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Summary

Multicellular development employs periodic spatial patterning to generate repetitive structures

such as digits, vertebrae, and teeth. Turing patterning has long provided a key paradigm for

understanding such systems. The simplest Turing systems are believed to require at least two

signals, or morphogens, that diffuse and react to spontaneously generate periodic patterns.

Here, using mathematical modeling, we show that a minimal circuit comprising an intracellular

positive feedback loop and a single diffusible morphogen is sufficient to generate stable,

long-range spatially periodic cellular patterns. The model considers cells as discrete entities as

a key feature, and incorporates transient boundary conditions. Linear stability analysis reveals

that this single-morphogen Turing circuit can support a broad range of spatial wavelengths,

including fine-grain patterns similar to those generated by classic lateral inhibition systems.

Further, signals emanating from a boundary can initiate and stabilize propagating modes with a

well-defined spatial wavelength. Once formed, patterns are self-sustaining and robust to noise.

Finally, while noise can disrupt patterning in pre-patterned regions, its disruptive effect can be

overcome by a bistable intracellular circuit loop, or by considering patterning in the context of

growing tissue. Together, these results show that a single morphogen can be sufficient for
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robust spatial pattern formation, and should provide a foundation for engineering pattern

formation in the emerging field of synthetic developmental biology.

Introduction

The fundamental question of how periodic spatial patterns emerge in multicellular organisms

arises both in the context of natural developmental systems and in the emerging field of

synthetic development, where researchers seek to engineer biological circuits that recapitulate

fundamental aspects of multicellular development (Davies 2008; Ebrahimkhani and Ebisuya

2019; Toda et al. 2018). Understanding the minimal requirements to generate spatial patterning

could provide insight into natural patterning processes, and offer a basis for engineering

synthetic patterning circuits with minimal complexity.

Previous work has focused on three general paradigms for spatial periodicity (Schweisguth and

Corson 2019). First, studies of early embryonic development in Drosophila unveiled a

far-reaching scenario for patterning based on positional information and hierarchical morphogen

gradients (Wieschaus 2016; Briscoe and Small 2015). Second, at the other extreme, classic

Turing patterning systems use interactions between two morphogens to spontaneously generate

periodic spatial patterns (Kondo and Miura 2010). Finally, short-range alternating patterns can

be produced by lateral inhibition mechanisms in which neighboring cells establish opposite fates

through direct signalings, like those implemented by the Notch pathway (Sprinzak et al. 2011;

Corson et al. 2017; Collier et al. 1996). While powerful, these three mechanisms may not,

individually, be ideal for all purposes or may be more complex than necessary. For example,

positional information-based mechanisms do not readily scale to pattern an arbitrarily extended

region (Ben-Zvi, Shilo, and Barkai 2011), potentially limiting their evolvability. In turn, classic

Turing mechanisms require multiple morphogens and fine-tuning of key parameters (Marcon et
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al. 2016; Scholes et al. 2019), adding complexity for synthetic applications. Finally, lateral

inhibition patterns generally operate at small spatial length scales, comparable to that of the

individual cell (Cohen et al. 2010; Hadjivasiliou, Hunter, and Baum 2016). Natural systems

undoubtedly combine these and other mechanisms to achieve more complex pattern formation

capabilities (Green and Sharpe 2015).

In natural contexts, periodic patterns are generated by a combination of (1) reaction-diffusion

circuits operating within the developing tissue and (2) triggering signals that emerge from tissue

boundaries. For example, digit patterning in the developing limb bud is set off by signals coming

from the apical epidermal ridge (Raspopovic et al. 2014). Similarly, tooth patterning is thought to

involve sequential activation of new primary enamel knots, through a mechanism that may

involve both local morphogen dynamics and inputs from adjacent tissue (Kavanagh, Evans, and

Jernvall 2007). Feather patterning appears to similarly combine these mechanisms (Kavanagh,

Evans, and Jernvall 2007; Ho et al. 2019). These examples provoke the question of what

minimal circuits are sufficient for periodic boundary-triggered patterning.

An ideal pattern-forming system would have several key characteristics: First, it should be

triggered by signals from a localized adjacent region or boundary, to enable control of

patterning. Second, the pattern would spatially propagate to fill an extended region of tissue.

Third, to enable synthetic engineering, the system should be as simple as possible, utilizing a

minimal number of components and interactions. The ideal system should further be robust to

unavoidable fluctuations in cellular components.

Here, we introduce a remarkably simple mechanism for boundary-triggered spatial periodic

patterns that uses a single morphogen. This architecture differs from classical Turing systems in

that the activator is confined to the cell in which it is synthesized, and cannot diffuse to other
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cells. It thus represents the limit of a classic Turing system when the mobility of the activator

approaches 0. Unlike Turing systems, this circuit cannot, by itself, spontaneously produce

consistent, well-defined long-wavelength patterns. However, when stimulated by an adjacent

signal from a localized region, or boundary, it can produce spatially propagating periodic

patterns in the levels of its components that self-sustain even after the initiating signal is

removed. This single morphogen mechanism demonstrates how complex spatio-temporal

patterns can arise from remarkably simple underlying circuit mechanisms, and provides a

realistic design for synthetic developmental patterning systems.

Results

A single morphogen is sufficient to form patterns on the spatial discrete lattice

Alan Turing’s patterning circuit in his 1952 paper is one of the mathematically simplest models

that can form patterns through diffusion-driven instability (Turing 1952). The Turing circuit

comprises two components that regulate their own production and/or degradation, and diffuse

as morphogens (Figure 1A, upper left panel). Patterning occurs when the inhibitory morphogen

has a larger diffusion coefficient than the activating morphogen, causing local activation and

long-range inhibition (Figure 1A, left row) (Murray 2001).

Since there is no lower bound for the diffusion coefficient of the activating morphogen, we

wondered whether the system could support pattern formation in the limit of no activator

diffusion at all, i.e. if the activator were confined to a single cell rather than diffusing as a

morphogen. In continuous systems, the limit of no activator diffusion does not pattern due to the

unbounded spectrum of high-frequency modes (Figure 1A, lower right panel). However, on a

discrete lattice, cells expressing the non-diffusive activator exhibit local (same-cell) activation,
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while inhibiting cells in their extended neighborhood (Figure 1A, upper right panel). In this case,

self-activation occurs on the scale of a single cell, providing a high-frequency cutoff.

