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Abstract 
Response time (RT) data collected from cognitive tasks are a cornerstone of psychology and 
neuroscience research, yet existing models of these data either make strong assumptions about 
the data generating process or are limited to modeling single trials. We introduce task-DyVA, a 
deep learning framework in which expressive dynamical systems are trained to reproduce 
sequences of RTs observed in data from individual human subjects. Models fitted to a large task-
switching dataset captured subject-specific behavioral differences with high temporal precision, 
including task-switching costs. Through perturbation experiments and analyses of the models’ 
latent dynamics, we find support for a rational account of switch costs in terms of a stability-
flexibility tradeoff. Thus, our framework can be used to discover interpretable cognitive theories 
that explain how the brain dynamically gives rise to behavior.  
 
Introduction 

Developing dynamical models that capture how people integrate information and make 
decisions in real time is a fundamental problem in psychology and neuroscience. Cognitive 
psychologists study decision-making and other behaviors using cognitive tasks in controlled 
laboratory settings, and RT data collected from these tasks contain rich and complicated 
temporal dependencies that inform models of the underlying mental phenomena (1, 2). There is a 
long and fruitful tradition in psychology of explaining these data with cognitive process models, 
in which simple and interpretable components are assembled in a “top-down” fashion so as to 
capture behavioral effects of interest (3, 4). However, the handcrafted nature of these models 
entails a set of strong assumptions that may be difficult or impossible to verify. More recently, 
deep neural network models and recurrent neural network (RNN) models trained to perform 
cognitive tasks have emerged as a complementary modeling paradigm (5–7). Like their 
connectionist predecessors (8, 9), modern neural network models impose a more limited set of 
structural assumptions, allowing the constraints of the task to produce behavior emergently. 
However, these models have not been extended to capture RT data spanning multiple trials, a 
significant departure from realistic human behavior. Moreover, the vast majority of these models 
as they have been applied in neuroscience and psychology are trained to perform cognitive 
tasks—rather than fit with behavioral data (c.f. (10, 11))—and thus cannot be used to model 
individual differences.   

To address these limitations, we introduce task-DyVA (“dee-vuh”), a novel framework 
for modeling sequential RT data grounded in a recently proposed class of machine learning 
models, dynamical variational autoencoders (12). Our approach combines the expressive power 
of RNNs with the ability to capture individual differences in behavior: each task-DyVA model is 
directly constrained to reproduce sequences of RTs observed in data from a single human 
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participant. In brief, our approach furnishes generative, dynamical models that simulate how 
humans perform cognitive tasks in real time.  

We apply our framework to investigate task-switching, a well-established experimental 
paradigm used to study fundamental aspects of cognitive control and mental flexibility (13–16). 
In task-switching experiments, subjects are cued to perform one of two or more discrete tasks on 
each trial. For example, in the task switching game “Ebb and Flow” (Lumosity) studied here 
(16), subjects are shown a set of moving leaves on each trial and must report either their 
direction of motion or their orientation (Fig. 1A). The appropriate type of response (direction or 
motion) is cued by the color of the stimuli. While task-switching experiments vary considerably 
in methodology, a consistent empirical observation is that subjects are slower to respond and less 
accurate on trials in which the task switches (“switch” trials) relative to trials in which the task 
remains the same (“stay” trials) (14, 15). This switch cost provides a strong test of the ability of 
task-DyVA to capture history-dependent behavioral phenomena: in order to generate a switch 
cost, the state of the model’s latent dynamics in the present must contain information about the 
stimuli experienced in the past.  

Using a large gameplay dataset from the Lumosity cognitive training platform, we fit 
subject-specific models to data from the task-switching game Ebb and Flow. The fitted models 
reproduced a range of behavioral phenomena with high temporal precision, including the mean 
RT, stimulus congruency effects, and switch costs. Adopting a state space perspective, we 
discovered that the two tasks were encoded in different regions of the model’s latent space and 
that the switch cost was directly related to the transit time between these task regions. Moreover, 
the separation of task spaces conferred robustness to noise. Our findings therefore provide a 
computational basis for a normative explanation of switch costs originally proposed by Musslick 
& Cohen (17): switch costs emerge because separable task representations confer behavioral 
stability.  

 
The task-DyVA modeling framework 

The fundamental operating principle of task-DyVA is simple: we train an expressive 
dynamical system to take experimentally observed sequences of task stimuli as inputs and 
generate observed sequences of task responses as outputs (Figs. 1B and S1). The product of this 
training is a generative model that can be used to simulate sequential human behavior on 
cognitive tasks, and whose latent dynamics can be flexibly queried to gain insight into the 
model’s representation of the task. At the heart of the generative model is a latent dynamical 
system with state variables 𝐳𝑡 that is intended to capture all of the internal cognitive operations 
required to perform the task. The latent state evolves according to: 
 

𝐳𝑡+1 = 𝑓𝜃(𝐳𝑡, 𝐮𝑡, 𝐰𝑡), 
 

where 𝐮𝑡 is the task stimulus at timestep t, 𝐰𝑡 is a noise term, and 𝑓𝜃 is the dynamics function. 
Similar to RNNs (18), 𝑓𝜃 is highly expressive: it is capable of approximating a large family of 
dynamical systems (see supplementary materials). This formulation imposes few constraints on 
the nature of the dynamics to be recovered, effectively allowing the data rather than our prior 
assumptions to shape the learned task representation. 

Each stimulus modality × direction combination is represented with a binary-valued unit 
indicating its presence or absence at each moment in time (Fig. 1B, bottom left). Task cues are 
represented in a similar fashion. Importantly, whether a given trial is a switch versus a stay trial 
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is not explicitly coded in the model input and consequently must be learned from the temporal 
structure of the stimuli. To facilitate model training and to increase biological plausibility, zero-
mean Gaussian noise (0.1 SD) is added independently to each stimulus unit.  

Model outputs 𝐱𝑡 are generated by the decoder model 𝑝𝜃(𝐱𝑡|𝐳𝑡), parameterized by a 
multilayer perceptron (MLP). Each possible task response direction is represented by a separate 
output channel. The activation of a given output channel at any moment in time is related to the 
probability that the model will generate a response in that direction (see supplementary 
materials). To train the model, we require an error term that measures how close the model 
outputs are to the participant’s responses. This is accomplished by centering a Gaussian kernel at 
each RT (SD = 50ms), forming a smooth response template (Fig. 1B, bottom right). To learn the 
parameters of the generative model, we employ an approximate inference framework known as 
the variational autoencoder or VAE (12, 19, 20) (see supplementary materials).  

In sum, the generative model defined above obeys state space assumptions: given 𝐮𝑡 and 
𝐰𝑡, the current response 𝐱𝑡 and future state 𝐳𝑡+1 depend only on the current state 𝐳𝑡 (see Fig. 
S1A for a probabilistic graphical model). The state space formulation of our model is important 
because it aids interpretability: all of the information pertaining to the progression of 
computation in the task can be observed directly from the latent state 𝐳𝑡 at each moment in time. 
 
