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Abstract

Gene expression is a biochemical process, where stochastic binding and un-
binding events naturally generate fluctuations and cell-to-cell variability in
gene dynamics. These fluctuations typically have destructive consequences
for proper biological dynamics and function (e.g., loss of timing and syn-
chrony in biological oscillators). Here, we show that gene expression noise
counter-intuitively accelerates the evolution of a biological oscillator and,
thus, can impart a benefit to living organisms. We used computer simulations
to evolve two mechanistic models of a biological oscillator at different levels
of gene expression noise. We first show that gene expression noise induces
oscillatory-like dynamics in regions of parameter space that cannot oscillate
in the absence of noise. We then demonstrate that these noise-induced os-
cillations generate a fitness landscape whose gradient robustly and quickly
guides evolution by mutation towards robust and self-sustaining oscillation.
These results suggest that noise can help dynamical systems evolve or learn
new behavior by revealing cryptic dynamic phenotypes outside the bifurca-
tion point.
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1. Introduction

Organisms have evolved to survive in a dynamic world, where some en-
vironmental changes are predictable (e.g. light-dark cycles that arise from
the rotation of the Earth) but also include stochastic elements, such as the
weather. The ability to sense, compute, and appropriately respond to such
changes can provide an evolutionary advantage to organisms. This is perhaps
best exemplified by circadian clocks, which are gene regulatory networks that
regulate the physiology and behavior of organisms, and which have evolved
to oscillate with a ∼24-hour period and to be entrained to light-dark cycles.
It is thought that the ability to internalize the 24-hour light-dark cycle via
a genetic oscillator provided those organisms with the ability to anticipate
and prepare for upcoming light changes, rather than simply respond to them
(Pittendrigh, 1993; Paranjpe and Sharma, 2005). This anticipation provided
a selective advantage to those organisms that evolved genetic circuits that
oscillate in resonance with the light-dark cycle. This notion is supported by
experiments showing that mutant strains with shorter or longer circadian pe-
riods have worse fitness than organisms with a 24-hour circadian clock that
resonates with the natural light-dark cycle (Ouyang et al., 1998; Dodd et al.,
2005; Wyse et al., 2010; Spoelstra et al., 2016).

The ability to internalize an external environmental signal and use this
information to predict changes and improve fitness should be negatively im-
pacted by “misinformation” or stochastic noise. This is especially true in
living systems, which are composed of cells, the fundamental building block
of all organisms. As recognized by Schrödinger in his book “What is Life?”,
cells are microscopic systems where the number of molecules per cell are ex-
pected to exhibit significant fluctuations around their mean. This biochem-
ical noise affects the ability of genetic circuits to faithfully sense, compute,
respond to deterministic external signals. For example, experiments in bac-
teria, plants, and animals have shown that circadian rhythms in single cells
have large variation in amplitude, period, and phase (Welsh et al., 1995;
Nagoshi et al., 2004; Liu et al., 2007; Gould et al., 2018; Chew et al., 2018;
Li et al., 2020). Thus, an active area of circadian research is to understand
how biological systems have evolved to mitigate the destructive effects of
stochastic noise on the 24-hour period. For example, noisy circadian clocks
in the brain region known as the superchiasmatic nucleus (the primary cir-
cadian pacemaker of the animal brain) synchronize with with one another to
maintain a coherent 24-hour period and buffer against the effects of biological
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noise (Welsh et al., 2010). The same principle can also occur at a molecu-
lar level within a single cell, where thousands of molecular clocks (i.e., KaiC
hexamers) exchange regulators and components to synchronize the molecular
clock population within a single cyanobacterium (van Zon et al., 2007).

The circadian gene network is a nonlinear system, whose oscillatory dy-
namics depend sensitively on the biophysical parameters (e.g. protein-DNA,
protein-protein interactions). Most parameter space is non-oscillatory, and
the circadian gene network evolved through the process of genetic mutation
(i.e., randomly modification of biophysical parameters) and selection of fitter
cells (i.e., those with oscillatory dynamics that resonate with the light-dark
cycle). This raises the following questions: If most of parameter space is
non-oscillatory, how long will evolution blindly walk in parameter space un-
til the genetic network crosses a bifurcation point and starts oscillating? How
will gene expression noise, which negative impacts the timing and fitness of
circadian clocks, impact the evolution of a circadian oscillator?