To understand whether such a discrete system could form robust patterns and, if so, what

characteristics these patterns might have, we performed linear stability analysis of both discrete

and continuous single-morphogen systems (Murray 2001). We analytically computed the

spatially homogeneous steady state of the system, and analyzed its stability to harmonic

perturbations with varying wavenumber k, by determining the eigenvalue of the Jacobian of the

system with largest real part, and its dependence on k (dispersion relation) (Murray 2001). In a

classic two-morphogen Turing system, the real part of that eigenvalue could take on a maximum

value at an intermediate wavenumber (Figure 1B, left panels, purple lines). By contrast, in a

single-morphogen system, the resulting dispersion relation increases monotonically with

increasing k (decreasing spatial period), as shown by the blue lines in the left panels of Figure

1B. This monotonic increase suggests that the resulting pattern should be dominated by

perturbations with arbitrarily large spatial frequencies. In the continuous limit, this situation leads

to physiologically unreasonable patterns, which involve infinitely small wavelengths (Figure 1B,

lower right panel). However, a discrete lattice imposes a cutoff at a wavelength of two cell

diameters (Figure 1B, upper left panel), and can thereby support patterns involving alternating

cell states (Figure 1B, upper right panel). Thus, a single-morphogen circuit that would not

pattern in the continuous limit, could produce “fine-grain” alternating patterns on a lattice, similar

to lateral inhibition patterns(Collier et al. 1996). Further, as we will see below, certain conditions,

including particular initial perturbations, can further expand the spectrum of patterning behaviors

to include longer wavelength patterns.

To gain more insight into particular realizations of single-morphogen patterning systems, we

considered a minimal, two-component regulatory system that could be constructed synthetically

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2022.03.21.484932doi: bioRxiv preprint 

https://paperpile.com/c/R0wD0y/Yvowk
https://paperpile.com/c/R0wD0y/Yvowk
https://paperpile.com/c/R0wD0y/AQGXv
https://doi.org/10.1101/2022.03.21.484932


in a living cell using known genes and regulatory sequences (Figure 1C). In this system, an

intracellular activator denoted A, promotes its own production and that of a repressor, denoted

R. The repressor, but not the activator, is secreted and can diffuse from one cell to another to

down-regulate production of both A and R in both its own cell and neighboring cells. To simulate

dynamics on a discrete cell lattice, we used ordinary differential equations (ODEs) to represent

the dynamics within each cell, allowing R molecules to transfer from one cell to its neighbors

(Figure 1D). With these assumptions, we obtain the following equations for the dynamics of the

single-morphogen system on a discrete lattice:

Here, βA and βR denote the maximal production rate of the activator and the repressor,

respectively. γA and γR denote effective protein degradation and loss rates. D denotes the

diffusion coefficient of the repressor. ]i[ denotes the set of cells that directly contact cell i. Finally,

to mathematically represent combinatorial regulation by the activator and repressor, we assume

that the two regulators compete to bind to the same target DNA binding site, a relatively simple

type of interaction that can be synthetically engineered (Phillips et al. 2012; Zhu et al. 2021).

This results in the following dependence of target promoter activity on A and R concentration

(Figure 1E):

Here, κ quantifies the basal expression in the absence of activator and repressor, KA and KR

respectively represent the concentrations required for half-maximal activation and repression,

and h is a Hill coefficient that quantifies the ultrasensitivity of the response to either regulator.

This production function F(A, R) is assumed to affect the expression of both A and R. We note
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that the alternative Gierer–Meinhardt reaction-diffusion kinetics, which is widely applied to model

biological patterning formation, lead to similar results (see Supplementary Figure S1) (Meinhardt

and Gierer 1974).

A typical reaction-diffusion simulation starts from a homogeneous initial condition in which all

cells are at the same value, equal to the steady-state for the case of no diffusion, D = 0 (Figure

1F, left), perturbed by small spatial fluctuations. As time progresses, diffusion can, under some

circumstances, destabilize the spatially homogeneous initial state, leading to patterning. The

simulation continues until the concentration profiles of all cells reach new steady-state values

(Figure 1F, right).

We first simulated a square two-dimensional lattice, starting with a low level of random noise in

the initial state (Figure 2A, Movie S1). Concentrations of activator and repressor began

diverging in different cells, eventually reaching two distinct states with high and low

concentrations of A (Figure 2A). Spatially, these states formed a disordered “salt and pepper”

pattern, with a wavelength of about 2 cell diameters, as expected from the dispersion relation

(Figures 1B, 2B). Autocorrelation analysis showed that the diffusion coefficient defines the

length scale of the final pattern (Figure 2C). In the low diffusion regime, the circuit generates

checkerboard-like patterns (Figure 2C, upper two panels), while high diffusion rates produce

irregular, low wavenumber patches of elevated A expression (Figure 2C, lower two panels).

Further frequency power spectrum analysis confirmed the two regimes corresponding to the

checkerboard-like pattern and less regular patch pattern (Figure 2D). Together, these results

show that the discrete single-morphogen system can spontaneously pattern with a

diffusion-dependent wavelength.
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The single-morphogen patterning circuit can generate stable, long-wavelength periodic

patterns

Given the large range of wavenumbers for which the dispersion relation is positive, one could

expect patterns with low wavenumbers to be stable, as long as they fall within the

above-mentioned range of positive dispersion relation. We thus asked whether initial conditions

could stabilize particular low wavenumber modes, and thereby establish well-defined spatial

patterns. To that end, we first investigated the effect of point and line morphogen sources

(Figure 3A, left). We simulated the same system (Figure 2A) as above, but transiently increased

the concentration of R to a higher value either in a single cell or a line of cells. These

perturbations generated, respectively, either concentric rings or periodic lines of elevated

activator expression (Figure 3A, right). The patterns exhibited several key features: First, they

formed sequentially, as a front dynamically propagates away from the perturbation at a constant

velocity, as shown in Figure 3B (orange arrow) and Movie S2 for the case of the line source

