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Significance

The ability to robustly recognise faces is crucial to our success as social beings. Yet, we still
know little about the brain mechanisms allowing some individuals to excel at face recognition.
This study builds on a sizeable neural dataset measuring the brain activity of individuals with
extraordinary face recognition abilities—super-recognisers—to tackle this challenge. Using
state-of-the-art computational methods, we show robust prediction of face recognition abilities
in single individuals from a mere second of brain activity, and revealed specific brain
computations supporting individual differences in face recognition ability. Doing so, we provide
direct empirical evidence for an association between semantic computations and face
recognition abilities in the human brain—a key component of prominent face recognition
models.

Abstract

Why are some individuals better at recognising faces? Uncovering the neural mechanisms
supporting face recognition ability has proven elusive. To tackle this challenge, we used a
multi-modal data-driven approach combining neuroimaging, computational modelling, and
behavioural tests. We recorded the high-density electroencephalographic brain activity of
individuals with extraordinary face recognition abilities—super-recognisers—and typical
recognisers in response to diverse visual stimuli. Using multivariate pattern analyses, we
decoded face recognition abilities from 1 second of brain activity with up to 80% accuracy. To
better understand the mechanisms subtending this decoding, we compared computations in
the brains of our participants with those in artificial neural network models of vision and
semantics, as well as with those involved in human judgments of shape and meaning
similarity. Compared to typical recognisers, we found stronger associations between early
brain computations of super-recognisers and mid-level computations of vision models as well
as shape similarity judgments. Moreover, we found stronger associations between late brain
representations of super-recognisers and computations of the artificial semantic model as well
as meaning similarity judgments. Overall, these results indicate that important individual
variations in brain processing, including neural computations extending beyond purely visual
processes, support differences in face recognition abilities. They provide the first empirical
evidence for an association between semantic computations and face recognition abilities. We
believe that such multi-modal data-driven approaches will likely play a critical role in further
revealing the complex nature of idiosyncratic face recognition in the human brain.
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Introduction

The ability to robustly recognise the faces of our colleagues, friends and family members is
paramount to our success as social beings. Our brains complete this feat with apparent ease
and speed, in a series of computations unfolding within tens of milliseconds in a wide brain
network comprising the inferior occipital gyrus, the fusiform gyrus, the superior temporal
sulcus, and more anterior areas such as the anterior temporal lobe (Duchaine & Yovel, 2015;
Grill-Spector et al., 2017; Kanwisher et al., 1997). Accumulating neuropsychological and
behavioural evidence indicates that not all individuals, however, are equally competent at
recognising faces in their surroundings (White and Burton 2022). Developmental
prosopagnosics show a great difficulty at this task despite an absence of brain injury (Susilo &
Duchaine, 2013). In contrast, super-recognisers exhibit remarkable abilities for processing
facial identity, and can recognize individuals even after little exposure several years before
(Noyes et al., 2017; Ramon, 2021; Russell et al., 2009). The specific nature of the neural
processes responsible for these individual differences remains largely unknown.

So far, individual differences studies have used univariate techniques to investigate
face-specific aspects of brain processing. This revealed that contrasts between responses to
faces compared to non-faces, measured by the N170 event-related potential component or by
the blood oxygen level dependent signals in regions of interest, are modulated by ability
(Elbich and Scherf 2017; Herzmann et al. 2010; Huang et al. 2014; Kaltwasser et al. 2014;
Lohse et al. 2016; Rossion et al. 2020; Nowparast Rostami et al. 2017). However, univariate
and contrast approaches are limited in their capacity to reveal the precise nature of the
underlying brain computations (Vinken et al. 2022; Visconti di Oleggio Castello et al. 2021;
Dwivedi et al. 2021; Harel et al. 2013).

Here, we tackled this challenge with a data-driven approach. We examined the
functional differences between the brains of super-recognisers and typical recognisers using
decoding and representational similarity analyses (RSA; Kriegeskorte et al. 2008; Kriegeskorte
and Kievit 2013; Charest et al. 2014; Dwivedi et al. 2021; Kriegeskorte and Diedrichsen 2019)
applied to high-density electrophysiological (EEG) signals and artificial neural network models.
We recruited 33 participants, including 16 super-recognisers, i.e., individuals better than the
98th percentile on a battery of face recognition tests (Russell et al., 2009; Fig. 1a). We
measured EEG in more than 100,000 trials while participants performed a one-back task. The
objects depicted in the stimuli belonged to multiple visual categories including face images of
different sexes, emotions, and identities, as well as images of man-made and non-face natural
objects (e.g., a computer, a plant), animals (e.g., a giraffe, a monkey), and scenes (e.g., a city,
a dining room; Fig. 1b).
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Figure 1. Experimental procedure and computational modelling of brain representations. a) The
histogram shows the Cambridge Face Memory Test long-form (CFMT+, Russell et al. 2009) scores of
super-recognisers (yellow bars), typical recognisers (black bars), and an additional 332 neurotypical
observers from three independent studies for comparison (Faghel-Soubeyrand et al., 2019; Fysh et al.,
2020; Tardif et al., 2019). b) Participants engaged in a one-back task while their brain activity was
recorded with high-density electroencephalography. The objects depicted in the stimuli belonged to
various categories, such as faces, objects, and scenes. Note that the face drawings shown here are an
anonymised substitute to the experimental face stimuli presented to our participants. c)
Representational dissimilarity matrices (RDM) were computed from convolutional neural networks
(CNN; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014) of vision, human brain activity, and a
deep neural network of caption classification and sentence semantics (Cer et al., 2018). To characterise
the CNN RDMs, we computed the pairwise similarity between unit activation patterns for each image
independently in each CNN layer. The caption-level RDMs were derived from human caption
descriptions of the images transformed into sentence embeddings. Brain RDMs were computed using
cross-validated decoding performance between the EEG topographies from each pair of stimuli at
every 4 ms time-point. Mutual information (Ince et al., 2017) between the model RDMs and the brain
RDMs was assessed, for every participant, at each 4 ms step from stimulus onset.
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Results

Discriminating super-recognisers and typical recognisers from 1 second of brain
activity

With this sizable and category-rich dataset, we first attempted to classify a participant as either
a super- or a typical recogniser based solely on their brain activity. More specifically, we trained
Fisher linear discriminants to predict group membership from single, 1-second trials of EEG
patterns (in a moving searchlight of five neighbouring electrodes). We observed up to ~80%
cross-validated decoding performance, peaking over electrodes in the right hemisphere. This
performance is impressive given that the noise ceiling imposed on our classification by the
test-retest reliability of the CFMT+ (Duchaine and Nakayama 2006; Russell et al. 2009), the
gold-standard test used to identify super-recogniser individuals, is ~93% (SD=2.28%; see
Supplementary material). To reveal the time course of these functional differences, we applied
the same decoding procedure to each 4-ms interval of EEG recordings. Group-membership
predictions attained statistical significance (p<.001, permutation tests, Fig. 2a) from about 65
ms to at least 1 s after stimulus onset, peaking around 135 ms, within the N170 window
(Bentin et al., 1996; Rossion & Jacques, 2012). Notably, similar results were obtained following
the presentation of both face and non-face visual stimuli (Fig. 2a; see also Supplementary
Fig. 1). The decoding of group-membership from non-face stimuli could be due to face
features stored in short-term memory from one-back trials. To control for this possibility, we
repeated our decoding analysis for non-face trials either preceded by face trials or by non-face
trials. We found significant decoding of group membership in both cases (Supplementary
figure 1). Altogether, these results corroborate a central prediction of domain-general accounts
of face recognition (Behrmann & Avidan, 2005; Garrido et al., 2018; Geskin & Behrmann,
2018; Grill-Spector et al., 2004; Kanwisher, 2000).

Predicting recognition ability from 1 second of brain activity

An ongoing debate in individual differences research is whether the observed effects emerge
from qualitative or quantitative changes in the supporting brain mechanisms (Barton and
Corrow 2016; Bobak et al. 2017; Rosenthal et al. 2017; Hendel et al. 2019; Vogel et al. 2005;
Maguire et al. 2003; Zadelaar et al. 2019; Price and Friston 2002; Anderson et al. 2020). The
decoding results presented up to this point might give the impression that face recognition
ability is supported by qualitative differences in brain mechanisms. However, these results
were obtained with dichotomous classification models applied, by design, to the brains of
individuals from a bimodal distribution of ability scores (e.g. Maguire et al., 2003).

To better assess the nature of the relationship between neural representations and
ability in the general population, we thus performed a new decoding analysis on the typical
recognisers only, using a continuous regression model. Specifically, we used cross-validated
fractional ridge regression (Rokem & Kay, 2020) to predict individual CFMT+ face recognition
ability scores from single-trial EEG data. This showed essentially similar results to the previous
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dichotomic decoding results: performance was above statistical threshold (p<.01,
FDR-corrected) from about 80 ms to at least 1 s, peaking around 135 ms following stimulus
onset for both face and non-face stimuli (Fig. 2b, peak-rhoface=.4149 at 133 ms,
peak-rhonon-face=.4899 at 141 ms). This accurate decoding of individual scores from EEG
patterns is compatible with a quantitative account of variations in brain mechanisms across
individuals differing in face recognition abilities. Altogether, these decoding results provide
evidence for important, domain-general, quantitative and temporally extended variations in the
brain activity supporting face recognition abilities. This extended decoding suggests effects of
individual ability across multiple successive processing stages.
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Figure 2. Decoding interindividual recognition ability variations from EEG activity. a) Trial-by-trial
group-membership predictions (super-recogniser or typical recogniser) were computed from EEG patterns, for
each 4-ms interval, while participants processed face (blue trace) or non-face stimuli (grey trace). Significant
decoding performance occurred as early as 65 ms, peaked in the N170 window, and lasted for the remainder of
the EEG epochs (p<.001). b) Topographies were obtained using searchlight decoding analyses, either
concatenating all time points (left topographies) or for selected time-windows (right topographies). Concatenating
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all time points resulted in peak classification performance of 77.3% over right occipito-temporal electrodes for face
and 77.5% over right occipito-temporal electrodes for non-face conditions. In the N170 window, we observed a
peak classification performance of 74.8% over right-temporal electrodes for face, and 72.1% over left-temporal
electrodes for non-face conditions. c) We decoded the CFMT+ scores of the typical recognisers using fractional
ridge regression. This yielded similar results with significant decoding as early as 75 ms, peaking around the
N170 time window (peak-rhoface=.4149, peak-rhonon-face=.4899), and lasted for the remainder of the EEG epochs
(p<.01, 1K permutations, 10 repetitions).

