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 2 

Abstract 12 

Assortative mating (AM) occurs when the correlation for a trait between mates is larger than 13 

would be expected by chance. AM can increase the genetic and environmental variation of traits, 14 

can increase the prevalence of disorders in a population, and can bias estimates in genetically 15 

informed designs. In this study, we conducted the largest set of meta-analyses on human AM 16 

published to date. Across 22 traits, meta-analyzed correlations ranged from r = .08 to r = .58, 17 

with social attitude, substance use, and cognitive traits showing the highest correlations and 18 

personality, disorder, and biometrical traits generally yielding smaller but still positive and 19 

nominally significant (p < .05) correlations. We observed high between-study heterogeneity for 20 

most traits, which could have been the result of phenotypic measurement differences between 21 

samples and/or differences in the degree of AM across time or cultures. 22 

 23 

 24 

 25 

 26 

 27 

 28 
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 3 

A comprehensive meta-analysis of human assortative mating in 22 complex traits 30 

 31 

Assortative mating (AM) is the phenomenon whereby individuals with similar trait 32 

values mate with one another at levels higher than expected by chance1. Contrary to the maxim 33 

“opposites attract,” nonzero phenotypic correlations between human2–21 and nonhuman1 mates 34 

are overwhelmingly in the positive direction, with only a handful of examples of disassortative 35 

mating, or negative mate correlations, reported in the literature1,4,8,20,22–29. Several potential 36 

mechanisms of AM in humans have been described, although they are not mutually exclusive 37 

because multiple mechanisms can simultaneously be responsible for observed correlations. 38 

Phenotypic homogamy (also known as primary phenotypic assortment) occurs when mates 39 

match directly on the trait of interest30. While phenotypic homogamy is often conceptualized as 40 

mates actively preferring similarity, this type of homogamy can also be a function of indirect 41 

selection, such as when mates are chosen from among strata that are partially determined by 42 

individuals’ phenotypic values (e.g., AM for educational attainment arising as an indirect 43 

consequence of mate choice occurring within job occupations). Social homogamy, on the other 44 

hand, occurs when individuals match within strata that are determined by non-heritable 45 

background social factors18,31, such as within social class in cultures where class is not 46 

genetically influenced. At the other end of the spectrum, genetic homogamy is the mechanism 47 

whereby mates correlate more genetically than phenotypically for a trait; this can occur when 48 

there is phenotypic homogamy on a trait that is more correlated genetically than environmentally 49 

with the trait of interest30,32. Finally, convergence occurs when mates become more similar over 50 

time3,8, either due to direct (reciprocal or one-way) phenotypic influences on one another or to 51 

the mutual influence of shared environmental factors.  52 
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Social scientists and quantitative geneticists care about the mechanisms and the strength 53 

of AM because both influence parameters of interest and impact how various estimates in the 54 

literature should be interpreted. Phenotypic and genetic homogamy on heritable traits increase 55 

correlations between and within causal loci, which in turn increases the genetic covariance 56 

between relatives and the trait’s phenotypic and genetic variation. Such an increase in variation 57 

could manifest as increased prevalence rates of dichotomous traits such as psychiatric 58 

disorders18,33, although this effect should only be pronounced in rare, highly heritable disorders 59 

under strong AM18. Social homogamy can also increase trait variation when parental phenotypic 60 

values for sociocultural traits are inherited by offspring via vertical transmission34. Failing to 61 

account for AM can lead to biases in estimates from genetically informed designs, including the 62 

association statistics from genome-wide association studies35, heritability estimates from 63 

twin/family designs and from single nucleotide polymorphisms36, and the strength of estimated 64 

causal associations in Mendelian randomization studies37. 65 

Given that the genetic consequences of AM and the impacts of not accounting for it in 66 

certain genetically informed designs are non-negligible, it is important to understand the strength 67 

of AM for traits commonly investigated in human genetics. The strength and breadth of AM is 68 

also of interest to investigators of human mating in psychology, sociology, and economics. 69 

