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ABSTRACT 24 

Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important role in 25 

cell signaling processes and their misfunction often causes human disease. Proper understanding 26 

of IDP function not only requires the realistic characterization of their three-dimensional 27 

conformational ensembles at atomic-level resolution but also of the time scales of 28 

interconversion between their conformational substates. Large sets of experimental data are often 29 

used in combination with molecular modeling to restrain or bias models to improve agreement 30 

with experiment. It is shown here for the N-terminal transactivation domain of p53 (p53TAD) 31 

and Pup how the latest advancements in molecular dynamics (MD) simulations methodology 32 

produces native conformational ensembles by combining replica exchange with series of 33 

microsecond MD simulations. They closely reproduce experimental data at the global 34 

conformational ensemble level, in terms of the distribution properties of the radius of gyration 35 

tensor, and at the local level, in terms of NMR properties including 15N spin relaxation, without 36 

the need for reweighting. The IDP ensembles were analyzed by graph theory to identify 37 

dominant inter-residue contact clusters and characteristic amino-acid contact propensities. These 38 

findings indicate that modern MD force fields with residue-specific backbone potentials can 39 

produce highly realistic IDP ensembles sampling a hierarchy of nano- and picosecond time 40 

scales providing new insights into their biological function. 41 

 42 

  43 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2022.03.21.485081doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485081
http://creativecommons.org/licenses/by/4.0/


 3 

AUTHOR SUMMARY 44 

Accurate prediction of the conformational ensemble dynamics sans bias is shown for intrinsically 45 

disordered proteins including the transactivation domain of p53.  46 
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INTRODUCTION 48 

Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are an integral part of the 49 

proteomes of many different organisms with more than 30% of all eukaryotic proteins possessing 50 

40 or more consecutive disordered residues.(1, 2) While IDPs and IDRs in isolation do not adopt 51 

well-defined three-dimensional (3D) structures, they often play important biological roles in 52 

molecular recognition processes by interacting in specific ways with binding partners that are 53 

typically well-ordered.(3-5) For instance, the human oncoprotein protein p53 possesses the N-54 

terminal transactivation domain (p53TAD) that binds to the N-terminal domain of human 55 

MDM2 protein adopting a stable a-helix.(6) Prokaryotic ubiquitin-like protein (Pup) is another 56 

IDP that is directly linked to protein degradation folding into an a-helix when binding to Mpa 57 

protein.(7) In addition to binding to their target protein(s), IDPs can also be involved in liquid-58 

liquid phase separation (LLPS).(8-11) LLPS is the segregation of molecules in solution into a 59 

condensed phase and a dilute phase with high and low biomolecular concentrations. These 60 

membraneless droplet-like compartments formed by IDPs and other biomolecules are important 61 

for cellular function. Knowledge of the structural and dynamic propensities of IDPs both in 62 

isolation and in complex biological environments is essential for understanding these processes 63 

and their role in human diseases. 64 

 In order to relate IDP sequences to biological function, detailed knowledge of IDP 65 

conformational ensembles is needed. The description of conformational ensembles can range 66 

from local secondary structure populations to explicit ensembles in 3D space with atomic 67 

resolution.(12) Some of the earliest approaches generate random coil conformational ensembles 68 

that are subsequently refined against a host of experimental data reflecting both local and global 69 

structural features.(13-15) These approaches continue to be successfully applied through 70 

integrative modeling provided that a large amount of high quality experimental data is available 71 

for each system under investigation.(16, 17) Even when data from various complementary 72 

experimental techniques are being used, the amount of experimental information obtainable is 73 

still sparse when compared to the information needed to uniquely characterize large, highly 74 

heterogeneous structural ensembles that are the hallmark of IDPs. As a consequence, the amount 75 

of information that can be gained and that is not directly reflected in the experimental data used 76 

to refine the ensemble is restricted to robust descriptors ranging from coarse-grained to global 77 
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that can be compared with predictions by polymer theory under various assumptions.(16) In 78 

addition, site-specific interaction information, such as transient inter-residue contacts, can be 79 

obtained at medium to low resolution from paramagnetic relaxation enhancement (PRE) 80 

experiments by attaching electron spin labels to selected sites.(15, 17) Because empirical 81 

ensembles generated based on such data lack a time axis, they do not include dynamics time 82 

scales of IDPs associated with interconversion rates between substates and, hence, they do not 83 

inform about an essential part of the energy landscape.  84 

 From a theoretical and computational perspective, all-atom molecular dynamics (MD) 85 

simulations are an attractive alternative to empirical approaches for the generation of IDP 86 

conformational ensembles, including dynamic time scale information, for the comprehensive 87 

interpretation of experimental results.(18) However, for many years limitations in computer 88 

power precluded the generation of statistically well-converged results and MD force fields 89 

primarily developed for ordered proteins turned out to be unsatisfactory for applications to IDPs. 90 

With the continuing increase in computer power, the quality of sampling has reached a level that 91 

allows rigorous validation by quantitative comparison with a rich body of experimental data. In 92 

cases where discrepancies are observed between simulation and experiment, as is commonly the 93 

case, approaches have been developed that use restraining or reweighting that bias the original 94 

simulation to obtain results that agree better with experimental data.(19-26) When not only the 95 

conformational ensemble but also the underlying dynamics time scales are of interest, suitable 96 

rescaling of the MD time step or correlation times of the dominant motional modes can be 97 

applied to improve agreement with experiment.(27-30) Because these methods can often 98 

improve the unaltered simulations only within certain boundaries, they are best suited when the 99 

original predictions are fairly close to experimental data.(31) Although these methods rarely fail 100 

to produce better agreement, at least on average for those experimental parameters directly used 101 

as restraints or for reweighting, they naturally depend on large amounts of experimental data of 102 

good quality as input for each protein system studied. This amounts to a laborious experimental 103 

effort that needs to be repeated for each new protein system as the experimental data are protein-104 

specific rendering them non-transferrable between systems.  105 

An alternative and more principled approach is to improve the MD force fields 106 

themselves enabling them to increasingly accurately predict experimental data in a way that is 107 
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fully transferrable between protein systems, both ordered and disordered. This premise has led to 108 

a recent proliferation of protein force field developments(32-37) and new explicit water 109 

models(38-40) specifically geared toward the improved representation of disordered proteins. In 110 

a significant development, residue-specific force fields have been introduced.(41) These force 111 

fields use in addition coil library information from the Protein Data Bank (PDB) by 112 

incorporating the individual backbone j,y propensities of each residue type.(41-47) Such 113 

residue-specific force fields, in combination with suitable water models, can provide an 114 

improved representation of disordered states while retaining the properties of ordered proteins. 115 