Linking neural representations and computational models of vision

Decoding time courses, and evidence for domain generality, however, offer limited insights on
the level of brain computations (Lamme & Roelfsema, 2000; McDermott et al., 2002). To better
characterise the visual brain computations covarying with face recognition ability, we
compared, using representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008;
Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte & Kievit, 2013; Charest et al., 2014), the
brain representations of our participants to that of convolutional neural networks (CNNs)
trained to categorise objects (Krizhevsky et al. 2012; Simonyan & Zisserman, 2014; Güçlü &
van Gerven, 2015). These CNNs process visual features of gradually higher complexity and
abstraction along their layers (Güçlü & van Gerven, 2015), from low-level (e.g., orientation,
edges) to high-level features (e.g., objects and object parts).

The brain representations were characterised by computing representational
dissimilarity matrices (RDMs) for each participant and for each 4-ms time interval. These brain
RDMs were derived using the cross-validated decoding performance of a linear discriminant
model, where brain activity was decoded for every pair of stimuli at a given time interval
(Carlson et al., 2013; Cichy et al., 2014; see Supplementary Fig. 2 for the group-average
RDMs and time course of key categorical distinctions). The visual model representations were
characterised by computing RDMs from the layers of the CNNs, using Pearson correlations of
the unit activations across all pairs of stimuli. Compared to typical participants, we found that
the brain RDMs of super-recognisers showed larger mutual information (Ince et al., 2017) with
the layer RDMs of CNNs that represent mid-level features (e.g., combinations of edges,
contour, shape, texture; Güçlü & van Gerven, 2015; Long et al., 2018) between 133 and 165
ms (Fig. 3a, p<.05, cluster-test; see also Supplementary Fig. 3).
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Figure 3. Comparison of super- and typical-recogniser brain representations with those of artificial neural
networks of visual and semantic processing. a) Mutual information between brain RDMs and AlexNet RDMs
(removing shared mutual information between brain and semantic model) is shown for typical- (grey curve) and
super-recognisers (pink curve). We found greater similarity with mid-level visual computations (layer 4 shown, but
similar results for layers 3 and 6 and for mid-layers of VGG16, another popular CNN model; see Supplementary
Fig. 3) in the brains of super-recognisers (black line indicates significant contrasts, p<.05, cluster-corrected)
between 133 ms and 165 ms. Similar results were observed when comparing brains and CNN models without
removing the shared mutual information between brains and the semantic (caption-level) model (Supplementary
Fig. 3). b) Mutual Information with the semantic model (excluding shared mutual information between brain and
AlexNet) differed for typical- and super-recognisers in a later time window centred around 650 ms (cyan curve;
super > typical, p < .05, cluster-corrected). Again, similar results were observed when comparing brains and the
semantic model without removing the shared mutual information between the brain and AlexNet (Supplementary
Fig. 3). The shaded areas of all curves represent the standard error.

Linking neural representations with computational model of semantics

The finding that ability decoding was significant as late as 1 s after stimulus onset hints
that brain computations beyond what is typically construed as pure visual processing also
differ as a function of face recognition ability. To test this hypothesis, we asked five new
participants to write captions describing the images presented during our experiment (e.g., “A
city seen through a forest.”), and used a deep averaging network (Google Universal Sentence
Encoder, GUSE; Cer et al., 2018) to transform these captions into embeddings (points in a
caption space). GUSE has been trained to predict semantic textual similarity from human
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judgments, and its embeddings generalise to an array of other semantic judgement tasks (Cer
et al., 2018). We then compared the RDMs computed from this semantic model to the brain
RDMs of both typical- and super-recognisers. Importantly, both this comparison, and the one
comparing brain and visual models, excluded the information shared between the semantic
and visual models (but see Supplementary Fig. 3 for similar results with unconstrained
analyses). We found larger mutual information with these semantic computations in the brains
of super-recognisers than in those of typical recognisers in a late window between 598 and
727 ms (Fig. 3b, p<.05, cluster-test).

Comparing brain representations with those from human shape and semantic
similarity judgements

Our findings so far suggest that mid-level visual and semantic brain processes both support
individual differences in face recognition abilities. We further tested these conclusions using
RDMs derived from a behavioural experiment on human participants. A group of 32 new
participants were thus submitted to two multiple arrangement tasks engaging judgements of
different levels of abstraction (Cichy et al. 2019; Mur et al. 2013; Hebart et al. 2018): in one of
the tasks, they were asked to evaluate the shape similarities of the 49 object/face/scene
images used in the main experiment; and, in the other task, they were instructed to judge the
meaning similarities of the 49 sentence captions describing these images. More specifically,
participants arranged the images/sentences on a computer screen inside a white circular
arena according to the task instructions using simple drag and drop operations (see Fig. 4).
We computed the mutual information between the mean RDMs extracted from each of these
two tasks and the time-resolved brain RDMs of super- and typical recognisers, while excluding
the information shared with the other task. Results indicated that shape representations were
enhanced around mid-latencies in super-recognisers relative to typical recognisers (133-153
ms; p<.05, cluster-corrected; see Fig. 4a), while semantic meaning representations were
enhanced in late latencies in super-recognisers compared to typical recognisers. (637-747 ms;
p<.05, cluster-corrected; see Fig. 4b).
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Figure 4. Comparison of brain representations with those from human shape and semantic similarity
judgements. a) Mutual information between brain RDMs and the mean RDM built from shape similarity
judgements (illustrated on the left of the plot), removing shared mutual information between brain and sentence
caption meaning RDM, is shown for typical- (grey curve) and super-recognisers (red curve). We found greater
similarity with shape information in the brains of super-recognisers between 133 ms and 153 ms (black line
indicates significant contrasts, p<.05, cluster-corrected) — akin to the time interval during which we observed
greater similarity between the brains of super-recognisers and mid-level layer CNN (fig. 3a). The shaded areas of
all curves represent the standard error. b) Mutual information between brain RDMs and the mean RDM built from
meaning similarity judgement of sentence captions (illustrated on the left of the plot), removing shared mutual
information between brain and shape RDM, is shown for typical- (grey curve) and super-recognisers (green
curve). We found greater similarity with sentence meaning in the brains of super-recognisers between 637 ms and
747 ms (black line indicates significant contrasts, p<.05, cluster-corrected), in agreement with our comparisons
with the artificial semantic model (fig. 3b).

Discussion
Using a data-driven approach combining neuroimaging, computational models, and
behavioural tests, we characterised the computations modulated by variations in face
recognition ability in the human brain. We recorded the high-density electroencephalographic
(EEG) response to face and non-face stimuli in super-recognisers and typical recognisers.
Using multivariate analysis, we reliably decoded group membership as well as recognition
abilities of single individuals from a single second of brain activity. We then characterised the
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neural computations underlying these individual differences by comparing human brain activity
with computations from artificial neural network models of vision and semantics using
representational similarity analysis. Furthermore, we compared the representational
geometries of these neural computations with those derived from additional human participants
engaged in two tasks involving, respectively, shape similarity judgments on our stimuli and
meaning similarity judgments on sentence captions describing these stimuli. These sets of
comparisons revealed two main findings. First, we found higher similarity between early brain
computations of super-recognisers and mid-level computations of vision models as well as
shape similarity judgments. Second, this approach revealed higher similarity between late
brain representations of super-recognisers and computations of an artificial semantic model as
well as meaning similarity judgments. To our knowledge, this is the first demonstration of a link
between face recognition ability and brain computations beyond high-level vision. Overall,
these findings revealed specific computations supporting our individual ability to recognise
faces, and suggest widespread variations in brain processes related to this crucial ability.

We achieved robust decoding of face recognition ability when examining EEG
responses to face and non-face stimuli. This domain-general decoding result indicates that
mechanisms underlying face recognition abilities give rise to enhanced neural representations
that are not restricted to faces (Vinken et al. 2022). This is consistent with several
neuropsychological (Barton et al., 2019; Bobak et al., 2016; Duchaine et al., 2007; Gabay et
al., 2017; Geskin & Behrmann, 2018; Hendel et al., 2019) and brain imaging findings (Avidan
et al., 2005; Jiahui et al., 2018; Kaltwasser et al., 2014; Rosenthal et al., 2017) showing face
and non-face processing effects in individuals across the spectrum of face recognition ability
(Behrmann & Plaut, 2013; Harel et al., 2013; but see Duchaine et al., 2006; Furl et al., 2011;
Lohse et al., 2016; Wilmer et al., 2012). In addition, this decoding approach may provide quick
and accurate alternatives to standardised behavioural tests assessing face recognition ability,
for example in the context of security settings that benefit from strong face processing skills
among their personnel (such as police agencies, border patrol, etc.). It could also be used in a
closed-loop training procedure designed to improve face recognition ability
(Faghel-Soubeyrand et al. 2019).

The decoding we observed for face and non-face stimuli peaked in the temporal window
around the N170 component (Bentin et al., 1996). At that time, the computations in the brains
of our participants differed most with respect to the mid-layer computations of artificial models
of vision. These layers have been previously linked to processing in human infero-temporal
cortex (hIT; Khaligh-Razavi and Kriegeskorte 2014; Güçlü and van Gerven 2015; Jiahui et al. ;
Grossman et al. 2019) and functionally to mid-level feature representations such as
combinations of edges and parts of objects (Güçlü & van Gerven, 2015; Long et al., 2018). We
confirmed the visual nature of this representational code in another analysis associating brain
to behaviour (human) shape representations. Such associations with the N170, however, does
not mean that this component is exclusively involved in these mid-level processes. Rather, it
suggests that other visual computations, including the high-level visual computations usually
associated with the N170, do not differ substantially between super-recognisers and typical
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recognisers. The fact that these mid-level features are mostly shared between face and
non-face stimuli could explain at least partly the high decoding performance observed for both
classes of stimuli.

