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Summary

We recorded a large dataset of high-density electroencephalographic signals and used a
combination of behavioural tests and machine learning to characterise the brain computations
covarying with face recognition in individuals with extraordinary abilities. We show that
individual face recognition ability can be accurately decoded from brain activity in an extended
temporal interval for face and non-face objects. We demonstrate that this decoding is
supported by perceptual and semantic brain computations.

Main

The ability to robustly recognise the faces of our colleagues, friends and family members is
paramount to our success as social beings. Our brains complete this feat with apparent ease
and speed, in a series of computations unfolding within tens of milliseconds in a wide brain
network comprising the inferior occipital gyrus (OFA), the fusiform gyrus (FFA), the superior
temporal sulcus (pSTS), and more anterior areas such as the anterior temporal lobe (ATL) 1–3.
Not all individuals, however, are equally competent at recognising faces in their surroundings.
Developmental prosopagnosics show a great difficulty at this task despite an absence of brain
injury 4. In contrast, so-called “super-recognisers'' exhibit remarkable face identification
abilities, even after little exposure to a face several years in the past 5–7. The specific nature of
the neural processes responsible for these individual differences remains largely unknown. So
far, studies have focused on univariate face-specific aspects of brain processing, such as the
preferential responses to faces indexed electrophysiologically by the N170 component or by
functional Magnetic Resonance Imaging (fMRI) localisers 8–14. The distributed functional brain
areas revealed by multivariate techniques suggests that the ability to recognise faces in the
population likely involves brain areas beyond those previously revealed with univariate
techniques 15. Moreover, variations in ability across the population might also result from brain
computations that do not differ between faces and objects 16. In fact, characterising the
computations implemented by the brain 17–19 is a challenging task, and this level of description
is largely absent from previous literature exploring face recognition abilities. To tackle this
challenge, here, we characterised the functional differences in brain activity predictive of face
recognition ability with unprecedented levels of description, using a data-driven approach
combining state-of-the-art computational tools and multivariate description of high-density
electrophysiological (EEG) brain activity measured in a rare cohort of extraordinary face
recognisers.

We recruited 16 super-recognisers, individuals better than the 98th percentile on a battery of
face recognition tests 6 Fig.1a), and 17 typical-recognisers. We measured their brain potentials
with high-density EEG while they performed a simple one-back task. The objects depicted in
the stimuli belonged to multiple visual categories including face images of different sexes,
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emotions, and identities, as well as images of man-made and non-face natural objects (e.g., a
computer, a plant), animals (e.g., a giraffe, a monkey), and scenes (e.g., a city, a dining room)
(Fig. 1b). Participants completed a total of more than 100,000 trials.

Figure 1. Experimental procedure, multivariate analysis and computational modelling of brain
representations. a) The super-recogniser cohort consisted of 16 individuals in the top 1% of face
recognition ability spectrum6 (see online methods). An additional group of 17 neurotypical observers
was recruited for this study (black bars). The Cambridge Face Memory Test long-form (CFMT+ 20)
scores of all these participants are depicted with those of 332 neurotypical observers from three
independent studies 21–23. b) Participants engaged in a one-back task while their brain activity was
being recorded with high-density electroencephalography (EEG, 128 electrodes). The objects depicted
in the stimuli belonged to various categories, such as faces, objects, and scenes. Note that drawings of
faces are depicted here as an anonymised substitute to the experimental face stimuli presented to our
participants. c) Representational dissimilarity matrices (RDM) were computed from convolutional neural
networks (CNN) of vision24,25, human brain activity, and a deep neural network of sentence semantics 26.
To characterise the CNN RDMs, we computed the pairwise similarity between unit activation patterns
for each image independently in each CNN layer. Semantic RDMs were derived from human caption
descriptions of the images transformed into semantic sentence embeddings. Brain RDMs were
computed using cross-validated decoding performance between the EEG topographies from each pair
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of stimuli at every 4 ms time-point. Mutual information 27 between the model RDMs and the brain RDMs
was assessed, for every participant, at each 4 ms step from stimulus onset.

With this sizable and category-rich dataset, we first attempted to classify a participant as either
a super- or a typical-recogniser based solely on their brain activity. More specifically, we
trained Fisher linear discriminants to predict group-membership from single, 1-second trials of
EEG patterns (in a moving searchlight of 5 neighbouring electrodes; see Supplementary
Fig.1 for a schematic of decoding analyses). We observed up to ~80% cross-validated
decoding accuracies, peaking over right-lateralised electrodes. This is all the more impressive
given that the noise ceiling imposed on our classification by the test-retest reliability of the
CFMT+ 20, the gold-standard test we used to identify super-recognisers individuals, is ~93%
correct (SD=2.28%; see online methods). Thus, the brains of individuals differing in their face
recognition ability show important functional differences. We applied the same decoding
procedure to each 4-ms interval of EEG recordings to reveal the time course of these
functional differences. Group-membership predictions attained statistical significance (p<.001,
permutation tests, Fig. 2a) from about 65 ms to at least 1 s after stimulus onset, peaking
around 135 ms within the N170 window 28,29. Notably, similar results were obtained following
the presentation of both face and non-face visual stimuli (Fig. 2a; see also Supplementary
Materials, Behavioural results), corroborating a critical prediction of domain-general accounts
of face recognition 30–34.