While many studies have reported estimates of AM in humans, we are aware of no study that has 70 

meta-analyzed AM on a large number of phenotypically diverse traits. In the current report, we 71 

use stringent methodology to meta-analyze and compare partner correlations for 22 commonly 72 

investigated complex traits. These results are the most comprehensive set of meta-analyses on 73 

human AM to date, and should shed light on contemporary human mating trends, help with the 74 
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interpretation of heritability estimates, motivate studies into the various causes of AM across 75 

traits, and aid in the choice of design in genetic studies. 76 

 77 

Results 78 

Meta-analysis 79 

We meta-analyzed partner concordance rates for 22 traits. While AM has been analyzed 80 

for hundreds of traits, we focused on those most studied in the AM literature as well as some less 81 

commonly studied dichotomous traits that have important health implications. The total number 82 

of partner pairs for each trait ranged from 2,270 (for drinking quantity) to 1,533,956 (for 83 

substance use disorder); effective sample sizes for dichotomous traits (see Methods) ranged from 84 

721 (for alcohol use disorder) to 241,817 (for substance use disorder). Supplementary Tables S1 85 

and S2 show all studies that we included in our meta-analysis for continuous and dichotomous 86 

traits, respectively, as well as the effect sizes for each sample. For comparability across traits, we 87 

focus here on Pearson and tetrachoric correlations for continuous and dichotomous traits, 88 

respectively. Supplementary Table S2 also includes an alternative metric of partner concordance 89 

for dichotomous traits, the odds ratio (OR), which is the odds of a participant possessing a trait 90 

given that their partner has it divided by the odds of a participant possessing the trait given that 91 

their partner does not have it. Supplementary Table S3 lists studies excluded from our meta-92 

analysis along with the reasons for their exclusion. 93 

Fig. 1 displays the meta-analyzed random effects correlations for all traits along with 94 

their 95% confidence intervals. The meta-analyzed correlations were greater than zero at the 95 

nominal significance level (p < .05) for all traits. The point estimates for fourteen traits were also 96 
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significant at the Bonferroni-corrected (p < .05/22 = 0.00227) significance level. Cognitive and 97 

social attitude traits showed the highest correlations (.39 ≤ rmeta ≤ .58); personality, 98 

anthropometric traits, substance use disorders, and other disorders showed the lowest (.08 ≤ rmeta 99 

≤ .29); and correlations for non-pathological substance use traits typically lay between these two 100 

sets (.24 ≤ rmeta ≤.54) (see Table 1). Fig. S1 displays forest plots for all the traits we analyzed 101 

with publications ordered by year and color-coded by region. The meta-analyzed fixed effects 102 

results for each trait (Fig. S2) were qualitatively similar to the random effect results. Fig. S5 103 

shows the number of studies included and excluded for each trait. 104 

Table 2 summarizes each trait’s heterogeneity estimates and the prediction intervals of 105 

future studies’ effect sizes. We quantified heterogeneity using the Higgins & Thompson’s I2 106 

metric, which represents the percentage of variance resulting from between-study heterogeneity 107 

in effect sizes rather than within-study sampling error38. Higgins and Thompson (2002)39 108 

classified I2 values of 25%, 50%, and 75% as low, medium, and high heterogeneity, respectively. 109 

Across traits in our 22 meta-analyses, the median Higgins & Thompson I2 statistic was 87.5%, 110 

reflecting very high heterogeneity in AM estimates for most traits. However, a high I2 reflects not 111 

only high between-study heterogeneity in estimated effect sizes but also low within-study 112 

heterogeneity due to highly precise estimates of individual studies. Thus, these high I2 values 113 

may in part be due to the high precision of estimates afforded by the large sample sizes of many 114 

of the studies included in our analyses. An alternative metric of heterogeneity that is unaffected 115 

by the precision of estimates of individual studies, τ2, represents the estimated variance of the 116 

true effect size under a random effects model. The estimated standard deviations of true effects 117 

(τ) were large relative to the meta-analyzed correlation values for many traits. The median 118 

coefficient of variation (
𝜏

𝑟𝑚𝑒𝑡𝑎
) was .41, and the coefficient of variation was above .50 for 119 
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intelligence quotient (IQ), drinking quantity, agreeableness, conscientiousness, extraversion, 120 

body mass index (BMI), and generalized anxiety disorder (GAD). However, for some traits, such 121 

as EA (rmeta = .53 +/- τ = .10), political values (rmeta = .58 +/- .08), and depression (rmeta = .14 +/- 122 

.02), the estimated standard deviation of true effects was not very large compared to the meta-123 

analyzed estimate. Overall, our results suggest that AM is characterized by substantial 124 

differences in the strength of true effect across populations differentiated by place or time.  125 

For each trait, we also created Graphic Display of Heterogeneity (GOSH) plots (Fig. 126 