With respect to water models, TIP4P-D and closely related derivatives have been notably 116 

successful in preventing overly compact conformations by favoring more extended IDP 117 

structures showing improved agreement with experiment.(38)  118 

Besides global properties, such as the radii of gyration and asphericities, IDP ensembles 119 

and trajectories should also accurately reproduce local dihedral angle distributions and secondary 120 

structure propensities. Moreover, they should also replicate dynamic and kinetic IDP properties, 121 

such as librational motions and time scales of interconversion between conformational substates. 122 

Such information is important for understanding recognition events between IDPs and their 123 

binding targets, including IDP interactions with other disordered biomolecules, for example, 124 

during the formation of LLPS condensates. Experimental IDP dynamics information can be 125 

gained from fluorescence depolarization spectroscopy,(48) Förster resonance energy transfer 126 

(FRET),(16) and nuclear magnetic resonance (NMR) relaxation.(15) NMR 15N longitudinal R1 127 

and transverse R2 spin relaxation rates are exquisitely sensitive to the dynamics of disordered 128 

proteins and the underlying time scales.(49-51) R2 relaxation rates, for example, have been 129 

linked to residual intramolecular interactions in chemically unfolded proteins.(51-53) 15N R1 and 130 

R2 rates can be experimentally determined for each protein residue and therefore they are 131 

valuable for validating MD simulations with respect to amplitudes and time scales of IDP 132 

dynamics.(29, 54-56) 133 

We recently developed the AMBER ff99SBnmr2 force field by modifying the backbone 134 

dihedral angle potentials of each amino-acid residue type to reproduce the j,y dihedral angle 135 

distributions found in a random coil library.(57) The ff99SBnmr2 force field has been validated 136 

against experimental nuclear magnetic resonance (NMR) scalar 3J-couplings of a-synuclein and 137 
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b-amyloid IDPs demonstrating that this force field accurately reproduces their sequence-138 

dependent local backbone structural propensities.(58) The primary goal of this work is to learn 139 

whether state-of-the-art replica exchange and extended MD simulations of IDPs can also 140 

realistically reproduce NMR R1, R2 relaxation rates with their strong and unique dependence on 141 

motional time scales without the need of any additional corrections such as constraints or 142 

reweighting. Moreover, in-depth analysis of the MD trajectories generated yields a wealth of 143 

information about the radius of gyration tensor distribution and dominant dynamics modes 144 

allowing graph-theory based identification of specific inter-residue interaction propensities and 145 

residue clusters for the better understanding of IDP behavior.   146 

RESULTS 147 

Ensemble properties of radius of gyration tensor. The radius of gyration Rg(t) is shown as a 148 

function of time for representative 1-µs MD trajectories of p53TAD and Pup in Fig. 1A,B (see 149 

also Fig. S1). The trajectories exhibit predominantly stationary stochastic behavior reflecting 150 

random expansion and contraction of the overall IDP size with the mean value (blue horizontal 151 

lines) in good agreement with the experimentally determined <Rg> (black line) or the predicted 152 

<Rg> from polymer theory (Eq. 6). The MD-distributions of Rg of all 10 MD trajectories are 153 

shown as histograms in Fig. 1C,D. The Flory exponent n of the polymer scaling law was 154 

determined from the REMD ensembles at 298 K. Using r0 = 1.927 Å, we obtain a value of n = 155 

0.601 for Pup, which closely matches the theoretical value ntheory = 0.588 of a fully disordered, 156 

self-avoiding random coil.(59, 60) For p53TAD, the <Rg> value of 28.1 Å is in almost perfect 157 

agreement with experiment (28.0 Å) corresponding to n = 0.624, which clearly exceeds ntheory. 158 

 159 

 160 

 161 

 162 
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 164 

Fig. 1. Radius of gyration, Rg, properties of two IDPs p53TAD and Pup from microsecond MD 165 
simulations. Time-dependence of Rg(t) from representative 1-µs MD trajectories (cyan) of (A) 166 
p53TAD and (B) Pup where the horizontal blue lines correspond to the mean Rg values 167 
calculated from the trajectories and the black lines correspond to the experimentally determined 168 
Rg for p53TAD and the predicted Rg according to polymer theory for Pup. Rg profiles for all 10 169 
1-µs trajectories of each protein are shown in Figure S1. Histograms of the Rg(t) distributions 170 
over all 10 MD simulations are shown in Panels C, D (blue and black lines have the same 171 
meaning as in Panels A, B). The standard deviation of Rg over all 10 MD trajectories is 5.4 Å for 172 
p53TAD and 5.0 Å for Pup. Offset-free time-correlation functions CRg(t) of Rg(t) averaged over 173 
all 10 1-µs MD trajectories are shown for (E) p53TAD and (F) Pup. The dashed lines belong to 174 
non-linear least squares fits of CRg(t) by biexponential functions whereby the best fits are 175 
obtained for p53TAD with ta = 12 ns (63% of total amplitude), tb = 62 ns (37%) and for Pup 176 
with ta = 8 ns (29%), tb = 48 ns (71%).  177 
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The characteristic time scales of Rg(t) fluctuations can be obtained from the time-178 

correlation functions CRg(t) (Eq. 5), which are well-converged over the course of the 1-µs 179 

trajectories (Fig. 1E,F). CRg(t) of both proteins decay in good approximation biexponentially 180 

with reconfigurational correlation times ta ≅ 10 ns and tb ≅ 55 ns. The normalized variance of the 181 

Rg(t) fluctuations, given by  182 

       (1) 183 

is almost the same for p53TAD (0.03) and Pup (0.04). The ensemble distribution of the gyration 184 

tensor S (Eq. 2) contains information about the deviation of individual MD snapshots from 185 

spherical shape, which can be directly compared with a random Gaussian chain serving as a 186 

perfect random coil (Fig. 2).(61) Both proteins show unimodal asphericity distributions (Eq. 3) 187 

with maxima around A ≅ 0.18, which qualitatively differ from the Gaussian chain model (Fig. 2C) 188 

peaking at A = 0. Compared to p53TAD, Pup has a higher tendency to adopt a more spherical 189 

conformation. Another useful measure of the overall shape of individual snapshots is the 190 

prolateness P (Eq. 4). The distribution of P is bimodal for both proteins with the global 191 

maximum corresponding to prolate-shaped (cigar-like) structures (P = 1) and a second (local) 192 

maximum corresponding to disk-like structures (P = -1). The distribution of the prolateness of 193 

Pup is more balanced between positive and negative values with <P> = 0.2 than for p53TAD, 194 

which has a higher tendency to adopt prolate-shaped conformers (<P> = 0.35), whereas the 195 