(limitations on pattern propagation are discussed below). Second, in the final pattern, A and R

exhibit in-phase periodic spatial oscillations (Figure 3C), as expected given that they are

co-regulated by the same inputs (Figure 1C). Third, in contrast to standard Turing patterns in

which spots of high activator concentration tend to rearrange to maximize distances from

neighboring peaks, in this case, peak morphogen positions remained fixed throughout

patterning (Figure 3B). Finally, once triggered, the dynamic patterning process is self-sustaining

and continues to propagate even if the initiating perturbation is transient (Figure 3B, purple

arrow). All of these features can occur with a variety of perturbations, including reducing R, or

increasing or decreasing A (Figure S2). Even perturbations whose amplitude is small compared

to the initial state concentrations can be sufficient to generate the patterns in a deterministic

setting (Figure S2). Together, these results indicate that transient spatially structured

perturbations can initiate stable, periodic, long-wavelength patterns.
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One of the most important features of patterns is their spatial periodicity. In our simulations, the

wavelength of the single-morphogen pattern exhibited a square-root dependence on the

diffusion coefficient, D, with larger diffusion coefficients producing larger intervals between

adjacent stripes (Figure 3D). This relationship can be understood from a dimensional argument:

D, with units of μm2/s, is the only parameter in the system whose dimensions include length.

The velocity of pattern propagation is proportional to the square root of D for the same reason

(Figure 3D). By contrast, the temporal interval between the formation of adjacent stripes is

independent of D (Figure 3D).

In a biological context, the pattern-establishing perturbations could be generated by a group of

“source” cells that produce the morphogen constitutively, as occurs with the sonic hedgehog

morphogen in the developing neural tube (Dessaud, McMahon, and Briscoe 2008; Alaynick,

Jessell, and Pfaff 2011; Briscoe and Small 2015). To understand how these source cells impact

patterning, we simulated the system with a constant influx of morphogen at a defined position

(Figure 3E). Higher morphogen levels suppress the expression of A in correspondingly larger

regions around the source, effectively pushing out the position at which periodic patterning

begins (Figure 3E). When morphogen influx is stopped after patterning is established, the

existing patterned region expands inward, effectively “filling in” the proximal spatial region

without affecting the established phase (Figure S3). Thus, morphogen production rates from

source cells determine the phase of the final pattern, without affecting its period (Figure 3E).

Taken together, these results indicate that a single-morphogen reaction-diffusion system,

triggered by a spatially localized perturbation, can generate stable periodic patterns whose

wavelength and phase can be controlled.
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More generally, from the point of view of mode selection (Cross and Hohenberg 1993), these

dynamics suggest that transient perturbations can selectively amplify modes with intermediate

wavenumbers despite the monotonically increasing dispersion relation, as shown in a simplified

one-dimensional example (Figure 3F). This contrasts with the classic stationary-pattern

formation scenario, in which the dispersion curve is only positive for intermediate wavenumbers

(Figure 1B left, purple lines). In that case, the final wavenumber of the emerging pattern results

from the competition between the linear instability, the nonlinear terms, and the boundary

conditions (Dee and Langer 1983; Murray 2001; Ben-Jacob et al. 1985). In our case,

simulations revealed that the wavenumber of the spatial pattern corresponded to a Lyupanov

exponent of about 70% of its maximum value (Figure 3F, right panel, gray shaded line).

Spontaneous single-morphogen pattern formation is sensitive to noise.

We next asked if single-morphogen pattern formation is sensitive to stochastic fluctuations

(noise) in circuit components (Eldar and Elowitz 2010; Kilfoil, Lasko, and Abouheif 2009) (Figure

4A). To quantify this sensitivity and understand how it impacts patterning, we considered a

version of the circuit that could be implemented synthetically, in which A and R are

co-expressed from a single promoter (e.g. using an internal ribosome entry site (IRES) or 2A

ribosomal skip sequence). In this configuration, the expression of the two genes can fluctuate

due to noise, in a largely correlated manner due to their co-transcriptional expression. We

therefore assumed that the dominant source of the noise was extrinsic, comprising both static

variation as well as dynamic, correlated variability in the expression of the two genes (Thattai

and van Oudenaarden 2002; Raser and O’Shea 2005; Elowitz et al. 2002). More specifically, we

modeled expression noise using an Ornstein–Uhlenbeck process (Gillespie 1996; Rohlfs,

Harrigan, and Nielsen 2013; Fox et al. 1988), which describes fluctuations with a standard

deviation over time of σ, a standard deviation of mean expression across cells of η, and an

autocorrelation time for fluctuations of 𝜏 (Figure 4B). These fluctuations are encapsulated in the
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random function H(i,t), where i denotes the cell index, and t denotes time, to produce a modified

set of circuit equations:

Here, H(i,t), the random time series for an individual cell, exhibits a normal distribution with

mean mi = <H(i,t)>t and variance σ2. Mean expression levels are assumed to be normally

distributed with mean 1 and variance η2. The timescale of fluctuations, 𝜏, is taken to be about 10

hours, comparable to the mRNA half-life, which sets a natural timescale for fluctuations.

In the presence of the noise sources described above, our simulations show that even small

amplitudes of noise disrupted pattern formation (Figure 4C). In a one-dimensional system with

stochastic fluctuations (σ = 0.001, η = 0), patterning was disrupted after formation of the first

stripe (Figure 4C, left vs. right panel). Suspending noise until the middle of the simulation (t = 20

h) allowed more stripes to form, but pattern propagation was quickly blocked once the noise

was present (Figure 4C, middle panel). On the other hand, while noise prevented the formation

of new stripes, it did not disrupt stripes that had already formed. These results indicate that

noise can disrupt pattern formation and cause propagation failure without destabilizing

patterned regions (Figure 4D, left). Meanwhile, we also noticed that under the noise-free

condition, the pattern eventually loses its regularity (Figure 4C, right). The distal cells

experience different activation dynamics compared with proximal cells. This "initiation effect"

perturbs the spatial-temporal periodic cycles, causing regularity loss in distal regions.