Finally, we found that face recognition ability is also associated with semantic
computations that extend beyond basic-level visual categorisation in a late time-window
around the P600 component (Eimer et al., 2012; Shen et al., 2016; van Herten et al., 2005).
Recent studies using computational techniques have shown that word representations derived
from models of natural language processing explain significant variance in the visual ventral
stream (Popham et al. 2021; Dwivedi et al. 2021; Fernandino et al. 2022; Frisby et al. 2023).
The current study goes beyond this recent work in two ways. First, our use of human sentence
description and sentence encoders to characterise semantic (caption-level) computations
provides a more abstract description of brain representations. Second, and most importantly,
our work revealed a link between semantic brain computations and individual differences in
face recognition ability. An association between semantic processes and face recognition
ability had been posited in models of face recognition (Bruce & Young, 1986; Duchaine &
Yovel, 2015) but, to our knowledge, it had never been shown empirically before.

With the development of novel and better artificial models simulating an increasing
variety of cognitive processes, and with the technological advances allowing the processing of
increasingly larger neuroimaging datasets, the approach described here provides a stepping
stone for better understanding face recognition idiosyncrasies in the human brain.

Methods

Participants

A total of 33 participants were recruited for this study. The first group consisted of 16
individuals with exceptional ability in face recognition — super-recognisers. The second group
was composed of 17 neurotypical controls. These sample sizes were chosen according to the
effect sizes described in previous multivariate object recognition studies (Carlson et al., 2013;
Cichy et al., 2014; Hebart et al., 2018). The data from one super-recogniser was excluded due
to faulty EEG recordings. No participant had a history of psychiatric diagnostic or neurological
disorder. All had normal or corrected to normal vision. This study was approved by the Ethics
and Research Committee of the University of Birmingham, and informed consent was obtained
from all participants.

Sixteen previously known super-recognisers were tested in the current study (30-44 years old,
10 female). Eight of these (SR1-SR8) were identified by Prof. Josh Davis from the University of
Greenwich using an online test battery comprising a total of six face cognition tasks (Noyes et
al., 2021) and tested at the University of Birmingham. The remaining eight (SR-9 to SR-16)
were identified using three challenging face cognition tests (Ramon, 2021) and were tested at
the University of Fribourg. The behavioural test scores for all participants are provided in
Supplementary Tables 1 and 2. Across SR cohorts, the Cambridge Face Memory Test
long-form (CFMT+; Russell et al., 2009) was used as the measure of face identity processing
ability. A score greater than 90 (i.e., 2 SD above average) is typically considered the threshold

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

https://paperpile.com/c/gYtfQQ/00Xk3+LlSxJ+vx7ah
https://paperpile.com/c/o6vuJC/ybn3+5ODb+8SYO+Aa74
https://paperpile.com/c/gYtfQQ/oZzDj+kpZ5y
https://paperpile.com/c/gYtfQQ/oZzDj+kpZ5y
https://paperpile.com/c/gYtfQQ/oSRI5+Z16bx+4A1pE
https://paperpile.com/c/gYtfQQ/oSRI5+Z16bx+4A1pE
https://paperpile.com/c/gYtfQQ/i8GaK
https://paperpile.com/c/gYtfQQ/i8GaK
https://paperpile.com/c/gYtfQQ/dr4X5
https://paperpile.com/c/gYtfQQ/lP1zy
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


for super-recognition (Bobak et al., 2016; Davis et al., 2016; Russell et al., 2009). Our 16
super-recognisers all scored above 92 (M=95.31; SD=2.68). A score of 92 corresponds to the
99th percentile according to our estimation from a group of 332 participants from the general
population recruited in three independent studies (Faghel-Soubeyrand et al., 2019; Fysh et al.,
2020; Tardif et al., 2019).

An additional 17 typical recognisers (20-37 years old, 11 female) were recruited and tested on
campus at the University of Fribourg (n=10) and the University of Birmingham (n=7). Their
CFMT+ scores ranged from 50 to 85 (M=70.00; SD=9.08). Neither the average nor the
distribution of this sample differed significantly from those of the 332 participants from the
general population mentioned above (see Fig. 1a; t(346)=1.3065, p=0.1922; two-sample
Kolmogorov-Smirnov test; D(346)=0.2545, p=0.2372).

Tasks

CFMT+

All participants were administered the CFMT long-form, or CFMT+ (Russell et al., 2009). In the
CFMT+, participants are required to memorise a series of face identities, and to subsequently
identify the newly learned faces among three faces. It includes a total of 102 trials of increasing
difficulty. The duration of this test is about 15 minutes. EEG was not recorded while
participants completed this test.

One-back task

Stimuli. The stimuli used in this study consisted of 49 images of faces, animals (e.g., giraffe,
monkey, puppy), plants, objects (e.g., car, computer monitor, flower, banana), and scenes
(e.g., city landscape, kitchen, bedroom). The 24 faces (13 identities, 8 males, and 8 neutral, 8
happy, 8 fearful expressions) were sampled from the Radboud Face dataset (Langner et al.,
2010). The main facial features were aligned across faces using Procrustes transformations.
Each face image was revealed through an ellipsoid mask that excluded non-facial cues. The
non-face images were sampled from the stimulus set of Kiani et al. (Kiani et al., 2007). All
stimuli were converted to 250 x 250 pixels (8x8 deg of visual angle) greyscale images. The
mean luminance and the luminance standard deviation of these stimuli were equalised using
the SHINE toolbox (Willenbockel et al., 2010).

Procedure. We measured high-density electroencephalographic (EEG; sampling rate = 1024
Hz; 128-channel BioSemi ActiveTwo headset) activity while participants performed ~3200 trials
of a one-back task in two recording sessions separated by at least one day and by a maximum
of two weeks (Fig. 1b). Participants were asked to press a computer keyboard key on trials
where the current image was identical to the previous one. Repetitions occurred with a 0.1
probability. They were asked to respond as quickly and accurately as possible. Feedback
about accuracy was given on each trial. A trial unravelled as follows: a white fixation point was
presented on a grey background for 500 ms (with a jitter of ± 50 ms); followed by a stimulus
presented on a grey background for 600 ms; and, finally, by a white fixation point on a grey
background for 500 ms. Participants had a maximum of 1100 ms following stimulus onset to
respond. This interval, as well as the 200 ms preceding stimulus onset, constituted the epoch
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selected for our EEG analyses. In total, our participants completed 105,600 one-back trials
which constituted ~32 hours of EEG epochs.

Shape and sentence meaning multiple arrangements tasks. Thirty four new neurotypical
participants took part in two multiple arrangements tasks (e.g. Kriegeskorte and Mur, 2012;
Charest et al., 2014) in counterbalanced orders. In one of the tasks, they were asked to
evaluate the shape similarities of the 49 stimuli used in the main experiment while, in the other
task, they were instructed to judge the meaning similarities of sentence captions describing
these stimuli (see Semantic Caption-level Deep Averaging Neural Network RDM for more
information about these sentence captions).

More specifically, participants were asked to arrange stimuli or sentence captions on a
computer screen inside a white circular arena by using computer mouse drag and drop
operations. During the shape (vs. meaning) multiple arrangement task, they were instructed to
place the displayed visual stimuli (vs. sentence captions) in such a way that their pairwise
distances match their shape (vs. meaning) similarities as much as possible (Fig. 4). On the first
trial of each task, participants arranged all 49 items. On subsequent trials, a subset of these
items was selected based on an adaptive procedure aimed at minimising uncertainty for all
possible pairs of items (e.g. items that initially were placed very close to each other) and at
better approximating the high-dimensional perceptual representational space (Kriegeskorte
and Mur, 2012). This procedure was repeated until the task timed out (20 min).

We computed one RDM per task per participant. Two participants were excluded from the final
sample because their RDMs differed from the mean RDMs by more than two standard
deviations. Finally, we averaged the remaining individual RDMs within each task.

Analyses

All reported analyses were performed independently for each EEG recording session and then
averaged. Analyses were completed using custom code written in MATLAB (MathWorks) and
Python.

EEG preprocessing

EEG data was preprocessed using FieldTrip (Oostenveld et al., 2011): continuous raw data
was first re-referenced relative to Cz, filtered with a band-pass filter [0.01-80 Hz], segmented
into trial epochs from -200 ms to 1100 ms relative to stimulus onset, and down-sampled at 256
Hz.

Decoding analyses

Whole-brain analyses. To predict group-membership from EEG brain activity, we trained
Fisher linear discriminant classifiers (5-fold cross-validation, 5 repetitions; Treder 2020;
Grootswagers et al. 2017), using all 128 channels single-trial EEG data as features. Separate
analyses were done on either all time points after stimulus onset, or successive 4-ms EEG
time intervals. The classifiers were trained on trials of EEG activity of participants viewing

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

https://paperpile.com/c/gYtfQQ/frxU1
https://paperpile.com/c/YafAgX/xpUY+zeZz
https://paperpile.com/c/YafAgX/xpUY+zeZz
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


faces and non-faces independently. The Area Under the Curve (AUC) was used to assess
sensitivity. Additional control decoding analyses investigating effects of one-back trials on the
predictions are shown in Supplementary Fig. 1.

Searchlight analysis. We conducted a searchlight analysis decoding EEG signals from all
subsets of five neighbouring channels to characterise the scalp topographies of
group-membership AUC. This searchlight analysis was done either using the entire EEG time
series of a trial (0-1100 ms; Fig. 2b, leftmost topographies), or using 60 ms temporal windows
(centred on 135 ms, 350 ms, 560 ms, and 775 ms; Fig. 2b rightmost topographies). We ran
additional control searchlight decoding procedures investigating the effect of one-back trials
(Supplementary Fig. 1).