S4)40, which are scatterplots of the meta-analyzed correlations for all possible 2k-1 combinations 127 

of k studies of size 2 through k (up to 1 million combinations) on the x-axis and the I2 values of 128 

these combinations on the y-axis. Two or more distinct clusters anywhere in the plot may 129 

indicate subpopulations that differ in their average effect size40, although a smear of points along 130 

the bottom of GOSH plots is caused by two or more study results that happen to be similar 131 

(thereby producing I2 values near 0) and is typically not of interest. For most traits plotted in Fig. 132 

S4, there are no obvious clusters. However, for IQ and conscientiousness, there do appear to be 133 

two clusters, one made up of study combinations that have higher heterogeneity and higher 134 

average correlations, and another with lower heterogeneity and lower average correlations. The 135 

two clusters in the GOSH plot for IQ may have resulted from an outlier reported in a 1938 study 136 

that found a partner correlation of .8141, which is substantially greater than the meta-analyzed 137 

estimate we report for this trait. 138 

Because AM studies ostensibly focus more on effect size than hypothesis testing, we 139 

expected that publication bias was unlikely to be a major factor for the study results we meta-140 

analyzed. Nevertheless, we created funnel plots (Fig. S3), which plot study effect size (Fisher Z 141 

transformed correlations here) on the x-axis against standard error on the y-axis, to visually 142 
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inspect whether there was evidence for asymmetry, a potential indicator of publication bias. 143 

Overall, there was no obvious asymmetry across the funnel plots. Only for IQ and drinking 144 

quantity did it appear that there may be a systematic bias of larger studies having smaller effect 145 

sizes, but both were based on 10 or fewer studies, which can lead to apparent asymmetry by 146 

chance38,42. The more obvious pattern observed in most funnel plots was the large number of 147 

points that were outside the expected triangular region, again reflecting the high heterogeneity in 148 

correlations observed across studies.  149 

 150 

Discussion 151 

In this study, we collated and synthesized the results from a large number of studies on 152 

human AM to provide a better understanding of which traits mates assort on and how strong the 153 

assortment is. To our knowledge, this is the largest and most comprehensive set of meta-analyses 154 

on human AM to date. We found the highest levels of AM for political and religious values, 155 

educational attainment, IQ, and some substance use traits; partner correlations for other traits 156 

were smaller. Nevertheless, we found nominally significant (p < .05) evidence for AM for every 157 

trait investigated. More than half of the meta-analyzed correlations were also significant at the 158 

Bonferroni-corrected level. Whether these correlations are due to convergence or to initial 159 

nonrandom mating based on phenotypic, social, or genetic homogamy remains to be determined, 160 

though some research has attempted to investigate which of these mechanisms is responsible for 161 

observed AM for particular traits. 162 

The two social attitude traits that we examined—political attitudes and religiosity—163 

showed the highest levels of AM of all the traits we assessed. For these traits, we examined 164 

continuous measures of attitudes toward political issues and self-report of multiple religious 165 
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ideas/practices. Interestingly, despite clear geographical stratification of religious and voting 166 

trends apparent in countries such as the United States, most studies to date investigating the 167 

cause of mate similarity on political and religious attitudes have suggested that the data is most 168 

consistent with phenotypic rather than social homogamy, and there is no compelling evidence of 169 

substantial convergence for either trait4,43–46. This may be relevant to current events because, to 170 

the degree that social attitudes are genetically or socially heritable, AM on them may contribute 171 

to heightened political and cultural polarization. 172 

We also found a high partner correlations for educational attainment (EA) (rmeta = .53), 173 

and only one sample47 out of 27 reported a correlation under .30. Thus, there is consistent 174 

evidence for strong AM on EA across recent decades and across cultures in which the trait has 175 

been studied. Robinson et al. (2017)32 found that the implied phenotypic correlation for EA 176 

between partners in the UK Biobank, extrapolated from the observed correlation between 177 

partners' trait-associated loci, was .65. This value was substantially larger than the phenotypic 178 

correlation they observed for EA in the same sample and exceeds the upper limit of our 179 

confidence interval for the meta-analyzed EA partner correlation. This suggests that AM for EA 180 

is consistent with genetic homogamy, and that mates may be assorting on some trait that is more 181 

genetically than environmentally correlated with EA. Contrary to Robinson et al.’s (2017)32 182 

finding, Torvik et al. (2022)48 did not find evidence for genetic homogamy in educational 183 

