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Abstract— We describe two multicellular implementations of
the classical P and PI feedback controllers for the regulation
of gene expression in a target cell population. Specifically, we
propose to distribute the proportional and integral actions over
two different cellular populations in a microbial consortium
comprising a third target population whose output needs to be
regulated. By engineering communication among the different
cellular populations via appropriate orthogonal quorum sensing
molecules, we are able to close the feedback loop across the
consortium. We derive analytical conditions on the biological
parameters guaranteeing the regulation of the output of the tar-
get population and we validate the robustness and modularity
of proposed control schemes via in silico experiments in BSim,
a realistic agent-based simulator of bacterial populations.

I. INTRODUCTION

Synthetic Biology aims at the design and implementation
of novel, and more reliable, genetic circuits by employing
engineering principles, with applications spanning different
fields. Examples include the production of sustainable bio-
fuels, the design of biosensors able to detect the presence
of environmental pollutants, e.g., [1], or in medicine, for the
treatment and prevention of infections and other diseases [2].

However, interactions of synthetic circuits with the host
cell or with other genetic circuits, as well as unavoidable
nonlinear and stochastic effects, may cause problems such
as poor modularity and undesired behavior [3]. A possible
solution to tackle these problems is to embed in the cells
engineered feedback mechanisms to achieve more stable and
robust operation of the genetic circuits of interest in a variety
of operating conditions. In particular, this could facilitate
the transition from highly controlled laboratory conditions
to practical real-world applications [4].

Indeed, several solutions have been proposed in the lit-
erature in this direction, such as the antithetic feedback
controller guaranteeing robust perfect adaptation in noisy
biomolecular networks [5], [6], or the implementation via
biological molecules in a single cell of a proportional-
integral-derivative control strategy [7]. Further examples of
synthetic feedback mechanisms embedded in single cells can
be found in [8], [9].
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The use of biomolecular PID controllers is particularly
appealing as it allows achieving perfect robust adaptation via
the integral action as well as to exploit the proportional and
derivative actions to modulate the steady-state and transient
dynamics of the controlled process. However, embedding
all the required circuits to implement a PID controller in
a single cell could cause excessive metabolic burden and be
cumbersome to implement in vivo; also requiring a complete
re-design if the target process to be regulated changes or the
parameters of the control action need to be varied.

A possible solution to overcome this problem is to move
from an embedded (or internal) control strategy, where the
biomolecular networks are all embedded in a single cell, to
a multicellular control strategy (see [10]) where the required
functions are distributed across different cell populations in a
microbial consortium [11]. This can indeed reduce metabolic
loads and minimize unwanted effects, such as retroactivity,
by physically separating the various components of the
design among different cells [12], [13].

In this letter, we first present a multicellular realization
of the PID controller inspired from the embedded single-
cell solution in [7]. Then, we focus on the implementa-
tion of P and PI controllers within a microbial consor-
tium comprising different cell populations communicating
through appropriate orthogonal quorum sensing molecules.
After presenting abstract biological implementations for each
of the proposed strategies, we derive analytical conditions
for tuning the controller gains, providing insights on the
biological parameters that most influence their performance.
We complement the theoretical derivations with a set of
in silico experiments carried out using the realistic agent-
based microbial simulator BSim [14], [15]. The results of
all the experiments confirm the effectiveness of the proposed
multicellular architectures whose in vivo implementation is
the subject of ongoing research.

II. MULTICELLULAR PID CONTROL STRATEGY

We propose to realize a distributed biological PID con-
troller entrusting each action to a different cellular pop-
ulation within a microbial consortium, see Fig. 1. Here,
three cellular populations, denoted as controllers, implement
the proportional, integral and derivative actions, respectively,
implementing a biological equivalent of the classical PID
control strategy given by:

uPID(t) : = uP (t) + uI(t) + uD(t)

= βP e(t) + βI

∫ t

0

e(τ)dτ + βD ė(t),
(1)
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Fig. 1: Schematic representation of a distributed biological PID controller.
The three controllers compare the reference signal Yd(t) with the output
of the target population y(t), and collectively compute the overall control
signal uPID(t), closing the control loop and regulating the process Φ(t).
Each controller realizes the biological equivalent of the classical PID control
actions in (1).

where βP , βI and βD play the role of the proportional,
integral and derivative gains, and e(t) is the control error,
which is a function of the measured output y(t) of the
process Φ(t) under control and the desired value Yd(t). The
overall control signal uPID(t) computed by the controllers
is sensed by the target population hosting the process Φ(t),
whose output y(t) is fed back to the controllers closing the
control loop.