Gaussian chain distribution (<P> = 0.3) lies between the two IDP distributions. The distinct 196 

asphericity distribution and increased prolateness of p53TAD is at the origin of its increased <Rg> 197 

over the Gaussian random coil model. 198 

σ Rg
2 =1− Rg

2
Rg
2
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 199 

 200 

Fig. 2. Gyration tensor properties of IDP ensembles of p53TAD and Pup across 10 1-µs MD 201 
trajectories. The distributions of gyration tensor aspherities A are shown for (A) p53TAD and (B) 202 
Pup in comparison with (C) a Gaussian chain. The distributions of gyration tensor prolateness P 203 
are shown for (D) p53TAD and (E) Pup in comparison with a (F) Gaussian chain. 204 

 205 

Validation against R1, R2 relaxation data. Experimental and computed 15N R1, R2 relaxation 206 

rates are shown in Fig. 3. R1 relaxation rates determined from simulations (Eq. 7–12) are in close 207 

agreement with experiment evidenced by small RMSEs (0.10 s-1 for p53TAD and 0.12 s-1 for 208 

Pup) and Pearson correlation coefficients R of 0.78 for p53TAD and 0.86 for Pup (Fig. 3A,B). 209 

R2 relaxation rates determined from the simulations are also in good agreement with experiment 210 

with correlation coefficients R of 0.88 for p53TAD and 0.70 for Pup and RMSEs of 0.84 s-1 for 211 

p53TAD and 0.81 s-1 for Pup and (Fig. 3C,D). It can be seen that the simulations tend to 212 

underestimate R1 and overestimate R2 rates, although only slightly, in a manner that is notably 213 

uniform for the R1 values of both proteins and for the R2 values of p53TAD. The 10 N-terminal 214 

residues of p53TAD are very flexible with small R2’s, which closely follow the experiment. For 215 

Pup, differences in R2 between MD and experiment display the same trend and are most 216 

pronounced for residues 30–48. The error bars of the computed relaxation rates, which represent 217 

the root-mean-square deviations over all 10 MD trajectories, are fairly uniform along the 218 

polypeptide chains and systematically larger for R2 than for R1, again with the exception of the 219 
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10 N-terminal residues of p53TAD. For both proteins, not all 10 1-µs MD trajectories 220 

individually reproduce the experimental data equally well. Either 1 (p53TAD) or 2 (Pup) 221 

trajectories have more compact average IDP structures, which quantitatively affect the agreement 222 

with experiment (Fig. S2). 223 

Correlation times of backbone N-H bond vectors in both proteins fitted from the average 224 

correlation functions range from picoseconds to about 20 ns (Fig. 3E,F). Consistent with the 225 

finding for other IDPs,(55, 62) the dominant contribution to the time correlation functions stems 226 

from dynamics on the intermediate time scale around 1 ns reporting about backbone j,y jumps. 227 

Fast dynamics on the time scale of 100 ps or faster report on local 15N-1H bond librations, similar 228 

to those observed in secondary structures of folded proteins,(63) and slower dynamics on the 229 

time scale between 3 and 20 ns reports on collective IDP chain motions. The presence of slower 230 

modes correlate with increased R2 values most pronounced for residues 30–48 in Pup. This is 231 

consistent with relaxation theory (Eq. 12), which predicts that in solution transverse spin 232 

relaxation rates R2 are in good approximation proportional to the effective overall correlation 233 

time experienced by the 15N-1H spin pairs. 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2022.03.21.485081doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485081
http://creativecommons.org/licenses/by/4.0/


 12 

 245 

Fig. 3. Back-calculated R1, R2 NMR 15N-spin relaxation rates in comparison with experiment 246 
along with underlying motional time scale distributions. R1, R2 rates calculated from average 247 
correlation functions are plotted in blue with error bars representing standard deviations across 248 
individual MD trajectories. Correlation time distribution of individual 15N-1H bonds of IDPs 249 
extracted from correlation functions for (E) p53TAD and (F) Pup where the size of the blue 250 
squares are proportional to the associated motional amplitudes Ai. The squares at the bottom 251 
indicate the aggregate of dynamics contributions with correlation times faster than 100 ps. 252 
Dominant dynamics time scales range from about 100 ps to about 10 ns depending on the residue, 253 
with the exception of Thr12 in Pup which exhibits dominant dynamics time scales faster than 254 
100 ps. 255 
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Increased transverse NMR spin relaxation is indicative of the presence of collective 256 

segmental motions in IDPs, which are modulated by the formation of transient secondary 257 

structures and inter-residue side-chain interactions. To examine these relationships, 258 

instantaneous secondary structures and average contact maps were determined from the MD 259 

trajectories (Fig. 4). A contact is defined in an MD snapshot when the nearest distance between 260 

atoms from two different residues is smaller than 4 Å (uninformative first-neighbor (i,i+1) and 261 

second-neighbor (i,i+2) contacts between residues were excluded (white band along diagonal in 262 

Fig. 4A,B)). The most frequent contacts are relatively short range, but contacts over larger 263 

distances occur for p53TAD and even more frequently for Pup. Some contacts are linked to the 264 

transient formation of short secondary structures, a-helices and b-strands (Fig. 4C,D), whereas 265 

other regions display frequent contacts largely independent of secondary structure propensity 266 

often involving arginine residues, such as Arg65 of p53TAD and Arg28/29 and Arg56 of Pup. 267 

Fig. 4C,D also shows that selected trajectories possess regions with well above-average 268 

secondary structure propensities, such as trajectories #4 of p53TAD and trajectories #5 and #7 of 269 

Pup, which are the same trajectories that contribute to the lengthening of R2 along parts of the 270 

polypeptide sequences mentioned above.  Due to their atypical nature, not representative of the 271 

other trajectories, they were excluded for some of the following residue-cluster analysis. For 272 

p53TAD, regions that tend to form a-helices do not form b-strands and vice versa (except for 273 

trajectory #4). For Pup, on the other hand, a number of regions exist in its N-terminal half that 274 

can transiently switch between these two types of local secondary structures. 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 
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 284 