attainment in a sample of partners, siblings, and in-laws in Norway. Instead, they found evidence 184 

that AM on EA was due to a mix of both social homogamy and phenotypic homogamy. Whether 185 

this discrepancy is due to differences in EA AM between Norway and the UK or to differences 186 

in sample characteristics (e.g., ascertainment) is an open question. 187 
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The meta-analyzed partner correlation coefficients for substance use/abuse traits ranged 188 

from rmeta = .24 to rmeta = .54. Interestingly, some (but not all49,50) studies that have examined 189 

mechanisms of assortment in drinking and smoking have reported evidence of convergence for 190 

these behaviors6,8,12,51, making these traits amongst the only ones to show support for 191 

convergence in the literature.  192 

We observed substantial between-study heterogeneity in partner correlations for most 193 

traits. A large degree of between-study heterogeneity would certainly be problematic in fixed 194 

effects meta-analyses that assume a single underlying effect. However, even for random effects 195 

meta-analyses, which are viewed as more appropriate when heterogeneity is present, high levels 196 

of heterogeneity suggest caution should be used in interpretation of results. Random effects 197 

meta-analyses assume an underlying (normal) distribution of true effects across the studies’ 198 

sampled populations, and the meta-analytic result is the estimated mean of those true effects. 199 

Thus, the estimates we present here cannot be interpreted as estimates of a single true level of 200 

AM for a given trait, but rather estimates of the typical level of AM across many possible levels 201 

that might be observed at different times or locations.  202 

There are several possible causes of the high levels of heterogeneity in AM we observed 203 

across studies within the same trait. Most obviously, it is possible that the true degree of AM 204 

varied across populations due to cultural differences in mating systems or preferences. This 205 

seems plausible; AM involves mate preferences, social stratification, and/or couple dynamics, 206 

and so it is unlikely to be consistent across different cultural contexts. Differences in population 207 

size, mobility, and/or education across populations may impact the pool of a person’s potential 208 

mates and thereby the degree to which preferences can be acted on. However, there was 209 

insufficient cultural diversity within traits to test whether there were significant differences in 210 
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partner concordance across cultures. Similarly, we determined that publication year was too 211 

coarse a metric of the year in which mates were married, and too many studies failed to report 212 

sufficient information for us to formally assess changes in AM over time. 213 

It is also possible that some of the heterogeneity in AM effect sizes was due to 214 

differences in how constructs were measured across studies—for example, differences in the 215 

measurement batteries used, differences in participants’ interpretations of battery items, or 216 

differences in the clinical thresholds employed. Potentially consistent with this possibility, we 217 

observed that the prevalence rates of dichotomous traits varied greatly in supposedly non-218 

ascertained samples, which may have contributed to the heterogeneity we observed in our 219 

correlation coefficients. Nevertheless, we observed high levels of heterogeneity even for traits—220 

such as height and BMI—measured in standardized ways, suggesting that differences in how the 221 

constructs were measured is unlikely to be a complete explanation. Finally, it is possible that 222 

publication bias led to heterogeneity, particularly if studies that found AM results that were 223 

substantially different from those already published in the literature were more likely to be 224 

submitted and published—a kind of "novelty bias." However, it is also possible that a 225 

"conformity bias" exists in the opposite direction and has led to downwardly biased estimates of 226 

heterogeneity. While we could not test and therefore cannot rule out either possibility, we find 227 

them unlikely given that the incentives for both seem dubious. 228 

Although we initially gathered data on AM for rare psychiatric disorders, we did not 229 

formally meta-analyze the tetrachoric correlations for these traits because too few studies met 230 

our inclusion criteria as a result of unspecified sample sizes, the use of longitudinal rather than 231 

cross-sectional measurements of concordance, and small expected cell frequencies (see 232 

Supplementary Table S2 and S3). Nevertheless, studies that have provided robust estimates of 233 
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partner concordance for psychiatric disorders have suggested low to moderate AM, both within 234 

and across disorders18,21,52,53. For example, based on data from Swedish population registers that 235 

included more than 700,000 unique cases—originally analyzed by Nordsletten et al. (2016)54--236 