Here, we show that gene expression noise counter-intuitively accelerates
the evolution of a biological oscillator and, thus, imparts a benefit to liv-
ing organisms. We used computer simulation to evolve two different types
of oscillatory genetic networks (repressilator and a titration-based circadian
clock). In both cases, gene expression noise induced oscillatory-like dynam-
ics in regions of parameter space that cannot oscillate autonomously in the
absence of noise. We show how noise-induced oscillation generates a fitness
landscape whose gradient robustly and quickly guides evolution by mutation
towards self-sustaining oscillation. Last, we identify three distinct types of
mechanisms of noise-induced oscillations and discuss how each mechanism
responds to noise.

2. Results

2.1. Oscillatory gene circuits

We studied two genetic circuits that admit oscillatory dynamics in suit-
able parameter regimes. The first model, which we refer to as the repressi-
lator, is a simplified gene expression model of the classic repressilator circuit
(Elowitz and Leibler, 2000). The second model, referred to as the titration
oscillator, is a stylized model capturing the mechanism and dynamics of a
family of titration-based circadian clocks (Vilar et al., 2002; François and
Hakim, 2005; Kim and Forger, 2012; Karapetyan and Buchler, 2015; Lin and
Buchler, 2017).
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2.1.1. Repressilator

The repressilator is a three gene circuit of transcriptional repressors, X,
Y , and Z, that suppress each other’s synthesis. We denote their concentra-
tions by x, y, and z. The molecules are produced according to a zeroth order
synthesis term that depends on the concentration of its upstream regulator:

∅ H(z)−−→ X, (1a)

∅ H(x)−−−→ Y, (1b)

∅ H(y)−−→ Z. (1c)

The rate constants of the synthesis of X, Y and Z are cyclically and sym-
metrically regulated by Z, X, and Y , respectively. We used a Hill function
to model the negative regulation

H(φ) := r0 + (r1 − r0)
φh

φh + φh∗
, (2)

parameterized by the fully-repressed rate r1, the unrepressed rate r0 ≥ r1,
half-maximum concentration φ∗, and Hill coefficient h. In our simulations
below, we fixed φ∗ = 0.5 and h = 3 and treated r0 and r1 as adjustable
biophysical parameters driven by an evolutionary process detailed in Sec. 2.5.
The molecules degrade uniformly according to a first-order decaying process:

X
δ−→ ∅, (3a)

Y
δ−→ ∅, (3b)

Z
δ−→ ∅, (3c)

with a degradation rate δ. With no loss of generality, we fix δ = 1 by
choosing an appropriate time unit. Our model is a simplified version of
the classic repressilator (Elowitz and Leibler, 2000) because we ignored the
mRNA populations and we coarse-grained the two-stage (transcription and
then translation) process into one effective “production” term. Figure 1A
shows a schematic diagram of the regulatory network.
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2.1.2. Titration oscillator

The titration oscillator is a more detailed model that is based on the
architecture of the animal and fungal circadian clocks, and explicitly includes
transcription factor binding events to circadian promoters. The titration
model is a two gene circuit, which consists of a transcriptional activator
X that stimulates its own production (positive feedback) and that of its
inhibitor Y (negative feedback). This genetic module is also known as a
mixed feedback loop, based on the mixture of positive and negative feedback
(François and Hakim, 2005).

Both the activator and inhibitor are produced according to zeroth order
processes, whose rates depends on a discrete promoter state of their genes, sX
and sY , both of which take values in {0, . . . N}. We consider the state sX,Y as
the number of bound activators on promoter X and Y respectively, and N is
the number of binding sites on each promoter. Based on our previous work,
we simplified the titration model in two ways (Lin and Buchler, 2017). First,
the activator binds to empty promoter sites sequentially, and the binding
and unbinding events between the regulator and promoter sites are modeled
as discrete-state Markov processes:

sX
xκX−−→ sX + 1, (4a)

sX
θX−→ sX − 1, (4b)

sY
xκY−−→ sY + 1, (4c)

sY
θY−→ sY − 1. (4d)