Fig. 4. Average IDP contact maps and time-dependent secondary structure formation of each 285 
residue. (A, B) Pairwise contact occupancies were determined from MD simulations (without 286 
atypical trajectories, Fig. S2) for (A) p53TAD and (B) Pup. Darker/lighter shades of blue denote 287 
contacts that are more frequently/rarely formed according to legend (vertical bar). Self-contacts, 288 
first-neighbor contacts (between residues i,i+1), and second-neighbor contacts (between residues 289 
i,i+2) are not shown since they are present in most snapshots. (C, D) secondary structure of each 290 
residue in MD simulations are predicted using the DSSP algorithm with a-helices shown in red 291 
and b-strands in blue. (E, F) In the residue clusters at the bottom, pairwise contacts with 292 
occupancies > 0.2 are depicted as an edge connecting two nodes (residues) with edge widths 293 
proportional to the pairwise contact occupancies. Labels A1–A5 denote dominant clusters in 294 
p53TAD and B1–B8 in Pup. Examples of transiently formed subclusters are indicated by dashed 295 
lines (A1.1, A1.2, and A1.3 in p53TAD and B1.1 and B1.2 in Pup). 296 
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Inter-residue contact propensities. Different residues along the polypeptide chain display 297 

different tendencies to form contacts with other residues. Fig. 5A,B shows the average number 298 

of contacts per snapshot for each residue, which was calculated as the total number of contacts 299 

formed by a residue divided by the total number of MD snapshots. To better visualize the 300 

different behaviors, the residues were divided into four distinct groups: the majority of residues 301 

that form 0.5–1.5 contacts per snapshot (colored in black), residues that form an unusually small 302 

number of contacts (< 0.5) (colored in blue), residues that form a moderately large number of 303 

contacts (1.5–2) (colored in yellow), and residues that form a relatively large number of contacts 304 

(> 2) are colored in red. For Pup, there are three distinct regions that form the largest numbers of 305 

contacts (red) comprising residues (1) Lys7, Arg8, (2) Arg28, Arg29, and (3) Arg56. They 306 

perfectly align with the three centers of Fig. 3 with elevated R2 values, namely (1) Arg8, (2) 307 

Arg29, and (3) Arg56. For p53TAD, the residue that forms the largest number of contacts is 308 

Arg65, which is surrounded by residues with a number of contacts below average between 0.5 309 

and 1.0. This rationalizes why R2 of Arg65 shows a local maximum that is still lower than R2 in 310 

other regions of p53TAD, such as residues 19–26 forming a residue cluster with an intermediate 311 

number of contacts. Notably, the 11 N-terminal residues of p53TAD display a lower-than-312 

average amount of contacts, which is consistent with low R2 values observed across all 10 313 

individual MD trajectories. When the same type of contact analysis is performed with side-chain 314 

atoms only, a similar behavior is observed with only a small, systematic reduction in contacts 315 

(Fig. S3) reflecting that the majority of medium- to long-range inter-residue contacts are made 316 

by side-chain atoms. 317 

We also grouped the number of contacts per snapshot formed by each residue according 318 

to residue type and normalized them by the number of residues of the same type. The resulting 319 

value for each amino acid residue type present in p53TAD and Pup reflects their inherent contact 320 

propensity (Fig. 5C,D). These profiles display the following trends: positively charged residues 321 

arginine and lysine are on average most prone to form contacts, followed by hydrophobic 322 

residues isoleucine and leucine as well as aromatic residues tryptophan and phenylalanine. 323 

Negatively charged residues aspartate and glutamate, however, are least disposed to form 324 

contacts. This may be also a consequence that both IDPs are overall negatively charged (-14e for 325 

p53TAD and -12e for Pup). When acidic residues outnumber basic residues, the former tend to 326 

repulse each other, thereby increasing Rg, while the latter have more options to interact with an 327 
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acidic residue than vice versa leading to an increase of the contact propensity of basic over acidic 328 

residues. 329 

 330 

 331 

Fig. 5. Number of close contacts formed by each residue during MD simulations of p53TAD and 332 
Pup (without outliers) along with average residue-type specific contact propensities. For each 333 
residue, the number of contacts was normalized by the number of snapshots for (A) p53TAD and 334 
(B) Pup. Residues with their number of contacts per snapshot below 0.5 are depicted in blue, 335 
0.5–1.5 in black, 1.5–2 in yellow, and above 2 in red. Primary sequences of p53TAD and Pup are 336 
given at the bottom and colored as in Panels A, B. Average contact propensities according to 337 
amino-acid residue type, which is the number of contacts per snapshot averaged over all residues 338 
of the same type, are shown for (C) p53TAD, (D) Pup. Error bars correspond to the standard 339 
deviations among different residues of the same type. 340 
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Contact analysis by graph theory. To investigate the nature of some of the most frequent 341 

pairwise contacts in these IDPs, the MD snapshots were analyzed by graph theory where each 342 

snapshot is represented as an undirected graph with each residue corresponding to an edge and 343 

an inter-residue contact corresponds to an edge connecting the two residues (nodes). The 344 

resulting graphs were then analyzed in terms of clusters, which are disconnected graph 345 

components that do not have any edges to nodes outside of the cluster. On average 6.0 clusters 346 

per snapshot are found for p53TAD and 5.4 clusters for Pup. The probabilities of a cluster to 347 

have a given size are represented for both IDPs by the histograms of cluster sizes (Fig. 6A), 348 

which reveal that clusters consisting of 2 nodes are most abundantly present (around 40%) in 349 

both p53TAD and Pup. Moreover, the cluster size probability decreases rapidly with increasing 350 

size. For instance, the fraction of clusters with 10 or more nodes (residues) is only 2–3%. Despite 351 

their sequence independence and different lengths, the two IDPs have strikingly similar cluster 352 

size distributions. The number of edges grows on average linearly with the number nodes 353 

(straight solid line), which is much slower than the quadratic behavior of complete graphs 354 

(dashed line, Fig. 6B). In fact, most of the clusters formed during MD simulations are sparse 355 

graphs with a relatively small average edge-to-node ratio of 1.54, which is indicative of tree-like 356 

graphs consisting mostly of linear branches with few cross-links. Fig. 6 also depicts residue 357 

clusters (on the right) where pairwise contacts with occupancies > 0.2 are depicted as an edge 358 

connecting two nodes (residues) with edge widths proportional to the pairwise contact 359 

occupancies. 360 

The graph-theoretical representation of the transient interaction network uncovers the 361 

relationship between R2 profiles and transient contact formation and the types of interactions that 362 

are prevalent in IDP structures. For p53TAD, the three centers in the sequence with an elevated 363 

experimental R2 profile are (1) Lys24, (2) Glu51, and (3) Met66, and they are involved in or are 364 

sequentially adjacent to clusters A1, A3, and A2, respectively. Electrostatic interactions are 365 

important for residue cluster formation in p53TAD, in particular in cluster A2 featuring the 366 

pairwise contacts Lys65–Asp57 and Arg65–Glu62. The largest elevation of R2, however, is the 367 

result of the largest interaction network A1. Hydrophobic and aromatic residues Phe19, Leu22, 368 

Trp23, Leu25 and Leu26 belong to a p53TAD segment that displays increased helical 369 

propensity(64, 65) (secondary structure propensities determined from chemical shifts are shown 370 

in Fig. S5) and which undergoes distinct loop closure dynamics.(66) In particular, residues 371 
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Phe19, Trp23, and Leu26 form the hydrophobic triad that is crucial for the binding of p53TAD to 372 