  

 
Fig. 1: Task-DyVA modeling framework and task-switching game. (A) Ebb and Flow, a task-switching game 
(Lumosity). Congruent trial: moving and pointing stimuli are oriented in the same direction. Switch trial: task on 
trial n - 1 was different from task on trial n. (B) Schematic of task-DyVA. Top: Ebb and Flow gameplay data from 
one participant. Bottom left: the transformed stimuli supplied as inputs to the model. Bottom right: Model outputs 
(blue) and model output targets (gray). Red dots indicate the model’s responses.  
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Results 
Task-DyVA emulates human task-switching behavior 

We fit a separate task-DyVA model to Ebb and Flow data from each of 140 participants 
(20 participants in each of seven decade-long age bins, ages 20 to 89). To reduce response 
variability from early stages of task learning, we selected participants who had practiced 
extensively and used gameplays from a late stage of practice for model training (gameplays 150 
to 500, inclusive). After transforming the data as described above, each gameplay was segmented 
into short sequences for model training (5s duration, ~3 to 4 trials). After training, we used the 
fitted models to generate responses on longer stimulus sequences from a holdout dataset (10s 
duration, ~6 to 8 trials). The model’s responses were compared to the participant’s actual 
responses using the same set of stimuli (Figs. 2A-2C and S2).  

We assessed the performance of each model on three key behavioral metrics: the mean 
RT, the switch cost (defined as the difference in mean RT on switch trials versus stay trials, and 
the congruency effect (defined as the difference in mean RT on incongruent versus congruent 
trials; see Fig. 1A). For each of these metrics, the responses generated by the models were highly 
correlated with those of the participants and the slopes of a linear best-fit line were close to but 
slightly less than one (Figs. 2D-2F; mean RT Pearson’s r = 0.99, test for non-zero correlation 
using the exact distribution of r: p < 1e-134, best-fit slope = 0.91; switch cost Pearson’s r = 0.94, 
p < 1e-66, best-fit slope = 0.93; congruency effect Pearson’s r = 0.96, p < 1e-74, best-fit slope = 
0.80; N = 140 participants/models). The fitted models also captured age-dependent trends in each 
of these behavioral metrics (16) (Figs. 2G-2I). 

At the level of stimulus noise used to train the models (0.1SD), the trained models 
typically exhibited higher accuracy (~99%) and less RT variability (~74ms SD) relative to their 
corresponding participants (Figs. S3 and S4; participant accuracy: ~96%, participant RT SD: 
~124ms). As expected, increasing the magnitude of the stimulus noise reduced model accuracy 
(Fig. S3A). More notably, increasing the stimulus noise also revealed differential effects on stay 
versus switch trial accuracy and congruent versus incongruent trial accuracy, effects also 
observed in the participants and in other task-switching studies (14, 15) (Figs. S3B-S3C). At 
0.4SD noise, the magnitudes of the ‘accuracy switch cost’ and ‘accuracy congruency effect’ of 
the trained models were not significantly different from those of the participants (p = 0.97 and p 
= 0.14, respectively, signed-rank test). The correlations between participant and model mean 
RTs, congruency effects, and switch costs were reduced at this elevated noise level, but remained 
highly significant (Fig. S5). Since our primary goal was to leverage the dynamic nature of task-
DyVA to understand the learned representation of the RT effects (mean RT, RT switch cost, and 
RT congruency effect), we elected to fix the stimulus noise to the original magnitude in the 
remainder of our analyses (0.1SD), for which the fit between participant and model RT effects 
was best. 
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Fig. 2: Task-DyVA models capture human behavior. (A) Example RT distributions for two participants and 
corresponding fitted models. (B) Example stay and switch trial RT distributions for two participants/models. (C) 
Example congruent and incongruent trial RT distributions for two participants/models. (D) Mean RTs. (E) Switch 
costs. (F) Congruency effects. For panels D-F, each point is one participant/model; black line: unity; red dashed 
line: best linear fit; N = 140 participants/models. (G) Mean ± s.e.m. mean RTs within each age bin (N = 20 
participants/models per age bin). (H) Mean ± s.e.m. switch costs. (I) Mean ± s.e.m. congruency effects. 
 
A hierarchical representation of the task 

The close correspondence between participant and model behavior validates task-DyVA 
as a tool that can be used to discover how humans dynamically represent cognitive tasks. 
Accordingly, we investigated the models’ representation of Ebb and Flow by examining the 
latent dynamics in relation to the task cues and stimuli. We separated trials according to the 
active task cue and task-relevant stimulus direction and calculated the trial-averaged latent state 
trajectories aligned to stimulus onset for each group of trials. To aid visualization, we projected 
these trajectories onto their top three principal components (PCs) which accounted for the vast 
majority of variance (~91%) in the latent state (Figs. 3A-3B, and S6; variance calculated across 
all trials and timepoints). In the example model shown in Fig. 3A, the smooth curves correspond 
to trial-averaged trajectories of the latent state for a given trial type. For example, the solid blue 
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line corresponds to all trials in which the task cue was the moving task and the stimuli were 
moving left.  

The latent state trajectories shown in Fig. 3A exemplify a notable feature of the learned 
task representations: the two tasks are represented in different regions of the latent space 
(compare solid and dashed trajectories; see also Fig. S6). To quantify this separation for each 
model, we trained a linear discriminant analysis (LDA) model to classify latent state vectors 
from each trial according to which task cue was active (Fig. 3C, two leftmost bars). The latent 
state vectors were derived from onset-aligned latent state trajectories evaluated at the model’s 
mean RT. The mean error rate of these LDA models was ~7%, significantly less than the error 
rate of LDA models trained on shuffled data (~47%; p < 1e-23, signed-rank test). Thus, the latent 
state vectors could be reliably assigned to one or the other task, indicating that the 
representations of the two tasks were well-separated in the latent space. For trials corresponding 
to a given task cue, we also used LDA to quantify how well the latent state vectors from trials 
with a given task-relevant stimulus direction could be distinguished from those of the other three 
stimulus directions (Fig. 3C, two rightmost bars). The mean error rate of these LDA models was 
~4%—significantly less than the error rate for shuffled data (~25%, p < 1e-23, signed-rank 
test)—indicating that the correct response direction was readily determined from the position of 
the latent state.   

To understand the dynamics of the learned task representations, we identified a set of 
stable fixed points for each model corresponding to points in the latent space that absorb nearby 
trajectories (i.e., attractors) (5, 21). Fixed points were identified by running the models in 
‘generative mode’ using long (50s) sequences of static stimuli as inputs; each of the 32 possible 
stimulus configurations was used to discover fixed points (see supplementary materials).  

Fixed points identified with a given task cue were localized to a task-specific region of 
the latent space, mirroring the separation of latent state trajectories that we observed (see ‘x’ 
marks in Figs. 3A and S6). To quantify this separation, we bucketed pairs of fixed points 
according to whether or not they were identified with the same task cue and calculated the mean 
Euclidean distance between all pairs of fixed points within each bucket (Fig. 3D, two leftmost 
bars). Pairs of fixed points identified with the same task cue were indeed closer together than 
pairs identified with different task cues (p < 1e-23, signed-rank test, N = 137 models). For a 
given task cue, we also found that pairs of fixed points corresponding to the same task-relevant 
stimulus direction were closer together on average than those corresponding to different task-
relevant stimulus directions (Fig. 3D, two rightmost bars; p < 1e-23, signed-rank test, N = 137 
models). Thus, the fixed point landscape of the trained models revealed that the task was 
represented in a hierarchical fashion. Globally, each task was associated with a circumscribed 
attractor region that funneled the latent state according to the active task cue. Locally, within 
each task region, the latent state was pulled toward fixed points corresponding to the correct 
response direction. 
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Fig. 3: The latent representation of the task is organized hierarchically. (A) Trial-averaged latent state 
trajectories for each task-relevant stimulus direction × task cue combination and stable fixed points for one model. 
(B) Cumulative explained variance vs. PC number (gray lines: individual models; black line: mean ± SD). (C) Mean 
misclassification rate of the LDA models used to classify latent state vectors. Error bars were too small to visualize 
(s.e.m. < 1e-3 for all conditions). (D) Euclidean distance between pairs of stable fixed points (mean ± s.e.m.).  
***p < 1e-23, signed-rank test.  
 