A debate in individual differences research is whether the observed effects emerge from
qualitative or quantitative changes in the supporting brain mechanisms 35,36. The decoding
results presented up to this point might give the impression that face recognition ability is
supported by qualitatively different processes along the brain processing stream. However,
these results were obtained with dichotomous classification models applied, by design, to the
brains of individuals from a bimodal distribution of ability scores. To better assess the nature of
the relationship between brain processing and ability in the general population, we thus
performed a new decoding analysis on the typical-recognisers only, using a continuous
regression model. Specifically, we used cross-validated fractional ridge regression 37 to predict
individual CFMT+ face recognition ability scores from single-trial EEG data (see online
methods). Overall, we replicated the previous decoding results: performance was above
statistical threshold (p <.01, FDR-corrected) from about 80 ms to at least 1 s, peaking around
135 ms following stimulus onset, for both face and non-face stimuli (Fig. 2b, peak-rface = .4149
at 133 ms, peak-rnon-face = .4899 at 141 ms). This decoding of individual scores from EEG
patterns suggests that face recognition ability is compatible with quantitative variations in brain
mechanisms across individuals of the general population 21. Altogether, our decoding analyses
provide evidence for important, quantitative, temporally extended, and domain-general
variations in the brain activity supporting face recognition abilities.
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Figure 2. Decoding interindividual recognition ability variations from high-density EEG activity.
a) Trial-by-trial group-membership predictions (“super” or “typical”) were computed from high-density
EEG patterns, for each 4-ms interval, while participants processed face (blue trace) or non-face stimuli
(grey trace). Significant decoding performance occurred as early as 65 ms, peaked in the N170
window, and lasted up to at least 1 s after stimulus onset (p<.001). The topographies show results from
a searchlight decoding analysis with classification performance attaining 78% accuracy around 135 ms
over occipito-temporal electrodes. b) We decoded the typical-recognisers individual CFMT+ scores
using a fractional ridge regression classifier. This yielded similar results with significant decoding as
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early as 75 ms, peaking around the N170 time window (peak-rface = .4149, peak-rnon-face = .4899; p <.01,
1K permutations, 10 repetitions, FDR-corrected).

Temporal evidence, and domain-generality, however, are only partial indications of the level of
brain computation 38,39. To better characterise the specific visual brain computations covarying
with face recognition ability, we compared, using representational similarity analysis 40–43, the
brain representations of our participants to that of convolutional neural networks trained to
categorise objects 24,25. These CNNs process visual features of gradually higher complexity
and abstraction along their layers 44, from low-level features (i.e., orientation, edges), to
mid-level features (e.g., combinations of edges, contour, shape, texture) and high-level
features (e.g., objects and object parts). The brain representations were characterised by
computing representational dissimilarity matrices (RDMs) for every participant and for each
4-ms time interval. Brain RDMs were computed using the decoding performance of a linear
discriminant model, where brain activity was decoded for every pair of stimulus conditions at a
given time 45,46 see Supplementary Fig. 2 for the group-average RDMs and time course of key
categorical distinctions). The model representations were characterised by computing RDMs
from the layers of the CNNs. Compared to typical participants, we found that the brain RDMs
of super-recognisers showed larger mutual information 27 with the mid-layer RDMs of CNNs
(e.g., layer 3, 4, 5 and 6 of AlexNet) between 133 and 165 ms (Fig. 3a, p<.05, cluster-test, see
also Supplementary Fig.2 for replication with VGG16). This indicates that the best face
recognisers of the population have higher mid-level visual processing in the N170 window.
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Figure 3. Comparison of super- and typical-recogniser brain representations with those of
artificial neural networks of vision and sentence semantics. a) Mutual information between brain
RDMs and AlexNet RDMs is shown for typical- (grey curve) and super-recognisers (pink curve). We
found greater similarity with mid-level visual computations (layer 4 shown) in the brains of
super-recognisers (black line indicates significant contrasts, p<.05, cluster-corrected) between 133 ms
to 165 ms. b) Similarity with the semantic model, excluding shared mutual information between brain
and AlexNet, differed for typical- and super-recognisers in a later time window centred around 650 ms
(cyan curve; super > typical, p < .05, cluster-corrected). The shaded areas of all curves represent the
standard error intervals of bootstrapped leave-one-out distributions.

The finding that face recognition ability could be decoded even 1 s after stimulus onset hints
that brain computations beyond what is typically construed as pure visual processing also
differ as a function of face recognition ability. To test this hypothesis, we asked five new
participants to write captions describing the images presented during our experiment (e.g., “A
city seen from the other side of a forest”), and used a deep averaging network (Google
Universal Sentence Encoder, GUSE 26) to transform these captions into embeddings (points in
a semantic space). GUSE has been trained to predict semantic textual similarity from human
judgments, and its embeddings have been shown to generalise to an array of other semantic
judgement tasks 26. We then compared the RDMs computed from these semantic embeddings
to the brain RDMs of both typical- and super-recognisers. Importantly, this comparison
excluded the information shared between the semantic and visual deep neural network models
(see Conditional Mutual Information section; see also Supplementary Fig.2 for additional
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analyses on brain and DCNN mutual information excluding semantic information, which
showed similar results as those in Fig.3a). We found larger mutual information with these
caption-level computations in the brains of super- than in those of typical-recognisers between
598 and 727 ms (Fig. 3b, p<.05, cluster-test). This late time window contrasts with that
uncovered with the visual computational model, observed much earlier within the N170. To our
knowledge, this is the first time that processes beyond perception are associated with face
recognition ability.

Discussion

Using a combination of behavioural tests and computational modelling of brain activity, we
show that face recognition ability covaries with a cascade of brain computations that extend
not only beyond traditional category-specific neural markers, but also beyond purely visual
processing itself. We achieved robust decoding of face recognition ability when examining
electrophysiological responses to face and non-face stimuli, echoing pioneering MVPA studies
having shown widely shared representations of face and objects in the brain, including in
face-sensitive areas 15. The decoding accuracies we reached when predicting variations in
such a high-level perceptual ability from single 1-s EEG trials were impressive, showing
promising research paths using a combination of EEG and MVPA to study individual
differences in high-level vision 47. Furthermore, by using Representational Similarity Analysis
(RSA) to combine human electrophysiological data with deep learning models of vision and
semantics, we were able to reveal the temporal and computational mechanisms linked with the
ability to recognise faces, from visual to late semantic information processing in the brain.
Doing so, we demonstrate for the first time a clear link between semantic computations and
real-world perceptual ability in the population.