Here, we present two control architectures stemming from
the full schematic in Fig. 1; the former composed by one
population implementing the Proportional (P) action that
controls the targets, and the latter in which an additional
population is inserted in the consortium to implement an
Integral (I) action (Fig. 2). For the sake of brevity, we
leave the study of other possible configurations for a future
work. The communication between controllers and targets is
realized by the pair of orthogonal quorum sensing molecules
Qu and Qx that act as proxies of the control input uPID(t)
and the measurement of the process state y(t), respectively,
that are produced by the cells and diffuse through their
membranes into the environment.

Each controller population senses the control error e(t) by
comparing the reference signal Yd(t) with the measure of the
output carried by the sensing quorum sensing molecule Qx.
It then contributes accordingly to the overall production of
the quorum sensing molecule Qu which delivers the control
input affecting the target cells. Therein, the process Φ(t) can
be any network of genes that is directly affected by Qu and
whose output is the expression of some gene of interest. To
close the loop, the process Φ(t) activates the production of
Qx that, by diffusing into the environment, can be sensed by
the controllers.

Next, we derive the mathematical models of both schemes,
describing the aggregate dynamics of the populations, that
is, the evolution of the concentrations of the chemical species
involved in the loop averaged over the entire consortium. We
assume that all populations in the consortium are equally

Fig. 2: Abstract implementation of a distributed biological PI controller. The
output of the process Φ(t) is the quorum sensing molecule Qx, produced
proportionally to the target gene Xc. Its input is the gene X1, which
is actuated by the control quorum sensing molecule Qu. Each controller
population evaluates the control error e(t) by comparing the reference
signal Yd(t) and the process output carried by Qx, thus contributing to
the overall production of Qu. Circles represent internal molecular species,
while polygons represent the signaling molecules.

balanced, which also implies that the molecules diffuse
through the cell membrane with the same diffusion rate η.
This assumption is later relaxed in Section IV where in
silico experiments are carried out to evaluate the impact
of cell-to-cell variability and spatio-temporal effects on the
control performance. Using the derived models, we analyze
steady-state properties of each control strategy, deriving
sufficient conditions on the control parameters that guarantee
regulation and tunability of the biological process of interest.
The superscripts e, t, p, i, are used in the rest of this
letter to refer to quantities in the environment, in the target
cells, in the Proportional, or in the Integral controller cells,
respectively.

A. Mathematical modelling
We assume that the output of the process Φ(t) is the

quorum sensing molecule Qx, produced proportionally to the
target gene Xc, and that its input is the gene X1, which is
actuated by Qu (Fig. 2).

The dynamics of the network hosted in the target cells can
be described by the following set of ODEs:

Ẋ1 = −γ1X1 + βuQ
t
u,

Ẋc = βcX1 − γcXc,
(2)

where γ1 and γc are the degradation rates of the species
X1 and Xc, respectively, and βc and βu are activation rates,
modeling the strength of the activation induced by transcrip-
tion factors X1 and Qu [5], [7], [16]. The sensing molecule
and process output Qx is produced by the target cells as a
function of the species Xc (for the sake of simplicity we
assume the production of Qx is proportional to Xc). Hence,
information about the target state is broadcast to the other
cells in the consortium by Qx diffusing into the environment
with a dynamics assumed here to be linear. Under these
assumptions, the dynamics of the sensing molecule in the
targets can be modeled as:

Q̇tx = βxXc + η(Qex −Qtx)− γtQtx, (3)
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where βx is the activation rate due to Xc, η is the diffusion
rate of the molecule Qx across the cell membrane, and γt is
the dilution rate of Qx in the target cells.