Regression analysis. We used fractional ridge regression models (Rokem & Kay, 2020) to
predict individual face recognition ability scores (CFMT+) among the typical recognisers from
EEG patterns across time. We trained our model on subsets of 60% of the EEG patterns. We
chose the alpha hyperparameter with the best coefficient of determination among 20 alpha
hyperparameters ranging linearly from 0.001 to 0.99 applied on a 30% validation set. The
decoding performance was assessed using the Spearman correlation between the CFMT+
scores and predictions from the overall best model (applied on the remaining 10% of EEG
patterns). This process was repeated 10 times and the Spearman correlations were averaged.
Significance was assessed using a permutation test (see Group comparisons and inferential
statistics section).

Representational Similarity Analysis of brain and computational models

We compared our participants’ brain representations to those from visual and semantic
(caption-level) artificial neural networks using Representational Similarity Analysis (RSA;
Charest et al., 2014; Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al.,
2008; Kriegeskorte & Kievit, 8/2013).

Brain Representational Dissimilarity Matrices. For every participant, we trained a Fisher
linear discriminant to distinguish pairs of stimuli from every 4-ms intervals of EEG response (on
all 128 channels) to these stimuli from -200 to 1100 ms after stimulus onset (Cichy & Oliva,
2020; Graumann et al., 2022). Cross-validated AUC served as pairwise classification
dissimilarity metric. By repeating this process for all possible pairs (1176 for our 49 stimuli), we
obtained a representational dissimilarity matrix (RDM). RDMs are shown for selected time
points in Supplementary Fig. 2.

Visual Convolutional Neural Networks RDMs.We used a pre-trained AlexNet (Krizhevsky et
al., 2012) as one model of the visual computations along the ventral stream (Güçlü & van
Gerven, 2015). Our 49 stimuli were input to AlexNet. Layer-wise RDMs were constructed
comparing the unit activation patterns for each pair of images using Pearson correlations.
Similarly, we computed layer-wise RDMs from another well-known CNN, VGG-16 (see
Supplementary Fig. 3b). Following previous studies using this model (Liu et al. 2021; Xie et
al. 2020), we averaged the convolutional layer RDMs situated between each max pooling
layers and the layers’ input into five aggregated convolutional RDMs (e.g. conv1-1 & conv1-2
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into RDM-conv1); this facilitated the comparison of our results with the five convolutional layers
of AlexNet.

Semantic Caption-level Deep Averaging Neural Network RDM. We asked five new
participants to provide a sentence caption describing each stimulus (e.g., “a city seen from the
other side of the forest”, see Fig. 1d) using the Meadows online platform
(www.meadows-research.com). The sentence captions were input in Google’s universal
sentence encoder (GUSE; Cer et al., 2018) resulting in 512 dimensional sentence embeddings
for each stimulus. We then computed the dissimilarities (cosine distances) between the
sentence embeddings across all pairs of captions, resulting in a semantic caption-level RDM
for each participant. The average RDM was used for further analyses.

Comparing brain representations with computational models

We compared our participants’ brain RDMs to those from the vision (Fig. 3a) and semantic
(Fig. 3b) models described in the previous section using Conditional Mutual Information (CMI,
Ince et al., 2017), which measures the statistical dependence between two variables (e.g.
mutual information I(x;y)), removing the effect from a third variable (i.e. I(x;y|z)). Additional
control comparisons using unconstrained Mutual Information between brain RDMs and both
models are shown in Supplementary Fig. 3a.

Group comparison and inferential statistics

Comparison of Conditional Mutual Information time courses. Time courses of CMI were
compared between the super-recognisers and typical recognisers using independent samples
t-tests and a Monte Carlo procedure at a p-value of .05, as implemented in the Fieldtrip
Toolbox (Oostenveld et al., 2011). Family-wise errors were controlled for using cluster-based
corrections, with maximum cluster size as cluster-level statistic and an arbitrary t threshold for
cluster statistic of [-1.90, 1.90] for the comparison of brain and semantic (excluding CNN) and
[-2.75 2.75] for the comparison of brain and CNN (excluding semantic) time courses. The
standard error is shown for all curves as colour-shaded areas (Fig. 3). Analyses with MI (brain;
CNN) and MI (brain; semantic) were completed in an identical manner (Supplementary Fig.
3).

Time course of group-membership decoding. Significance was assessed using
non-parametric permutation tests. We simulated the null hypothesis by training the linear
classifier to identify shuffled group-membership labels from the experimental EEG patterns.
This process was repeated 1000 times for each time point and each one of the two sessions.
We then compared the real, experimental decoding value at each time point to its
corresponding null distribution, and rejected the null hypothesis if the decoding value was
greater than the prescribed critical value at a p <.001 level.

Time course of individual ability decoding using ridge regression. Significance was again
assessed using non-parametric permutation testing. The ridge regression analysis predicted
cross-validated CFMT+ scores from single trial EEG patterns, and goodness of fit is reported
using Spearman’s correlation between the predicted and observed CFMT+ scores. Under the
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null hypothesis that all participants elicited comparable EEG response patterns, irrespective of
their CFMT+ score, the face recognition ability scores are exchangeable. We simulated this
null hypothesis by repeating the ridge regression model training using randomly shuffled
CFMT+ scores. The predicted CFMT+ scores were then correlated to the empirical, observed
CFMT+ scores using Spearman’s correlation, and this was repeated 1000 times for each time
point. We finally compared the real, experimental correlation value with its corresponding null
distribution at each time point, and rejected the null hypothesis if the correlation value was
greater than the prescribed critical value at a p <.01 level.

Data availability

Data associated with this article will be available online upon publication of the manuscript.

Code availability

The MATLAB and Python codes used in this study will be available online upon publication of
the manuscript.

Acknowledgements

We thank Prof. Josh P. Davis for sharing behavioural scores of super-recognisers and
establishing first contact to the UK-based Super-Recognizers reported here. Funding for this
project was supported by an ERC Starting Grant [ERC-StG-759432] to I.C, an ERSC-IAA grant
to J.W., I.C. and S.F.S., by a Swiss National Science Foundation PRIMA (Promoting Women in
Academia) grant [PR00P1_179872] to MR, and by NSERC and IVADO graduate scholarships
to S.F.S. We also thank Mick Neville, from Super-Recognisers Ltd., who helped us to get in
contact with some of our super-recognizer participants. We thank Rose Jutras, who helped
with data acquisition.

Author contributions
(CRediT standardised author statement)

S.F-S.: Conceptualisation, methodology, software, formal analysis, investigation, data curation,
writing - original draft, visualisation, supervision, project administration, funding acquisition.
M.R.: Investigation, resources, project administration, writing - review and editing. E.B.:
investigation, project administration. M.Z.: investigation. J.W.: funding acquisition, writing -
review and editing. A-R.R.: Investigation. R.C.: Resources. F.G.: Methodology, writing - original
draft, supervision, funding acquisition. I.C.: Supervision, methodology, software, resources,
formal analysis, writing - original draft, project administration, funding acquisition.

Competing interests

The authors declare no competing interests.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

Arrington, M., Elbich, D., Dai, J., Duchaine, B., & Suzanne Scherf, K. (2022). Introducing the

female Cambridge face memory test – long form (F-CFMT ). In Behavior Research

Methods. https://doi.org/10.3758/s13428-022-01805-8

Anderson, A. J., McDermott, K., Rooks, B., Heffner, K. L., Dodell-Feder, D., & Lin, F. V. (2020).

Decoding individual identity from brain activity elicited in imagining common experiences.

Nature Communications, 11(1), 5916. https://doi.org/10.1038/s41467-020-19630-y

Avidan, G., Hasson, U., Malach, R., & Behrmann, M. (2005). Detailed Exploration of

Face-related Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging

Findings. In Journal of Cognitive Neuroscience (Vol. 17, Issue 7, pp. 1150–1167).

https://doi.org/10.1162/0898929054475145

Barton, J. J. S., Albonico, A., Susilo, T., Duchaine, B., & Corrow, S. L. (2019). Object

recognition in acquired and developmental prosopagnosia. In Cognitive Neuropsychology

(Vol. 36, Issues 1-2, pp. 54–84). https://doi.org/10.1080/02643294.2019.1593821

Barton, J. J. S., & Corrow, S. L. (2016). The problem of being bad at faces. Neuropsychologia,

89, 119–124. https://doi.org/10.1016/j.neuropsychologia.2016.06.008

Behrmann, M., & Avidan, G. (2005). Congenital prosopagnosia: face-blind from birth. Trends in

Cognitive Sciences, 9(4), 180–187. https://doi.org/10.1016/j.tics.2005.02.011

Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate

visual recognition. Trends in Cognitive Sciences, 17(5), 210–219.

https://doi.org/10.1016/j.tics.2013.03.007

Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/HZ8Qq
http://paperpile.com/b/gYtfQQ/HZ8Qq
http://paperpile.com/b/gYtfQQ/HZ8Qq
http://dx.doi.org/10.3758/s13428-022-01805-8
http://paperpile.com/b/gYtfQQ/rDX66
http://paperpile.com/b/gYtfQQ/rDX66
http://paperpile.com/b/gYtfQQ/rDX66
http://paperpile.com/b/gYtfQQ/rDX66
http://dx.doi.org/10.1162/0898929054475145
http://paperpile.com/b/gYtfQQ/RXqCz
http://paperpile.com/b/gYtfQQ/RXqCz
http://paperpile.com/b/gYtfQQ/RXqCz
http://dx.doi.org/10.1080/02643294.2019.1593821
http://paperpile.com/b/gYtfQQ/Lq4qk
http://paperpile.com/b/gYtfQQ/Lq4qk
http://dx.doi.org/10.1016/j.neuropsychologia.2016.06.008
http://paperpile.com/b/gYtfQQ/oj8gZ
http://paperpile.com/b/gYtfQQ/oj8gZ
http://dx.doi.org/10.1016/j.tics.2005.02.011
http://paperpile.com/b/gYtfQQ/3sFgQ
http://paperpile.com/b/gYtfQQ/3sFgQ
http://paperpile.com/b/gYtfQQ/3sFgQ
http://dx.doi.org/10.1016/j.tics.2013.03.007
http://paperpile.com/b/gYtfQQ/yQU5m
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


of face perception in humans. Journal of Cognitive Neuroscience, 8.

https://doi.org/10.1162/jocn.1996.8.6.551

Bobak, A. K., Bennetts, R. J., Parris, B. A., Jansari, A., & Bate, S. (2016). An in-depth cognitive

examination of individuals with superior face recognition skills. In Cortex (Vol. 82, pp.

