,σ|D
[
p(y|ψ, σ, t, r)

]
, (4)

where Eψ,σ|D[·] denotes the expectation with respect to the parameter distribution
p(ψ, σ|D). In this article, we use Bayesian inference to estimate the distribution of
parameter values in terms of the posterior parameter distribution

p(ψ, σ|D) =
p(D|ψ, σ) p(ψ, σ)

p(D)
, (5)

where p(ψ, σ) is the prior distribution of the model parameters and quantifies the knowl-
edge about possible values before fitting the model to data. p(D) is the model evidence
and serves as a normalisation factor of the posterior distribution [27].

The model selection/averaging strategies introduced in the next sections do not require
the estimation of parametric uncertainty, and the reader may replace p(y|D, t, r) by the
maximum likelihood distribution p(y|ψ̂, σ̂, t, r) in any of the following expressions.

2.2 Model selection

If multiple candidate models for the treatment response dynamics exist, a widely used
modelling strategy is model selection (MS) based on the Akaike information criterion
(AIC) score

AICm = −2
n∑
j=1

log pm(yobs
j |D, tj , rj) +

2nkm
n− km − 1

, (6)

3Note that also σ is vector-valued, i.e. σ ∈ Re, where e denotes the number of error model parameters.
4Equation 3 holds under the common assumption that the measurements are independent with respect to

the candidate model p.
5Note that even the MLE approach can be expressed as a distribution over model parameters by defining

a distribution that is delta-distributed at the MLEs, i.e. pmle(ψ, σ|D) = δ(ψ − ψ̂) δ(σ − σ̂). This makes it
obvious that the MLE approach neglects parametric uncertainty of the estimates ψ̂(D) and σ̂(D).
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FIGURE 1: Schematic comparison of model selection/averaging methods. The left panel
shows predictions of two candidate models and their AIC scores after learning from data.
The next panel shows the MS predictions where the model with the lower AIC score (here
the black model) is selected. The third panel shows the MAA predictions where the in-
dividual mean predictions are weighted by the model likelihoods/weights and averaged.
The last panel illustrates the proposed PAM approach. In all panels the solid line repre-
sents the mean prediction of the model and the shaded areas the 5th to 95th percentiles
(except for MAA which does not estimate the predictive uncertainty).

where km is the total number of model parameters [28, 29]. The subscript m labels the
candidate models, i.e. the choice of the mechanistic model-error model pair.6 The AIC
score estimates the cross entropy between the data-generating process and the candidate
model (up to a constant factor), and can therefore be used to quantify which model cap-
tures the most information about the observed treatment response dynamics. The model
with the lowest AIC score is estimated to be the most informative and is for that reason
commonly selected for future predictions, e.g. in [16].

2.3 The model averaging algorithm

Similar to parametric uncertainty, the data D can leave considerable uncertainty about
the best candidate model choice, which is unaccounted for by MS [15]. An alternative
approach that recognises this structural uncertainty about the candidate models is the
model averaging algorithm (MAA) introduced in [17]. In this approach, the means of the
candidate models are weighted by their relative likelihood, wm, and averaged to predict
treatment responses [30]

ȳ(t, r) =
M∑
m=1

wm Em[y|D, t, r]. (7)

Here, Em[y|D, t, r] denotes the expectation of y with respect to the candidate model
pm(y|D, t, r). The relative likelihoods of the models are estimated using a partition
function-like normalisation of the AIC scores [31]

wm =
e−AICm/2∑M
m=1 e−AICm/2

. (8)

6Note that the model parameters ψ, σ are, in general, different across candidate models and do not have to
have the same dimension. For ease of notation, we will nevertheless refrain from indexing the parameters with
m.
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Note that for the maximum likelihood approach the expectation of y is equal to the mech-
anistic model predictions, Em[y|ψ̂, σ̂, t, r] = ȳm(ψ̂, t, r), such that Equation 7 reduces
to the weighted average of the mechanistic model outputs, ȳ =

∑
m wm ȳm.