MDM2.(65) Similar to cluster A1, the smaller cluster A3 centered around Ile50 is also driven by 373 

hydrophobic interactions. 374 

The regions of Pup with elevated R2 values (Fig. 3D) around Arg8, Ile18, Thr22, Arg29, 375 

Arg56 are all involved in clusters B1, B4, or B3 (Fig. 4E,F). Separate clusters can involve 376 

sequentially adjacent residues, such as clusters B2 and B3 or clusters B3 and B5 and thereby 377 

mediate cooperative behavior. The most dominant inter-residue interaction in Pup is of 378 

electrostatic nature resulting in the transient formation of salt bridges involving residue pairs in 379 

cluster B1.2 (Arg8–Asp14, Arg8–Asp15) and cluster B3 (Arg56–Asp53, Arg56-Glu52). Many of 380 

these residues appear to play the role of hubs promoting enhanced interactions also with other 381 

residues as visualized by the graphs in Fig. 4E,F. 382 

 383 

 384 

 385 
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 386 

Fig. 6. Graph theoretical analysis of inter-residual interactions and transient interaction networks 387 
of p53TAD and Pup. (A) Clusters consisting of 2 nodes (residues) dominate in the MD structures 388 
of p53TAD and Pup (without outlier trajectories), followed by clusters of size 3, etc. (B) The 389 
majority of the unique clusters are sparse graphs, with their number of edges much smaller than 390 
the number of edges in complete graphs growing with N(N-1)/2 where N is the number of nodes. 391 
The average edge-to-node ratio is 1.54 (slope indicated by solid black line), indicating 392 
predominantly tree-like graphs that sometimes have a few additional edges (cross-linked 393 
branches). 394 

 395 

  396 
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DISCUSSION 397 

Disordered proteins play a prominent role in many regulatory processes using their unique 398 

malleability to interact with their targets. Details of conformational substates of IDPs and how 399 

they are shaped by the complex interplay of inter-residue interaction networks are currently 400 

poorly understood both experimentally and computationally. In this work, we showed how the 401 

latest advances in MD force fields and computational protocols allow the nearly quantitative 402 

prediction of the complex behavior of the two IDPs p53TAD and Pup, including their dynamics 403 

time scales from site-resolved NMR spin relaxation.  404 

 The global dimensions of IDPs can be experimentally characterized by SAXS providing 405 

information about their radius of gyration Rg for direct comparison with MD ensembles. For Pup, 406 

< Rg> from the 10 1-µs MD simulations follows the power law of Eq. 6 with a Flory exponent n 407 

= 0.601, which closely mirrors the behaviour of a self-avoiding random coil (n = 0.598). By 408 

contrast, p53TAD is more expanded with n = 0.624, which is consistent with previous 409 

experimental results reported for this protein.(67) Such behaviour could be the result of stronger 410 

repulsive intra-residual forces caused by a slightly higher negative net charge (-14e of p53TAD 411 

vs. -12e of Pup) and a high percentage of prolines (18% in p53TAD vs. none in Pup) known to 412 

increase extendedness.(68) The relatively high n values of both proteins suggest that their 413 

interactions with water solvent are highly favorable preventing the hydrophobic collapse of their 414 

polypeptide chains.   415 

 The 10 1-µs MD trajectories allow extensive sampling of the radius of gyration over time 416 

and extract characteristic time scales from its autocorrelation function (Fig. 1). For both proteins, 417 

the time-correlation function follows in good approximation a biexponential decay with 418 

correlation times around 10 and 55 ns. Global distance fluctuations can be studied 419 

experimentally by nanosecond fluorescence correlation spectroscopy (nsFCS), which found for 8 420 

M urea denatured ubiquitin global reconfiguration times tr in the range of 50–90 ns.(16) A 421 

nsFCS study of a-synuclein, which is about twice as long in sequence as the IDPs studied here, 422 

identified two reconfigurational correlation times of tr1 = 23 ns and tr2 = 136 ns.(30) These 423 

correlation times are within a factor 2–3 of those found in the current study, although it should be 424 
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kept in mind that they report about a donor/acceptor pair, i.e. S42C/T92C in the case of a-425 

synuclein, rather than about Rg. 426 

Heteronuclear 15N relaxation offers a complementary view of IDP dynamics. 427 

Longitudinal R1 and transverse R2 relaxation rates are caused by local spin interactions, namely 428 

the magnetic dipole-dipole coupling and chemical shielding anisotropy, and they reflect 429 

reorientational dynamics amplitudes and timescales due to local conformational fluctuations as 430 

well as longer-range reorientational motional modes of the order of an IDP’s persistence length 431 

and beyond. Model-free analysis is not applicable to IDP relaxation data due to the absence of a 432 

well-conserved global rotational diffusion tensor as reference frame.(27) Instead, a residue-by-433 

residue interpretation can applied where the correlation function of each site is described as a 434 

multiexponential function of the type of Eq. 8 with 6 exponential dynamics modes.(28, 50, 55, 435 

62, 69) The hierarchy of dynamics modes depicted in Fig. 3 shows a broad distribution of time 436 

scales including rapid librational motions (< 100 ps) and dominant low nanosecond motions, 437 

which sample the different local energy basins of backbone j,y dihedral angles. The slowest 438 

modes with time scales in the range of 3–20 ns represent predominantly collective segmental 439 

reorientational motions. A similar hierarchy of time scales has been observed by fluorescence 440 

depolarization kinetics measurements of a-synuclein.(48) These collective motions involve 441 

medium to longer-range interactions between residues that can be elucidated by graph theoretical 442 

analysis of the MD trajectories described here. For Pup, many of these slower motional modes 443 

have correlation times around 3–4 ns whereas for p53TAD they are on average twice as large. 444 

For both proteins the three distinct bands of time scales are pervasive across their polypeptide 445 

sequence (Fig. 3E,F). 446 

MD methodology has made great strides in recent years to toward an increasingly 447 

realistic representation of disordered proteins.(26) Besides experimental scattering data, 448 

quantitative NMR has played a key role for the independent validation of MD ensembles. 449 

Because NMR spin relaxation parameters fully quantitatively reflect IDP dynamics at atomic-450 

level resolution both in terms of motional amplitudes and time scales, their accurate reproduction 451 

by MD has been an important but also very challenging task. A recent comparison of commonly 452 

used MD force fields that do not use residue-specific backbone potentials showed for several 453 

IDPs significant force-field dependences with the best results obtained when the analysis was 454 
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restricted to average correlation functions of chunks of 10-ns subtrajectories.(56) The need to 455 

exclude slower time-scale motions, which are prominent in both experimental data and 456 

simulations (see for example Fig. 3), may reflect the lack of convergence due to limited 457 

sampling. Beneficial for all simulations was the improvement of the TIP4P-D water model over 458 