The specificity of face recognition remains highly debated 30–32. Arguments on both sides arose
with the first wave of brain imaging studies 3,28,33,48,49 and early neural models of face perception
50,51. It has since then been largely informed by neuropsychological findings from individuals
clinically and selectively impaired in face (i.e., either with brain-lesions or with
congenital/developmental deficits, 52–56) and object recognition 57. On top of precisely
describing the temporal aspects of brain variations behind face recognition ability in the
general population, our decoding approach constitutes a straightforward test for the
contribution of category-specific vs. domain-general processes in individuals with a higher
ability to recognise faces. Our successful decoding of individual ability from the brain activity of
typical- and super-recognisers engaging with non-face objects (e.g., cars, animals, natural
scenes) suggests that the mechanisms underlying highly proficient ability give rise to
enhanced neural representations that are not restricted to faces. Our findings thus indicate that
variations in face-recognition ability reflect, at least, a set of features/processes common to
face and non-face objects 16,50,58,59. To be clear, we do not claim that face-specific brain
processes are not contributing to face recognition ability in the population. Rather, our results
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suggest that face-specific mechanisms alone do not fully account for face recognition ability
variations. Given the limited spatial resolution of EEG, future decoding studies with high
temporal and spatial resolution imaging 60 will be needed to assess the contribution of
face-specific and domain-general visual processes.

We found that the N170 brain processing window not only encompassed the peak of the
decoded evidence for individual ability, but that it also bounded the differences between typical
and outstanding recognisers outlined by our modelling of brain representations with artificial
models of vision. This approach specifically uncovered mid-level representations of these
hierarchical models, which have been previously linked to processing in IT 44,61 as well as to
mid and high-level feature representations such as combinations of edges and parts of objects
44,62, as the level of computations predicting recognition ability in the N170 window. Of course,
having associated mid and high-level visual representations to the N170 does not mean that
brain processing in this window is exclusively represented by computations at this level of
abstraction. While we believe that further specifying the level and nature of processing in this
important component offers promising avenues of inquiry 63, the findings presented here
should be taken only as indications that this level of visual abstraction in the N170 is predictive
of our individual ability to recognise faces.

Face recognition ability, however, was found to be associated with processes that extended
beyond what is traditionally thought of as purely visual 17, i.e., extending those generally
credited to ”core” face perception regions such as the OFA, FFA or pSTS 3,64,65. To date,
surprisingly few studies have explored how face recognition might be expressed across more
diverse areas of the cortex (e.g., ATL and Medial Temporal Lobe 15,50,66–69) in addition to
traditional face-sensitive regions (e.g., OFA, FFA, pSTS). To our knowledge, none have
explored the link between semantic brain representations and high-level recognition
processes. Yet, recent studies using computational techniques have shown that semantic
processes account for an important part of the representations in brain areas of both the
perceptual and memory stream 18,70–72. Here, we expanded our understanding of the nature of
brain representations supporting real-world recognition ability. Our computational approach
uncovered that higher face recognition ability not only enhances visual representations found
around the face-sensitive N170, which is anatomically credited to the FFA 73, but that it also
supports richer high-level semantic representations. Individuals within the top 1% of face
cognition ability displayed brain representations that were more similar to an artificial model of
semantics 26,70,71 in a late window around the P600 74–76. These findings fit well with recent
modelling of human intracranial data showing that semantic representations occurring late
after stimulus onset are associated with better long-term memory performance 71. More
generally, while the aforementioned computational studies have predicted brain activity with
semantic models, our results are the first to highlight the importance of semantic
representations as a support for crucial, real-world aspects of recognition behaviour in the
general population. The association between semantic processes and recognition ability had
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been suggested in previous models of face recognition 1,50,51,77, but to our knowledge it had
never been shown empirically until now.

To conclude, our findings provide compelling evidence highlighting the dynamic nature of brain
computations supporting real-world recognition ability. Our data-driven approach combining
real-world behavioural tests and computational modelling of large-scale EEG recordings not
only precisely characterised the extended temporal dynamics of brain representations related
to individual face recognition ability variations, but also specified the nature of brain
computations which are characteristic of the best face-recognisers of the general population.
Doing so, we provide evidence for domain-general and systematic variations in brain
representations across typical and outstanding face recognisers, and reveal a wide array of
processes—extending to concept-level representations—contributing to this critical ability. We
strongly believe that similar intersectional approaches will further contribute to our
understanding of the brain-mind-behaviour link; revealing insights about how crucial human
behaviour is embodied in the brain and how important cognitive mechanisms, such as
perceptual and semantic processes, support it. From a practical point of view, creating even
more robust decoding models, perhaps using brain activity from more realistic (e.g., dynamic)
visual stimulation, could have broad applications. These applications could provide quick and
accurate alternatives to the traditional standardised behavioural tests assessing face
recognition ability, such as in the context of security settings that benefit from strong face
processing skills among their personnel (e.g., police agencies, border patrol). Further
applications could even include the construction of training components 78,79 designed to
improve face recognition for individuals impaired in face recognition.

Methods

Participants

A total of 33 participants were recruited for this study. The first group consisted of 16
individuals with exceptional ability in face recognition — super-recognisers (see also the
Description of the super-recogniser cohort section). The second group was composed of 17
neurotypical controls (20-37 years old, 11 female). These sample sizes were chosen according
to the effect sizes described on previous multivariate object recognition studies 45,46,80 and
exceeded those typically seen in studies on the behavioural correlates of superior
face-recognition ability 6,7,21,78,81,82. One participant (SR-1) from the super-recogniser group was
rejected due to faulty EEG recording. This study was approved by the Ethics and Research
Committee of the University of Birmingham, and informed (written) consent was obtained from
all participants.

Description of the super-recogniser cohort

Super-recognisers represent a small part of the population considered as having extraordinary
ability to recognise faces; such individuals are thus, by definition, difficult to recruit. The 16
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individuals tested in the current study (30-44 years old, 10 female) were previously known
super-recognisers. They self-reported having superior face recognition ability in their everyday
life and this assessment was confirmed by extensive behavioural testing.

Eight of the 16 (SR-9 to SR-15) were identified according to the procedure described
previously7 using three challenging tests of face cognition, including two matching (i.e.,
perceptual) and one memory (i.e., recognition) task. The remaining eight completed an online
test battery of 6 face cognition tasks hosted by Josh Davis at the University of Greenwich
(unpublished). Common to these evaluations was Cambridge Face Memory Test long-form
(CFMT+ 6 ), which is the gold-standard in the field. All 16 super-recognisers scored at least 92
on the CFMT+, with an average of 95.31 (SD = 2.68). A score greater than 90 (i.e., 2 SD
above the average score) is considered the norm to classify an individual as a
super-recogniser 6,82,83 see also Ramon, 2021; Bobak et al., 2016). The minimal score of 92
obtained in the current sample corresponds to the 99th percentile of scores in face-recognition
ability distribution, as indicated by CFMT+ scores of 332 typical participants from three
independent studies 21–23 (M = 66.1702, SD = 11.9032, Median = 66, c.f. 6,83,84 ). Both cohorts’
behavioural test scores are provided in Supplementary Table 1 and 2.