2.4 Probabilistic averaging of models

MAA incorporates structural uncertainty by taking a weighted average of the candidate
models’ mean predictions (see Equation 7), but it provides no overall uncertainty quan-
tification (see Figure 1). Probabilistic averaging of models (PAM) is a model averaging
strategy that is able to capture this predictive uncertainty. PAM was introduced by Akaike
in 1978 and is also known as ‘model averaging’ [31, 32]. However, since different notions
of model averaging have been established in the literature [17, 18, 33–35], we refer to the
averaging of predictive distributions as PAM.

Similar to MS, PAM disregards candidate models that are inconsistent with the ob-
served data. However, as opposed to only choosing the model with the lowest AIC score
(highest likelihood), PAM bases its predictions on all models which have a substantial
likelihood. To this end, PAM estimates the relative model likelihoods identically to MAA,
see Equation 8. An important difference to MAA is, however, that PAM averages the
probability densities, and not the mean predictions of the models

p(y|D, t, r) =
M∑
m=1

wm pm(y|D, t, r). (9)

As a result, PAM is able to quantify the uncertainty of the treatment response predictions.
This form of distribution average also appears in other model averaging frameworks, such
as Bayesian model averaging (BMA). In BMA the cross entropy-based model weights are
replaced by estimates derived from the model evidence [15, 36]. However, recently Fong
and Holmes showed that the log-model evidence can be interpreted as a Bayesian approx-
imation of the cross entropy [37], which motivates PAM not just from an information
theoretic perspective, but also from Bayesian inference. Note that the mean prediction of
PAM is equal to the MAA prediction, which is why MAA can be seen as a special case
of PAM.

In practice, the time evolution of p(y|D, t, r) can be challenging to visualise, which
is why we illustrate the predictions of the individual candidate models together with their
relative likelihoods instead (see e.g. right panel Figure 1). When the relative likelihood of
a candidate model is below a threshold ofwthresh = 10−3, we omit the model’s prediction
from the plot.

2.5 Candidate models

To demonstrate the consequences of MS, MAA and PAM for the reliability of treatment
response predictions, we consider a typical PKPD modelling problem — the treatment of
bacterial infections. Typical responses of bacterial populations to antimicrobials include
an increased death rate (K), the temporary transition into a non-proliferating/persistent
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KR model K model KP model

SusceptibleResistant Susceptible Susceptible Persistent

FIGURE 2: Candidate models for bacterial growth under drug exposure. Arrows tagged
with a pill indicate drug-induced transitions, while other transitions are drug-independent.
Self-loops represent growth, and arrows pointing downwards indicate death.

state (P), and the development of resistance to the treatment (R). These response mecha-
nisms can be combined to formulate candidate models for the observed treatment response
(K, KP, KR; see Figure 2) [24].

In principle, all response mechanisms may occur simultaneously, but our data (see
Section 2.6) are not sufficient to identify the parameters of all mechanisms at the same
time. We nevertheless define a KPR model and view the candidate models as special
cases. We define the KPR model as

dx

dt
= Λx + T (c)x−K(c)x (10)

with x = (xs, xp, xr)
t, where xs, xp and xr denote the counts of the susceptible (s),

persistent (p) and resistant (r) bacteria, respectively. Experimentally, the subpopulations
are not distinguished, which is why we define the measurable bacterial count as the sum of
the individual counts ȳ = xs+xp+xr. Λ = diag(λs,−λp, λr) describes the baseline net-
growth of the subpopulations, and K = diag(κs(c), 0, κr(c)) captures the drug-induced
death rates. The transition rates between the subpopulations are defined as

T =

−tps(c)− µrs(c) tsp 0

tps(c) −tsp 0

µrs(c) 0 0

 , (11)

where µrs denotes the mutation rate from s to r, and tsp and tps are the transition rates
from p to s and s to p, respectively. The initial counts of the bacterial subpopulations
are denoted by x0 = (xs,0, xp,0, xr,0)t. We refer to the collection of all parameters as
ψ. From this KPR model, we can derive the K, KP and KR models according to Table 1.
The dependence of the rates (µrs, tps, κs, κr) on the concentration c is assumed to be
sigmoidal. However, for some rates the in vitro data does not identify both the maximal
kill rate and the half maximal effect concentration. Those rates are assumed to depend
linearly on the drug concentration (see Table 1). Our definition of the candidate models
are minor adaptations of previously introduced models from Nielsen and Friberg [24].