To quantify the ability of noise to disrupt pattern formation, we analyzed patterning across

different values of σ and η. As a measure of noise robustness in pattern formation, we analyzed

the spatial correlation between the steady state patterns with and without noise. Values near 1
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indicate patterning is unaffected by noise, while values near 0 indicate the absence of periodic

patterning at the expected frequency. With a homogeneous initial condition, the circuit was

sensitive to noise during pattern formation (Figure 4E, blue line). Disruption increased with the

amplitude of noise, but even extremely low values of σ or η were sufficient to at least partially

disrupt patterning (Figure 4E, orange arrows). By contrast, if we initialized the system with a

deterministically formed pattern, even larger values of noise, up to at least  ~10%, failed to

disrupt it (Figure 4E, red line). These results were again consistent with the notion that noise

disrupts patterning specifically in unpatterned regions and, more generally, could be understood

in terms of the ability of noise-stimulated patterns to fill in previously unpatterned regions, but

not penetrate regions in which the pattern is already formed (Figure 4C, middle panel).

An inhibition-release mechanism overcomes noise sensitivity

Based on the results above, and inspired by aspects of retinal patterning in Drosophila

(Heberlein, Wolff, and Rubin 1993a), we reasoned that suppressing A and R expression in

unpatterned regions could prevent their premature activation by noise, while preserving their

ability to pattern in response to the advancing wave of pattern formation. To implement this

behavior, we added an “inhibition release” mechanism to the A-R circuit, based on a hysteretic

positive feedback loop (Figure 5A). More specifically, we incorporated an intracellular regulator,

denoted M, which can exist in either an inactive (M) or active (M*) state. We assume three key

interactions for M. First, the transition from the inactive M to active M* is stimulated by R in an

ultrasensitive manner. Second, M* stimulates M activation, creating a positive, ultrasensitive

feedback loop that exhibits bistability. Third, M* inhibits A degradation, which is assumed to

occur at an accelerated rate, and thereby boosts A protein levels. With these assumptions, in

the appropriate parameter regimes, M* exhibits an ultrasensitive, hysteretic dependence on its

input, R (Figure 5A). Low levels of M* lead to correspondingly low levels of A, which in turn

ensures low levels of R production, maintaining the cell in a ground (pre-patterned) state. By
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contrast, when M* is high, stabilization of A allows the circuit to exhibit the pattern forming

behaviors described above (Figure 5B, phase diagram). In this way, an advancing wave of R

morphogen can convert M to its active form, progressively de-inhibiting the A-R circuit as it

propagates (Figure 5C).

To test whether this circuit could prevent noise from triggering premature circuit activation, while

still allowing pattern propagation, we simulated the system on a one-dimensional cell lattice

(Figure 5C, D). We initialized the lattice with all cells in the inhibited ground state (low M*), which

remained stable across the lattice in the absence of external R (Figure 5B, purple box).

Production of R at the boundary triggered activation of M*, and consequent de-inhibition of the

A-R circuit, in boundary-adjacent cells (Figure 5C). Since excited state cells produce R at a

higher rate than ground state cells (Figure 5B, right panel, orange box), the R concentration

gradient drove a net R flux towards more distal, inhibited cells, leading to a propagating front of

M* activation (Figure 5C, 5D). Once de-inhibited in this way, the A-R circuit progressively

developed periodic patterns of A and R concentration through a diffusion-driven bifurcation.

Patterning occurred through three sequential stages: (1) elevation of the repressor, R, in the

inhibited ground state, prior to its activation;  (2) transition of the cell from the ground to the

excited state by activation of M, and (3) reaction-diffusion pattern formation by the A-R circuit in

the excited cells (Figure 5C). The third step resembled periodic stripe patterns following a

propagating wavefront in the minimal A-R circuit (Figure 3). The effects of R diffusion can also

be observed in the phase portrait (Figure 5E). Once cells escape from the inactive state, instead

of ending at a stable excited state as in an isolated system, they exhibit multiple stable states as

a consequence of the diffusion-driven bifurcation. Most importantly, all final states fall into two

clusters, responding to the typical bright and dark regions of a periodic pattern (Figure 5C).
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The inhibition-release mechanism makes patterning more robust to noise. We simulated the

circuits with or without inhibition release at different noise intensities. Without inhibition release,

even very low levels of noise were sufficient to disrupt patterning, as discussed previously

(Figure 5F, blue line). With inhibition release, patterning remained robust across many orders of

magnitude of noise strength that disrupted the simpler circuit (Figure 5F, red line). Taken

together, these results show that single-morphogen patterning can overcome the challenge of

noise-induced spontaneous high-frequency patterns.

Growth-coupled patterning is robust to noise

We explored in what follows another mechanism through which single-morphogen

reaction-diffusion patterns can be robust to noise, that relies on tissue growth. In many

developmental systems, such as somitogenesis or intestinal crypt development, tissue

patterning is closely coupled to growth (Schnell et al. 2002; Moreno and Kintner 2004; Itzkovitz

et al. 2012). In some of these systems, including intestinal crypts and apical meristems,

progenitor cells at one location undergo repeated asymmetric divisions generating the rest of

the tissue, which patterns as it is produced. We reasoned that similar growth-coupled patterning

could reduce the noise susceptibility of single-morphogen patterning. Assuming tissue growth

occurs at a similar or slower rate compared to pattern propagation, newly formed tissue can

immediately be patterned by adjacent, already patterned, tissue regions. In such a dynamically

growing tissue context, the single-morphogen circuit could operate in a regime in which cells

pattern immediately after division, and do not “wait” in a noise-sensitive state for a propagating

front of patterned cells to reach them (Figure 6A).

To test whether tissue growth could allow robust single-morphogen patterning, we analyzed the

minimal A-R patterning circuit on a growing cell lattice. We designated a specialized

sender-progenitor (SP) cell type that asymmetrically divides to generate a differentiated cell,
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which inserts between the SP and the products of the previous asymmetric divisions (Figure

6A). This simple toy model of tissue growth maintains a constant number of SP cells at one end

of the tissue, while generating a linearly elongating lattice of patterning-competent cells. We

assume that only the differentiated cells express the full circuit, and are therefore competent to

form patterns. Finally, in addition to its role in producing the tissue, the SP cell also serves as a

constitutive producer of the R repressor, establishing a concentration gradient whose length

scale extends several cell diameters into the most recently generated cells (Figure 6A). In this

scheme, the extracellular repressor emanating from the SP cell inhibits patterning in the

proximal region (Figure 6B). However, as tissue growth progresses, individual cells eventually

emerge from this inhibitory zone and can begin to pattern. Together, these features could allow

growth-coupled patterning and avoid the disruptive effects of noise in pre-patterned cells.