Description of typical recognisers cohort

The 17 individuals referred to as ‘’typical recognisers’’ tested in the current study (20-37 years
old, 11 female) were recruited on the campuses of University of Fribourg and Birmingham
University. None had a history of psychiatric diagnostic or neurological disorder, and all had
normal or corrected to normal vision. Their CFMT+ scores ranged from 50 to 85 (mean and
STD of 70.00 and 9.08), and fitted well the general spectrum ability scores (see Fig.1a; they
did not differ from the N=332 population of ability scores (t(346) = 1.3065, p=0.1922).

Procedure

The Cambridge Face Memory Test +

All participants were administered a gold-standard face identification ability test, the CFMT
long-form, or CFMT + 6. In the CFMT (short-form) 20, participants are required to memorise a
series of face identities, and to subsequently identify the newly learned faces amongst three
faces. The long-form of CFMT (CFMT+) was created to increase the difficulty to better assess
individual performance thresholds and includes an additional 50 trials, which are more difficult
than those contained in the CMFT short form. As such, the CFMT+ includes a total of 102 trials
of increasing difficulty.The last ones involve recognizing faces following viewpoint changes,
lighting variations and the addition of visual noise. The duration of this test is about 15 minutes.
EEG was not recorded while participants completed this test.

One-back task

Stimuli. During the one-back task, we presented participants with 49 images of faces, animals,
plants, objects, and scenes. Face stimuli consisted of 24 face images from the Radboud Face
dataset 85 varying in identity (8 identities), sex (8 male), and facial expressions (8 neutral faces,
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8 expressing joy, 8 expressing fear). These faces were converted to 250x250 greyscale
images. Each of these face images was aligned based on twenty landmarks (averaged to six
mean coordinates for left and right eyes, left and right eyebrows, nose, and mouth) using
Procrustes transformations (rotation, scaling and translation). Each face image was revealed
through an ellipsoid mask that excluded non-facial cues such as hair. The non-face images
consisted of 25 inanimate objects (e.g., a car, a computer screen, a flower, bananas), scenes
(e.g., city landscape, a kitchen, a bedroom) and animals (e.g., a giraffe, a monkey, a puppy)
that were sampled from the stimuli set of Kiani et al. (2007). These images were resized to
match approximately the size of the face images, and converted to 250x250 greyscale images.
Finally, the luminance profile of the resulting images was equalised across all images using the
SHINE toolbox 86.

Procedure. During the one-back task, we presented a succession of images to participants
and asked them whether the current image was identical to the previous one (i.e., the
one-back, see Figure 1b). This task was employed for two reasons. First, it ensured that
participants focused their attention on the stimulus presented while their brain activity was
being recorded. Second, this task involved processes similar to face or object recognition; our
participants compared their representation of the presented image to another stored in working
memory (i.e., the one-back image). A trial unravelled as follows: a white fixation point was
presented on a homogeneously grey background (500 ms ± 50 ms jitter); a stimulus was
randomly chosen among the 49 stimuli and presented on a homogeneously grey background
(600 ms); the image disappeared, and a white fixation point appeared for another 500 ms, and
so on. Participants had a maximum of 1100 ms to respond by pressing on the appropriate
keyboard key after stimulus onset. This interval, as well as 200 ms before it, constituted the
epoch of our EEG analyses. Feedback about the accuracy of responses was provided on a
trial-by-trial basis. There was a probability of 0.1 that a trial was a one-back repetition. Each
participant completed approximately 1600 trials of this one-back task in ~1.75 hour in each one
of two EEG sessions. The two recording sessions were separated by at least one day and by a
maximum of two weeks. In total, 105,600 one-back trials with concomitant EEG recording were
completed by our forgiving participants.

Analysis

Analyses were performed using custom code written in MATLAB (MathWorks) and Python.

EEG recording and preprocessing

High-density electroencephalographic (EGG) data was continuously recorded at a sampling
rate of 1024 Hz using a 128-channel BioSemi ActiveTwo headset (Biosemi B.V., Amsterdam,
Netherlands). Electrodes’ impedance was kept below 20 µV. Data for half of the
super-recogniser participants (SR1-8) as well as 7 typical recognisers were collected at the
University of Birmingham, while the other half (SR9-16) as well as 10 typical recognisers were
collected at the University of Fribourg. Identical EEG setups were used for all participants.
Data was preprocessed using FieldTrip 87 and in-house Matlab code: continuous raw data was
first re-referenced relative to A1 (Oz), filtered with a band-pass filter [0.01-80 Hz], segmented
into trial epochs from -200 ms to 1100 ms relative to image onset, and down-sampled at 256
Hz. These EEG recordings were made during the one-back task only, not during the other
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behavioural tasks. This resulted in a total of 32.266 hours of epoched high-density EEG
recordings.

Decoding individual ability from EEG activity

Our first goal was to examine if we could predict an individual’s recognition ability based on
their brain activity. We recorded a dataset of more than 100,000 trials of a one-back task while
high-density EEG was being recorded, and used multivariate pattern analysis “decoding” to
predict membership to either the “typical-” or to the “super-recogniser” group from individual
trial EEG observations. To test claims that super-recognisers’ enhanced visual representations
are specific to the processing of faces 82,88, we trained model classifiers on EEG activity of
participants viewing either i) face stimuli (varying in identity, facial-expression, and sex) or ii)
non-face stimuli (i.e., including various objects, scenes, and animals; see Figure 1a). We used
Fisher linear discriminant classifiers (5-fold cross-validation, 5 repetitions; 89) for all decoding
analyses of group-membership. The Area Under the Curve (AUC) was used to assess the
accuracy of all decoding models used in the current study because, among other reasons, it is
resistant to imbalanced groups. Decoding analyses were computed for each EEG session
separately, and then averaged across sessions.