Dynamical origins of the switch cost 

One consequence of the hierarchical representation we observed is that the 
representations for the two tasks are well-separated within the latent space. Conceivably, this 
separation contributes to switch costs, simply because it takes time for the latent state to 
transition from one task region to the other (Fig. S7A). However, two issues complicate this 
simple interpretation: it is not necessarily costly to move large distances in the latent space and, 
more generally, the time it takes for the latent state to travel between two points along a 
trajectory is determined by the model’s dynamics (i.e., the vector field), not Euclidean distance. 
Thus, in principle, the latent state could transition from task region A to B relatively quickly on 
switch trials, with switch costs resulting primarily from slower dynamics within task region B 
(Fig. S7B).  

Despite this complexity, the hypothesis that greater separation between task regions 
contributes to switch costs makes two predictions that were borne out by the models (see 
examples in Figs. 4A and S7C). First, if the transition between task regions A and B is costly 
(i.e. slow), then we should observe a positive correlation between the distance to task region B at 
stimulus onset and RTs for switch trials (Fig. S7A). We assessed this by calculating the 
Euclidean distance between the latent state at stimulus onset and a single task-specific reference 
point for each task, points referred to as task centroids (see supplementary materials). We found 
that the vast majority of models exhibited a positive correlation between RTs and distance on 
switch trials (Fig. 4B; number of models with positive Pearson’s r: 134/140; mean ± s.e.m. r: 
0.24 ± 0.012; sign-rank test for non-zero population r: p < 1e-23). A second prediction of this 
hypothesis is that switch costs should be positively correlated with the distance between task 
centroids across the models for different individuals. We measured the distance between task 
centroids using a normalized distance measure that accounts for potential differences in the 
overall scale of different models (see supplementary materials). We observed a strong correlation 
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between switch costs and the distance between task centroids (Fig. 4C; Pearson’s r = 0.65; test 
for non-zero correlation using the exact distribution of r: p < 1e-17, N = 140 models). 

As a more direct test of the idea that the separation between task regions contributed to 
switch costs, we leveraged a unique strength of task-DyVA: the models can be trained with 
synthetic behavioral data in which features of interest have been removed (or augmented). In 
particular, we reasoned that trained models that do not exhibit a switch cost would also exhibit 
reduced separation of the latent task representations. We set out to create such a scenario by 
training models using synthetic data lacking a switch cost. To this end, we selected 25 
participants with large switch costs from the original cohort of 140 participants/models and 
modified the data from these participants to remove the switch cost (see supplementary 
materials). We trained a task-DyVA model on each of these modified datasets, allowing us to 
compare the two models trained with the same participant’s data (which either did or did not 
have a switch cost). To the extent possible, all other aspects of the training data, model 
architecture, and training procedure did not differ from the original models. For brevity, we refer 
to the models trained on synthetic data lacking a switch cost as the sc- models, and the original 
models trained on data with a switch cost as the sc+ models.  

As expected, the switch cost of the sc- models was greatly reduced relative to that of the 
sc+ models (Fig. S8A; mean ± s.e.m. switch cost for sc+ models: 111.4 ± 4.7ms, for sc- models: 
5.4 ± 1.4ms, p = 1.2e-5, signed-rank test, N = 25 models). In contrast, the mean RT and 
congruency effect of the sc- models differed only marginally from the sc+ models (Figs. S8B-
S8C). Relative to the sc+ models, the distance between task centroids in the sc- models was 
significantly reduced (Figs. 4D-4E; p = 8.1e-5, signed-rank test). Thus, the distance between task 
regions—a consequence of the hierarchical task representation—contributed to larger switch 
costs both within and across models.  

  
 

 
Fig. 4: Separated task representations contribute to switch costs. (A) Latent state trajectories from one model 
averaged over trials with a fixed stimulus configuration (same stimuli and task cues on the current trial; task cues on 
the previous trial differed to select stay vs. switch trials). (B) Mean Pearson’s r between the Euclidean distance to 
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the task centroid at trial onset and RT on switch trials (sc+ models, N = 140; black triangle shows the population 
mean). For each model, r was calculated separately for trials with a fixed stimulus configuration, then averaged 
across stimulus configurations. (C) Model switch cost vs. the normalized distance between task centroids (sc+ 
models, N = 140; black line shows the best linear fit). (D) Trial-averaged latent state trajectories for sc+ (left) and 
sc- (right) models trained on data from the same participant. The sc+ and sc- plots have the same axis limits. (E) 
Mean ± s.e.m. normalized distance between task centroids (N = 25 sc+ models and 25 sc- models). ***p < 1e-4, 
signed-rank test.  
 
The separation of task representations confers robustness 

We next examined whether the observed structure of the latent representation conferred 
any functional benefits, beyond providing a computational explanation for switch costs. In 
particular, we considered the possibility that the increased separation of task regions in the sc+ 
models would confer robustness, e.g. by reducing the likelihood that noise would push the latent 
state into an incorrect response region. We leveraged the reduced task separation that we 
observed in the sc- models to test this idea, varying the magnitude of the stimulus noise and 
assessing the effect on model accuracy for the sc+ and sc- models. Relative to the sc- models, the 
accuracy of the sc+ models was less affected by stimulus noise for noise magnitudes >= 0.3 SD 
(Figs. 5A-B and S9A; p < 0.05 for all noise values between 0.03 and 1, inclusive, signed-rank 
test, N = 25 models).  

We next tested whether the reduced task separation in the sc- models would predispose 
them to a different pattern of errors versus the sc+ models. To assess this, we calculated the 
conditional error rate for four different trial types: congruent, incongruent, stay, and switch (Figs. 
5C and S9B-E). For all four trial types, the error rate was higher for the sc- models than for the 
sc+ models (signed-rank test for congruent trials evaluated at 0.5SD noise: p = 0.0038; 
incongruent trials: p = 6.0e-4; stay trials: p = 5.5e-4; switch trials: p = 0.015; N = 25 models). 
Thus, the more compact latent representation of the sc- models resulted in a general degradation 
in performance, consistent with the view that noise in these models could more readily drive the 
latent state into incorrect response regions.  