Peyrot et al. (2016)18 estimated ascertainment-corrected tetrachoric correlation coefficients of .26 237 

for schizophrenia, .10 for bipolar disorder, .28 for autism spectrum disorder, and .31 for 238 

attention-deficit/hyperactivity disorder. 239 

There are several implications for the consistent evidence of AM across traits we 240 

documented in this meta-analysis. First, as noted above, AM can increase the genetic variance and 241 

the prevalence of a disorder. Although the increase in prevalence for common disorders may not 242 

be large (e.g., ~10%), the levels of AM observed for rare traits of high heritability, such as autism, 243 

could lead to a ~1.5-fold prevalence increase after one generation, and an even higher increase 244 

(~2.4-fold) over many generations18. Second, AM can create biases in estimates of interest in 245 

genetically informative designs, such as estimates based on twin studies10,54, genome-wide 246 

association studies (GWAS)35, Mendelian randomization37, and SNP-heritability36. Finally, to the 247 

degree that the heterogeneity in AM we observed was due to true differences in the strength of 248 

AM rather than differences in measurement, our estimates of the strength of AM may not 249 

generalize to other populations. While estimates for some traits, such as height, were based on a 250 

geographically and ethnically diverse set of samples, most of the samples included in our meta-251 

analyses were drawn from Europe, North America, and Australia, and Asia. For example, all 252 

estimates of AM for religiosity came from samples in the United States.  253 

In summary, we conducted the largest and most comprehensive set of meta-analyses of 254 

human AM to date. Our estimates were based on nearly a century of research and millions of 255 

partner pairs. We found high partner correlations for traits related to substance use, IQ, EA, and 256 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2022. ; https://doi.org/10.1101/2022.03.19.484997doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.19.484997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

social attitudes, and smaller but nominally significant (p < .05) correlations for personality, 257 

anthropometric, and disorder traits. However, we also observed high levels of heterogeneity in 258 

AM estimates across studies for most traits investigated, suggesting that AM may differ across 259 

time or place and that a single estimate of AM cannot typically be assumed for a given trait 260 

across populations.  261 

 262 

Methods 263 

Inclusion and exclusion criteria 264 

We conducted a systematic review of English-language studies that examined AM based 265 

on partners’ continuous and dichotomous self-reports on the same complex traits. All included 266 

studies were published in peer-reviewed journals on or before December 22, 2021. To conduct 267 

this review, we searched for words pertaining to the traits of interest in conjunction with the 268 

terms assortative mating, assortative marriage, partner concordance, partner correlation, 269 

nonrandom mating, homogamy, marital resemblance, and marital homophily in Google Scholar, 270 

and we checked relevant papers cited in these studies for adherence to our criteria. We restricted 271 

our analysis to studies of opposite-sex co-parents, engaged pairs, married pairs, and/or 272 

cohabitating pairs (referred to as “partners” hereafter), with a few studies containing a small 273 

number of divorced couples; we excluded same-sex partners because same-sex and opposite-sex 274 

pairs show different patterns of assortment for some traits55,56, because there is less data on the 275 

former, and because same-sex assortment does not have the same implications for genetic 276 

studies. With the exception of studies that intentionally ascertained partners for the trait of 277 

interest, we excluded studies in which pairs had a characteristic that deviated from the norm in 278 

the general population in a way that might have affected the magnitude of concordance (e.g., a 279 
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sample of only adoptive parents was excluded), and we only included studies where the sample 280 

size was reported or could be inferred. For example, if only percentages were reported for each 281 

cell of a contingency table, the sample size of each cell could be inferred as the percentage 282 

multiplied by N.  283 

We restricted our analysis to studies with sample sizes greater than 100. For dichotomous 284 

traits, we restricted our analysis to studies with expected contingency table cell frequencies of 285 

five or greater and observed cell frequencies greater than zero. When the samples in multiple 286 

studies that were appropriate for our meta-analysis overlapped or were likely to have overlapped 287 

based on information provided in the publication, we only used the study with the largest sample 288 

size. We calculated effect sizes from the data reported in primary studies rather than relying on 289 

effect size estimates from other published meta-analyses. If a study reported partner concordance 290 

rates for multiple independent samples, each was included as a separate entry. When studies 291 

reported partner correlation at different waves, we reported the results from the first wave.  292 

When studies reported both the raw correlation and the partial correlation(s) controlling 293 

for covariates (such as age), we included the raw correlation for consistency across studies. For 294 

studies that only reported partial correlations, we used the estimate with the fewest number of 295 

covariates. For ordinal and continuous traits, studies typically reported Spearman’s rho or 296 