Decoding across time. A visualisation of the decoding analysis pipeline is shown in
Supplementary Fig.1. Succinctly, a Fisher linear discriminant was trained to predict
participants’ group membership based on EEG activity across all trials of face or non-face
condition, for each of the two sessions separately (~26,000 observations per condition, per
session, 5-fold cross-validation, 5 repetitions 89. This process was repeated for all successive
4-ms EEG intervals, starting from -200 ms and ending 1100 ms after stimulus onset, revealing
the time course of decoding accuracy.. The resulting evidence indicates when
super-recognisers can be categorised from brain activity when processing faces (blue) and
non-face stimuli (grey), as shown in Figure 2a. We further isolated the brain activity resulting
from our participant’s discriminating between different stimulus types (e.g., face vs. face
discrimination) by completing analyses in which we decoded group-membership from trials
where participants specifically had to distinguish a face from another face (i.e., back-to-back
face trials), as well as for trials where a non-face image needed to be distinguished from
another non-face stimuli (i.e., back-to-back non-face, see Supplementary figure 3). These
trials necessitated that our participant compare their representations of the presented image
and the one stored in short-term memory. This showed similar findings, with one notable
difference being that the face-face discrimination condition was the one that obtained peak
decoding accuracy.

Searchlight analysis. We conducted a searchlight analysis in which we decoded
group-membership from a subset of neighbouring channels (5 neighbours, ± 60 ms windows
centred on 135 ms, 350 ms, 560 ms, and 775 ms) and repeated this process over all possible
combinations of channels. Evidence for group membership in response to faces peaked over
right hemisphere occipito-temporal electrodes (i.e., B9, B10, A30, A30 for time-windows
centred on 135 ms, 350 ms, 560 ms, and 775 ms respectively, see Figure 2a), while it peaked
in electrodes from both hemispheres for the non-face condition (i.e., A17, B10, A27, A27 for
time-windows centred on 135 ms, 350 ms, 560 ms, and 775 ms respectively; Figure 2a).
These results were also replicated in an additional analysis (see Supplementary figure 2,
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lower panels) targeting trials where participants had to compare specific representations in
memory (i.e., a face from another face). Finally, a searchlight analysis combining all EEG time
points of a trial (5 neighbours, 0-1100 ms) yielded similar topographies as windows-specific
searchlights, with accuracies of 77.3% for faces and 77.5% for non-face conditions (Figure 2a,
left-most topographies).

Fractional ridge regression. We also attempted to predict individual face recognition ability
scores (CFMT+) from EEG-patterns across time using fractional ridge regression models 37.
Ridge regression reduces the collinearity of regressors by penalising the L2-norm of the
coefficients of linear regression using a ridge parameter, k. Fractional ridge regression is a
systematic parameterization of ridge regression. In fractional ridge regression, hyperparameter
k is chosen from the optimal fraction γ = ǁβordinary least-squareǁ2 /ǁβridgeǁ2, the ratio of the L2-norms of
the unregularized and regularised coefficients. Here, we constructed ridge regression models
that predicted the CFMT+ scores (a vector of size ntrials with values ranging from 50 to 100 and
where each trial represented the CFMT+ score of a participant, see Behavioural results section
in Supplementary material) from EEG patterns (a matrix of size ntrials x nchannels, with channels
being the regressors). We chose 20 alphas ranging linearly from .001 to .99, training our
models on a subset of 60% of the EEG patterns of our sample, validating on 30% and testing
on the remaining 10%. This process was repeated 10 times. This approach yielded similar
results (shown in Figure 2b) as those from the classifiers (shown in Figure 2a), with significant
prediction of a participant’s CFMT+ score as soon as 75 ms (face) and 80ms (non-face),
peaking around the N170 (133 and 140 ms respectively for face and non-faces, with values at
rface = .4149, rnon-face = .4899), and maintaining late after stimulus offset. Here, again,
significance was assessed with permutation testing (see Group comparisons and inferential
statistics section).

Note that all these decoding effects were present in two separate recording sessions with at
least a day between them, although the session-average is shown in the figures.

Noise ceiling for group-membership decoding using CFMT+ reliability scores. To better
interpret the magnitude of our group-membership decoding accuracies, we determined the
maximum attainable accuracy when categorising a super-recogniser as such using the CFMT+
(i.e., the empirically imposed noise ceiling for our decoding group-membership analysis). To do
so, we first simulated 1000 distributions of CFMT+ scores, each with N=32, and each having a
Pearson correlation of .71±.01 with the real distribution of CFMT+ scores used in this study.
The correlation coefficient of .71 was chosen according to the test-retest reliability the CFMT+
obtained in a previous study 90,91. We then predicted super-recogniser participants from these
distributions, averaged the predicted accuracy across simulated participants, and obtained the
maximum accuracy from these simulated distributions. This process was repeated 10K times,
creating a distribution of 10K simulated maximums with a mean of M=0.9310 and a standard
deviation of SD=0.0228 that could be interpreted as the best attainable accuracy scores for
prediction of group-membership (i.e., the noise ceiling).

Representational Similarity Analysis of brain and computational models

The differences in late representations found when decoding individual ability suggested that
the brains of super-recognisers varied at several levels of computations. Super-recognisers’
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profound ability could arise due to enhanced (i) high-level semantic representations (i.e.,
conceptual knowledge associated to faces), (ii) activation of feature-like visual representations
(e.g., combinations of edges, curvatures such as those outlined in Long et al., 2018 62) or (iii)
enhanced representations of generic object-like templates. In order to have a better
understanding of the computational stages at which these individual differences emerge in the
brain processing stream, we associated our participants’ brain representations to those from
the visual and semantic deep neural networks using Representational Similarity Analysis (RSA
40–43). RSA captures the geometry between brain representations of different conditions (i.e.,
commonly different stimuli), and by doing so, generates a representation of a higher-level of
abstraction than, say, voxels/topography changes 92. Here, we employed RSA mainly because
this level of abstraction confers one powerful advantage: the means to compare
representations of distinct modalities (e.g., M/EEG & fMRI fusion 46). This approach has indeed
yielded interesting insights on the human brain by associating brain representations to that of
computational models simulating object recognition 61,93.