To simulate deterministic growth-coupled patterning, we initialized the cell lattice with a single

SP cell, and then periodically inserted newly differentiated cells directly adjacent to it (Figure

6B). In the differentiated cells, we simulated the same A-R circuit with the same parameter set

analyzed above (Figures 3,4), imposing reflective boundary conditions at both ends of the

growing tissue. As anticipated, newborn cells initially expressed low levels of both A and R due

to the production of R by the adjacent SP. Once a cell reached a distance from the SP, its A and

R production rates switched to either a high state, in which both proteins were strongly

expressed, or a low state, in which both were weakly expressed, depending on the states of the

previous adjacent cells (Figure 6B). This led to periodic patterning (Figure 6B, 6C). Patterning

proceeded indefinitely, and no defects were observed in this deterministic case for these

parameters (Figure 6C). Further, growth-coupled patterning occurred across a broad range of

values of diffusion coefficients and tissue growth rates (Figure 6D). These results show that

coupling to growth can allow progressive patterning.
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We next asked whether growth-coupled patterning could overcome the disruptive effects of

noise. We simulated the system with the same growth dynamics, but systematically varied the

levels of temporal and static noise, as discussed previously. Across a wide range of noise

intensities, the growth-coupled system maintained predictable patterning for conditions that

prevented periodic patterning in static lattices (Figure 6E). These results show that coupling to

tissue growth can allow predictable patterning with a single morphogen in the presence of noise.

Discussion

Turing patterning is a classic concept in developmental biology. In this work, we investigated

Turing patterning using only a single diffusible morphogen — a regime that does not permit

patterning under standard assumptions. Implemented on a discrete cell lattice, rather than in a

continuous medium, this single-morphogen Turing system can spontaneously generate patterns

ranging from spatially alternating cell states to irregular, longer wavelength features (Figure 2).

Motivated by the powerful roles that initial conditions and boundary conditions play in

development (Hiscock and Megason 2015; Murray 2001), we considered their impact on

patterning by this circuit. When stimulated by a point or line initial condition, the same circuit can

generate propagating “stripes” that, once patterned, remain stable even if the initiating signal is

removed (Figure 3). Transient initial conditions can thus control what types of single-morphogen

circuits are capable of patterning.

In the single-morphogen system, low spatial frequency patterning modes must compete with the

global attractor of high spatial frequency noise. Without mitigation, noise dominates, generally

limiting the range and precision of the low frequency patterns. More specifically, we found that

noise was most disruptive when it had time to trigger high spatial frequency patterns that block
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the propagation pattern from the initiating boundary  (Figure 4C). However, two remarkably

simple, biologically plausible mechanisms are sufficient to ensure robust patterning.

On a static cell lattice, cells could circumvent noise-induced high-frequency patterns by “locking

down” circuit activity until the propagating front of pattern formation approaches sufficiently to

provide a high enough local concentration of morphogen to “unlock” the circuit. At that point, the

adjacent cells are sufficiently well patterned to ensure the correct outcome for the cell in

question. While this effect could be achieved in many ways, here we demonstrate how the a

relatively simple bistable switch, comprising a single positive autoregulatory factor, can provide

this functionality, ensuring robust patterning (Figure 5).

In growing tissues, noise can be circumvented in a distinct manner, by limiting patterning with

tissue growth (Figure 6). In this regime, a set of progenitor cells elongate the tissue by

self-renewing and differentiating into patterning cells. These newborn patterning cells

immediately respond to the local environment to reach the appropriate state. In this case, cells

spend little time in a noise-susceptible state where they are patternable, but not yet patterned.

Hence, such a regime avoids the unwanted formation of high-frequency patterns.

How realistic are these assumptions? Mathematically, multicellular patterning systems are often

imagined to first approach a transient homogeneous unstable state before cells diverge into

distinct fates (Sprinzak et al. 2011; Raspopovic et al. 2014; Onimaru et al. 2016; Palau-Ortin et

al. 2015). However, in natural development, patterning may more often proceed from a

pre-patterned state that avoids the need for further symmetry breaking. In fact, many biological

systems exhibit features that appear similar to those considered here. For example, in

drosophila retinal development, the periodic patterning of ommatidia occurs dynamically in the

wake of the morphogenetic furrow, as it sweeps across the eye disc, from posterior to anterior,
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over two days (Heberlein, Wolff, and Rubin 1993b). Cells located anterior to the morphogenetic

furrow are unpatterned, while cells posterior to the morphogenetic furrow assemble into

patterned ommatidia in a stepwise process. The progressive unlocking of patterning by the

furrow is analogous to our inhibition-release model. We note, however, that this system relies on

both the hedgehog and Dpp signaling pathways, rather than a single-morphogen, as analyzed

here.

Patterning of the intestinal crypt provides an example of growth-coupled patterning (Gehart and

Clevers 2019). In this case, the columnar cells at the crypt base act as progenitor cells, dividing

asymmetrically to produce a continually growing crypt with patterning of differentiated absorptive

(high Notch signaling) or secretory (low Notch signaling) cells. Here, growth appears to play a

role in unlocking competence for patterning. Further, Wnt ligands secreted by Paneth cells at

the base of the crypt play a key morphogenetic role in inhibiting differentiation, although other

diffusible signals also play roles in this system.

Finally, in plant development, apical meristem development involves a central zone of progenitor

cells that divide and differentiate to replace cells in the peripheral and rib zones, which divide

more rapidly and further differentiate (Nakajima and Benfey 2002; Carles and Fletcher 2003).

Meanwhile, the shoot apical meristem also produces the signaling molecule auxin, preventing

axillary buds, which initially locate in the leaf axil dormant, from undergoing shoot development

because of the apical dominance (Dun, Ferguson, and Beveridge 2006; Kebrom 2017).