Pearson’s r but at times reported polychoric correlations. We excluded polychoric correlations 297 

reported for such traits in order to avoid pooling two classes of correlation for the same meta-298 

analyzed effect size. Because polychoric correlations occurred rarely, we do not anticipate a 299 

large loss of power as a result. Because AM for height has already been meta-analyzed 300 

extensively by Stulp et al. (2017)9, we re-analyzed studies from the paper’s supplement in the 301 
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same way we analyzed other continuous traits, after eliminating studies from this meta-analysis 302 

in accordance with our exclusion criteria. Finally, we restricted our meta-analysis to traits for 303 

which there were at least three samples that met our criteria. 304 

Dichotomous traits 305 

For dichotomous traits, we primarily considered studies that examined pairs in non-306 

ascertained community samples or national registers as well as those from samples that 307 

ascertained probands. Most ascertained studies were ultimately excluded because probands were 308 

typically in clinical settings (e.g., hospitalized), whereas partners of probands with the disorder 309 

typically were not. Although such ascertainment can be dealt with if all the applicable 310 

populations’ (i.e. inpatient, outpatient, and those who have never received treatment) prevalence 311 

rates are known, it was typically impossible to know all of these rates. We eliminated any 312 

ascertained studies in which there was a >~two-fold difference in male and female prevalence if 313 

there was not enough information to divide discordant couples based on sex. Simulation results 314 

suggested that mixing individuals of different sexes when prevalence rates were more discrepant 315 

than this would lead to unacceptable levels of bias. Because of possible differences in the 316 

strength of AM implied from concordance of male probands versus that implied from female 317 

probands, we excluded studies that only included single-sex probands. When both male and 318 

female proband data was available (only a single study52), estimates based on each proband 319 

(female and male) were included as separate results. 320 

We only used cross-sectional measures of partner concordance and therefore excluded 321 

studies that used longitudinal metrics such as morbidity risks57, hazard ratios, and incidence 322 

ratios. We required that either odds ratios (ORs), risk ratios (RR), phi coefficients (Φ), 323 

contingency tables, or—if the study was not ascertained (see below)–tetrachoric correlations, 324 
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were reported for dichotomous traits. Concordance rates captured by any of the first four of these 325 

measures were then converted to tetrachoric correlations for consistency. When the contingency 326 

table was unknown but the OR was reported, we first inferred the contingency table using an R 327 

function described in the supplementary methods of Peyrot et al. (2016)18 (provided to us by the 328 

authors) and then estimated the tetrachoric correlation. When the contingency table was 329 

provided, we calculated the OR and tetrachoric correlation (using the polychoric() function from 330 

the “polycor” package58) in R ourselves, and thus the effect size we used in our analysis was 331 

sometimes different than that reported in the original study. When the contingency table was 332 

unknown but Φ was reported, Φ was converted to a tetrachoric correlation using the phi2tetra() 333 

function from the “psych” package59 in R. The prevalence rates for each sex used for these 334 

conversions (from Φ and the OR) are reported in Supplementary Table S2. No studies that we 335 

included in our final analysis reported an RR.  336 

For studies where probands were ascertained, we used the OR, which is not influenced by 337 

ascertainment, along with estimates of sex-specific prevalence rates from the country or region 338 

the sample came from, to calculate tetrachoric correlations. To do this, we used the 339 

aforementioned R function provided to us by Peyrot and colleagues, which produces the 340 

population (non-ascertained) contingency table that is implied given the observed OR in the 341 

ascertained sample and the assumed population prevalence in each sex. We then used this 342 

implied contingency table to estimate the underlying (non-ascertained) tetrachoric correlation in 343 

the population. This correction is necessary because the liability in the ascertained sample, where 344 

the case to control ratio is usually higher than that in the population, is different than the liability 345 

distribution in the population, which would lead to upwardly biased estimates if the tetrachoric 346 

correlation was estimated based on just the sample contingency table.  347 
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We used the metacor() function from the “meta” package in R60 to conduct both random 348 

and fixed effects meta-analyses using inverse-variance weighting of the Fisher z transformed 349 

correlations. For continuous traits, we used the Knapp-Hartung adjustment61,62 to calculate the 350 

variance of point estimates and restricted maximum-likelihood (REML) to estimate τ2, the 351 

variance of the true overall effect size under random effects63,64. For binary traits, we used the 352 