Brain Representational Dissimilarity Matrices. We applied RSA to 4 ms intervals of
high-density EEG patterns, and characterised the representational dynamics of
super-recognisers and typical participants. Specifically, we obtained representational
dissimilarity matrices (RDMs) for every participant and each of the two recording sessions by
feeding EEG patterns (128 channels) to a linear discriminant whose task was to predict the
identity of the stimulus shown, either stimulus si or stimulus sj. By repeating this process for all
possible pairwise comparisons of a single time frame (1176 for the 49 stimuli presented), we
obtained an RDM. In this symmetrical matrix, larger values represent larger dissimilarity
between pairs of stimuli. Cross-validated AUC served as classification accuracy/dissimilarity
metric for each of these pairwise predictions. This process was repeated for all time frames
(-200 to 1100 ms after stimulus onset), producing idiosyncratic time-resolved representational
geometries 46,80. The group-average time course of important categorical distinctions in the
brains of our participants (e.g., face vs non-face images, face gender, and expressions, etc.),
as well as the RDMs and 2D multidimensional scaling for specific points in time, are shown in
Supplementary figure 4.

Visual Deep Convolutional Neural Networks RDMs. We used AlexNet 24, a well-known deep
convolutional neural network with hierarchical architecture, as a model to approximate the
visual computations along the ventral stream 44. AlexNet is a feedforward model consisting of 5
convolutional layers—conv1 (96 x 55 x 55), conv2 (256 x 27 x 27), conv3 (384 x 13 x 13), and
conv5 (256 x 13 x 13)—as well as three fully-connected layers—fc6 (4096 x 1), fc7 (4096 x 1),
and fc8 (1000 x 1) which uses a softmax function to transform the features into class
probability. AlexNet’s architecture represents visual features of gradually higher complexity and
abstraction along each of its 8 layers 44, from low-level features (i.e., contrast, edge), to
mid-level features (e.g., combinations of edges, contour, shape, texture) and high-level
features (e.g., object parts & entire objects). Long et al. (2018), for example, have shown that
representations of mid-level features, which contribute to a large portion of the organisation of
the ventral stream, peak with the processing of mid-level layer 4 of AlexNet. Such mid-level
features were also recently associated with conscious access to visual information 94. Another
reason for using this model is because of its relative simplicity compared to other more recent
DCNNs (which can attain >100 layers 95). We fed the 49 images presented to our participants
to this pre-trained model, and extracted each layer’s neural activation. Colour images were
used to better parallel the natural processing of the model, which was trained on colour
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images. We used these activations as representational patterns that we compared between
each pair of images (Pearson correlation), and repeated this process for all pairs of images
and each of the 8 layers of the model, creating a total of 8 RDMs (the time course of mutual
information between brain and DCNN is shown for layer 4 of AlexNet in Figure 3a). We also
replicated the findings shown in Figure 3a using another well-known DCNN, VGG-16 (see
Supplementary figure 2b). VGG-16 RDMs were computed in an identical manner as those of
AlexNet, targeting the activation of 5 convolutional layers and 3 fully connected layers. The last
layer of each convolution “block”, e.g., “conv5_3” for conv5, was used to compute these
activations.

Semantic Deep Averaging Neural Network RDM. To characterise semantic representations,
we first asked participants to provide a precise sentence description of each of the stimuli we
presented to our participants during the EEG one-back task. These sentence captions were
collected in five independent human observers online, using the Meadows platform
(www.meadows-research.com). We obtained written descriptions (e.g., “a city seen from the
other side of the forest”, see Fig.1d) for every participant, which we fed as input to Google’s
universal sentence encoder (GUSE 26) that produces an output vector of 512 dimensions which
we refer to as a sentence embedding. We then computed the dissimilarity (cosine distance)
between sentence embeddings of every possible pair of sentences (1176 for the 49 stimuli
presented), resulting in an RDM for each participant that captures high-level semantic
information from human sentences. This RDM is referred to as a semantic RDM.

Association of representations of the brain with computational models

We associated our participants’ brain RDMs to those from the visual and semantic deep neural
networks (described in the previous section) using Gaussian Copula Mutual Information 27.
Mutual Information is an entropy-based metric that measures the statistical dependence
between two variables. It does not make assumptions on the nature of their relationship, and is
thus sensitive to both linear and nonlinear relationships. Gaussian copula Mutual Information
(GCMI) is a conservative and robust method of measuring MI that uses Gaussian-copula rank
normalisation prior to computation of MI. It can be efficiently applied to neuroimaging data.

Mutual information of brain and computational models. We measured the shared
representations between brain and computational modes by computing, for each participant,
the MI between brain RDMs emerging from each point in time (-200 to 1100 ms after stimulus
onset) and the RDM either from the visual DCNNs or the semantic model. For the shared
information between brain and DCNN, this created 8 (nparticipants x ntime) matrix, one for each
layer, which indicated the contribution of visual features of varying complexity in the brain of
our participants. The time course of this information for both groups is shown in figure 3a for
AlexNet 4th layer. For the shared information between brain and semantic model, this created
a single (nparticipants x ntime) matrix which indicated the contribution of high-level semantic
relationships of human sentences to the brain representation of our participants.

Conditional mutual information. Conditional Mutual Information (CMI) measures the
statistical dependence between two variables X and Y, removing the effect from a third variable
Z. It is similar to partial correlation, but is a more powerful approach considering that it
removes statistical relationships of any form, whereas partial correlation only removes the

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://www.meadows-research.com/
https://paperpile.com/c/T2jU2G/zqnCm
https://paperpile.com/c/T2jU2G/CvYmE
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


linear relationships emerging from the third variable on X and Y. Here, we used CMI to partial
out the effect of specific computations in the brain, i.e., either visual or semantic relationships
with brain representations. Indeed, computations of a visual DCNN and semantic models could
be shared to some extent, thereby blurring their respective role in our participants' brain
representations.