The simplicity of single-morphogen patterning could make it ideal for the nascent field of

synthetic development. As synthetic biology progresses from single-cell to multicellular systems,

a key challenge is engineering cells that can establish their own spatial patterns. In this context,

circuit architectures with minimal components and interactions, such as the single-morphogen
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patterning systems explored here, are critical. The entire single-morphogen patterning circuit

proposed here could be implemented with well-characterized components. For example, Gal4

or engineered zinc finger transcription factors (Zhu et al. 2021; Khalil et al. 2012) could serve as

the activator, A. The repressive morphogen, R, could be implemented with the combination of a

secreted diffusible signaling molecule and an intracellular repressor whose expression it

activates. Sonic Hedgehog has been shown to form well-defined morphogenetic gradients in

3T3 cells, making it a candidate for the morphogen (Li et al. 2018). Other natural pathways such

as BMP could also function in this way. Alternatively, synthetic small signaling molecules such

as auxin (Ma et al. 2020; Liang, Ho, and Crabtree 2011), and variants of the synNotch system

that allow morphogenetic patterning (Morsut et al. 2016) could enable the engineering of

patterning systems orthogonal to natural pathways. Tet repressor variants could allow

downstream negative regulation. To circumvent noise, the bistable switch (Figure 5) could be

implemented with a self-stabilizing protease (Gao et al. 2018), synthetic phosphorylation

systems (Mishra et al. 2021; Woodall et al. 2021), transcriptional autoregulation (Zhu et al.

2021), or RNA-level regulation (Levine et al. 2007; Morris and Mattick 2014; Dykes and

Emanueli 2017), among other mechanisms. Finally, coupling patterning to tissue growth could

be realized using spatially confined cell culture systems that restrict growth to elongated

channels, as was shown for mammalian cells using the “mother machine” microfluidic system

(Pearl Mizrahi et al. 2016; Potvin-Trottier et al. 2016). Thus, we anticipate this circuit providing a

feasible foundation for engineering synthetic pattern formation systems. Turing’s remarkably

general pattern-forming architecture is well known for the broad range of patterns it can

generate. It is interesting to see how initial conditions, noise, and variations in circuit

architecture jointly allow robust patterning in both natural and synthetic multicellular contexts.
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Methods

Lattice ODE simulation

Framework: To tie experiment and modeling closely, we use cell-lattice simulation to

approximate experimental conditions. Depending on the geometry of the simulation, we run

simulations on 1-D or 2-D. In the one-dimensional case, virtual cells in a finite length chain are

connected with their left and right neighbors. In a two-dimensional case, cells are connected in a

square lattice. For each cell, we assign one set of ODEs. Meanwhile, morphogen diffusion is

realized by molecules transferring among adjacent cells.

Equilibrium simulation: An initial concentration profile guess is assigned to all components. In

the pre-equilibrium simulation, diffusion is turned off and the ODE systems in each virtual cell

would evolve by themselves. The system eventually reaches the homogeneous steady state, in

which all the cells have the same concentration profile in each circuit component.

Patterning simulation: To start the pattern formation, we turn on the diffusion. A specific

trigger, corresponding to the initial condition, creates a transient heterogeneous perturbation in

the system. The simulation finishes once the pattern stops changing spatially and temporally.

Parameter estimation: To better fit the biological context, we estimate model parameters from

BioNumbers (Milo et al. 2009) and from our own wet-lab experiments. The estimated parameter

values are shown in Table 1. Our model assumes that the cell size is 10 μm x 10 μm x 10 μm,

and we further deduce other parameter values from there.

Table 1: Parameter list and estimated values in simulations
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Parameter Name Parameter Description Parameter value

βA Production rate of activator 100 nM/h

βR Production rate of repressor 80 nM/h

γA Degradation rate of activator 1.5 /h

γR Degradation rate of repressor 0.5 /h

D Diffusion coefficient of repressor 1 μm2/s

KA Dissociation constant of activator 10 nM

KR Dissociation constant of repressor 10 nM

K Basal leakage of promoter 0.01

h Hill coefficient of promoter 2

Initial condition: Our simulations use two types of initial conditions, which lead to two types of

patterning results and dynamics. All lattice nodes are subject to global random noise in the

concentration of A (or R). The perturbation profile is generated by random sampling from a

Gaussian distribution with zero mean (μ = 0) and given standard deviation (σ = σ0). The spatial

localized initial condition only affects selected cells in the same fashion. The selected cells

usually follow a certain geometry, either a single dot or a straight line. The pattern can be

triggered by acting upon any of the two species, by increasing or decreasing its concentration

for an arbitrary time window. Specifically, some tests involve a constant influx from a line of cells

as the initial condition.

Boundary condition: We consider a square lattice of size l x w for our simulations (in some

cases the system is one-dimensional by setting w = 1). The simulation is repeated with two

types of boundary conditions: reflective and periodic. The general features of the SMRD pattern

are not affected by the choice of boundary condition.
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Noise interpretation: Our simulations consider two types of noise: temporal dynamic noise or

static heterogeneity. Specifically, we generate the noise profile H(i,t)|η, σ with given σ and η

ahead of the simulation. The temporal dynamic noise is denoted by H(i,t)|η = 0, σ and the static

heterogeneity by H(i,t)|η, σ = 0. Initially, the noise randomizes the production rate of both species.

Linear interpolation between time points in H(i,t)|η, σ is used when needed in the simulation. In

the case where the noise starts to interfere with the simulation at a later time point, we reset the

value of H(i,t)|η, σ to 1 during the noise-free time period.

Modeling growing tissue: The lattice is initiated with two lines of cells. One line is formed by

cells in which the reaction-diffusion system is active. The other line is formed by

sender-progenitor (SP) cells, which constitutively produce the repressor. After a time period Tcyc,

a new line of patterning cells is added between the SP cells and the patterning cells. The initial

morphogen concentrations in patterning cells are the same as in the SP cells. The tissue

expansion rate is calculated as the cell size divided by Tcyc.

Data Analysis Techniques

Final stable pattern auto-correlation: 2-D spatial auto-correlation, calculated by MATLAB

function corr2() on the original 200 x 200 lattice simulation final frame, reveals lateral inhibition

(Figure 2B, 2C). In the 1-D pattern, the auto-correlation function is calculated with the MATLAB

function corr().

Pattern wavelength determination: To measure the pattern wavelength, the MATLAB peak

detection function identifies the peak positions from the auto-correlation profile of the 1-D

simulation final frame. The measured wavelength is the average distance of two adjacent

peaks.
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Determination of the pattern propagation speed: We locate the peak positions in the final

pattern and then record the time when the activator in the corresponding cells crosses a

threshold (10% above the steady-state). The time series defines the propagation period. The

propagation speed is the spacing between two peaks divided by the propagation period.