The Proportional controller is implemented here as in
[7] by means of an inhibitory action whose strength is
proportional to the output fed back from the targets combined
with an activation proportional to the amplitude of the
reference signal. Namely, we can describe the dynamics of
the intracellular concentration Qpu as:

Q̇pu = βPYd
µPYd

µPYd+θPQ
p
x

+ η(Qeu −Qpu)− γpQpu, (4)

where γp is the dilution rate of Qu inside the Proportional
controller cells, βP represents the maximal production rate
of the control molecule and plays the role of the proportional
gain as in (1), µP and θP are positive coefficients charac-
terizing the control action [7]. It can be shown (see [7] for
details) that the first term in (4) corresponds to an action that
is proportional to the control error eP (t) = µPYd − θPQpx .

To implement the Integral action, an antithetic motif [5]
is embedded into the controller population. This module
uses a pair of chemical species, say Z1 and Z2, produced
proportionally to the reference signal Yd and to the sensing
molecule Qx, respectively, able to annihilate each other with
a high affinity. The dynamics of the network embedded in
this population can then be described by the set of ODEs:

Ż1 = µIYd − γzZ1Z2,

Ż2 = θIQ
i
x − γzZ1Z2,

(5)

in which µIYd and θIQ
i
x are production rates, γz is the

annihilation rate between Z1 and Z2, which is assumed here
to be the only source of degradation for the species Z1 and
Z2, as also done in [7], [16]. Following similar arguments to
those in [7], it can be shown that d

dt (Z1−Z2) is proportional
to the control error, defined as eI(t) = µIYd − θIQix.

The network described in (5) is complemented with the
control molecule dynamics, described as:

Q̇iu = βIZ1 + η(Qeu −Qiu)− γiQiu, (6)

where βI plays the role of the integral gain and all the other
parameters have an analogous meaning as those in (3).

Finally, the mathematical models are completed by adding
ODEs describing the diffusion dynamics of the quorum
sensing molecules across the cell membranes. Specifically,
the concentration of the molecules into the environment is
described by:

Q̇ex = η
∑
j∈S

(Qj
x −Qex)− γeQex,

Q̇eu = η
∑
j∈S

(Qj
u −Qeu)− γeQeu,

(7)

where S = {p, t} if the Proportional controller population is
only present, while S = {p, i, t} when the Integral controller
population is also added to the consortium. The dynamics
of the concentrations of Qx and Qu inside those cells not

directly producing them is given by:

Q̇h
x = η(Qex −Qh

x)− γhQ
h
x, h ∈ {p, i},

Q̇tu = η(Qeu −Qtu)− γtQtu.
(8)

III. CIRCUIT DESIGN

We derive some analytical conditions on the parameters
of the genetic circuits which guarantee successful regulation
of the measured output Qx to the desired value. To this aim,
we first derive a reduced order model of the consortium
dynamics and then, via a stability analysis, we provide
sufficient conditions that the biomolecular parameters must
satisfy in order for the consortium to operate correctly.

A. Assumptions and problem statement

To derive simple, yet meaningful, analytical conditions
guiding the design of the controller populations, we make
some realistic assumptions on the values of the parameters.
Namely, we assume that (i) each population divides at the
same rate, implying that the dilution rates for all species
are identical (i.e. γp = γi = γt = γ1 = γc = γ); (ii)
the degradation of each quorum sensing molecule in the
external growth environment can be neglected, i.e. γe = 0;
and (iii) the promoters induced by the reference signal Yd

and the sensing molecule Qx are the same in the Proportional
and Integral controllers, implying that µp = µi = µ and
θp = θi = θ. Also, we further assume that:

Assumption 1 The quorum sensing molecules diffuse faster
than they degrade.

Assumption 2 The annihilation process between the species
Z1 and Z2 is fast enough.

Defining ΓP := γt + γp + γe = 2γ and ΓPI := γt + γp +
γi+γe = 3γ, Assumption 1 translates to η � ΓP when only
Proportional controller cells are present, and to η � ΓPI
when both controller populations are present. Assumption 2
implies that γz � max{ α

2

µY ,
ΓPIα
µY }, where α is a function

of the model parameters defined as

α =

(
9γ4

βxβIβcβu
− βP θ

2βIµ

)−1

. (9)

Given the assumptions above and defining the control error
as:

e(t) := µYd − θy, (10)

where we defined the controlled output as y = Qtx, the
control problem is that of engineering a microbial consortium
comprising one or more controller populations so that at
steady state the output of the process in the target cells is ro-
bustly regulated to the desired value, that is, limt→∞ e(t) =
0.