We choose to model the error of the mechanistic model for all candidate models with a
lognormal distribution.7 As a result, the distribution of measureable bacterial count values

7A lognormal error model is equivalent to a Gaussian error on the log-scale logy = log ȳ + ε, where ε is
a Gaussian random variable with mean 0 and standard deviation σ, if the location of the lognormal distribution
is chosen to be µ = 0.
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K model KP model KR model
Initial count xp,0 = xr,0 = 0 xp,0 = xr,0 = 0 xp,0 = xr,0 = 0
Growth rate r n/a n/a λr = λs
Death rate s κs = ksc

c+cs,50
κs = ksc κs = ksc

Death rate r n/a n/a κr = krc
c+cr,50

Mutation rate µrs = 0 µrs = 0 µrs = µc
Transition rate s→ p tps = 0 tps = tc tps = 0
Transition rate p→ s n/a tsp = t̃ n/a
Model parameters xs,0, λs, ks, xs,0, λs, λp, t, xs,0, λs, µ, ks,

cs,50, σ t̃, ks, σ kr, cr,50, σ

TABLE 1
Definitions of candidate models as special cases of the KPR model in Equations 10 and 11.
All model parameters are non-negative constants that need to be estimated from data.

is given by

p(y|ψ, σ, t, r) =
1√

2πσy
e

(log y−µ)2

2σ2 , (12)

where we set µ = log ȳ − σ2/2 such that the mean error of the candidate models is zero,
i.e. E[y|ψ, σ, t, r] = ȳ.

2.6 Data & inference

We estimate the model parameters, (ψ, σ): 1. from an in vitro static time kill dataset of
N. gonorrhoeae under the exposure of ciprofloxacin published in [38]; 2. from a synthet-
ically generated dynamic time kill dataset. The in vitro dataset contains bacterial density
measurements of 12 N. gonorrhoeae populations over a time period of 10 h. After an
initial growth phase of 4 h, the populations were exposed to different concentrations of
ciprofloxacin (see Figure 3A). These concentrations were constant over time. From this
dataset, the model parameters are estimated using a maximum likelihood approach as
defined in Equation 3. We constrain parameters to realistic orders of magnitudes using
upper and lower bounds. The bounds as well as the estimated MLEs are reported in the
SI Table A.

The synthetic dataset is generated using the KR model distribution defined by Equa-
tions 10-12, Table 1 and the MLEs derived from the in vitro dataset. Measurements are
sampled from the distribution hourly for a duration of 30 h for 7 different dosing regi-
mens (see SI Figure A). The dosing regimens were chosen to mirror the dynamics of the
in vitro experiment for the first 10 h. In particular, the drug is administered after an initial
4 h growth phase for 6 h at infusion rates of different levels. The infusion of the drug is
repeated in 15 h intervals. Throughout the experiment, the drug is eliminated from the
system at a constant rate (see SI Section B.1 for details). From this dataset, we infer the
parameter values 4 times using a Bayesian inference approach as defined in Equation 5.
We estimate the parameters: 1. using only the data up to 10 h; 2. using only the data
up to 15 h; 3. using only the data up to 20 h; and 4. using only the data up to 30 h. We
bound the parameters to realistic orders of magnitudes using uniform prior distributions.
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The prior distributions as well as the estimated posterior distributions are reported in the
SI Tables D-G.

2.7 Software & implementation

We implement the mechanistic models in SBML format [39] and simulate the models with
the open-source Python package Myokit [40]. The inference is performed using the open-
source Python package Pints [41] and its implementations of the CMA-ES and the ACMC
algorithms. CMA-ES is used for the estimation of the MLEs from the in vitro data, and
ACMC is used for the inference of the posterior distributions from the synthesised data.
The convergence of the ACMC chains is analysed using the R̂ statistic implemented in
the open-source Python package ArviZ [42]. Details on the number of warmup iterations,
the total number of iterations, the number of chains and the thinning ratio can be found in
the SI. The data and models, as well as executable scripts to reproduce the analyses are
hosted on GitHub: https://github.com/DavAug/PAM.