 

 
Fig. 5: Models with more separated representations are more robust to noise. (A) Mean ± s.e.m. model 
accuracy vs. stimulus noise magnitude (sc+: models trained on data that has a switch cost; sc-: models trained on 
data that lacks a switch cost; N = 25 models). Note that participant accuracy was not assessed at different noise 
levels. (B) Difference in accuracy between all pairs of sc+ and sc- models. Blue colors indicate that the sc+ model 
has higher accuracy than the paired sc- model. (C) Error rate conditioned on trial type (mean ± s.e.m.; noise SD = 
0.5). *p < 0.05, **p < 0.01, ***p < 0.001, signed-rank test.  
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Discussion 
Many cognitive tasks—both inside and outside of the laboratory—require processing and 

responding to sequences of stimuli dynamically in real time. How can we identify models of the 
underlying cognitive and neural dynamics that remain faithful to this generative process? Most 
existing models fall short in that they either do not represent time at a fine enough timescale to 
model RT data, do not model multiple trials, or do not have the capacity to model individual 
differences in behavior. Leveraging large-scale cognitive training data and recent innovations in 
machine learning (12, 22), we developed a novel modeling framework—task-DyVA—in which 
expressive dynamical systems are trained to reproduce sequential behavior and RT data gathered 
from individual participants. We were able to recover interpretable dynamical models that 
precisely recapitulated subject-specific RT effects, making a compelling case for the fruitfulness 
of our approach.  

Our approach joins a burgeoning research program in which deep neural network models 
are deployed to investigate neural and behavioral data (6, 10, 23, 24). Optimizing neural network 
models to perform cognitive tasks is an increasingly popular approach, one that has furnished 
compelling insights into the neural representation of behaviors as diverse as visual object 
recognition, context-dependent behavior, and flexible timing (5–7). However, a general 
conceptual issue with this approach is that human behavior often deviates systematically from 
optimality (25, 26), idiosyncrasies that a task-optimized neural network may fail to capture. 
Moreover, task-optimized networks cannot be readily extended to model individual differences 
in behavior. Like other recent work (10, 23), we address these limitations by using behavioral 
data to constrain the structure of our model. Unlike these previous methods, however, our model 
processes incoming stimulus information dynamically with sub-second temporal precision, 
allowing us to model sequences of RTs.  

Our work provides support for a recently proposed normative account of the switch cost 
(17). Most prior work focuses on how the switch cost arises. Two prevailing viewpoints explain 
switch costs in terms of task representations or “task sets”: one view posits that cognitive control 
mechanisms require time to make task sets functionally active (14); the other posits that these 
task sets actively interfere with each other (15). In contrast, Musslick and Cohen provide an 
account of why the switch cost would exist in the first place (17). Building on prior models 
proposed by the authors themselves and others (27–29), they propose that the representation for 
each task is assigned to a unit whose time-varying activity corresponds to the degree of 
activation of the associated task. The units are self-exciting and mutually inhibitory, giving rise 
to two stable attractors, one for each task. Deeper attractors confer greater stability and resistance 
to distraction, but this comes at the expense of reduced behavioral flexibility: it takes more time 
to escape the attractor when a task switch is required, resulting in a switch cost.  

Similarly, in our model, each task is associated with a separable set of stable fixed points 
within the latent space, forming two attracting regions. We demonstrate that the separation of the 
two task representations confers greater stability: models with less separated task representations 
were more affected by sensory noise. A notable difference between our work and existing 
attractor models of task-switching (27–29) is that we did not assume any particular functional 
relationship between the two task representations—e.g. by assigning each task to units that 
directly inhibit each other—or indeed that the two tasks should have a designated representation 
at all. The structured representation of the task that we observed arose emergently from the 
model architecture, objective function, and learning rules (30). Moreover, our model provides a 
means of directly testing the hypothesized relationship between neural representations and 
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switch costs. In human or animal subjects performing a task-switching task with concurrent 
measurements of neural activity, one could quantify the separation of task representations within 
neural state space, much as we do here. If the performance of subjects with more separated task 
representations was less affected by sensory noise, this would support the notion that more 
separated task representations confer robustness. 

While we chose to focus on a single well-studied task, allowing us to conduct a detailed 
study of the models’ learned task representation, the task-DyVA framework could be extended to 
model any cognitive task in which RTs are measured, in both human and animal subjects. More 
generally, our framework could also be adapted to incorporate other time-varying signals, 
including eye movements, cursor movements, and measurements of neural activity (31). In short, 
our framework provides a foundation for deriving generative models that explain how the brain 
dynamically gives rise to behavior. 
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Materials and Methods
Description of Ebb and Flow

Ebb and Flow is a game offered on the Lumosity cognitive training platform in which par-
ticipants must switch between two cognitive tasks. On each trial, participants are shown a set of
leaves that vary along two stimulus dimensions corresponding to the two tasks: the direction in
which the leaves are pointing (left, right, up, or down) and the direction in which the leaves are
moving (left, right, up, or down). Depending on the color of the leaves, participants must either
report the pointing direction of the leaves or the direction of motion of the leaves with a key
press (using the left, right, up, or down arrow keys). The pointing task is cued by green leaves
while the motion task is cued by orange leaves. The cued task is also reinforced by verbal cues
at the bottom of the screen (see Fig. 1A). After making a response, the participant is provided
with brief visual feedback indicating whether or not the correct response was provided concur-
rent with the start of the next trial (correct: green check mark; incorrect: red/orange ‘X’ mark;
both displayed briefly in the center of the screen). At the conclusion of a given gameplay event
(duration = 60s), the participant is shown the number of correct trials out of the total number of
attempted trials, the mean response time (RT), and a composite score based on the number of
correct responses. Thus, the composite score is determined by a combination of response speed
and accuracy.

When the pointing direction and motion direction of the leaves is the same, a trial is said to
be congruent, and incongruent otherwise. The probability that any given trial will be congruent
is 50%. The probability that the task cue will switch on a given trial is given by 0.05 × the
number of trials since the last task switch. As such, the majority of trials for a given gameplay
event are typically stay trials.

The task-DyVA representation of Ebb and Flow
Stimuli and response target. Participant data from Ebb and Flow was transformed into a sim-
plified representation for use with the task-DyVA model. At each moment in time (step size
= 20ms), a single binary-valued unit was used to represent the presence or absence of each
stimulus modality × response direction and the two task cues (see Fig. 1B, bottom left). These
stimulus inputs contribute directly to the dynamics of the latent state (see equation (1) be-
low). For each trial, we allowed for the possibility that the model’s RT would be longer than
the participant’s RT by extending the transformed stimuli 500ms beyond the participant’s RT.
Zero-mean Gaussian noise (0.1 SD) was added independently to each stimulus unit. The noise
was resampled on each iteration of the training loop. To create the response target used for
model training, a Gaussian kernel (SD = 50ms, max = 1) was centered at each RT from the
participant’s responses (see Fig. 1B, bottom right).

RT calculation. At the conclusion of training, the model typically generated time-localized
activations at one of the four possible response directions on each trial (see Fig. 1B, bottom
right). The direction of the model’s response on a given trial was calculated as the output unit
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with the maximum activation in a window beginning 100ms after stimulus onset and ending
at stimulus offset. The RT for that trial was calculated as the temporal ‘center of mass’ of the
output unit with the maximal activation:

RT = argmin
t

xout(t) s.t.

toffset∑
t=100ms

xout(t) >=

( toffset∑
τ=100ms

xout(τ)

)/
2,

where xout(t) is the activation of the response unit at timestep t. RTs were not calculated for
trials in which the stimuli were prematurely truncated.