TIP3P preventing overly collapsed IDP ensembles, which is consistent with other computational 459 

studies.(38, 57) Because of the observed discrepancies between experiments and MD simulations, 460 

some studies applied post factum adjustments to the MD simulations in order to improve 461 

agreement, which include uniform or selective scaling of the MD time scale or correlation 462 

times(27-30) or the reweighting of sub-trajectories.(62) Here, we chose a different approach: 463 

rather than relying on post factum modifications, we use the residue-specific ff99SBnmr2 force 464 

field, which was specifically designed for the improved representation of IDPs without the need 465 

of any corrections.(57, 58) A correction-free MD approach has recently been reported for the 466 

intrinsically disordered SH4UD protein with the Amber ff03ws force field, which does not use 467 

residue-type independent backbone dihedral angle potentials, and no time-scale dependent data, 468 

such as NMR spin relaxation, were used for validation.(70) NMR chemical shifts were back-469 

calculated using SHIFTX2,(71) which, besides 3D structural information, makes extensive use of 470 

protein sequence data. Here, we back-calculated NMR chemical shifts using PPM(72) (Fig. S4), 471 

which only uses the physical parametrization of chemical shifts with respect to 3D protein 472 

structure of each snapshot,(71) achieving very good agreement. 473 

The close correspondence observed between experimental and computed 15N relaxation 474 

R1 and R2 relaxation rates for both IDPs studied here (Fig. 3), without the need for post factum 475 

corrections, attests to the accuracy and robustness of the computational protocol used. It applies 476 

REMD for the generation of conformational ensembles belonging to different temperatures from 477 

which 10 representative structures at 300 K were randomly selected as starting structures for 1-478 

µs MD trajectories whereby all simulations made use of the ff99SBnmr2 force field and the 479 

TIP4P-D water model. MD-derived longitudinal 15N R1 follow the shapes of the experimental R1 480 

profiles with a small tendency to underestimate the experimental 15N R1 rates by 4–6% whereas 481 
15N R2 relaxation rates overestimate the experimental values on average by 26% for Pup and 482 

34% for p53TAD. This level of agreement is significantly better than for previously reported 483 

comparisons of this type. It is possible to achieve additional improvement by removing 1–2 MD 484 

trajectories starting from the most compact initial structures, a strategy proposed in the ABSURD 485 
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method (Fig. S3). Although post factum modifications can provide better agreement with 486 

experiment, it is generally not obvious whether the altered ensembles are in fact consistent with a 487 

modified, physics-based force field. If such a connection can be established it will allow, in 488 

principle, the further improvement of force fields for applications also to other proteins. Indeed, 489 

the ff99SBnmr1 force field, which is the parent force field of ff99SBnmr2, was developed and 490 

optimized using this strategy by the systematic reweighting of MD snapshots based on many trial 491 

force fields using experimental NMR data of intact proteins.(73) 492 

The good agreement of the MD simulation with experimental observables both motivates 493 

and justifies the analysis of other protein properties observed in the MD trajectories that are 494 

difficult to measure. This includes the analysis of transient inter-residue interactions. The 495 

molecular driving forces of these interactions are fundamentally similar to those of ordered 496 

proteins although average hydration properties may differ.(70) In contrast to ordered proteins, 497 

inter-residue interactions between non-sequential amino acids are short-lived. Therefore, the 498 

time-averaged interaction maps (Fig. 4A,B) offer only partial insights as they conceal the 499 

compositions and distributions of instantaneous interaction clusters. In fact, the relatively large 500 

network reflected by the average contact map contrasts the much smaller size of graphs that exist 501 

at any given time, which attests to the very heterogeneous and transient nature of instantaneous 502 

contact clusters. The highest occupancy of pairwise contacts found is around 0.5, which mostly 503 

belong to (i,i+3) contacts. For a list of the most frequent pairwise contacts, see Tables S2, S3. 504 

Snapshot by snapshot analysis revealed the dominance of small cluster sizes over larger 505 

ones (Fig. 6). For both p53TAD and Pup, clusters with 2 or 3 residues make up more than 50% 506 

of all clusters and clusters with more than 10 residues have notably low occurrence, although 507 

their formation could be functionally relevant during molecular recognition events. Because 508 

clusters consisting of residue pairs dominate intra-residual interactions in both IDPs, further 509 

analysis of the interaction network was performed based on pairwise contacts. Contact maps 510 

were generated for p53TAD and Pup averaged over all MD trajectories and pairwise contacts 511 

that have occupancies larger than 0.2 visualized as separate graphs (Fig. 4E,F).  Instantaneous 512 

clusters can belong to such larger graphs as exemplified by clusters A1.1, A1.2, A1.3 for 513 

p53TAD and clusters B1.1 and B1.2 for Pup (Fig. 4E,F). The dominant clusters are 514 

characterized by a mix of hydrogen bonds, salt bridges (e.g., involving Arg65 in cluster A2, 515 

Arg8 in star-like cluster B1.2, and Arg56 in cluster B3), hydrophobic and aromatic interactions 516 
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(e.g., Phe19, Leu22/25/26, and Trp23 in cluster A1). These are consistent with the driving forces 517 

attributed to liquid-liquid phase separation, namely intermolecular contacts among aromatic 518 

residues,(74-76) electrostatic interactions,(77-79) and hydrophobic interactions.(80) 519 

The majority of clusters are linear graphs with few circular sub-graphs leading to the 520 

linear relationship between the number of nodes and number of edges (Fig. 6B). Acidic residues 521 

tend to have low cluster participation whereas arginine residues have the highest participation in 522 

both proteins (Fig. 5A,B). This difference in cluster participation between cationic and anionic 523 

residues is also evident in Fig. 5C,D. Among the neutral amino acids, those with larger side-524 

chains are more prone to interactions with non-neighboring residues due to their intrinsically 525 

larger distance range. In fact, Pro, Val, Ser, Ala, Gly have the lowest interaction propensities 526 

among neutral residues and among pairs of chemically similar residues, such as Gln vs. Asn and 527 

Leu vs. Val, the larger residue (Gln, Leu) dominates the smaller one (Asn, Val).  528 

A primary biological function of p53TAD is to negatively regulate p53 by interacting 529 

with the ubiquitin ligases MDM2 and MDMX for the degradation of p53. This interaction is one 530 

of the earliest and best studied interactions between an IDP and a folded protein both by 531 

experiment(65, 66, 81) and computation.(82) In order to better understand the molecular 532 

recognition mechanism underlying the formation of this complex, a realistic and accurate 533 

description of the free state of p53TAD is of central importance. For MD studies, the choice of 534 

the protocol, especially of the force field and water model, is consequential. A recent unbiased 535 