B. Multicellular P controller

Under the assumptions made in Section III-A and quasi-
steady state assumption on the quorum sensing dynamics,
when the targets are regulated by controllers solely imple-
menting a Proportional control action, the dynamics of the
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consortium can be approximated by the following reduced
order model:

Ẋ1 = βuβPYd
µYd

ΓPµYd+θβxXc
− γX1,

Ẋc = βcX1 − γXc,
(11)

where the controlled output is defined as y = βx

ΓP
Xc (see

Appendix A for details). It can be demonstrated that model
(11) has a unique admissible equilibrium point, which is
always locally asymptotically stable. However, for the sake
of brevity, the proof is omitted here. Moreover the steady-
state error ess is given as:

ess =
1

2

(
3−

√
1 + βP

βcβuβxθ

µγ4

)
µYd, (12)

which nonlinearly depends on the value of the proportional
gain βP and that can be made closer to zero by selecting βP
as:

β∗P =
8µγ4

βcβuβxθ
. (13)

Indeed, if it were possible to select βP = β∗P , we could have
Qx = µYd

θ at steady state, which implies e(t) = 0. Note
that such a choice would require perfect knowledge of the
target cells parameters which is unrealistic. We will therefore
explore later in Section IV how the error varies for values
of βP in a given range of interest and evaluate the effects of
βP on the dynamics of Qtx, assessing the sensitivity of the
control strategy to parameter mismatches or uncertainties.

C. Multicellular PI controller

A possible solution to overcome model uncertainties and
robustify the designed control system is to add a third
population implementing an Integral control action. Under
the same assumptions made in Section III-A, the dynamics
of the resulting consortium comprising both the P and I
controller populations can be approximated by the following
set of ODEs:

Ẋ1 = βu

[
βPYd

µYd

ΓPIµYd+θβxXc
+ βIζ1

ΓPI

]
− γX1,

Ẋc = βcX1 − γXc,

ζ̇1 = µYd − θQx,

(14)

where ζ1 = Z1−Z2 and y = βxXc

ΓPI
. Details on the derivation

of equation (14) are reported in Appendix A. This dynamical
system has a unique, non-negative equilibrium point if the
proportional gain is chosen such that:

βP ≤
18γ4µ

βcβuβxθ
. (15)

Reaching this equilibrium point ensures that Qx = µYd

θ , thus
e(t) = 0. By carrying out a local stability analysis, we found
that the equilibrium point is locally asymptotically stable if
the value of the integral gain βI does not exceed a threshold
dependent on the other parameters including the proportional
gain βP , that is:

βI <
βP γ

2µ
+

18γ5

βcβuβxθ
. (16)
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Fig. 3: Set-point tracking experiments in BSim: evolution in time of the
average concentration in the targets of the quorum sensing molecule Qt

x
when they are controlled by the Proportional controllers only (panel a) and
by a PI control action (panel b). The control gains were selected as βP =
{0.02, 0.03, 0.04}min−1 (purple, yellow and blue line, respectively) and
βI = 0.0002 min−1. The piece-wise constant reference signal µYd(t)/θ
is depicted as a dashed line.

Condition (16) gives insights on the biological elements
that influence the performance of the PI multicellular archi-
tecture. Specifically, choosing fast dividing cells (i.e. high
values for γ) or reducing of the strength of the promoters
induced by the reference Yd and the sensor molecule Qx can
widen the range of values of βI that guarantee the correct
operation of the control consortium.