Second, we assumed that maximum transcription (βB) only occurs when
all the binding sites are “bound” by activators. The transcription is lower
when one or more binding sites are “free” and unbound (βF ). Thus, the
synthesis of the molecules is given by:

∅ βX(sX)−−−−→ X, (5a)

∅ βY (sY )−−−−→ Y, (5b)
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where the synthesis rates are

βX (sX) =

{
βFX if sX < N,
βBX if sX = N,

(6a)

βY (sY ) =

{
βFY if sY < N,
βBY if sY = N,

(6b)

The molecules degrade according to the following first-order reactions:

X
δX−→ ∅, (7a)

Y
δY−→ ∅. (7b)

Last, inhibitor will bind and titrate free activator into an inactive complex.
This reaction is modeled as an irreversible process:

X + Y
α−→ ∅. (8)

In our simulations below, we fixed βFY = 10, βBY = 400, δX = 1, δY = 0.05,
κX = 60, κY = 45, θX = θY = 50, N = 3, and α = 10. We will treat βFX and
βBX as adjustable biophysical parameters driven by an evolutionary process
detailed in Sec. 2.5. Figure 1B shows a schematic diagram of the regulatory
network.

2.2. Stochastic simulation of dynamics

In the above section, we used standard nomenclature of chemical reac-
tions to specify our model. The chemical reactions of the repressilator and
titration oscillator were converted into a Chemical Master Equation (see Ap-
pendix), which is a formal mathematical representation describing the time-
evolution of the joint probability distribution of discrete, molecular species
and promoter states undergoing probabilistic chemical reactions. For each
cell with a given set of biophysical parameters and initial conditions, we used
the Gillespie algorithm (Gillespie, 1976; Gillesple et al., 1977) to simulate the
stochastic time-evolution of discrete molecular species for both the repressi-
lator and titration oscillator CME. An important factor for both the CME
and Gillespie simulation is a parameter Ω, which characterizes the cell “vol-
ume” or size of the biochemical system. Under the well-mixed assumption,
the molecular species in a smaller system will exhibit a larger coefficient of
variance (i.e., biochemical noise) compared to a larger system. Thus, de-
creasing or increasing Ω will increase or decrease the intrinsic biochemical
noise in our stochastic Gillespie simulations.
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2.3. Deterministic simulation of dynamics

The deterministic model is equivalent to the stochastic model in the
infinite-population limit, where Ω → ∞. For the repressilator CME, a
Kramers–Moyal expansion leads to the dynamics of stochastic population
densities {x, y, z} := N{X,Y,Z}(t)/Ω in the infinite-population limit Ω→∞:

ẋ = H (y)− δx, (9a)

ẏ = H (z)− δy, (9b)

ż = H (x)− δz. (9c)

For the deterministic titration oscillator model, we invoked an additional
fast-switching condition where the binding and unbinding rates (κ’s and θ’s)
are infinitely fast. Under this condition, the discrete promoter state can be
represented by a continuous mean-field, quasi-stationary distribution of the
continuous variables x(t) and y(t). This adiabatic limit (Ackers et al., 1982;
Hornos et al., 2005; Lin and Buchler, 2017; Hufton et al., 2019a,b) leads to
simple dynamic equations for the intensive variables {x, y} := N{X,Y }(t)/Ω

ẋ = βeff
X (x)− δXx− αxy, (10a)

ẏ = βeff
Y (x)− δY y − αxy, (10b)

where the effective synthesis rate is expressed in terms of the quasi-stationary
distribution of the promoter state (Angeles and Weiss, 1997; Lin and Buchler,
2017):

βeff
W (x) = βFW +

(
βBW − βFW

) (xκW/θW )N∑N
i=0 (xκW/θW )i

. (11)

Here, W ∈ {X, Y }. This quasi-stationary simplification is appropriate be-
cause the binding and unbinding rates used in our simulations are faster than
protein degradation. These sets of ordinary differential equations (ODEs) de-
scribe the time-evolution of mean concentrations in the absence of stochastic
noise. For each cell with given biophysical parameters and initial conditions,
we used standard ODE solvers to simulate the deterministic time-evolution
of both the repressilator and titration oscillator.