The task-DyVA model
Generative model. The generative component of task-DyVA—i.e., the component that emulates
human behavior—is a dynamical latent variable model that accepts sequences of task stimuli
u1:T as inputs and produces sequences of task responses x1:T as outputs. Our implementation of
the generative model is closely related to Deep Variational Bayes Filters (DVBF) (22), though
the encoder model differs considerably (described below). The latent state variables z1:T are
defined to have locally-linear transition dynamics:

zt+1 = fθz(zt,ut,wt)

= Atzt +Btut +Ctwt, t > 1, (1)
zt = fθ0(w0), t = 1, (2)

where the initialization function fθ0 is parameterized by a MLP with two layers (hidden layer:
64 ReLU units; output layer: 16 linear units). When the model is used to generate task re-
sponses, i.e. at the conclusion of training, the stochastic variables wt are sampled from the
prior:

wt ∼ N (0, diag{σ2
w}), (3)

where the prior variance vector σ2
w is learned. During model training, the wt are instead sam-

pled from the encoder model as described in the following section.
The matrices At, Bt, and Ct are linear combinations of time-independent matrices

{A(i),B(i),C(i)}; i = 1, ...,M that are learned as point estimates:

At =
M∑
i=1

α
(i)
t A(i), Bt =

M∑
i=1

α
(i)
t B(i), Ct =

M∑
i=1

α
(i)
t C(i). (4)

The weights αt are the same for each set of matrices and are determined by a single-layer
neural network fθα(zt,ut) with softmax output units. For the models presented in this paper,
zt ∈ R16, wt ∈ R16, ut ∈ R10, xt ∈ R4 and M = 2.

Model outputs xt, which map one-to-one onto each of the possible task response directions,
are sampled from the decoder model according to:

pθx(xt|zt) = N (µθx(zt), σ
2
x), (5)
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where µθx is parameterized by a MLP with two layers and learned parameters θx (hidden layer:
64 ReLU units; output layer: four sigmoid units). Note that for all analyses conducted on the
trained models, e.g. for calculating RTs, we use xout(t) = E[pθx(xt|zt)] = µθx(zt) rather than
stochastic samples. The decoder SD σx, which is only relevant when evaluating the objective
function, is fixed to 0.75. A probabilistic graphical model that depicts the dependencies of the
variables in the generative model is shown in Fig. S1A.

Encoder model. To learn the parameters of the generative model θ = θx ∪ θz, we make use
of an approximate inference framework known as the variational autoencoder or VAE (19, 20).
Approximate inference is essential for computationally efficient learning in our model since the
conditional likelihood pθ(x1:T |u1:T ) is intractable due to nonlinearities in the dynamics equa-
tion (1) and decoder model. Following the VAE framework, we replace the true (intractable)
posterior distribution in our model pθ(w1:T |u1:T ,x1:T ) with a tractable approximate posterior
distribution qφ(w1:T |u1:T ,x1:T ) referred to as the encoder model that enables inference of the
unobserved stochastic parameters w1:T from the observed data {x1:T ,u1:T}. Note that the pos-
terior distribution is defined over the stochastic parameters w1:T rather than the latent state
variables z1:T since the latent state evolves deterministically given w1:T (22). The parameters
of the encoder model φ are learned jointly alongside the generative model parameters θ. We
note that the encoder model is only introduced to train the model and plays no role in generating
responses once the model is fully trained.

The task-DyVA encoder model factorizes as follows:

qφ(w1:T |x1:T ,u1:T ) = qφ0(w0)
T−1∏
t=1

qφw(wt|w0:t−1,u1:T ,xt:T ). (6)

We chose this factorization since it is almost identical to the factorization of the exact posterior
distribution, a strategy suggested by (12). Relative to the exact posterior distribution, the qφw
factors in our encoder model have additional dependencies on uT and xt (to be explicit: both
refer to variables at a single timestep). These minor additional dependencies were incorporated
for computational convenience. The exact posterior distribution can be derived using the chain
rule of probability and the principle of D-separation applied to the graph of the generative model
(Fig. S1A) (32).

To parameterize the density qφw , we introduce a backward RNN that transmits informa-
tion from future observations to the current timestep. This information is encoded in the state
variable

←−
ht . In the forward pass of the model, a neural network combines

←−
ht and zt at each

timestep, yielding parameters of a normal distribution µφ and σφ from which wt is sampled.
The dynamics of the latent state variable zt are the same as those of the generative model de-
fined in equations 1-5 (except that wt is no longer sampled from the prior). Thus the encoder

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.484666doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.484666
http://creativecommons.org/licenses/by/4.0/


model is given by:

←−
ht = e←−

ht
(
←−−
ht+1, exu(xt,ut)), t > 1, (7)

[µφ(
←−
ht, zt),σφ(

←−
ht, zt)] = ew(

←−
ht, zt), t > 1, (8)

qφ(wt|
←−
ht, zt) = N (wt;µφ(

←−
ht, zt), diag{σ2

φ(
←−
ht, zt)}), t > 1, (9)

zt+1 = Atzt +Btut +Ctwt, t > 1. (1)

In equation (7), exu is parameterized by a MLP with two layers (hidden layer: 64 ReLU units;
output layer: 64 linear units), and e←−

ht
is parameterized by a single-layer LSTM RNN with 64

hidden units. In equation (8), µφ and σφ are both parameterized by a MLP with two layers and
shared parameters in the hidden layer (hidden layer: 64 ReLU units). The output layer of µφ

consists of 16 linear units while the output layer of σφ consists of 16 softmax units. After the
softmax nonlinearity, the variance parameters are multiplied by a fixed factor of 16 and added to
a small positive constant (1e-6). To initialize the model, w0 is sampled from the prior according
to equation (3), so that qφ0(w0) = N (0, diag{σ2

w}), and z1 is given deterministically from the
initialization network fθ0 (which depends only on w0). A probabilistic graphical model show-
ing the dependencies between the variables in the encoder model is shown in Fig. S1B.

Objective function. To train the task-DyVA model, we use a slightly modified form of the
standard evidence lower bound (ELBO) objective function, so-called because it is a lower bound
on the marginal likelihood. To calculate the ELBO, it will be helpful to derive the conditional
density pθ(x1:T ,w1:T |u1:T ). In what follows, we show how this density can be derived by
marginalizing out the deterministic latent state variables z1:T from the complete joint density
of the generative model. An analogous calculation for a related model is provided in Appendix
A of (12). The joint distribution of the latent and observed variables conditioned on the task
stimuli is given by:

pθ(x1:T ,w1:T , z1:T |u1:T ) =
T∏
t=1

pθx(xt|zt)
T−1∏
t=1

pθz(zt+1|zt,ut,wt)pθ0(z1|w0)pθw(w1:T ), (10)

=
T∏
t=1

pθx(xt|zt)
T−1∏
t=1

δ(zt+1; fθz(zt,ut,wt))δ(z1; fθ0(w0))pθw(w1:T ),

(11)

where the factorization on the right-hand side of equation (10) follows from the state space
assumptions imposed on the generative model. The Dirac distributions in equation (11) result
from the fact that zt+1 is a deterministic function of zt, ut, and wt as specified in equations (1)
and (2).