IV. IN SILICO CONTROL EXPERIMENTS

To validate the proposed multicellular control architectures
we carried out in silico experiments in BSim [14], [15],
an agent-based environment explicitly designed to simulate
bacterial populations. BSim allows to keep track of each cell
in the consortium, simulating both the dynamical processes
hosted in the organism and the bio-mechanics of the cell.
In addition, the diffusion of the quorum sensing molecules,
cell growth and division, and cell-to-cell variability can
be explicitly simulated together with realistic geometric
constraints of the host environment. In particular, BSim
accurately simulates cells cultured in a micro-environment
such as a microfluidic device where nutrients are constantly
provided, allowing cells to grow in exponential phase. Here,
we emulated a scaled version of the device described in
[17], [18], that is, a microfluidic chamber of dimensions
17µm × 15µm × 1µm, which can host around 100 cells.
These dimensions were selected as a good trade-off between
number of cells hosted and computational burden. The
growth and mechanical parameters were selected as in [11],
while the nominal values of the parameters in the network
were chosen as described in Appendix B.

Selecting βP = β∗p , both control architectures showed
good regulation capabilities of the output species Qtx over
a period of 12000 min at different set-point values (Fig. 3,
blue curves), with a settling time of about 500 min for the
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Fig. 4: Robustness to imbalances in the consortium composition: percentage
error at steady state (17) as the relative ratios of the three populations are
changed. The total number of cells is fixed in BSim to N = 20, with
no growth dynamics and the ratio ρj for j ∈ {p, i, t} is constrained to
ρp + ρi + ρt = 1. The reference signal is fixed to Yd = 60 nM, while the
gains are chosen as βP = 0.0414 min−1 and βI = 0.0002 min−1.

Proportional controller (Fig. 3a) and about 700 min for the
PI controller (Fig. 3b). In all simulations βI was selected
according to (16). However, when βP cannot be tuned to
match equation (13), the Proportional controller alone fails to
regulate y to the desired value, showing increasingly higher
value of the steady-state errors as βP decreases. Instead, as
expected, adding the Integral control action, the steady-state
error is not sensitive to changes in the value of βP , as long
as (15)-(16) are satisfied.

Next, we tested the robustness of the control architectures
with respect to imbalances in the relative composition of the
consortium. Indeed, despite the host cells being identical,
unavoidable asymmetries in the metabolic load on each pop-
ulation can cause their relative numbers to change over time.
To this aim, we varied the populations’ relative numbers
defined as ρj =

Nj

N , j ∈ {p, i, t}, where Nj is the number of
individuals belonging to the j-th population, while keeping
constant the total number N of cells in the chamber, and
evaluating the percentage error at steady state defined as:

e% =

∣∣∣∣Qtx,ss −Qd

Qd

∣∣∣∣× 100% =

∣∣∣∣ ess

µYd

∣∣∣∣× 100%, (17)

where ess is the control error (10) at steady state, Qtx,ss is
the value of Qtx at steady state, and Qd = µYd

θ . Note that
keeping N constant implies that ρp + ρi + ρt = 1.

Fig. 4 shows that the Proportional controller works best
when the populations are close to balance, while exhibit-
ing increasingly higher errors at steady state as imbalance
between controllers and targets increases, with a maximum
error of 70% when the imbalance is extreme (ρp < 0.1).
Adding an Integral contribution to the control action signifi-
cantly increases the architecture performance and robustness,
with the relative error never exceeding 30% even when the
imbalance of the controllers and target populations’ numbers
are consistent.

Finally, we tested the effects of cell-to-cell variability on
the overall control performance. This heterogeneity in the
response of the cells is mainly due to variations between

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

CV

0

5

10

e
%

Fig. 5: Robustness to cell-to-cell variability: average percentage error at
steady state and standard deviation as the heterogeneity of the param-
eters increases, when the consortium is regulated by P controllers only
(blue bars) and PI controllers (orange bars). For each value of CV ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} we performed n = 50 simulations
drawing independently all cells’ parameters from a normal distribution
centered at their nominal value µ with standard deviation σ = CV · µ.
The reference signal is fixed to Yd = 60 nM, while the gains are chosen
as βP = 0.0414 min−1 and βI = 0.0002 min−1. All simulations were
performed for a total time of 8000 min, using a chamber of dimensions
5.7µm× 15µm× 1µm.