First, to control for possible contributions of semantic computations in the shared
representations between brain and DCNNs RDMs, we computed the CMI between brain
RDMs and the DCNNs’ RDMs, removing the effect from the semantic model RDM. We
repeated this for every point in time and every layer of the DCNN, creating a (nparticipants x ntime)
matrix for each layer that indicated a contribution of visual features in the brain of our
participants without any shared contribution from semantic representations. The time courses
of this information, noted CMI(brain;DCNN | semantic), are shown in Supplementary figure
2b for each group. Although the magnitude of the MI was clearly reduced compared to
MI(brain; DCNN), indicating shared variation between visual and semantic processing (see
Supplementary figure 2a for a comparison), group contrasts indicated similar effects as the
one obtained without controlling for semantic RDMs (see next section on Group comparison
and inferential statistics).

Second, to control for possible contributions of visual computations in the shared
representations between brain and semantic RDMs, we computed the CMI between brain
RDMs and the semantic RDM, removing the effect from the RDM of the last layer of AlexNet
(see Dwivedi et al., 2021 for a demonstration that these layers are the most task-specific). We
repeated this for every point in time, creating a (nparticipants x ntime) matrix that indicated a
contribution of semantic representations in the brain of our participants without any contribution
of visual categorical representations. The time courses of this information, noted
CMI(brain;semantic | DCNN), is shown in Figure 3b for each group.

Group comparison and inferential statistics

Comparison of MI time courses. To examine whether face recognition ability impacted
specific brain computations, we compared the time course of MI (see the Association of
representations of the brain with computational models section) between the super and typical
recogniser groups using independent samples t-tests and the Monte Carlo method for
simulation of distribution, as implemented in the Fieldtrip Toolbox 87. Family-wise errors were
controlled for using cluster-based corrections, with maximum cluster size as cluster-level
statistic and an arbitrary critical-p value for cluster statistic of .07 for the comparison of MI
(brain; semantic) and .01 for the comparison of MI (brain; DCNN) time courses. Control
analyses (with CMI (brain; semantic | DCNN) and CMI (brain; DCNN | semantic), see
Supplementary figure 2) were made in an identical manner.

Time course of group-membership decoding. Significance was assessed using
non-parametric permutation testing. Specifically, we constructed an empiric null distribution of
decoding values by training the linear classifier to identify shuffled group-membership labels
(i.e., a vector of size ~50,000) from experimental EEG patterns (128 channels x ~50,000 trials).
This process was repeated for each time point and each one of the two sessions. Considering
that the average of the decoding time course from the two sessions were shown, we then
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averaged the resulting decoding values of both sessions (i.e., the null hypothesis being that
the average of decoding values could not be dissociable than the ones obtained from the
session-averaged distributions trained from shuffled labels), and repeated this process 1000
times. We then compared the real, experimental decoding value at each time point to its
corresponding null distribution, and rejected the null hypothesis if the decoding value was
greater than the prescribed critical value at a p <.001 level.

Time course of individual ability decoding using ridge regression. Significance was again
assessed using non-parametric permutation testing. Specifically, we constructed null
distributions of ridge values by constructing ridge regression models that predicted the
randomly shuffled CFMT+ scores (a vector of size ntrials where each trial represented the
CFMT+ score of a randomly chosen participant) from EEG patterns (a matrix of size ntrials x
nchannels, with channels being the regressors). We repeated this process (further described in
the Fractional ridge regression section) for 1000 permutations. We finally compared the real,
experimental regression value at each time point to its corresponding null distribution, and
rejected the null hypothesis if the decoding value was greater than the prescribed critical value
at a p <.01 level.

Data availability

The data that support the findings of this study will be available online upon publication of the
manuscript.

Code availability

The MATLAB and Python codes that support the findings of this study will be available online
upon publication of the manuscript.
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Supplementary material

Behavioural results

All participants’ face recognition ability was assessed using the Cambridge Face Memory Test
long-form (CFMT+20). Scores on the CFMT+ ranged from 50 to 85 in the typical recognisers
group (M=70.00; stdev=9.09), and from 92 to 100 in the experimental super-recogniser group
(M=95.38, stdev=2.68; difference between groups : t(31)=10.6958, p<.00001 see Figure 1a).
During the main experimental task, participants completed a one-back task (Figure 1b).
Accuracy was significantly greater for the SRs (MSRs=.93, stdev = .054) than for the controls
(Mctrls=.83, stdev=.094; t(31)=3.7911, p = 6.50e-04) for both face (MSRs= .9260, stdev=.0471;
Mctrls=.8144, stdev=.1066; t(31)=3.8440, p = 5.6242e-04) and non-face images (MSRs=.9456,
stdev=.0651; Mctrls=.8532, stdev=.0929; t(31)=3.2855, p =.0025). We observed no significant
differences in response times between the two groups (p > .3). Furthermore, accuracy in the
one-back task was positively correlated with scores on the CFMT+ (r = .68, p<.001; RT was
marginally associated with CFMT+, r = .37, p =.04), suggesting that this effect does not
emerge from different lapse rates in our participants.

Supplementary table 1. Birmingham

subject-ID
CFM
T+ GFMT

Face
Array

LASIE
Match

Black
and

White
Super-re

c Longterm
one-back

faces
one-back
non-faces

SR-1
(JP1) 93 40 38 83 34 13 9 .9328 0.977

SR-2
(EG1) 95 40 37 88 33 12 9 .8500 0.7903

SR-3
(JKW) 97 40 32 84 33 12 8 .9325 0.9718

SR-4
(EM1) 93 40 38 92 34 13 8 .9726 0.9835

SR-5
(SM1) 98 40 31 91 33 14 9 .9326 0.9787

SR-6
(KH1) 100 40 39 82 40 14 10 .9823 0.9817

SR-7
(ES1) 98 40 40 92 33 13 8 .9319 0.9647

SR-8
(DE1) 96 38 40 90 39 12 10 .9362 0.9787

Max_scor
e 102 40 40 100 40 14 10 1 1
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Supplementary table 2. Fribourg  (see also 7)

subject-ID CFMT+ FICST score YBT long raw score

one-back

faces

one-back

non-faces

SR-9 (RF1) 92 0 29 .8132 0.8384

SR-10 (M1) 99 0 17 .9409 0.9619

SR-11 (UC1) 92 0 20 .9635 0.9808

SR-12 (MW1) 93 1 20 .8581 0.8212

SR-13 (NC1) 92 7 17 .9530 0.985

SR-14 (MB2) 96 0 18 .9604 0.9886

SR-15 (AH1) 94 3 16 .9112 0.9624

SR-16 (FW1) 97 1 22 .9792 0.9643

Max_score 102 0 35 1

Univariate analyses of EEG associated with individual ability

All univariate analyses were completed post-hoc.