REMD study of free p53TAD reported the detailed comparison using five different MD force 536 

fields all without residue-specific backbone potentials. Based on 1-µs long replicas major 537 

differences were revealed in terms of the structural propensities among them and also with 538 

respect to experimental data.(83) An even longer simulation of residues 10–39 of p53TAD for a 539 

total length of 1.4 ms analyzed by Markov state models identified substantial populations of b-540 

sheets across the sequence,(84) a behavior that is at variance with the above mentioned REMD 541 

ensembles(83) as well as with experimental solution NMR data.(65) These together with many 542 

other studies show that force fields need to be chosen following extensive testing to ensure that 543 

long trajectories, generated with considerable computational effort, offer the most realistic 544 

biophysical insights about these highly complex, heterogeneous systems.  545 
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In addition to forming transient intramolecular contacts, IDPs can also dynamically 546 

interact with other IDPs driving the formation of liquid-liquid phase separation. With a rapidly 547 

increasing body of experimental data on LLPS condensates,(9, 10, 85) all-atom MD simulations 548 

have an important role to play for a mechanistic understanding of emerging phase separation 549 

properties. Since the molecular driving forces of LLPS are the same as for intramolecular IDP 550 

interactions,(86) such as those described here, the optimal accuracy of force fields along with 551 

adequate sampling schemes of the heterogeneous condensate environment will be key for the 552 

quantitative interpretation of experimental data, allowing the prediction of condensate formation 553 

and eventually may open the way for new interventional approaches to actively reprogram 554 

condensates and their properties.  555 

 Although a possible role of Pup in LLPS is not known, LLPS involving full-length p53 556 

has been documented and p53TAD has been implicated in both phase separation and oncogenic 557 

amyloid aggregation.(87, 88) Multivalent electrostatic interactions between the N-terminal 558 

domain, p53TAD, and the C-terminal domain were identified as critical for LLPS, which were 559 

shown to be positively modulated through molecular crowding and negatively modulated by the 560 

addition of DNA and ATP molecules and post-translational modification. It was suggested that 561 

compartmentalization of p53 into the droplets suppresses its transcriptional regulatory function, 562 

while its release from droplets under cellular stress can activate p53.(87) These findings point to 563 

the need for the comprehensive characterization of these intermolecular interactions at residue- 564 

and atomic-level resolution. The agreement with experiment reported here clearly suggests that 565 

MD methodology has reached a level of accuracy allowing it to make critical contributions 566 

toward this goal. 567 

The results of our study further advance the long-held premise of MD simulations to 568 

realistically describe IDP ensembles on their native dynamics time scales toward the better 569 

understanding of their biophysical properties and biological function. For the two IDPs p53TAD 570 

and Pup, the use of REMD allows the adequate sampling of conformational space for the 571 

generation of a representative set of initial structures that are then subjected to long, continuous 572 

MD simulations. The close agreement found for the extendedness of the simulated IDPs with 573 

experiment and polymer theory suggests an appropriate balance between the ff99SBnmr2 force 574 

field and the TIP4P-D water model at the global scale. It favorably complements the authentic 575 

IDP behavior achieved by this protocol on the local scale in terms of its compliance at the 576 
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individual residue level with coil libraries, scalar couplings, and chemical shifts. In addition to 577 

the realistic modeling of ensemble properties, our protocol also reproduces motional amplitudes 578 

and time scales encoded in quantitative NMR spin relaxation data with near experimental 579 

accuracy suggesting that the dominant minima of the free energy surface together with their 580 

many low-lying transition states are realistically captured by this comprehensive computational 581 

framework. These results prompted a more detailed analysis of short-lived inter-residue 582 

interactions, which was achieved by graph theory revealing characteristic inter-residue contact 583 

patterns and the extraction of residue-type specific interaction propensities. The realistic IDP 584 

conformational dynamics model achieved by the protocol described here advances our 585 

increasingly mechanistic and predictive understanding of IDPs along with their interactions and 586 

binding properties with ordered and disordered molecular targets ranging from regulatory 587 

pathways to emerging LLPS phenomena. 588 

METHODS 589 

Molecular dynamics simulations. Fully extended structures of p53TAD and Pup were prepared 590 

using the LEaP program in AmberTools16.(89) After equilibration, they were used to run 591 

replica-exchange MD (REMD) simulations for the sampling of conformational space (36 592 

replicas for each IDP covering a temperature range from 298–353 K for p53TAD and 298–365 K 593 

for Pup, see Supplementary Material) with each replica being 1 µs of length. Exchange was 594 

attempted every 10 ps and the exchange probability was about 0.3. For each IDP, 10 structures 595 

were randomly selected from the room-temperature (298 K) REMD ensemble and used as initial 596 

structures to run free MD simulations for 1 µs in the NPT ensemble at 300 K and 1 atm. The 597 

protein force field and water model used in all simulations were AMBER ff99SBnmr2 and 598 

TIP4P-D. 599 

All MD simulations were performed using the GROMACS 2020.2 package.(90) The 600 

integration time step was set to 2 fs with all bond lengths containing hydrogen atoms constrained 601 

by the LINCS algorithm. Na+ or Cl- ions were added to neutralize the total charge of the system. 602 

A 10 Å cutoff was used for all van der Waals and electrostatic interactions. Particle-mesh Ewald 603 

summation with a grid spacing of 1.2 Å was used to calculate long-range electrostatic 604 

interactions. A cubic simulation box extending 8 Å from the protein surface in all three 605 
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dimensions was used. Energy minimization was performed using the steepest descent algorithm 606 

for 50,000 steps. The system was simulated for 100 ps at constant temperature and constant 607 

volume with all protein heavy atoms positionally fixed. The pressure was then coupled to 1 atm 608 

and the system was simulated for another 100 ps. The final production run of 1 µs length was 609 

performed in the NPT ensemble at 300 K and 1 atm. For simulation details, see Table S1. 610 

Radius of gyration tensor calculations and derived quantities. In order to map the global 611 

shape of p53TAD and Pup conformers, radius of gyration tensors were computed as 3×3 612 

matrices S from each snapshot of the room-temperature REMD ensemble and the free MD 613 

simulations as follows:(91) 614 

     (2) 615 

where  is cartesian coordinate a (b) (= x, y, z) of atom i in the coordinate system that has its 616 

origin in the center of mass of the molecule. Diagonalization of S yields three non-negative 617 

eigenvalues from which the radius of gyration Rg is obtained, , 618 

the asphericity A,(91, 92) 619 

     (3) 620 

and the prolateness P,(93) 621 

   (4) 622 

The asphericity measures the degree to which the three axis lengths of the ellipsoid of inertia 623 