plasmid copy numbers among different individuals in a
population, caused by a possibly uneven distribution of the
genetic material between cells after division. To model this
effect, at each cell division, the value of all parameters of
the daughter cells were drawn from a normal distribution
centered at their nominal values µ with standard deviation
σ = CV · µ, where CV is the coefficient of variation.
The sensitivity of the control system was evaluated, as CV
increases, by computing the percentage error at steady state,
defined as:

ē% =
1

n

n∑
k=1

∣∣∣ ēk
µYd

∣∣∣×100%, (18)

where ēk is the control error (10) averaged over the last 5000
minutes in the k-th experiment, and n is the total number
of experiments. We observed that both the P and the PI
control architectures guarantee small sensitivity to increasing
levels of heterogeneity within the cellular populations with
the relative error never exceeding 10% (Fig. 5). However, the
multicellular PI control architecture shows higher robustness
with the steady-state error showing much smaller variations
under perturbation.

V. CONCLUSIONS

We investigated first analytically and then numerically
two multicellular architectures where a process of interest
hosted in a target cell population was regulated using a P
or a PI control law implemented across other populations in
the consortium. We showed that it is possible to choose the
control gains so that successful regulation of the controlled
protein in the target cells at the desired level is achieved.
In addition, we observed that, similarly as in embedded
antithetic controllers, perfect robust adaptation can only
be achieved when an additional population implementing
an integral control action is included in the consortium.
Finally, we validated the effectiveness and robustness of
the designed consortia via realistic agent-based simulations
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in BSim showing their viability even in the presence of
unavoidable effects due to cell-to-cell variability, diffusion
and cell growth.

A key open problem towards the in vivo implementation
of the proposed multicellular PI architecture is to guarantee
stable co-existence and maintain a desired ratio between
the cell populations involved. This is possible either by
embedding in the cells extra gene pathways to regulate the
growth rates of the populations, or by culturing the cells
in a controlled environment where it is possible, by means
of an external control action, to guarantee that the relative
numbers of the populations within the consortium are kept
within acceptable bounds [18]–[21].

APPENDIX

A. Derivation of the reduced order models

Under the conditions presented in Section III-A, the dy-
namics of the microbial consortium comprising three pop-
ulations and described by equations (2)-(8) can be further
simplified making a quasi-steady state assumption on the
dynamics of the quorum sensing molecules, that is, by
imposing Q̇jk = 0, with k ∈ {u, x} and j ∈ {t, p, i, e}.
Under Assumption 1, substituting their steady-state values
in Q̇ex = 0 and Q̇eu = 0 we obtain that:

Qeu =
1

ΓPI
·
(
βPYd

µPYd

µPYd+θPQ
p
x

+ βIZ1

)
,

Qex =
βxXc

ΓPI
.

(19)

Then, by substituting (19) in Q̇jk = 0, where k ∈ {x, u} and
j ∈ {p, i, t}, and leveraging again that η � ΓPI , we obtain
Qtu ≈ Qpu ≈ Qiu ≈ Qeu, and Qtx ≈ Qpx ≈ Qix ≈ Qex. We
then define those two quantities as Qu and Qx and substitute
their steady state values in equations (2) and (5).

In addition, we introduce the change of variables ζ1 =
Z1 − Z2, ζ2 = Z2, transforming equations (5) in:

ζ̇1 = µIYd − θIQx,
ζ̇2 = θIQx − γz(ζ1 + ζ2)ζ2.

(20)

As done in [22], we can then use time scale separation on
equations (20) to reduce the model to ζ̇1 = µYd − θQx.

The same procedure can be repeated, excluding the time
scale separation operated on ζ1, ζ2, to retrieve a reduced
order model for a consortium without the Integral controller
population. The results are the same, with the exception of
equation (19), in which ΓP is in place of ΓPI , and the term
βIZ1 is not present.

B. Nominal biochemical parameters

The nominal biochemical parameters used in the BSim
simulations are chosen as: βu = 0.06 min−1, βx =
0.03 min−1, γ = 0.023 min−1, η = 2 min−1 (taken from
[11]); βc = 0.1 min−1, µ = 1 min−1, θ = 0.3 min−1,
γz = 0.01 nM−1min−1 (taken from [7]).
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