N170 amplitude and latency. To better compare our findings with more traditional face-ERP
studies, we also computed tests on the N170 time window of the ERPs of both groups. We
extracted peak ERP amplitude and latency for every participant in a window corresponding to
the N170 component (computed as the minimum amplitude within 110-200 ms at electrodes
[B6 – B7 – B8 – A28] on the right hemisphere and [A9 – A10 – A11 – A15] on the left
hemisphere), for each of the 2 presentation conditions (face, non-face), and tested the group
and conditions effects with an ANOVA. The univariate effects found indicate that the peak
decoding results observed at 135 ms (for super vs typical recognizers) emerged mainly from
SRs having earlier N170 (Fgroup(60,1) = 19.23, p<.0001; Fconditions(60,1) = 5.86, p = .0185;
Finteraction(60,1) = 1, p =.32) and more ample N170 effects compared to typical recognisers
(Fgroup(60,1) = 13.75, p=.0005; Fconditions(60,1) = 33.78, p < .0001; Finteraction(60,1)=0.32, p > .50).
Importantly, an absence of interaction effects were found for both peak amplitude and latency.
This further indicates that brain processing differences in the N170 window are not specific to
face stimuli, i.e. they extend beyond faces in super-recognisers.

Lateralisation. Univariate analyses further revealed a lateralisation effect that was hinted at by
those shown with decoding searchlights analyses (described in the method section). Indeed,
the more right-lateralized the N170 was in an individual (computed as the minimum amplitude
within 110-200 ms at electrodes [B6 – B7 – B8 – A28] on the right hemisphere and [A9 – A10 –
A11 – A15] on the left hemisphere), the higher score he/she had at the CFMT+ (r(31) = -.44, p
= .01). This finding was also present on group contrasts : super-recognisers showed stronger
N170 amplitude asymmetry to the right hemisphere compared to typical recognisers (t(30) =
-2.8542, p = .01). The N170 was not lateralised for non-face stimuli (p > .25).
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Supplementary figure 1. Visualisation of EEG decoding analyses. (a) We probed the brain
dynamics behind the outstanding visual ability of super-recognisers using multivariate pattern
analysis applied to more than 100,000 observations of the recorded time-resolved EEG
patterns. Specifically, EEG-patterns (128 channel topographies) were fed to a linear classifier
whose task was to predict whether it belonged to the super or typical recogniser group. A
classifier for each 4 ms time step was trained, validated and tested to reveal the time course of
group-membership decoding accuracy. (b) An identical process was repeated for face and
non-face conditions, which permitted us to test the hypothesis that the brain representations
underlying face recognition ability are face-specific (i.e. no evidence for face recognition ability
from non-face brain processing, first panel) or face sensitive (i.e. presence of evidence for face
recognition ability from non-face brain processing). Note that a face drawing is depicted here
as an anonymised substitute to the experimental face stimuli presented to our participants.
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Supplementary figure 2. Time course of similarity between brain RDMs and DCNNs
RDMs, constrained on semantic model RDMs. a) Mutual Information between RDMs
computed from layer 3 and 4 of AlexNet and brain RDMs at every time point was derived, and
showed significant contrasts between super and typical recognisers around 130-160 ms. b) To
ensure that these effects could not emerge from shared semantic/DCNNs computations, we
computed the MI between DCNN and the brain, constrained on the Mutual Information from
the semantic model RDM. Although it reduced the magnitude of shared representations
(indicating similarly shared information between semantic, brain and DCNN RDMs), this
showed significant effects with AlexNet’s layer 3 and 4 (b, first row) within the same time
window. An identical analysis pipeline was completed with another DCNN, VGG-1624,25 (further
described in the Visual Deep Convolutional Neural Networks RDMs section). Here, again, we
found a significant effect between super and typical recognisers within the same time window,
and within the same layers (conv3 and conv4).
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Supplementary figure 3. To isolate the brain activity resulting from the discrimination between
different stimuli types (e.g. face-to-face discrimination), we also computed the time course of
evidence for group membership from trials where participants specifically had to distinguish a
face from another face (i.e. back-to-back face trials), as well as for trials where a non-face
image needed to be distinguished from another non-face stimuli (i.e. back-to-back non-face).
Group-membership multivariate pattern analysis were computed in an identical manner as the
ones shown on Fig.2, but from topographies where participants had to detect changes from
within category stimuli (i.e. face vs. face) and between category stimuli (i.e. face vs. non-face
stimulus). This showed similar timecourses as previously described for face and non-face
conditions, although in this case the evidence in the face-vs-face attained higher values
compared to other conditions in late time points (~400-750ms). This suggests larger brain
processing differences for face representations (compared to non-face representations) in
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super-recognisers Note that a face drawing is depicted here as an anonymised substitute to
the experimental face stimuli presented to our participants.

Supplementary figure 4. EEG representational geometry dynamics. a) Representational
Similarity Analysis (RSA) was applied to time-resolved EEG patterns, using decoding AUC as
dissimilarity measure between pairs of images (5 fold cross-validation, 5 repetitions) to create
Representational Dissimilarity Matrices (RDMs). Multidimensional scaling was employed to
visualise these high-dimensional brain representations on a 2D plane, which showed clear
distinctions between various categories (e.g. face clusters, scenes clusters, animal clusters,
etc.). b) We revealed categorical information unfolding in time by averaging dissimilarities from
different pairs of comparisons between representations (e.g. faces vs non-face objects) and
averaged across participants. The peak latencies for different categorical distinctions in the
brain of our participants are shown on the rightmost panel. Brain representations for the
distinction of face vs. non-face objects (a hallmark of the N170 29) dominated all other
categorical distinctions 45,96, and peaked at 153ms (about 40 ms sooner than information
discriminating within non-face objects, which peaked at 192 ms). For within-face categories,
we found that evidence for face emotions peaked sooner (around 130 ms) than face gender
and face identity (both peaking at 165 ms; see also 97 for similar results using MEG).
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