48–62). https://doi.org/10.1016/j.cortex.2016.05.003

Bobak, A. K., Parris, B. A., Gregory, N. J., Bennetts, R. J., & Bate, S. (2017). Eye-Movement

Strategies in Developmental Prosopagnosia and “Super” Face Recognition. In Quarterly

Journal of Experimental Psychology (Vol. 70, Issue 2, pp. 201–217).

https://doi.org/10.1080/17470218.2016.1161059

Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology ,

77 ( Pt 3), 305–327. https://doi.org/10.1111/j.2044-8295.1986.tb02199.x

Carlson, T. A., Tovar, D. A., Alink, A., & Kriegeskorte, N. (2013). Representational dynamics of

object vision: The first 1000 ms. Journal of Vision, 13(10), 1–1.

https://doi.org/10.1167/13.10.1

Cer, D., Yang, Y., Kong, S.-Y., Hua, N., Limtiaco, N., St. John, R., Constant, N.,

Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., & Kurzweil, R. (2018).

Universal Sentence Encoder. In arXiv [cs.CL]. arXiv. http://arxiv.org/abs/1803.11175

Charest, I., Kievit, R. A., Schmitz, T. W., Deca, D., & Kriegeskorte, N. (2014). Unique semantic

space in the brain of each beholder predicts perceived similarity. Proceedings of the

National Academy of Sciences, 111(40), 14565–14570.

Cichy, R. M., & Oliva, A. (2020). A M/EEG-fMRI Fusion Primer: Resolving Human Brain

Responses in Space and Time. Neuron. https://doi.org/10.1016/j.neuron.2020.07.001

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space

and time. Nature Neuroscience, 17(3), 455–462. https://doi.org/10.1038/nn.3635

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/yQU5m
http://paperpile.com/b/gYtfQQ/yQU5m
http://dx.doi.org/10.1162/jocn.1996.8.6.551
http://paperpile.com/b/gYtfQQ/MSn34
http://paperpile.com/b/gYtfQQ/MSn34
http://paperpile.com/b/gYtfQQ/MSn34
http://dx.doi.org/10.1016/j.cortex.2016.05.003
http://paperpile.com/b/gYtfQQ/ltz14
http://paperpile.com/b/gYtfQQ/ltz14
http://paperpile.com/b/gYtfQQ/ltz14
http://paperpile.com/b/gYtfQQ/ltz14
http://dx.doi.org/10.1080/17470218.2016.1161059
http://paperpile.com/b/gYtfQQ/oZzDj
http://paperpile.com/b/gYtfQQ/oZzDj
http://dx.doi.org/10.1111/j.2044-8295.1986.tb02199.x
http://paperpile.com/b/gYtfQQ/oSRI5
http://paperpile.com/b/gYtfQQ/oSRI5
http://paperpile.com/b/gYtfQQ/oSRI5
http://dx.doi.org/10.1167/13.10.1
http://paperpile.com/b/gYtfQQ/l0XeN
http://paperpile.com/b/gYtfQQ/l0XeN
http://paperpile.com/b/gYtfQQ/l0XeN
http://arxiv.org/abs/1803.11175
http://paperpile.com/b/gYtfQQ/4gzDA
http://paperpile.com/b/gYtfQQ/4gzDA
http://paperpile.com/b/gYtfQQ/4gzDA
http://paperpile.com/b/gYtfQQ/9Y03u
http://paperpile.com/b/gYtfQQ/9Y03u
http://dx.doi.org/10.1016/j.neuron.2020.07.001
http://paperpile.com/b/gYtfQQ/Z16bx
http://paperpile.com/b/gYtfQQ/Z16bx
http://dx.doi.org/10.1038/nn.3635
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Davis, J. P., Lander, K., Evans, R., & Jansari, A. (2016). Investigating Predictors of Superior

Face Recognition Ability in Police Super-recognisers: Superior face recognisers. Applied

Cognitive Psychology, 30(6), 827–840. https://doi.org/10.1002/acp.3260

Duchaine, B. C., Yovel, G., Butterworth, E. J., & Nakayama, K. (2006). Prosopagnosia as an

impairment to face-specific mechanisms: Elimination of the alternative hypotheses in a

developmental case. Cognitive Neuropsychology, 23(5), 714–747.

https://doi.org/10.1080/02643290500441296

Duchaine, B., Germine, L., & Nakayama, K. (2007). Family resemblance: ten family members

with prosopagnosia and within-class object agnosia. Cognitive Neuropsychology, 24(4),

419–430. https://doi.org/10.1080/02643290701380491

Duchaine, B., & Nakayama, K. (2006). The Cambridge Face Memory Test: Results for

neurologically intact individuals and an investigation of its validity using inverted face

stimuli and …. Neuropsychologia.

https://www.sciencedirect.com/science/article/pii/S0028393205002496

Duchaine, B., & Yovel, G. (2015). A Revised Neural Framework for Face Processing. Annual

Review of Vision Science, 1, 393–416.

https://doi.org/10.1146/annurev-vision-082114-035518

Dwivedi, K., Bonner, M. F., Cichy, R. M., & Roig, G. (2021). Unveiling functions of the visual

cortex using task-specific deep neural networks. PLoS Computational Biology, 17(8),

e1009267. https://doi.org/10.1371/journal.pcbi.1009267

Eimer, M., Gosling, A., & Duchaine, B. (2012). Electrophysiological markers of covert face

recognition in developmental prosopagnosia. Brain: A Journal of Neurology, 135(Pt 2),

542–554. https://doi.org/10.1093/brain/awr347

Faghel-Soubeyrand, S., Alink, A., Bamps, E., Gervais, R.-M., Gosselin, F., & Charest, I.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/hqSrE
http://paperpile.com/b/gYtfQQ/hqSrE
http://paperpile.com/b/gYtfQQ/hqSrE
http://dx.doi.org/10.1002/acp.3260
http://paperpile.com/b/gYtfQQ/Po9r0
http://paperpile.com/b/gYtfQQ/Po9r0
http://paperpile.com/b/gYtfQQ/Po9r0
http://paperpile.com/b/gYtfQQ/Po9r0
http://dx.doi.org/10.1080/02643290500441296
http://paperpile.com/b/gYtfQQ/DCijB
http://paperpile.com/b/gYtfQQ/DCijB
http://paperpile.com/b/gYtfQQ/DCijB
http://dx.doi.org/10.1080/02643290701380491
http://paperpile.com/b/gYtfQQ/7APRl
http://paperpile.com/b/gYtfQQ/7APRl
http://paperpile.com/b/gYtfQQ/7APRl
https://www.sciencedirect.com/science/article/pii/S0028393205002496
http://paperpile.com/b/gYtfQQ/kpZ5y
http://paperpile.com/b/gYtfQQ/kpZ5y
http://paperpile.com/b/gYtfQQ/kpZ5y
http://dx.doi.org/10.1146/annurev-vision-082114-035518
http://paperpile.com/b/gYtfQQ/nCGCV
http://paperpile.com/b/gYtfQQ/nCGCV
http://paperpile.com/b/gYtfQQ/nCGCV
http://dx.doi.org/10.1371/journal.pcbi.1009267
http://paperpile.com/b/gYtfQQ/vx7ah
http://paperpile.com/b/gYtfQQ/vx7ah
http://paperpile.com/b/gYtfQQ/vx7ah
http://dx.doi.org/10.1093/brain/awr347
http://paperpile.com/b/gYtfQQ/O1JZA
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2019). The two-faces of recognition ability: better face recognizers extract different

physical content from left and right sides of face stimuli. Journal of Vision, 19(10), 136d –

136d. https://doi.org/10.1167/19.10.136d

Fernandino, L., Tong, J.-Q., Conant, L. L., Humphries, C. J., & Binder, J. R. (2022). Decoding

the information structure underlying the neural representation of concepts. Proceedings of

the National Academy of Sciences of the United States of America, 119(6).

https://doi.org/10.1073/pnas.2108091119

Furl, N., Garrido, L., Dolan, R. J., Driver, J., & Duchaine, B. (2011). Fusiform gyrus face

selectivity relates to individual differences in facial recognition ability. Journal of Cognitive

Neuroscience, 23(7), 1723–1740. https://doi.org/10.1162/jocn.2010.21545

Fysh, M. C., Stacchi, L., & Ramon, M. (2020). Differences between and within individuals, and

subprocesses of face cognition: implications for theory, research and personnel selection.

Royal Society Open Science, 7(9), 200233. https://doi.org/10.1098/rsos.200233

Gabay, Y., Dundas, E., Plaut, D., & Behrmann, M. (2017). Atypical perceptual processing of

faces in developmental dyslexia. Brain and Language, 173, 41–51.

https://doi.org/10.1016/j.bandl.2017.06.004

Garrido, L., Duchaine, B., & DeGutis, J. (2018). Association vs dissociation and setting

appropriate criteria for object agnosia [Review of Association vs dissociation and setting

appropriate criteria for object agnosia]. Cognitive Neuropsychology, 35(1-2), 55–58.

https://doi.org/10.1080/02643294.2018.1431875

Geskin, J., & Behrmann, M. (2018). Congenital prosopagnosia without object agnosia? A

literature review. Cognitive Neuropsychology, 35(1-2), 4–54.

https://doi.org/10.1080/02643294.2017.1392295

Graumann, M., Ciuffi, C., Dwivedi, K., Roig, G., & Cichy, R. M. (2022). The spatiotemporal