3 Results

In this section, we report the inference results from the in vitro static time kill data and
the results from the synthesised dynamic time kill data.

3.1 Inference results from in vitro data

The inference results from the in vitro static time kill data are illustrated in Figure 3.
Figure 3A shows the bacterial count measurements under the exposure of different
ciprofloxacin concentrations on a log-scale. Drug concentrations above a threshold
appear to induce a decline in the bacterial count throughout the period of exposure. The
rate of decline is fastest immediately after the start of the administration and slows down
over time. This observation hints that the response dynamics may not be adequately
described by the K model, since, in contrast to the KP and KR models, the K model does
not provide a mechanism for an adaptation to the drug exposure.

The relative model likelihoods in Figure 3B confirm this intuition and assign negligi-
ble weight to the K model, while the KP and KR models receive substantial weights. The
weights are estimated according to Equation 8 using the MLEs inferred from the in vitro
data. The KR model has the highest weight (i.e. the lowest AIC score) and is, thus, chosen
for future treatment response predictions by the MS modelling strategy. As a result, MS
disregards the considerable structural uncertainty that remains after fitting to the data.

A closer look at the treatment response dynamics of the fitted KP and KR models
shows that the population dynamics of persistent and resistant bacteria are qualitatively
the same when exposed to constant drug concentration levels (see e.g. first halves of
middle and right panels in Figure 4). Only upon re-exposure to sufficiently high drug
concentrations do the dynamics of the models start to differ substantially (see e.g. second
halves of the bottom panel in Figure 4). Hence, the constant drug concentrations in the
in vitro study cannot distinguish the KP and KR models as long as the resolution of the

https://github.com/DavAug/PAM
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FIGURE 3: Structural uncertainty after fitting models to in vitro static time kill data of
N. gonorrhoeae under the exposure of ciprofloxacin. (A) shows the data used for the
inference, and (B) shows the relative likelihoods of the candidate models. In (C) the
treatment response for a clinical dosing regimen is predicted with the two top candidate
models. Solid lines indicate the means and shaded areas the 5th to 95th percentiles of the
model predictions.

observed dynamics is limited by measurement noise. This suggests that the difference in
the model weights is not indicative of the true response mechanism, but may in fact be
dominated by measurement noise.

The consequences of choosing either the KP or the KR model for treatment response
prediction are demonstrated for a typical clinical dosing regimen of ciprofloxacin in Fig-
ure 3C. Here, the bacterial infection of a virtual patient is treated with a bidaily oral
ciprofloxacin dose of 250 mg. The treatment response is predicted with the candidate
models and their MLEs. The PK of ciprofloxacin is modelled for an average human
(70 kg) according to [43] (see SI Section A.5 for details). Figure 3C shows that the KP
and KR models make similar predictions about the treatment response up to the second
dose. However, for later times the model predictions start to differ, indicating that neither
model is reliable past the second dose. MS disregards this uncertainty by choosing the
KR model, regardless of the substantial relative likelihood of the KP model. In contrast,
PAM considers both the KP and the KR models, which reflects the remaining structural
uncertainty in the treatment response predictions.

3.2 Predictive reliability of MS, MAA and PAM

The true response mechanism of the bacteria in the in vitro study is unknown which makes
it difficult to quantify the significance of the different modelling strategies for the predic-
tive reliability. To overcome this limitation, we synthesise data from a known model and
use this to assess the three modelling strategies: MS, MAA and PAM. In particular, we
use the KR model and its MLEs from the in vitro study to synthethise bacterial count
measurements and use the true treatment response as the gold standard (see Section 2.6).
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to the in vitro data in Figure 3A (see SI Section A.4 for details). Distinct dynamical
phases are coloured according to the dominant mechanism of the candidate models. Top
bars indicate periods of drug infusion at a constant rate.