To marginalize over z1:T , we first express zt as a deterministic function of u1:t−1 and w1:t−1
that results from the sequential application of fθz at each timestep. We denote the resulting

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.484666doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.484666
http://creativecommons.org/licenses/by/4.0/


expression as dt so that:

zt = dt = dt(u1:t−1,w0:t−1)

= fθz(ut−1,wt−1, fθz(ut−2,wt−2, . . . , fθz(u1,w1, fθ0(w0)))). (12)

Inserting dt into equation (11), and integrating out the z1:T sequentially starting with zT , we
derive the density:

pθ(x1:T ,w1:T |u1:T ) =
T∏
t=1

pθx(xt|dt)pθw(w1:T ). (13)

The ELBO objective function used to train task-DyVA is given by:

L(θ, φ;x1:T ,u1:T ) = Eqφ(w1:T |x1:T ,u1:T )[ci ln pθ(x1:T ,w1:T |u1:T )− ln qφ(w1:T |x1:T ,u1:T )]

(14)

= Eqφ(w1:T |x1:T ,u1:T )

[
ci

T∑
t=1

ln pθ(xt|dt) + ci ln pθw(w1:T )

−
T∑
t=1

ln qφw(wt|w1:t−1,u1:T ,xt:T )− ln qφ0(w0)

]
, (15)

in which the densities defined in equations (6) and (13) have been inserted into equation (14).
This is the usual ELBO objective with the modification that the joint likelihood is scaled by an
annealing parameter that increases monotonically with the number of gradient updates accord-
ing to ci = min (1, 0.01 + i/τA). Similar annealing schemes have been used in prior work (22,
33). For all models, τA was set to 40,000.

Related models. Due to the temporal dependency of our model, task-DyVA is a member of the
recently characterized dynamical VAE family (12), from which we derive the name. Among
prior work, the generative component of task-DyVA is most closely related to Deep Variational
Bayes Filters (DVBF) (22). A significant point of departure between task-DyVA and DVBF is
the encoder model: in task-DyVA, wt depends on both the current and all future observations,
which more closely resembles the structure of the true posterior distribution, while in DVBF
only the observations xt+1 and ut contribute to wt. The structure of the task-DyVA encoder
model is perhaps most similar to a recent implementation of a recurrent VAE model (34).

Datasets
The analyses presented in this paper consist of models trained on deidentified data from

20 Lumosity participants in each of seven decade-long age bins (140 participants total; first age
bin: ages 20 to 29, last age bin: ages 80 to 89). No statistical methods were used to predetermine
sample sizes. These participants were randomly selected from a larger pool of participants who
had played Ebb and Flow at least 500 times, who signed up as Lumosity participants between
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Jan. 1, 2012 and Dec. 31, 2021 (inclusive), who were between the ages of 20 and 89 at the time
of signup (inclusive), whose country of origin was the United States, Canada, Australia, or New
Zealand, who indicated that their preferred language was English, and who were not employees
at Lumos Labs, Inc. or participants who created accounts for research purposes. We also
required that each participant had only played Ebb and Flow on the web platform (as opposed
to the mobile platform), that they did not pause for more than 100 days between consecutive
plays of Ebb and Flow, and that their mean RT did not exceed 1.25s. Gameplays in which
any RT exceeded 10s were not included in the datasets and not counted as valid gameplays
(described below). Additional quality control checks were conducted to ensure that all game
metadata was correctly coded. To be included in the pool of available participants, a given
participant had to have at least 300 valid gameplays between their 150th and 500th gameplay
(inclusive). The final data from a given participant consisted of all valid gameplays between
that participant’s 150th and 500th gameplay (inclusive). Additional preprocessing steps are
described in the model training section.

In this set of 140 participants, 46% identified as female, 44% identified as male, and 10%
did not report their gender. These participants reported their educational attainment as follows:
some high school (1%), high school (15%), some college (19%), college degree (21%), asso-
ciate’s degree (7%), master’s degree (15%), professional degree (7%), Ph.D. (2%), other (3%),
with 9% not reporting education information. In an additional small subset of participants, the
training loss diverged to infinity; these failed models are not included in summary analyses (20
additional participants corresponding to a failure rate of 12.5%).

Prior to training models on these 140 participants, we used a different set of ‘exploratory’
participants randomly selected from the available pool to develop the task-DyVA modeling
framework (five to ten participants in each age bin). All model parameters were established
on this exploratory subset; models trained on these participants were not included in summary
analyses. This was done to provide some assurance that the model parameters presented in this
study would work well if applied to data from other participants.

Model training
Training, validation, and test sets. Gameplay data from each participant was randomly divided
into three splits: a training set (50%), a validation set (20%), and a holdout/test set (30%). Fol-
lowing standard procedure, the validation set was used to monitor the progression of training
and was not used to update the model’s parameters. The test set was used to assess the model’s
ability to generalize to unseen data; all summary analyses are reported for model responses
generated on the test set.

Data augmentation. A data augmentation approach was adopted to increase the quantity of
training data and to balance the proportion of stay and switch trials in the training set. Broadly,
this was accomplished by composing training data as a mixture of the original trial sequences
and sequences resampled from estimated RT PDFs. Specifically, we segmented the original
60s-long gameplay data into short sequences (5s duration, 3-4 trials), where the first sequence
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began at 5s and the last sequence began at 55s. Using the RTs from these trial sequences,
we estimated four RT PDFs corresponding to four different types of trials: congruent stay
trials, congruent switch trials, incongruent stay trials, and incongruent switch trials. Each PDF
was estimated as a Gaussian kernel-density estimate (KDE; scale parameter = 0.25). Prior to
estimating these PDFs, we excluded trial sequences with extreme outlier RTs as described in a
subsequent section.

To increase the quantity of training data, the corpus of 5s trial sequences was replicated by
a factor of ten (yielding ten total copies of the original corpus). Then, for each trial sequence,
we randomly determined if that sequence would be used as is (25% of the time), or would be
replaced with a synthetic trial sequence resampled from the RT KDE (75% of the time). In the
latter case, we first randomly sampled one of the four KDEs with equal probability (i.e. congru-
ent/stay, congruent/switch, incongruent/stay, or incongruent/switch), then randomly sampled a
RT from the corresponding KDE. The stimuli for that trial were sampled randomly with equal
probability from the set of permissible stimuli that were determined by the sampled trial type
(e.g. congruent vs. incongruent); the task cue was determined implicitly by the sampled trial
type. The response direction for that trial was set to be the correct response direction given the
stimuli and task cue. This resampling process was repeated until the cumulative duration of the
trials in the sequence exceeded 5s. Finally, the trial sequence was transformed to a continuous
representation as described in a previous section.

The resampling procedure described above was done only for the training set: the validation
and test sets used the original trial sequences as observed in the data. For the validation and test
sets, the original gameplay data were segmented into 10s-long sequences (rather than 5s-long
sequences), where the first sequence began at 5s and the last sequence began at 55s. For all three
splits (training, validation, and test), trial sequences with outlier RTs were excluded (described
below), as were trial sequences that did not contain at least one complete trial.