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/O1JZA
http://paperpile.com/b/gYtfQQ/O1JZA
http://paperpile.com/b/gYtfQQ/O1JZA
http://dx.doi.org/10.1167/19.10.136d
http://paperpile.com/b/gYtfQQ/ajLOh
http://paperpile.com/b/gYtfQQ/ajLOh
http://paperpile.com/b/gYtfQQ/ajLOh
http://paperpile.com/b/gYtfQQ/ajLOh
http://dx.doi.org/10.1073/pnas.2108091119
http://paperpile.com/b/gYtfQQ/uXoPC
http://paperpile.com/b/gYtfQQ/uXoPC
http://paperpile.com/b/gYtfQQ/uXoPC
http://dx.doi.org/10.1162/jocn.2010.21545
http://paperpile.com/b/gYtfQQ/R19Zo
http://paperpile.com/b/gYtfQQ/R19Zo
http://paperpile.com/b/gYtfQQ/R19Zo
http://dx.doi.org/10.1098/rsos.200233
http://paperpile.com/b/gYtfQQ/Zntco
http://paperpile.com/b/gYtfQQ/Zntco
http://paperpile.com/b/gYtfQQ/Zntco
http://dx.doi.org/10.1016/j.bandl.2017.06.004
http://paperpile.com/b/gYtfQQ/kt4Lg
http://paperpile.com/b/gYtfQQ/kt4Lg
http://paperpile.com/b/gYtfQQ/kt4Lg
http://paperpile.com/b/gYtfQQ/kt4Lg
http://dx.doi.org/10.1080/02643294.2018.1431875
http://paperpile.com/b/gYtfQQ/xm4QY
http://paperpile.com/b/gYtfQQ/xm4QY
http://paperpile.com/b/gYtfQQ/xm4QY
http://dx.doi.org/10.1080/02643294.2017.1392295
http://paperpile.com/b/gYtfQQ/yz94d
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural dynamics of object location representations in the human brain. Nature Human

Behaviour. https://doi.org/10.1038/s41562-022-01302-0

Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face

perception, not generic within-category identification. Nature Neuroscience, 7(5),

555–562. https://doi.org/10.1038/nn1224

Güçlü, U., & van Gerven, M. A. J. (2015). Deep Neural Networks Reveal a Gradient in the

Complexity of Neural Representations across the Ventral Stream. The Journal of

Neuroscience: The Official Journal of the Society for Neuroscience, 35(27), 10005–10014.

https://doi.org/10.1523/JNEUROSCI.5023-14.2015

Harel, A., Kravitz, D., & Baker, C. I. (2013). Beyond perceptual expertise: revisiting the neural

substrates of expert object recognition. Frontiers in Human Neuroscience, 7, 885.

https://doi.org/10.3389/fnhum.2013.00885

Hebart, M. N., Bankson, B. B., Harel, A., Baker, C. I., & Cichy, R. M. (2018). The

representational dynamics of task and object processing in humans. In eLife (Vol. 7).

https://doi.org/10.7554/elife.32816

Hendel, R. K., Starrfelt, R., & Gerlach, C. (2019). The good, the bad, and the average:

Characterizing the relationship between face and object processing across the face

recognition spectrum. Neuropsychologia, 124, 274–284.

https://doi.org/10.1016/j.neuropsychologia.2018.11.016

Ince, R. A. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017).

A statistical framework for neuroimaging data analysis based on mutual information

estimated via a gaussian copula. Human Brain Mapping, 38(3), 1541–1573.

https://doi.org/10.1002/hbm.23471

Jiahui, G., Yang, H., & Duchaine, B. (2018). Developmental prosopagnosics have widespread

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/yz94d
http://paperpile.com/b/gYtfQQ/yz94d
http://dx.doi.org/10.1038/s41562-022-01302-0
http://paperpile.com/b/gYtfQQ/ey3mc
http://paperpile.com/b/gYtfQQ/ey3mc
http://paperpile.com/b/gYtfQQ/ey3mc
http://dx.doi.org/10.1038/nn1224
http://paperpile.com/b/gYtfQQ/B6Ocp
http://paperpile.com/b/gYtfQQ/B6Ocp
http://paperpile.com/b/gYtfQQ/B6Ocp
http://paperpile.com/b/gYtfQQ/B6Ocp
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://paperpile.com/b/gYtfQQ/TNJRg
http://paperpile.com/b/gYtfQQ/TNJRg
http://paperpile.com/b/gYtfQQ/TNJRg
http://dx.doi.org/10.3389/fnhum.2013.00885
http://paperpile.com/b/gYtfQQ/4A1pE
http://paperpile.com/b/gYtfQQ/4A1pE
http://paperpile.com/b/gYtfQQ/4A1pE
http://dx.doi.org/10.7554/elife.32816
http://paperpile.com/b/gYtfQQ/t06vG
http://paperpile.com/b/gYtfQQ/t06vG
http://paperpile.com/b/gYtfQQ/t06vG
http://paperpile.com/b/gYtfQQ/t06vG
http://dx.doi.org/10.1016/j.neuropsychologia.2018.11.016
http://paperpile.com/b/gYtfQQ/UXQzV
http://paperpile.com/b/gYtfQQ/UXQzV
http://paperpile.com/b/gYtfQQ/UXQzV
http://paperpile.com/b/gYtfQQ/UXQzV
http://dx.doi.org/10.1002/hbm.23471
http://paperpile.com/b/gYtfQQ/rGm2F
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


selectivity reductions across category-selective visual cortex. Proceedings of the National

Academy of Sciences of the United States of America, 115(28), E6418–E6427.

https://doi.org/10.1073/pnas.1802246115

Kaltwasser, L., Hildebrandt, A., Recio, G., Wilhelm, O., & Sommer, W. (2014). Neurocognitive

mechanisms of individual differences in face cognition: a replication and extension.

Cognitive, Affective & Behavioral Neuroscience, 14(2), 861–878.

https://doi.org/10.3758/s13415-013-0234-y

Kaneshiro, B., Perreau Guimaraes, M., Kim, H.-S., Norcia, A. M., & Suppes, P. (2015). A

Representational Similarity Analysis of the Dynamics of Object Processing Using

Single-Trial EEG Classification. PloS One, 10(8), e0135697.

https://doi.org/10.1371/journal.pone.0135697

Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3(8),

759–763. https://doi.org/10.1038/77664

Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised,

models may explain IT cortical representation. PLoS Computational Biology, 10(11),

e1003915. https://doi.org/10.1371/journal.pcbi.1003915

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in response

patterns of neuronal population in monkey inferior temporal cortex. Journal of

Neurophysiology, 97(6), 4296–4309.

Kriegeskorte, N., & Diedrichsen, J. (2019). Peeling the Onion of Brain Representations. Annual

Review of Neuroscience, 42, 407–432.

https://doi.org/10.1146/annurev-neuro-080317-061906

Kriegeskorte, N., & Kievit, R. A. (8/2013). Representational geometry: integrating cognition,

computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/rGm2F
http://paperpile.com/b/gYtfQQ/rGm2F
http://paperpile.com/b/gYtfQQ/rGm2F
http://dx.doi.org/10.1073/pnas.1802246115
http://paperpile.com/b/gYtfQQ/Z1Vg3
http://paperpile.com/b/gYtfQQ/Z1Vg3
http://paperpile.com/b/gYtfQQ/Z1Vg3
http://paperpile.com/b/gYtfQQ/Z1Vg3
http://dx.doi.org/10.3758/s13415-013-0234-y
http://paperpile.com/b/gYtfQQ/qEzAu
http://paperpile.com/b/gYtfQQ/qEzAu
http://paperpile.com/b/gYtfQQ/qEzAu
http://paperpile.com/b/gYtfQQ/qEzAu
http://dx.doi.org/10.1371/journal.pone.0135697
http://paperpile.com/b/gYtfQQ/VGfGz
http://paperpile.com/b/gYtfQQ/VGfGz
http://dx.doi.org/10.1038/77664
http://paperpile.com/b/gYtfQQ/4iqVV
http://paperpile.com/b/gYtfQQ/4iqVV
http://paperpile.com/b/gYtfQQ/4iqVV
http://dx.doi.org/10.1371/journal.pcbi.1003915
http://paperpile.com/b/gYtfQQ/M8PiD
http://paperpile.com/b/gYtfQQ/M8PiD
http://paperpile.com/b/gYtfQQ/M8PiD
http://paperpile.com/b/gYtfQQ/aVYb3
http://paperpile.com/b/gYtfQQ/aVYb3
http://paperpile.com/b/gYtfQQ/aVYb3
http://dx.doi.org/10.1146/annurev-neuro-080317-061906
http://paperpile.com/b/gYtfQQ/Y7i3D
http://paperpile.com/b/gYtfQQ/Y7i3D
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis -

connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2,

4. https://doi.org/10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., &

Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal

cortex of man and monkey. Neuron, 60(6), 1126–1141.

https://doi.org/10.1016/j.neuron.2008.10.043

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q.

Weinberger (Eds.), Advances in Neural Information Processing Systems 25 (pp.

1097–1105). Curran Associates, Inc.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-n

etworks.pdf

Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward

and recurrent processing. Trends in Neurosciences, 23(11), 571–579.

https://doi.org/10.1016/s0166-2236(00)01657-x

Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J., Hawk, S. T., & van Knippenberg, A.