(eigenvalues) are equal, whereas the prolateness P indicates whether the largest or smallest axis 624 

length is closer to the middle axis length. P takes values between -1 and 1, quantifying the 625 

transition from oblate to prolate shapes. Normalized time-correlation functions of Rg(t), made 626 

offset-free, were computed according to 627 

CRg(t) = <(Rg(t) - <Rg>)(Rg(t+t) - <Rg>))>t /<(Rg(t) - <Rg>)2>t   (5) 628 

Sαβ =
1
2N 2

(rα
(i ) − rα

( j ) )
i , j=1

N

∑ (rβ
(i ) − rβ

( j ) )

rα (β )
(i )

0 ≤ λ1 ≤ λ2 ≤ λ3 Rg = (λ1 +λ2 +λ3)
1 2

A= (λ3 −λ2 )
2 + (λ3 −λ1)

2 + (λ2 −λ1)
2

2(λ3 +λ2 +λ1)
2

P = (2λ3 −λ2 −λ1)(2λ2 −λ3 −λ1)(2λ1 −λ3 −λ2 )
2(λ3

2 +λ2
2 +λ1

2 −λ3λ2 −λ3λ1 −λ2λ1)
3 2
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as an average over all 1-µs MD trajectories. 629 

 According to polymer theory, for an unfolded polymer the ensemble-averaged Rg scales 630 

with the number of residues N as(61) 631 

<Rg> = r0 Nn         (6) 632 

where r0 is a constant reflecting the average size of a residue and the Flory exponent 633 

n determines the overall compactness of the polymer serving as a reference.  634 

Back-calculation of R1, R2 relaxation rates. For IDPs, the normalized time-autocorrelation 635 

function C(t) of the lattice part of the spin-relaxation active magnetic dipole-dipole interaction 636 

cannot be factorized into an overall tumbling part and an internal dynamics part. Rather, we 637 

compute the full C(t) directly from an MD trajectory using the second-order Legendre 638 

polynomial: 639 

𝐶(𝑡) = !
"
〈3[𝒆(𝜏)𝒆(𝜏 + 𝑡)]" − 1〉    (7) 640 

where e(t) is the unit vector defining the 15N–1H bond orientation whereby snapshots were not 641 

aligned with respect to a reference snapshot. The angular brackets indicate averaging from time t 642 

= 0 to TMD – t, where TMD is the total trajectory length. The calculation of C(t) was efficiently 643 

performed by the fast Fourier transform (FFT) using the Wiener–Khinchin theorem. For 644 

acceptable statistical convergence, the analysis of C(t) was limited to its initial portion from t = 0 645 

- TMD /3. Next, a multiexpoential decay function was fitted to C(t):(94) 646 

𝐶(𝑡) = 	∑ 𝐴#𝑒$%/'!(
#)!       (8) 647 

where Ai and ti are the best fitting parameters subject to the conditions: 648 

∑ 𝐴#(
#)! = 1			𝐴# ≥ 0, 𝜏# ≥ 0     (9) 649 

The spectral density function J(w) can be then analytically obtained via Fourier transformation of 650 

C(t): 651 

𝐽(𝜔) = 2∫ 𝐶(𝑡)cos	(𝑡)d𝑡*
+ = ∑ ",!'!

!-(/'!)"
(
#)!      (10) 652 
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NMR spin relaxation parameters R1 and R2 were then computed using the standard 653 

expressions:(95-98) 654 

𝑅! = 𝑑++[3𝐽(𝜔1) + 𝐽(𝜔2 − 𝜔1) + 6𝐽(𝜔2 + 𝜔1)] + 𝑐++𝜔1" 𝐽(𝜔1)   (11) 655 

𝑅" =
!
"
𝑑++[4𝐽(0) + 3𝐽(𝜔1) + 𝐽(𝜔2 − 𝜔1) + 6𝐽(𝜔2) + 6𝐽(𝜔2 + 𝜔1)] +

!
(
𝑐++𝜔1" [4𝐽(0) +656 

3𝐽(𝜔1)]      (12) 657 

where 𝑑++ =
!
"+
(3#
45
)"( 6

"5
)"𝛾2"𝛾1"〈𝑟12$7〉" and 𝑐++ =

!
!8
∆𝜎". µ0 is the permeability of vacuum, h is 658 

Plank’s constant, gH and gN are the gyromagnetic ratios of 1H and 15N, and rNH = 1.02 Å is the 659 

backbone N-H bond length. The 15N chemical shift anisotropy was set to Ds = -160 ppm.  660 

Analysis of inter-residue contacts and residue clusters by graph theory. Contact analysis was 661 

performed on all snapshots of the MD simulations of both p53TAD and Pup. A contact is 662 

considered formed when the nearest distance between atoms from two different residues is 663 

smaller than 4 Å. First-neighbor contacts (between residues i,i+1), and second-neighbor contacts 664 

(between residues i,i+2) were excluded since they are present for most residues. For each residue 665 

in p53TAD and Pup, the total number of contacts formed by a particular residue is determined 666 

and normalized by the number of MD snapshots. Each snapshot was converted to a graph where 667 

residues are represented as nodes and contacts between two residues are represented as edges 668 

between them. The initial graph was then decomposed into a maximal number of disconnected 669 

graph components called clusters, i.e. there is no edge between any node in the cluster and any 670 

node outside the cluster. The size of a cluster corresponds to the number of its nodes. 671 
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SUPPORTING INFORMATION 678 

Fig. S1. Radius of gyration of the IDPs p53TAD and Pup in 10 1-µs MD trajectories each at 300 679 
K with starting structures randomly chosen from replica exchange simulations. 680 

Fig. S2. Mean R1, R2 errors from 10 1-µs MD simulations of p53TAD and Pup in comparison 681 
with experiment. 682 

Fig. S3. Back-calculated R1, R2 15N backbone spin relaxation rates from microsecond MD 683 
simulations of p53TAD and Pup excluding atypical trajectories in comparison with experiment. 684 

Fig. S4. Comparisons of experimental and predicted chemical shifts of p53TAD. 685 

Fig. S5. Experimental and MD-derived secondary structure propensities of p53TAD. 686 

Fig. S6. Average number of contacts formed by a particular residue in p53TAD and Pup per 687 
snapshot using only side-chain atoms. 688 

Fig. S7. Contact propensities according to amino-acid residue type for both proteins combined. 689 

Table S1. MD and REMD simulation details for p53TAD and Pup. 690 

Table S2. Most frequent pairwise residue contacts in p53TAD from MD simulations. 691 

Table S3. Most frequent pairwise residue contacts in Pup from MD simulations. 692 
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