2.4. Bifurcation and stochastic amplification

Both deterministic dynamical systems Eqs. (9) and (10) admit perpetu-
ally oscillatory solutions (known as limit cycles) for a suitable set of param-
eters; see Figs. 1C and 1E for deterministic limit cycles in the repressilator
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and titration models. These limit cycles are often stable such that trajecto-
ries starting at any point nearby the limit cycle will be “attracted” to the
limit cycle and the long-time behavior will be arbitrarily close to the flow on
the limit cycle. However, most parameter sets in the repressilator and titra-
tion models are non-oscillatory and their dynamics will converge to a stable
fixed point; see Figs. 1G and 1I. As one gradually and continuously changes
the parameter(s) of the models, the dynamics can switch abruptly from one
qualitative behavior (e.g. not oscillatory) to another (e.g. oscillatory). The
qualitative change in dynamics at a critical parameter is called a bifurcation
(Strogatz, 2014; Arnol’d, 1999). The challenge for the evolution of biologi-
cal oscillators is that most starting parameters are non-oscillatory and that
the desired dynamic phenotype is invisible until the population crosses the
bifurcation point.

Stochastic simulation of the repressilator and titration models with the
same parameters show two important differences. First, stochastic noise
perturbs the limit cycle of oscillatory parameters and affects the period, am-
plitude, and phase of oscillation; see 1D and 1F. This will negatively impact
the fitness of each oscillator. Second, stochastic noise abolishes the abrupt
nature of the bifurcation seen in the deterministic system. For example,
stochastic simulation still exhibits oscillatory-like dynamics in the parame-
ter regime where deterministic dynamics are non-oscillatory; see 1H and 1J.
This well-known phenomenon is called stochastic amplification (Alonso et al.,
2007; Boland et al., 2009). Below, we will show that stochastic amplifica-
tion accelerates the evolutionary process of finding oscillatory solutions and
crossing bifurcation points.

2.5. Evolutionary algorithm

Similar to previous work, we used computer simulation to evolve gene
circuits in a haploid, asexual population with non-overlapping generations
(Gómez-Schiavon and Buchler, 2019). A schematic diagram of the process
can be seen in Fig. 2 along with the corresponding pseudo-code in the Ap-
pendix. Briefly, our population of M cells all had the same regulatory net-
work (repressilator or titration oscillator), but each cell had a different set
of biophysical parameters θ whose values represented the underlying “geno-
type”. Each generation, we simulated the deterministic or stochastic dynam-
ics of each cell with its underlying parameters and initial concentrations, and
scored its fitness based on whether the dynamic was oscillatory. The next
generation of cells were chosen from the top fraction (φ) of the fittest parents
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and these cells inherited the parental biophysical parameters (i.e., genotypes)
with some probability to increase or decrease the biophysical parameter val-
ues by some amount (i.e., genetic mutation). In all evolutionary simulations,
we only considered population size M = 100 and strong selection pressure
φ = 0.1 (only the top 10% of the population survive to reproduce the next
generation). The rest of the evolutionary parameters, both here and below,
were variable and their specific values are listed in each figure caption.

2.5.1. Fitness and selection of biological oscillators in a noisy world

We considered the example of circadian clocks to construct a reasonable
fitness function for the evolution of oscillators. The circadian clock plays a
role in time-keeping and internalizes the external light-dark intensity. Thus,
the highest fitness should occurs when the oscillator frequency f matches that
of the external cycle ftarget. Furthermore, evolution should select for large
amplitude oscillations that are sufficient to match the range of the external
signal and drive downstream biochemical processes.