Noise robustness quantification: To evaluate the noise robustness of a certain model, we run

the pattern formation simulation with and without noise. The spatial correlation between the two

final repressor profiles quantifies the similarity of the two patterns. If the correlation is near 1, we

claim the model is robust to this particular level of noise. Otherwise, if the correlation is close to

0, the model is sensitive to noise. This test is repeated at various levels of noise (both temporal

dynamic noise and static heterogeneity) in all three models, to evaluate the noise robustness of

three circuits.
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Figure 1: The lattice ODE simulation of a minimal single-morphogen reaction-diffusion circuit
evaluates the pattern formation mechanism in discrete space.

(A) The single-morphogen reaction-diffusion circuit obeys the "local-activation and
long-range inhibition" rule on the discrete lattice. Classical Turing circuit requires at
least two diffusive species, while in the single-morphogen reaction-diffusion circuit, the
repressor is the only component that could diffuse among the cells. In specific parameter
regimes, the classical Turing mechanism could form patterns on both continuum and
discrete lattice, though the power frequency selection is different in these two cases
(Plahte 2001). The patterning on discrete lattice provides the activator with at least
two-cell size spatial period.

(B) The shortest wavelength on the discrete lattice determines the upper bound of the
wavenumber for the single-morphogen reaction-diffusion circuit. Stability analysis
reveals that once the SMRD circuit drives the patterning, the dominated wavenumber of
the final pattern goes to infinity. This type of pattern, named "Type II Turing pattern"
(Scholes et al. 2019), is purely a mathematical concept with no actual pattern in the
physical world. Meanwhile, patterns on the discrete lattice intrinsically have the shortest
wavelength as two-cell size, which sets a cutoff for wavenumbers and enables the
reaction-diffusion patterning with a single morphogen.

(C) The minimal SMRD circuit contains two components driven by the same promoter,
a non-diffusive activator upregulating both production and a diffusive repressor
downregulating the production.

(D) The simulation executes on a chain (1-D) or a square lattice (2-D), where each
lattice node directly contacts two or four neighboring nodes, respectively. The
isolated system forbids diffusion of R among cells so that each lattice node is well
separated. Meanwhile, the connect system allows free diffusion of R. i denotes the cell
counts number in the lattice.

(E) The promoter integrates the upregulation from A and the downregulation from R
in a ratiometric fashion. The model assumes four possible promoter binding states,
polymerase + activator, polymerase + repressor, polymerase only, and empty cassette.
The portion of the four states shaped by the A and R concentrations determines the
promoter activity F(A, R). The calculated titration matrix reveals that the promoter activity
has a ratiometric relation of co-existing A and R.

(F) The simulation starts from the homogeneous state and ends up with stable
patterns. In the isolated system where no diffusion is allowed among cells, the lattice
stays at its homogeneous steady-state. In the connected system, if a circuit is
patternable, this steady-state should become unstable so that cells would bifurcate and
evolve into heterogeneous patterns. Meanwhile, a non-patternable circuit is still stable
under the connected system.
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Figure 2: The SMRD circuit develops lateral inhibition patterns with global random noise as
initial conditions.

(A) The identical lattice cells bifurcate during the simulation forming two distinct
classes. The histogram of cell count percentage based on the activator concentration
captures the dynamics of the bifurcation. The lattice system finally converges to a “salt
and pepper” pattern.

(B) The final heterogeneous pattern is spatially autocorrelated. The blue curve presents
the radially averaged 2-D autocorrelation of the final frame. The negative value at one
cell distance reveals the lateral inhibition effect. As the control, random shuffling cell
positions of the final pattern lose the spatial correlation (red curve).

(C) The diffusion coefficient of the repressor alters the range of the lateral inhibition
zone. If the repressor diffuses slowly, the lateral inhibition intensively represses the
adjacent cells. Meanwhile, with a large D, the adjacent neighbors show a positive
correlation, and the further neighboring cells are repressed.

(D) The dominant wavenumber in final patterns shows two types of dependence in
two regimes of the diffusion coefficient. Systems with lower diffusion coefficients
produce checkerboard patterns with a constant dominant wavenumber. In the high
diffusion regime, however, the final dominant wavenumber goes low when the diffusion
coefficient increases.
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Figure 3: Spatially localized perturbation triggers low-wavenumber periodic patterns with the
propagative dynamics.

(A) Spatially localized perturbation as initial condition provokes low-wavenumber
regular patterns. The global noise triggers synchronized high-wavenumber patterns.
Meanwhile, the perturbing at one cell or a line of cells would promote stripes patterns
and circle patterns, respectively. The final dominant wavenumber of stable patterns is
notably lower than the ones from patterns triggered by global noise.

(B) This low-wavenumber pattern forms in a propagative fashion from the
perturbation position. A uniform speed traveling wavefront provokes a series of
low-wavenumber stripes to form with uniform time intervals. The established patterns
stay unchanged in both position and amplitude.

(C) The concentration of the activator and the repressor in the final pattern stay in
phase. The activator concentration profile behaves close to a binary style, while the
repressor profile is more smooth and moderate.

(D) The diffusion coefficient determines the pattern wavelength. A lower diffusion
coefficient produces shorter wavelength patterns. The pattern wavelength measured
from simulations with various diffusion coefficients is proportional to the square root of
the corresponding diffusion coefficient.

(E) The intensity of the constant repressor influx alters the phase of pattern stripes.
The constant influx of repressors at the trigger position also induces propagative pattern
formation. Increasing the influx level enlarges the distance from the trigger point to the
first stripe. Meanwhile, the wavelength stays consistent.

(F) The dominated wavenumber measured from the final pattern is consistently lower
than the wavenumber preference from stability analysis. The evaluation repeated
with various D indicates the actual patterning dynamics do not choose the one with the
highest tendency but the one with 70% of the maximum, which locates at the edge of the
plateau reading from the dispersion relation curve. The orange region shows the error
bar from the measurement.
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Figure 4: The propagation pattern is sensitive to noise during the formation process and is
robust to noise once the pattern is established.

(A) The simulation of pattern formation in noisy conditions introduces noise in the
production rate of both species. The noise in the simulation recapitulates the
fluctuation in protein production in general.