For the models trained on synthetic data with no switch cost (the sc- models), the data aug-
mentation procedure described above was modified to eliminate the switch cost. As before, we
determined RT KDEs for each of four different trial types: (congruent/stay, congruent/switch,
incongruent/stay, and incongruent/switch). To eliminate the switch cost on congruent trials, we
translated the congruent/switch KDE along the time axis such that the mean was the same as
that of the congruent/stay KDE. Similarly, the incongruent/switch KDE was translated to elim-
inate the switch cost on incongruent trials. Finally, all four KDEs were translated by the same
amount, such that the mean RT of the KDEs with no switch cost would be the same as that of
the mean RT of the original KDEs (where the mean RT is calculated by sampling from each
of the four KDEs with equal probability). Additionally, instead of constructing synthetic data
for 75% of trial sequences, where the remaining 25% of sequences were unmodified, all trial
sequences were resampled. All other aspects of the modified data augmentation procedure were
the same as described above.

Outlier removal. Trial sequences in which any RT was categorized as an outlier were excluded.
The outlier procedure made use of the median absolute deviation from the median (the MAD).
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An RT was classified as an outlier if the absolute deviation from the median exceeded ten times
the MAD from that participant’s data. Thus, only extremely short and extremely long RTs were
classified as outliers. The MAD and median were estimated from all RTs in the participant’s
data.

Early stopping. To guard against overfitting, we monitored the progression of model training
using the validation set and halted training after certain criteria were met. The metric we moni-
tored, mstop, depended on the difference between model and participant behavior (in particular,
the switch cost and congruency effect):

mstop =
|scm − scp|

scp
+
|cem − cep|

cep
,

where scm and scp are the model and participant switch cost, respectively, and cem and cep are
the model and participant congruency effect (all metrics were evaluated on the validation set).

mstop was calculated every 10th training epoch, beginning with the 500th epoch. Training
was halted if mstop did not decrease for 200 consecutive epochs. The training epoch with the
lowest value of mstop—as evaluated on the validation set—was used for all model analyses. We
reiterate that the model responses presented in the main text were generated using a holdout test
set (separate from the validation set).

A modified early stopping criterion was used for the models trained on synthetic data with
no switch cost (the sc- models), since the goal of model training was to eliminate the switch cost
rather than approximate the participant’s switch cost. Specifically, we used the simple stopping
criterion m′stop = |scm|, where scm is the model switch cost. As described above, the train-
ing epoch with the lowest value of m′stop—evaluated on the validation set—was used for model
analyses. All other aspects of the modified early stopping procedure were the same as described
above.

Training models with no switch cost. We trained 25 models corresponding to 25 participants
using synthetic data constructed to have no switch cost (the sc- models). To enable paired com-
parisons, these participants were selected from the main pool of 140 participants. Specifically,
we rank-ordered all 140 participants by their switch cost, then trained models sequentially start-
ing with the participant with the highest switch cost until 25 models were successfully trained.
It was not possible to predetermine the exact set of participants that would be used for these
experiments since the training loss sometimes diverged to infinity; in these cases, the model
training was considered to be unsuccessful, and another participant was selected. The training
failure rate in this set of models was somewhat higher than that observed in the original set of
140 models (37.5% vs. 12.5%). Other relevant details are described in the last paragraphs of
the data augmentation and early stopping sections. Unless noted otherwise, all other aspects of
model training and analysis were the same as described for the main set of 140 models.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.484666doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.484666
http://creativecommons.org/licenses/by/4.0/


Hyperparameters and other details of model training. The same model architecture and hyper-
parameters were used to train all models, and all models were initialized with the same random
seed. All models were trained on a NVIDIA GTX 1080 Ti GPU and/or a NVIDIA Tesla P100
GPU.

We used the AMSGrad variant of the Adam algorithm (35) as implemented in PyTorch
version 1.8.1. The following Adam parameters were used for all model training: learning rate
= 1e-4, β1 = 0.99, and β2 = 0.999. The training batch size was 128.

To avoid pathologically large gradients, we used gradient clipping with a clipping value of
five: when the Euclidean norm of the parameter vector exceeded five, gradients were rescaled
to have a norm of five. The norm was computed over all parameters concatenated into a single
vector.

Model analysis methods
Overview. Unless noted otherwise, all summary analyses were performed on the holdout/test
dataset, and analyses of the latent state variables were conducted in the full 16-dimensional
latent space.

PCA. To visualize the latent state trajectories, the latent variables were projected onto the top
three PCs determined from that model’s latent state matrix. The latent state matrix for a given
model was formed by concatenating all of latent state sequences obtained from the test set along
the time axis.

LDA. For the LDA analyses presented in Fig. 3C, latent state trajectories for all trials were
aligned to stimulus onset and categorized according to the task cue and response direction. The
positions of the latent state trajectories evaluated at the model’s mean RT were used to train
the LDA models. Classification was performed using the full 16-dimensional latent state vec-
tors. Since our goal was to use these LDA models to quantify the separability of the latent
state vectors in each class, rather than make out-of-sample predictions, misclassification rates
were calculated on the same data that was used to train the models. For the response direction
classification models, we trained a separate LDA model for each combination of task cue x
response direction, then averaged the misclassification rates across these eight models to obtain
a single value for each participant’s model. To construct the shuffled datasets, we pooled data
from both classes, then randomly reassigned the class labels. For the task classification models,
we trained a separate LDA model on each of 100 shuffled datasets, then averaged the misclas-
sification rates across these 100 models. For the response direction classification models, we
calculated the average shuffle misclassification rate on each of 100 shuffled datasets for each
task cue x response direction, then averaged the shuffled error rates to obtain a single value for
each participant’s model.

Fixed points. Stable fixed points were identified by running the models in ‘generative mode’
using long (50s) sequences of static stimuli as inputs. If the model latents converged to a
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stable state, the point to which the latent state converged was identified as a stable fixed point.
Specifically, for a given latent state sequence, we calculated the s.d. of each latent variable
over the last 10s of the sequence. If the mean SD—averaged across the latent variables—was
less than or equal to 0.001, we defined the time-averaged latent state variables over the last 10s
of the sequence as a stable fixed point. For each model, we screened for fixed points using
each of the 32 possible stimulus configurations, initializing the model from 10 different random
locations for each stimulus configuration. These initial states were randomly sampled from all
timepoints and all trials visited by the latent state from the responses generated from the test
set. For a given stimulus configuration, the latent state sequences generated from the 10 initial
states almost always converged to the same fixed point. However, if the Euclidean distance of
the end state of a given latent state sequence was greater than 0.001 from all other fixed points
identified with that stimulus configuration, the end state was identified as a new fixed point.

We identified stable fixed points associated with both task cues in 137 out of 140 models.
Of the remaining three models, one did not have any stable fixed points, and the other two only
had fixed points for one of the task cues. These three models were excluded from the analyses
in which we calculated distances between pairs of fixed points. For the 137 models included in
these analyses, the vast majority of models (135 out of 137) had at least 10 fixed points (mean
± s.e.m. number of fixed points per model: 25.8 ± 0.55). Averaged across these 137 models,
80 ± 1.7% (mean ± s.e.m.) of the 32 possible stimulus configurations were associated with at
least one stable fixed point. In some cases, we observed oscillatory rather than static limiting
behavior (i.e. stable limit cycles); these cases were not analyzed further.