(2010). Presentation and validation of the Radboud Faces Database. Cognition and

Emotion, 24(8), 1377–1388. https://doi.org/10.1080/02699930903485076

Lohse, M., Garrido, L., Driver, J., Dolan, R. J., Duchaine, B. C., & Furl, N. (2016). Effective

Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports

Face Selectivity and Predicts Developmental Prosopagnosia. The Journal of

Neuroscience: The Official Journal of the Society for Neuroscience, 36(13), 3821–3828.

https://doi.org/10.1523/JNEUROSCI.3621-15.2016

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/PzaaH
http://paperpile.com/b/gYtfQQ/PzaaH
http://paperpile.com/b/gYtfQQ/PzaaH
http://dx.doi.org/10.3389/neuro.06.004.2008
http://paperpile.com/b/gYtfQQ/Uz4OM
http://paperpile.com/b/gYtfQQ/Uz4OM
http://paperpile.com/b/gYtfQQ/Uz4OM
http://paperpile.com/b/gYtfQQ/Uz4OM
http://dx.doi.org/10.1016/j.neuron.2008.10.043
http://paperpile.com/b/gYtfQQ/rneAz
http://paperpile.com/b/gYtfQQ/rneAz
http://paperpile.com/b/gYtfQQ/rneAz
http://paperpile.com/b/gYtfQQ/rneAz
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://paperpile.com/b/gYtfQQ/zlwcT
http://paperpile.com/b/gYtfQQ/zlwcT
http://paperpile.com/b/gYtfQQ/zlwcT
http://dx.doi.org/10.1016/s0166-2236(00)01657-x
http://paperpile.com/b/gYtfQQ/6e7db
http://paperpile.com/b/gYtfQQ/6e7db
http://paperpile.com/b/gYtfQQ/6e7db
http://dx.doi.org/10.1080/02699930903485076
http://paperpile.com/b/gYtfQQ/WwJaK
http://paperpile.com/b/gYtfQQ/WwJaK
http://paperpile.com/b/gYtfQQ/WwJaK
http://paperpile.com/b/gYtfQQ/WwJaK
http://paperpile.com/b/gYtfQQ/WwJaK
http://dx.doi.org/10.1523/JNEUROSCI.3621-15.2016
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Long, B., Yu, C.-P., & Konkle, T. (2018). Mid-level visual features underlie the high-level

categorical organization of the ventral stream. Proceedings of the National Academy of

Sciences of the United States of America, 115(38), E9015–E9024.

https://doi.org/10.1073/pnas.1719616115

Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering:

the brains behind superior memory. Nature Neuroscience, 6(1), 90–95.

https://doi.org/10.1038/nn988

McDermott, J., Schiller, P. H., & Gallant, J. L. (2002). Spatial frequency and orientation tuning

dynamics in area V1. Proceedings of the. https://www.pnas.org/content/99/3/1645.short

Murray, E., & Bate, S. (2020). Diagnosing developmental prosopagnosia: repeat assessment

using the Cambridge Face Memory Test. Royal Society Open Science, 7(9), 200884.

https://doi.org/10.1098/rsos.200884

Naselaris, T., Allen, E., & Kay, K. (2021). Extensive sampling for complete models of individual

brains. Current Opinion in Behavioral Sciences, 40, 45–51.

https://doi.org/10.1016/j.cobeha.2020.12.008

Noyes, E., Davis, J. P., Petrov, N., Gray, K. L. H., & Ritchie, K. L. (2021). The effect of face

masks and sunglasses on identity and expression recognition with super-recognizers and

typical observers. Royal Society Open Science, 8(3), 201169.

https://doi.org/10.1098/rsos.201169

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source

software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

Computational Intelligence and Neuroscience, 2011, 156869.

https://doi.org/10.1155/2011/156869

Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., &

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/gh2x5
http://paperpile.com/b/gYtfQQ/gh2x5
http://paperpile.com/b/gYtfQQ/gh2x5
http://paperpile.com/b/gYtfQQ/gh2x5
http://dx.doi.org/10.1073/pnas.1719616115
http://paperpile.com/b/gYtfQQ/UBvWW
http://paperpile.com/b/gYtfQQ/UBvWW
http://paperpile.com/b/gYtfQQ/UBvWW
http://dx.doi.org/10.1038/nn988
http://paperpile.com/b/gYtfQQ/cCoD9
http://paperpile.com/b/gYtfQQ/cCoD9
https://www.pnas.org/content/99/3/1645.short
http://paperpile.com/b/gYtfQQ/9Yytd
http://paperpile.com/b/gYtfQQ/9Yytd
http://paperpile.com/b/gYtfQQ/9Yytd
http://dx.doi.org/10.1098/rsos.200884
http://paperpile.com/b/gYtfQQ/ltS84
http://paperpile.com/b/gYtfQQ/ltS84
http://paperpile.com/b/gYtfQQ/ltS84
http://dx.doi.org/10.1016/j.cobeha.2020.12.008
http://paperpile.com/b/gYtfQQ/i8GaK
http://paperpile.com/b/gYtfQQ/i8GaK
http://paperpile.com/b/gYtfQQ/i8GaK
http://paperpile.com/b/gYtfQQ/i8GaK
http://dx.doi.org/10.1098/rsos.201169
http://paperpile.com/b/gYtfQQ/frxU1
http://paperpile.com/b/gYtfQQ/frxU1
http://paperpile.com/b/gYtfQQ/frxU1
http://paperpile.com/b/gYtfQQ/frxU1
http://dx.doi.org/10.1155/2011/156869
http://paperpile.com/b/gYtfQQ/bBouk
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gallant, J. L. (2021). Visual and linguistic semantic representations are aligned at the

border of human visual cortex. In Nature Neuroscience (Vol. 24, Issue 11, pp.

1628–1636). https://doi.org/10.1038/s41593-021-00921-6

Price, C. J., & Friston, K. J. (2002). Degeneracy and cognitive anatomy. Trends in Cognitive

Sciences, 6(10), 416–421. https://doi.org/10.1016/s1364-6613(02)01976-9

Ramon, M. (2021). Super-Recognizers –a novel diagnostic framework, 70 cases, and

guidelines for future work. Neuropsychologia, 107809.

https://doi.org/10.1016/j.neuropsychologia.2021.107809

Rokem, A., & Kay, K. (2020). Fractional ridge regression: a fast, interpretable

reparameterization of ridge regression. GigaScience, 9(12).

https://doi.org/10.1093/gigascience/giaa133

Rosenthal, G., Tanzer, M., Simony, E., Hasson, U., Behrmann, M., & Avidan, G. (2017). Altered

topology of neural circuits in congenital prosopagnosia. eLife, 6.

https://doi.org/10.7554/eLife.25069

Rossion, B., & Jacques, C. (2012). The N170: Understanding the time course of face

perception in the human brain. The Oxford Handbook of Event-Related Potential

Components., 641, 115–141. https://psycnet.apa.org/fulltext/2013-01016-005.pdf

Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: people with

extraordinary face recognition ability. Psychonomic Bulletin & Review, 16(2), 252–257.

https://doi.org/10.3758/PBR.16.2.252

Shen, W., Fiori-Duharcourt, N., & Isel, F. (2016). Functional significance of the semantic P600:

evidence from the event-related brain potential source localization. Neuroreport, 27(7),

548–558. https://doi.org/10.1097/WNR.0000000000000583

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/bBouk
http://paperpile.com/b/gYtfQQ/bBouk
http://paperpile.com/b/gYtfQQ/bBouk
http://dx.doi.org/10.1038/s41593-021-00921-6
http://paperpile.com/b/gYtfQQ/a1RyL
http://paperpile.com/b/gYtfQQ/a1RyL
http://dx.doi.org/10.1016/s1364-6613(02)01976-9
http://paperpile.com/b/gYtfQQ/dr4X5
http://paperpile.com/b/gYtfQQ/dr4X5
http://paperpile.com/b/gYtfQQ/dr4X5
http://dx.doi.org/10.1016/j.neuropsychologia.2021.107809
http://paperpile.com/b/gYtfQQ/xK3JG
http://paperpile.com/b/gYtfQQ/xK3JG
http://paperpile.com/b/gYtfQQ/xK3JG
http://dx.doi.org/10.1093/gigascience/giaa133
http://paperpile.com/b/gYtfQQ/xi72v
http://paperpile.com/b/gYtfQQ/xi72v
http://paperpile.com/b/gYtfQQ/xi72v
http://dx.doi.org/10.7554/eLife.25069
http://paperpile.com/b/gYtfQQ/ngTkx
http://paperpile.com/b/gYtfQQ/ngTkx
http://paperpile.com/b/gYtfQQ/ngTkx
https://psycnet.apa.org/fulltext/2013-01016-005.pdf
http://paperpile.com/b/gYtfQQ/lP1zy
http://paperpile.com/b/gYtfQQ/lP1zy
http://paperpile.com/b/gYtfQQ/lP1zy
http://dx.doi.org/10.3758/PBR.16.2.252
http://paperpile.com/b/gYtfQQ/LlSxJ
http://paperpile.com/b/gYtfQQ/LlSxJ
http://paperpile.com/b/gYtfQQ/LlSxJ
http://dx.doi.org/10.1097/WNR.0000000000000583
http://paperpile.com/b/gYtfQQ/bHc1D
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Image Recognition. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1409.1556

Tardif, J., Morin Duchesne, X., Cohan, S., Royer, J., Blais, C., Fiset, D., Duchaine, B., &

Gosselin, F. (2019). Use of face information varies systematically from developmental

prosopagnosics to super-recognizers. Psychological Science, 30(2), 300–308.

https://journals.sagepub.com/doi/abs/10.1177/0956797618811338

Treder, M. S. (2020). MVPA-Light: A Classification and Regression Toolbox for

Multi-Dimensional Data. Frontiers in Neuroscience, 14, 289.

https://doi.org/10.3389/fnins.2020.00289

van Herten, M., Kolk, H. H. J., & Chwilla, D. J. (2005). An ERP study of P600 effects elicited by

semantic anomalies. Brain Research. Cognitive Brain Research, 22(2), 241–255.

https://doi.org/10.1016/j.cogbrainres.2004.09.002

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal

individual differences in controlling access to working memory. Nature, 438(7067),

500–503. https://doi.org/10.1038/nature04171

Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010).

Controlling low-level image properties: the SHINE toolbox. Behavior Research Methods,

42(3), 671–684. https://doi.org/10.3758/BRM.42.3.671

Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Gerbasi, M., & Nakayama, K. (2012).

Capturing specific abilities as a window into human individuality: the example of face

recognition. Cognitive Neuropsychology, 29(5-6), 360–392.

https://doi.org/10.1080/02643294.2012.753433

Zadelaar, J. N., Weeda, W. D., Waldorp, L. J., Van Duijvenvoorde, A. C. K., Blankenstein, N.