Paule-Mandel estimator65 to estimate τ2 and applied the Knapp-Hartung adjustment61,62 to our 353 

calculation of the variance of the point estimate. We conducted a Monte Carlo analysis to 354 

determine how best to pool information for different studies in a meta-analysis. While the “true” 355 

base spousal correlation varied across simulated meta-analyses, the population-level spousal 356 

correlation across “studies” within the same meta-analysis was consistent (in order to establish a 357 

true rate of spousal concordance against which to compare our point estimates). However, 358 

prevalence rates were allowed to vary across populations in the same simulated meta-analysis 359 

(see Supplementary Table S4 for the results of each method used in conjunction with various 360 

parameter estimates). We found that calculating tetrachoric correlations for each sample and then 361 

meta-analyzing them provided more accurate point estimates than pooling contingency tables 362 

and then calculating tetrachoric correlations. Thus, we followed this procedure for binary traits 363 

throughout. The metacor() function internally calculates the expected variance of correlations 364 

based on sample sizes and assumes they are Pearson correlations, which would be incorrect for 365 

tetrachoric correlations. Thus, we needed to input effective (rather than actual) sample sizes for 366 

tetrachoric correlations. For non-ascertained studies, we estimated the effective sample sizes by 367 

using the standard error calculated in the polychor() package and solving for n in the equation 368 

𝑆𝐸(𝑟) = √
(1−𝑟2)

(𝑛−2)
. For ascertained studies examining dichotomous traits, we created bootstrapped 369 

contingency tables, each of size n (the number of partners) and sampled from the study’s (raw, 370 
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ascertained) contingency table with replacement. We followed the procedure described above to 371 

convert the ascertained contingency table to a tetrachoric correlation corrected for ascertainment. 372 

We repeated this process 1,000 times, calculated the standard error by estimating the standard 373 

deviation of the 1,000 bootstrapped tetrachoric correlations, and used this standard error to 374 

calculate the effective sample size as described above. 375 

Four of the traits in our supplementary tables—bipolar disorder, schizophrenia, panic 376 

disorder, and phobia—posed a problem because they were rare (bipolar disorder and 377 

schizophrenia) or have not been studied in sufficiently large samples (panic disorder and phobia). 378 

This resulted in contingency tables with zero frequency cells or with expected cell frequencies 379 

that were less than five. As a result, there was not a sufficient number of studies meeting our 380 

inclusion criteria to justify formally meta-analyzing these four traits, though we included the 381 

results from studies that otherwise met our criteria for these traits in Supplementary Table S2.  382 

 383 

Data availability 384 

Studies included in the meta-analysis are listed in Supplementary Tables S1 and S2, and studies 385 

excluded from the meta-analysis are listed in Supplementary Table S3.  386 

 387 

Code availability 388 

The code for the analyses and simulations is available from the authors upon request.  389 
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Trait r [CI] K N Effective N p-value 

EA .53 [.49; .56] 27 230,915 NA < .0001 

IQ .39 [.21; .54] 10 2,561 NA .0012 

Political values .58 [.53; .63] 9 10,694 NA < .0001 

Religiosity .57 [.37; .72] 5 5,750 NA .0024 

AUD .24 [.09; .38] 3 5,162 721 .0221 

Drinking quantity .41 [.11; .64] 6 2,270 NA .0178 

Smoking cessation .54 [.31; .72] 4 3,613 1,426 .0066 

Smoking initiation .37 [.30; .43] 12 87,253 13,469 < .0001 

Smoking quantity .24 [.14; .34] 6 4,701 NA .0020 

Smoking status .46 [.35; .56] 15 168,404 20, 584 < .0001 

SUD .29 [.29, .30] 3 1,533,956 241,817 < .0001 

Agreeableness .11 [ .05; .18] 11 10,347 NA .0035 

Conscientiousness .16 [.10; .23] 11 10,347 NA .0003 

Extraversion .08 [.05; .11] 29 22,483 NA < .0001 

Neuroticism .10 [.07; .13] 30 23,154 NA < .0001 

Openness .21 [.14; .28] 11 10,483 NA < .0001 

Body mass index .16 [.12; .19] 31 131,079 NA < .0001 

Height .23 [.21; .26] 74 299,763 NA < .0001 

Waist-to-hip ratio .16 [.08; .24] 5 83,630 NA .0050 

Depression .14 [.11; .17] 7 1,483,486 211,154 < .0001 

Diabetes .15 [.07; .23] 7 178,522 17,530 .0038 
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 539 
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 542 