(B) The dynamic noise represents the temporal fluctuation in a particular cell.
Meanwhile, the static noise describes the heterogeneity among the cell
population. The standard deviation quantifies the noise intensity, denoting σ and η, for
the temporal dynamic noise and the static heterogeneity, respectively.

(C) The final pattern is sensitive to the timing of introducing noise. The simulations
take place on a 1x100 lattice with reflective boundary conditions and transient
perturbation on the left end. At time 0 hours or 20 hours, σ = 0.001 level of noise starts
to add to the simulation. The kymograph shows the pattern formation dynamics
averaging from 20 repeated simulations.

(D) The noise triggers cells away from the perturbation center to undergo unwanted
bifurcation, developing salt and pepper patterns and causing propagation failure.
Meanwhile, the sequential activation eventually loses the regularity because the
initiation trigger generates slightly different activation dynamics.

(E) The minimal SMRD circuit is sensitive to noise only during pattern formation. The
spatial correlation of two final patterns with and without noise reveals the influence of
noise and further indicates the circuit robustness to the noise. The simulations starting
from the homogeneous state capture the pattern forming dynamics. Meanwhile,
simulations with an established pattern as the initial condition reveal the pattern
sustaining stage. During the patterning, the robustness score drops vastly even with a
trace level of noise (orange arrow). The established pattern shows high robustness even
with intensive noise.
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Figure 5: A bistable switch transiently stabilizing the patterning cells prevents the
noise-triggered irregular bifurcation dynamics.

(A) Implementing this inhibition-release mechanism, we propose a three-components
circuit that relies on an intracellular regulator (M) to temporarily stabilize
pre-patterning cells. The third component has two forms: M* (active) and M (inactive).
Only the active form could repress the degradation of A and restore its level in the cell.
Meanwhile, both R and M* mediate the transition from M to M*. The ultra-sensitivity of
R-mediated M activation ensures the M* level is either low or high.

(B) This inhibition-release circuit is bistable in the isolated system (no diffusion). The
excited state is patternable while the ground state is always stable in the
connected system. With proper parameters, the switch between two forms of M is
designed to accomplish either stabilizing pre-patterning cells (ground state) or releasing
the inhibition to form propagative periodic patterns (excited state). Both states are stable
with homogeneous A and R levels (dash lines) in the isolated system. Meanwhile, unlike
the ground state cells staying stable, the excited state cells bifurcate forming two clusters
in the connected system(solid lines or shapes).

(C) The patterned cells convert adjacent ground state cells and trigger new stripes in
a propagative fashion. Initially, all cells stay in the ground state. The local increase of R
converts the cell to the excited state. Reaction-diffusion pattern forms on these
patternable cells. The high concentration of R from the region of patterned cells diffuses
to their ground state neighbors and further converts them to be patternable. Three
events, the repressor elevation in the ground state, the transition of the cell state from
ground to excited, and the reaction-diffusion pattern formation on newly excited cells,
occur in a synchronous sequential fashion. A snapshot of the concentration profiles from
the simulation captures the detailed dynamics of the pattern formation, confirming our
proposed dynamics in the model design.

(D) The inhibition-release circuit generates propagative periodic patterns, validated by
the lattice ODE simulation. The simulation kymograph presents similar dynamics of A
and R to the minimal SMRD circuit, where the periodic stripe pattern forms sequentially
following the constantly propagated wavefront. Meanwhile, cells transform from the
dormant to the active state, ahead of the wavefront swapping and patterning.

(E) During patterning in the connected system, cells bifurcate after escaping from the
ground state while bypassing the excited state. The phase portrait of the connected
lattice system shows the populational behavior of bifurcation. Instead of ending at a
single stable steady-state as in an isolated system, once cells escape from the ground
state, they end up with multiple stable states. All final states fall into two clusters,
responding to a typical periodic pattern’s bright (red dash circle) and dark regions (green
dash circle).

(F) The inhibition-release circuit vastly increases the patterning robustness to either
type of noise. Pattern formation simulations under such a paradigm at various noise
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intensities show better robustness to either type of noise than the minimal circuit. For
minimal circuits, the regularity of the pattern is sensitive to even considerably low-level
noise. Meanwhile, the inhibition-release circuit shows robustness to a wide range of both
types of noise.
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Figure 6: Coupling the tissue growth with the SMRD circuit increases the noise tolerance of
pattern formation.

(A) The growth-coupled patterning model assumes a tissue growing in one
dimension. All patterning cells with the minimal single-morphogen patterning circuit
originate from a specialized cell type, the sender-progenitor(SP) cell, which can
asymmetrically divide, creating a patterning cell while keeping its number constant. The
newborn cell appears between the SP and the elder patterning cell so that the entire
tissue elongates as the consequence of cell division. Meanwhile, the SP cell stays at the
tissue’s elongation end and produces the repressor constantly. The Repressor gradient
established by the SP cell stabilizes newborn patterning cells. [R]grad is the spatial
concentration profile of the repressor gradient from the SP cell as an exponential decay
function.

(B) The growth-coupled circuit forms periodic patterns on the actively growing tissue.
The pattern formation process, initiated by the SP cell, takes place on the patterning
cells. The new stripes emerge periodically near the growing center, where new
patterning cells are produced. Meanwhile, the stabilized patterns on the mature pattering
cells stay unchanged.

(C) The growth-coupled circuit generates periodic patterns on expanding tissue,
validated by the lattice ODE simulation. The simulated kymograph presents similar
dynamics of A and R to the minimal single-morphogen patterning circuit. The
propagation speed of pattern stripes is coupled with tissue growth rate.

(D) Both diffusion coefficient and tissue expansion rate scale the pattern wavelength.
Besides the diffusion coefficient, the tissue expansion rate is the second spatial
parameter in the model. A high expansion rate widens the wavelength. The diffusion
coefficient is well-coupled with a wide range of tissue growth rates. Patterning circuits
with small D fail to form regular stripes patterns on a fast-growing tissue.

(E) The growth-coupled patterning circuit notably increases the noise robustness of
the single-morphogen patterning. The noise interference test repeated with the
tissue-growing paradigm shows significant improvement of noise robustness during the
pattern formation stage. When the noise is beyond the tolerance, the robustness score
drops faster for extrinsic noise than intrinsic noise.
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