From this dataset, we infer the parameter values for four different dataset durations,
with data obtained until 10 h, 15 h, 20 h and 30 h after the start of the experiment. We
then predict a typical dose selection endpoint — the dose amount that leads within 24 h to
a 1-log (10-fold) reduction of the bacterial population [44] — using the different model
selection/averaging strategies (see SI Sections B.2 and B.3 for details). The drug is orally
administered twice a day to a virtual patient, similar to the clinical regimen in Figure 3C.

The predicted 1-log reduction doses of the MS, MAA and PAM modelling strategies
are illustrated in the top panel of Figure 5. The reliability of the predictions is assessed for
the MAA approach based on the proximity to the true 1-log reduction dose, and for the
MS and PAM approaches based on the assigned probabilities to the true 1-log reduction
dose. The predictions in Figure 5 show that all modelling strategies predict the true 1-log
reduction dose reliably when sufficient data are available (i.e. for experiment durations
≥ 15 h). With insufficient data, MAA performs poorly and overestimates the true 1-
log reduction dose by almost 100 mg, while MS and PAM still assign the correct dose
with a high probability. However, MS does not reliably identify the true dose response
mechanism. In fact, MS favours the KP model after both 15 h and 20 h of experimentation.
This unreliable model selection aligns with the intuition developed in Section 3.1 that
the data cannot distinguish the KP and KR dynamics before the bacteria are exposed to
the drug a second time. It also confirms that the differences in the model weights are
dominated by measurement noise when the candidate models are close approximations of
the observed dose response. After the response of the bacteria to the second infusion is
observed, the model likelihoods shift all weight to the correct (KR) model structure.

Selecting the wrong candidate model to predict the 1-log reduction dose does not
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FIGURE 5: Comparing model predictions for ciprofloxacin treatment of N. gonorrhoeae
infection. The top panel shows the predictions for the dose that leads within 24 h to
a 1-log reduction of the bacterial count. The bottom panel shows the predicted 6-log
reduction doses. The columns show the predictions for different durations of the in silico
experiment: 10 h, 15 h, 20 h and 30 h. The true doses are indicated by dashed lines. PAM’s
predicted dose distributions are illustrated by the individual model predictions and the
corresponding model weights. Only the distributions from models with a weight above
wthresh = 10−3 are shown. The distributions selected by MS are highlighted with a black
edge. MAA’s predicted doses are visualised by solid red lines, except the predicted 6-log
reduction dose for 10 h, where the predicted 790 mg is outside the illustrated dose range.

influence the predictions in this instance, because the administered dose is too small to
trigger the resistance mechanism of the true treatment response. Thus, the data-generating
KR model effectively reduces to a K model, whose dynamics can be accurately described
by all candidate models (similar to top panel in Figure 4). However, for dosing regimens
that trigger the resistance response of the bacteria, the modelling strategy significantly
impacts the reliability of the treatment response predictions (see the bottom panel in Fig-
ure 5). Here, we predict the 6-log reduction dose, which requires doses of ciprofloxacin
that induce resistant mutations in the bacterial population. Now, MS and MAA only lead
to reliable predictions when the data-generating model has been conclusively identified.
When insufficient data are available to eliminate the structural uncertainty, both MS and
MAA modelling strategies predict false 6-log reduction doses. In contrast, PAM assigns
high probability to the correct 1-log and 6-log reduction doses at all times and dataset
sizes.
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4 Discussion

Our results show that the reliable prediction of treatment response dynamics crucially re-
lies on the identification of the correct response mechanisms. This is because the dynam-
ics of biological and pharmacological processes do not trivially extrapolate to the future
or unobserved dosing regimens due to their nonlinear nature. This makes PKPD processes
challenging to predict unless the true dose response mechanisms are well approximated.

MS attempts to identify the true treatment response mechanism by choosing the model
that captures the most information about the observed dynamics. However, as demon-
strated in Section 3, it is possible that multiple candidate models closely approximate the
observed dynamics, in which case the data leaves structural uncertainty about the candi-
date models. MS neglects this uncertainty by selecting a single ‘best’ model, which can
lead to unreliable model predictions. This is exacerbated by the fact that the differences
in the models’ AIC scores can be dominated by measurement noise when multiple mod-
els approximate the data well, which leads to an effectively random ranking of candidate
models (see e.g. the model weights in Figure 5). We therefore question the appropriate-
ness of MS for treatment response prediction when the data leaves uncertainty about the
correct model choice.