Distance measures and task centroids. The task centroid for a given task was defined as the
centroid of the latent state trajectories evaluated at stimulus onset for all stay trials in which the
corresponding task cue was active (latent state trajectories were aligned to stimulus onset). To
measure the distance between fixed points (Fig. 3D) and the distance between the latent state
at trial onset and task centroids (Fig. 4B), we used the Euclidean distance calculated in the
full 16-dimensional latent space. To calculate the distance between task centroids (Figs. 4C
and 4E), we used a normalized distance measure that accounts for potential differences in the
overall scale of the latent state variables across different models. This normalized distance DN

was defined as the Euclidean distance DE divided by a scaled volume measure of the latent
state variables from that model:

DN =
DE

16

√∏16
i=1 max zi −min zi

,

where the zi denote the latent state variables, and the maxima and minima are calculated over
all trials and all timepoints in the responses generated on the test set.

For the analyses in which we calculated the Pearson’s r between the distance to the task
centroid and RTs on switch trials (Fig. 4B), r was calculated separately for trials with a fixed
stimulus configuration, then averaged across stimulus configurations to obtain a single correla-
tion estimate for each model. A stimulus configuration is defined by the values of the moving
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stimuli, pointing stimuli, and task cue on the current trial, yielding 32 possible stimulus con-
figurations. We excluded stimulus configurations with fewer than five trials from the average
Pearson’s r calculation (18 out of 140 models had at least one excluded stimulus configuration;
mean ± s.e.m. excluded stimulus configurations within those models: 1.5 ± 0.16). One ad-
ditional stimulus configuration from one model was excluded because the RTs were constant
(thus, Pearson’s r is undefined).

Statistics
All reported statistics were calculated using two-sided tests. All assertions about statistical

significance refer to a significance level α of 0.05. All p-values reported for signed-rank tests
were derived using a normal approximation (rather than the exact null distribution of the test
statistic). Additional details are provided throughout the text.
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Fig. S1: Probabilistic graphical models of task-DyVA. Shaded nodes indicate observed variables; unshaded
nodes indicate unobserved (latent) variables. Circles indicate variables that depend stochastically on their parent
nodes; diamonds indicate variables that depend deterministically on their parent nodes. See the Materials and
Methods for a description of the variables. (A) The generative model of task-DyVA. (B) The encoder or inference
model of task-DyVA.
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Fig. S2: Example RT distributions from participants and fitted models. Within each age bin (columns),
participants were sorted by their mean RT; every other participant is shown (10 out of 20 participants within each
age bin; top row = shortest RTs).
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Fig. S3: Increasing stimulus noise reveals effects on model accuracy. (A) Mean ± s.e.m. accuracy across mod-
els vs. stimulus noise SD (N = 140 participants/models). Note that participant accuracy (blue) was not assessed at
different noise levels. At the noise level used to train the models (0.1SD), the mean ± s.e.m. accuracy was 0.99 ±
0.0033 for the models and 0.96 ± 0.0022 for the participants. (B) As in panel (A), but for the accuracy congruency
effect (accuracy on congruent trials minus accuracy on incongruent trials). At 0.4SD noise, the mean ± s.e.m.
accuracy congruency effect was 0.050 ± 0.0026 for the models and 0.055 ± 0.0026 for the participants (p = 0.14,
signed-rank test). (C) As in panel (A), but for the accuracy switch cost (accuracy on stay trials minus accuracy
on switch trials). At 0.4SD noise, the mean ± s.e.m. accuracy switch cost was 0.017 ± 0.0024 for the models and
0.017 ± 0.0016 for the participants (p = 0.97, signed-rank test).
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Fig. S4: Comparison of model and participant RT variability. (A) RT standard deviation (SD) for participants
and corresponding models (each point is one participant/model; black line: unity; red dashed line: best linear fit,
slope = 0.34; Pearson’s r = 0.76, test for non-zero correlation using the exact distribution of r: p < 1e-26; N =
140 participants/models). The mean ± s.e.m. RT SD for the models was 73.6 ± 1.9ms and 123.5 ± 4.2ms for the
participants. (B) Mean ± s.e.m. RT SD within each age bin (N = 20 participants/models per age bin).
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Fig. S5: Strong correlations between participant and model behavioral metrics are preserved with elevated
stimulus noise. (A) Mean RTs at 0.4SD stimulus noise (Pearson’s r for participants vs. models: 0.96, test for
non-zero correlation using the exact distribution of r: p < 1e-75, best-fit slope = 0.66). (B) Switch costs at 0.4SD
stimulus noise (Pearson’s r for participants vs. models: 0.70, p < 1e-21, best-fit slope = 1.0). (C) Congruency
effects at 0.4SD stimulus noise (Pearson’s r for participants vs. models: 0.76, p < 1e-26, best-fit slope = 0.38).
For panels A-C, each point is one participant/model; black line: unity; red dashed line: best linear fit; N = 140
participants/models. Note that participant behavior was not assessed at different noise levels.
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Fig. S6: Latent representations of additional trained models. Each plot shows the trial-averaged latent state
trajectories and stable fixed points (‘x’ marks) from one model. Within each age bin (columns), participants were
sorted by their mean RT; every fourth participant is shown (5 out of 20 participants within each age bin; top row =
shortest RTs).
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Fig. S7: Hypothetical factors contributing to switch costs and example trajectories. (A) Illustration of how
greater separation between task regions could contribute to switch costs. The transition from task region A to task
region B is costly (i.e. slow). This model predicts a positive correlation between the distance to task region A
at stimulus onset and RTs for switch trials. (B) Illustration of how slower dynamics within task region B could
contribute to switch costs. The transition from task region A to task region B is fast. This model predicts that the
correlation between the distance to task region A at stimulus onset and RTs for switch trials will be near zero. (C)
Example latent state trajectories from four models. For each model, the stay and switch trajectories were averaged
over trials with a fixed stimulus configuration (same stimuli and task cues on the current trial; task cues on the
previous trial differed to select stay vs. switch trials). The stimulus configurations varied across the four models.
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Fig. S8: The sc- models exhibit reduced switch costs. (A) Switch cost for the sc+ and sc- models (black: mean
± s.e.m.; blue lines connect models trained on data from the same participant; mean ± s.e.m. for sc+ models: 111.4
± 4.7ms; sc- models: 5.4 ± 1.4ms; N = 25 model pairs). (B) Mean RT for the sc+ and sc- models (mean ± s.e.m.
for sc+ models: 888.4 ± 21.3ms; sc- models: 920.0 ± 21.6ms; N = 25 model pairs). (C) Congruency effect for the
sc+ and sc- models (mean ± s.e.m. for sc+ models: 79.6 ± 7.7ms; sc- models: 71.1 ± 8.5ms; N = 25 model pairs).
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Fig. S9: The reduced accuracy of the sc- models is consistent across noise levels and trial types. (A) Signed-
rank test p-value for sc+ vs. sc- model accuracy (N = 25 model pairs; black dashed line: p = 0.05). (B) Mean
± s.e.m. error rate for congruent trials. (C) Mean ± s.e.m. error rate for incongruent trials. (D) Mean ± s.e.m.
error rate for stay trials. (E) Mean ± s.e.m. error rate for switch trials. Panels B-E: N = 25 sc+ models and 25 sc-
models.
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