 543 

 544 

 545 

 546 

 547 

 548 

GAD .14 [.04; .24] 6 116,911 5,284 .0180 

Trait I2 [CI] τ τ2 [CI] Prediction 

Interval 

EA 93% [91%; 94%] .100 0.0100 [0.0058; 0.0238] [0.3568; 0.6607]    

IQ 91% [86%; 95%] .260 0.0675 [0.0288; 0.2524] [-0.2220; 0.7772] 

Political values 80% [62%; 89%] .082 0.0067 [0.0018; 0.0343] [0.4256; 0.7014]   

Religiosity 95% [91%; 97%] .204 0.0417 [0.0128; 0.3736] [-0.0662; 0.8782]   

AUD 0% [0%; 90%] .000 0 [0.0000; 0.3788] [-0.2221; 0.6153]   

Drinking quantity 92% [86%; 96%] .294 0.0862 [0.0301; 0.5821] [-0.4228; 0.8671] 

Smoking cessation 90% [77%; 96%] .169 0.0285 [0.0069; 0.4410] [-0.2102; 0.8928] 

Smoking initiation 95% [93%; 97%] .104 0.0108 [0.0046; 0.0355] [0.1408; 0.5587]        

Smoking quantity 68% [24%; 87%] .084 0.0070 [0.0006; 0.0642] [-0.0103; 0.4700] 

Smoking status 98% [98%; 99%] .227 0.0517 [0.0247; 0.1400] [-0.0095; 0.7651]      

SUD 0% [0%; 90%] .000 0 [0.0000; 0.0404] [0.2722; 0.3119]   

Table 1. r = meta-analyzed random effects spousal correlation (Pearson’s r for continuous 

traits; tetrachoric r for dichotomous traits), CI = confidence interval, K = number of samples 

meta-analyzed, N = number of total spouse pairs meta-analyzed; EA = educational 

attainment, IQ = intelligence quotient, AUD = alcohol use disorder, SUD = substance use 

disorder, GAD = generalized anxiety disorder; Effective N = 
1 − 𝑟2 

𝑠𝑒2 + 2 (rearranged from the 

formula for the standard error estimate).  

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2022. ; https://doi.org/10.1101/2022.03.19.484997doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.19.484997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

Agreeableness 88% [80%; 93%] .086 0.0074 [0.0022; 0.0278] [-0.0908; 0.3108] 

Conscientiousness 90% [84%; 94%] .093 0.0087 [0.0028; 0.0266] [-0.0564; 0.3698] 

Extraversion 68% [54%; 79%] .068 0.0046 [0.0017; 0.0117] [-0.0625; 0.2198] 

Neuroticism 58% [37%; 72%] .040 0.0016 [0.0004; 0.0073] [0.0142; 0.1845]   

Openness 87% [78%; 92%] .090 0.0081 [0.0027; 0.0345] [-0.0070; 0.4027] 

Body mass index 96% [95%; 97%] .086 0.0074 [0.0038; 0.0129] [-0.0205; 0.3267] 

Height 91% [89%; 92%] .098 0.0096 [0.0069; 0.0167] [0.0408; 0.4091] 

Waist-to-hip ratio 68% [18%; 88%] .052 0.0027 [0.0001; 0.0380] [-0.0265; 0.3380] 

Depression 55% [0%; 81%] .022 0.0005 [0.0000; 0.0085] [0.0728; 0.2052]   

Diabetes 78% [55%; 90%] .072 0.0052 [0.0005; 0.0445] [-0.0531; 0.3391]           

GAD 51% [0%; 80%] .076 0.0058 [0.0000; 0.0734] [-0.0987; 0.3607]    

Table 2.  Heterogeneity statistics for each trait’s meta-analysis. CI = confidence interval, I2 = 

Higgins & Thompson’s I2 statistic, a measure of between-study heterogeneity, τ = the estimated 

standard deviation of the true effect size, τ2 = the estimated variance of the true effect size; EA = 

educational attainment, IQ = intelligence quotient, AUD = alcohol use disorder, SUD = substance 

use disorder, GAD = generalized anxiety disorder. 
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 564 The meta-analyzed random effects spousal correlations and 95% confidence 

intervals for each trait.  

 

Figure 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2022. ; https://doi.org/10.1101/2022.03.19.484997doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.19.484997
http://creativecommons.org/licenses/by-nc-nd/4.0/