E., & Huizenga, H. M. (2019). Are individual differences quantitative or qualitative? An

integrated behavioral and fMRI MIMIC approach. NeuroImage, 202, 116058.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/bHc1D
http://arxiv.org/abs/1409.1556
http://paperpile.com/b/gYtfQQ/r6tnB
http://paperpile.com/b/gYtfQQ/r6tnB
http://paperpile.com/b/gYtfQQ/r6tnB
https://journals.sagepub.com/doi/abs/10.1177/0956797618811338
http://paperpile.com/b/gYtfQQ/qu0Ku
http://paperpile.com/b/gYtfQQ/qu0Ku
http://paperpile.com/b/gYtfQQ/qu0Ku
http://dx.doi.org/10.3389/fnins.2020.00289
http://paperpile.com/b/gYtfQQ/00Xk3
http://paperpile.com/b/gYtfQQ/00Xk3
http://paperpile.com/b/gYtfQQ/00Xk3
http://dx.doi.org/10.1016/j.cogbrainres.2004.09.002
http://paperpile.com/b/gYtfQQ/V36HN
http://paperpile.com/b/gYtfQQ/V36HN
http://paperpile.com/b/gYtfQQ/V36HN
http://dx.doi.org/10.1038/nature04171
http://paperpile.com/b/gYtfQQ/LZNPO
http://paperpile.com/b/gYtfQQ/LZNPO
http://paperpile.com/b/gYtfQQ/LZNPO
http://dx.doi.org/10.3758/BRM.42.3.671
http://paperpile.com/b/gYtfQQ/Y41Wo
http://paperpile.com/b/gYtfQQ/Y41Wo
http://paperpile.com/b/gYtfQQ/Y41Wo
http://paperpile.com/b/gYtfQQ/Y41Wo
http://dx.doi.org/10.1080/02643294.2012.753433
http://paperpile.com/b/gYtfQQ/vzs96
http://paperpile.com/b/gYtfQQ/vzs96
http://paperpile.com/b/gYtfQQ/vzs96
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1016/j.neuroimage.2019.116058

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2023. ; https://doi.org/10.1101/2022.03.19.484245doi: bioRxiv preprint 

http://paperpile.com/b/gYtfQQ/vzs96
http://dx.doi.org/10.1016/j.neuroimage.2019.116058
https://doi.org/10.1101/2022.03.19.484245
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary material

Behavioural results

All participants’ face recognition ability was assessed using the Cambridge Face Memory Test
long-form (CFMT+, (Russell et al. 2009)). Scores on the CFMT+ ranged from 50 to 85 in the
typical recognisers group (MTRs=70.00; SD=9.09), and from 92 to 100 in the experimental
super-recogniser group (MSRs=95.38, SD=2.68; difference between groups : t(31)=10.6958,
p<.00001 see Fig. 1a). The main experimental task was a one-back task (Fig. 1b). Accuracy
was significantly greater for the super-recognisers (MSRs=.93, SD=.054) than for the typical
recognisers (MTRs=.83, SD=.094; t(31)=3.7911, p=0.00065). This was also true when analysing
separately face (MSRs= .9260, SD=.0471; MTRs=.8144, SD=.1066; t(31)=3.8440, p=0.00056)
and non-face trials (MSRs=.9456, SD=.0651; MTRs=.8532, SD=.0929; t(31)=3.2855, p=.0025).
Furthermore, accuracy in the one-back task was positively correlated with scores on the
CFMT+ (r=.68, p<.001; RT was marginally associated with CFMT+, r=.37, p=.04). We
observed no significant differences in response times between the two groups (p>.3).

Scores obtained by the super-recogniser tested in the UK on a battery
of face recognition tests

subject-ID CFMT+ GFMT
Face
Array

LASIE
Match

Black
and
White Super-rec Longterm

one-back
faces

one-back
non-faces

SR-1 93 40 38 83 34 13 9 .9328 0.977

SR-2 95 40 37 88 33 12 9 .8500 0.7903

SR-3 97 40 32 84 33 12 8 .9325 0.9718

SR-4 93 40 38 92 34 13 8 .9726 0.9835

SR-5 98 40 31 91 33 14 9 .9326 0.9787

SR-6 100 40 39 82 40 14 10 .9823 0.9817

SR-7 98 40 40 92 33 13 8 .9319 0.9647

SR-8 96 38 40 90 39 12 10 .9362 0.9787

Max score 102 40 40 100 40 14 10 1 1

Supplementary table 1: The scores above show performance on a battery of standardised
face recognition tests (Noyes et al. 2021) for the participants identified as super-recognisers in
the UK. Also shown are the scores for our one-back task, for face and non-face trials. The last
row of the table shows the maximum obtainable score for each test.
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Scores obtained by the super-recogniser tested in Switzerland on a
battery of face recognition tests

subject-ID CFMT+ FICST score YBT long raw score

one-back

faces

one-back

non-faces

SR-9 92 0 29 .8132 0.8384

SR-10 99 0 17 .9409 0.9619

SR-11 92 0 20 .9635 0.9808

SR-12 93 1 20 .8581 0.8212

SR-13 92 7 17 .9530 0.985

SR-14 96 0 18 .9604 0.9886

SR-15 94 3 16 .9112 0.9624

SR-16 97 1 22 .9792 0.9643

Best score 102 0 35 1 1

Supplementary table 2: The scores above show performance on a battery of standardised
face recognition tests (Ramon, 2021) for the participants identified as super-recognisers in
Switzerland. Also shown are the scores for our one-back task, for face and non-face trials. The
last row of the table shows the best obtainable score for each test.

Noise ceiling for group-membership decoding using CFMT+ reliability
scores

To better interpret the magnitude of our group-membership decoding accuracies, we
determined the maximum attainable accuracy when categorising a super-recogniser as such
using the CFMT+ (i.e., the empirically imposed noise ceiling for our decoding
group-membership analysis). We simulated 1000 distributions of CFMT+ scores, each with
N=32, and each having a Pearson correlation of .71±.01 with the distribution of CFMT+ scores
observed in this study. The correlation coefficient of .71 was chosen according to the
test-retest reliability the CFMT+ measured in previous studies (Arrington et al., 2022; Murray &
Bate, 2020). We then predicted super-recogniser participants from these distributions: we
compared the simulated SR label (i.e. simulated CFMT+ scores higher than the prescribed
cut-off of 92) to the used SR labels. We then averaged the accuracies across the simulated
participants, and computed the maximum accuracy from these 1000 distributions. This process
was repeated 10000 times, creating a distribution of 10000 simulated maximums with a mean
of M=0.9310 (SD=0.0228) that we interpreted as the noise ceiling.

Univariate analyses of EEG associated with individual ability

N170 amplitude and latency. We also performed more traditional event-related potential (ERP)
analyses for both groups. We extracted, for face and non-face trials, peak negative ERP
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amplitudes and latencies for every participant in a window corresponding to the N170
component (within 110-200 ms at electrodes [B6, B7, B8, A28] on the right hemisphere and
[A9, A10, A11, A15] on the left hemisphere). We tested the conditions, groups, and their
interaction effects using an ANOVA on N170 peak latency and amplitude separately. No
interaction effects were observed for peak latencies (Finteraction(60,1)=1, p=.32) and amplitudes
(Finteraction(60,1)=0.32, p>.50). The peak N170 was earlier (Fconditions(60,1)=5.86, p=.0185) and
presented greater amplitudes (Fconditions(60,1)=33.78, p<.0001) for faces compared to non-face
objects. Moreover, the peak N170 was earlier (Fgroup(60,1)=19.23, p<.0001) and presented
larger amplitudes (Fgroup(60,1)=13.75, p=.0005) in super-recognisers than typical recognisers.

Lateralisation. Compared to typical recognisers, super-recognisers showed greater N170 peak
amplitudes in the right-hemisphere electrodes for faces (computed as the difference between
the right [B6, B7, B8, A28] and left [A9, A10, A11, A15]; t(30)=-2.8542, p=.01). Moreover, the
CFMT+ scores of typical recognisers correlated with right-hemisphere lateralisation of the
N170 for faces (r(16)=-.53, p=.0298). These effects were not significant either for non-face
stimuli, or for N170 peak latency.
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Supplementary figure 1. a) We computed the time course of decoding accuracy for group
membership from all different face and non-face combinations of one-back and current trials
(e.g. consecutive face - face trials). We observed a similar time course for all combinations.
However the consecutive face-face trials showed larger decoding accuracies around 400 to
750 ms. b) The topographies show results from a searchlight decoding analysis with
classification performance attaining 75% accuracy around 135 ms over occipito-temporal
electrodes for face presented conditions (74.6% for face-face, 75.1% for nonface-face) and
72% for non-face presented conditions (71.7% for nonface-nonface, 71.5% for face-non-face).
Note that drawings of faces are depicted here as an anonymised substitute to the experimental
face stimuli presented to our participants.
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Supplementary figure 2. EEG representational geometry dynamics. a) Representational
Similarity Analysis (RSA) was applied to time-resolved EEG patterns, using decoding AUC as
dissimilarity measure between pairs of images (5 fold cross-validation, 5 repetitions) to create
Representational Dissimilarity Matrices (RDMs). Multidimensional scaling was employed to
visualise these high-dimensional brain representations on a 2D plane, which showed clear
distinctions between various categories (e.g. face clusters, scenes clusters, animal clusters,
etc.). b) We revealed categorical information unfolding in time by averaging dissimilarities
between stimulus categories (e.g. faces vs non-face objects) and averaging across
participants. Brain representations for the distinction of face vs. non-face objects (a hallmark of
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the N170, (Rossion & Jacques, 2012)) dominated all other categorical distinctions (Carlson et
al., 2013; Kaneshiro et al., 2015), and peaked at 153 ms.

Supplementary figure 3. Comparison of super- and typical-recogniser brain
representations with those of artificial neural networks of vision. a) Mutual information
results comparing brain RDMs and AlexNet RDMs (first row) and brain RDMs and VGG16
RDMs (second row) are shown for typical- (grey curve) and super-recognisers (pink curve). We
found greater similarity with mid-level visual computations as indexed from both CNN models
(layers 3, 4 shown for AlexNet and VGG 16) in the brains of super-recognisers (black line
indicates significant contrasts, p<.05, cluster-corrected) between 130 ms to 160 ms. b) We
also computed the MI between CNN RDMs and the brain RDMs, but constrained on the
Mutual Information from the caption-level semantic RDM. Again, we found greater similarity
with mid-level visual computations as indexed from both CNN models (layers 3, 4 shown for
AlexNet and VGG 16) in the brains of super-recognisers (p<.05, cluster-corrected) between
133 ms to 165 ms. The observed magnitudes were reduced as expected given the additional
constraints. The shaded areas of all curves represent the standard error.
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