MAA attempts to incorporate structural uncertainty about the candidate models by av-
eraging their mean predictions using the estimated model weights, but provides no overall
uncertainty quantification. While this strategy can work well, MAA will in general extrap-
olate poorly. This is because, in contrast to the individual candidate models, the weighted
average of the model predictions is no longer founded in a mechanistic understanding of
the biological and pharmacological processes. As a result, MAA cannot be expected to
predict nonlinear treatment responses well for times or dosing regimens that go beyond
the observed treatment response dynamics. However, MAA can lead to good predictive
performance when all likely candidate models reduce to qualitatively the same response
dynamics for the predicted times and dosing regimens.

PAM remedies the problems of MS and MAA (see e.g. Figure 5). PAM rescales
the probability densities of the candidate models relative to their likelihoods. This leaves
the predictions of the candidate models unaltered, and therefore preserves the mechanis-
tic justification of the model predictions. In addition, this allows PAM to quantify the
overall uncertainty of the predicted treatment response dynamics. When sufficient data
are available, PAM reduces to the MS modelling strategy by eliminating unlikely candi-
date models and assigning all weight to a single dominant model. This makes PAM not
only a reliable choice for treatment response predictions, but it may also help to optimise
experimental designs.

In this article, we have demonstrated that PAM can be a reliable approach for treat-
ment response predictions, but there are two important limitations of the approach. First,
the structural uncertainty, as estimated by the weights in Equation 8, estimates the rela-
tive likelihoods of the candidate models under the assumption that at least one candidate
model generated the observed treatment response dynamics. This assumption may not be
justified for most biological modelling problems where the models only approximate the
reality. As a result, the model predictions of PAM are only as reliable as the quality of
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the candidate models. If all models are poor approximations of the biology, the least poor
model is likely assigned with all model weight, ascribing false confidence to the model
choice. It is therefore crucial that candidate models are proposed based on pharmacolog-
ical and biological understanding, and that model fits are visually inspected, e.g. using
posterior predictive checks [45], to identify obvious model inadequacies.

Second, PAM’s (as well as MS’s and MAA’s) ability to estimate the relative likeli-
hoods of candidate models is limited by the sensitivity of the AIC scores to measurement
noise. As discussed in Section 3, this sensitivity can lead to an arbitrary ranking of can-
didate models when multiple models capture the observed dose response dynamics. We
therefore suggest considering all models with substantial weights equally and disregard-
ing candidate models only below a lower threshold, e.g. wthresh = 10−3. For more robust
estimates of the model weights one may also consider replacing the AIC score by other
strategies to estimate the cross entropy, such as cross validation, PSIS-LOO or the WAIC
score [46, 47].

In summary, PAM is a modelling framework that reflects the uncertainty of predic-
tions more truthfully than both MS and MAA and may therefore be favoured for drug
development, dosing regimen selection and treatment response prediction.

5 Study highlights

What is the current knowledge on the topic?

In PKPD modelling, the data are often insufficient to conclusively determine an optimal
model. This uncertainty about the model choice is commonly addressed by choosing the
model that is most consistent with the observed data (model selection). More recently, it
has also been proposed to average the candidate model predictions based on their relative
likelihoods (model averaging).

What question did this study address?

How reliable are model selection and model averaging for treatment response prediction,
and how can we do better?

What does this study add to our knowledge?

We show that model selection and model averaging can be unreliable for treatment re-
sponse prediction and dosing regimen recommendation, especially when multiple models
are close approximations of the observed treatment response. We demonstrate that prob-
abilistic averaging of models (PAM) generally improves the reliability of predictions.

How might this change clinical pharmacology or translational science?

PAM makes more reliable predictions of treatment responses, leading to more informed
decisions in clinical pharmacology and translational science.
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