To this end, we used a Fourier transform of the gene network dynamics to
measure the power-spectral density (i.e., frequency and amplitude) of each
cell given its set of biophysical parameters. Each generation, we simulated
the trajectories of gene dynamics of each cell for total time T and we sampled
{x(ti)}i (as in Eqs. (9) and (10), and NX(ti)/Ω in the stochastic models) at
104 uniform time intervals over the total time. We then performed a dis-
crete Fourier transform on the sampled time series between t = T/2 and T
(i.e., 5 × 103 snapshots) so that any transient contribution of initial condi-
tions was negligible. In the deterministic models, the initial concentration
was set at (x, y, z) = (0.1, 0, 0) for the repressilator and (x, y) = (0, 0) for
the titration oscillator. In the stochastic model, the initial configuration
of (NX , NY ) was set at the nearest integers to (0.1Ω, 0, 0) in the repressi-
lator model, and the initial configuration of (NX , NY , sX , sY ) = (0, 0, 0, 0)
in the titration oscillator. We tested other initial conditions to confirm
that our results do not depend on the choice of the initial conditions. The
Fourier transform converts the time series {x (ti)} to a power-spectral den-
sity PSD(f), where f is the frequency. To avoid artifacts that arise from
using discrete Fourier transformation for PSD analysis, we implemented
Welch’s method (scipy.signal.welch) to estimate a smooth PSD den-
sity. From this PSD(f), we determined the maximum power PSDmax :=
maxf PSD(f) and corresponding frequency fmax := argmaxfPSD(f) at the
maximum power. We rounded off PSDmax < 10−4 to eliminate numerical
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artifacts caused by the finite sampling of the trajectories.
Our final fitness function satisfied two objectives. First, those circuits

whose maximum power frequency fmax matches that of the external cycle
ftarget should have higher fitness. We modeled this with a Lorentzian func-
tion, F ∝ 1/

(
1 + (fmax − ftarget)

2). Second, the amplitude of oscillation
should be large enough to match the external signal and drive downstream
biochemical processes. We modeled this “large enough” requirement using a
simple Michaelis–Menten law, F ∝ PSDmax/(1 + PSDmax). Our final fitness
function combined these two objectives via multiplication:

F (θ) :=
PSDmax

1 + PSDmax

(
1

1 + (fmax − ftarget)
2

)
, (12)

Thus, those cells with biophysical parameters θ that place sufficient power
at the desired ftarget will have a fitness closer to 1, whereas non-oscillatory
cells (or oscillatory cells with insufficient power or at incorrect frequencies)
will have a fitness closer to 0. This same fitness function also accounts for
the negative influence of noise on proper timing because noise reduces the
power of an oscillator at its natural frequency.

Each generation, the individual cells were ranked by their fitness and
the top φ fraction of the population were selected at random to reproduce
and create the next generation of M cells. The biophysical parameters of
each new cell θ′ were inherited from their parent with some probability of
mutation or change in value. The mutation kernel, µ(θ′|θ), quantifies the
probability of the new parameter set θ′ given the selected parameter set θ.
We chose a normal distribution, such that in a one-dimensional evolutionary
process (only evolving a single parameter), θ′ ∼ N (θ, σ2) and in a multi-
dimensional process (more than one parameters are simultaneously evolving),
θ′ ∼ N (θ, diag (σ2

1, . . .)) where diag (σ2
1, . . .) is a non-negative-definite co-

variance matrix of the multivariate Gaussian distribution.

2.6. Stochastic gene dynamics accelerate the evolution of biological oscillation

Below, we will use our evolutionary simulation to demonstrate that a pop-
ulation of “noisy” cells that start with non-oscillatory biophysical parameters
(genotype) will evolve by mutation towards an oscillatory phenotype more
quickly than a population of cells with deterministic (i.e., noiseless) gene dy-
namics. We will show that this acceleration arises because stochastic gene
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dynamics generate noise-induced oscillations outside of the oscillatory param-
eter regime and, most importantly, these noise-induced oscillations create a
landscape of increasing fitness in the direction of oscillatory parameters. This
fitness landscape guides the population via genetic mutation and selection
towards robust oscillations. Conversely, cells with deterministic gene dynam-
ics have no oscillation and no fitness gradient outside the oscillatory regime;
thus, the population will randomly diffuse on a flat fitness landscape until
some cell mutates enough to cross a bifurcation point where deterministic
oscillations begin.

2.6.1. Repressillator evolution

We first performed a one-dimensional evolutionary simulation for the re-
pressilator model shown in Figure 1A. In this set of experiments, we consid-
ered θ = r0 ≥ 0 as the mutable parameter and we fixed r1 = 0. The deter-
ministic dynamics is oscillatory only if r0 & 1.89 and our population begins
the evolutionary simulation in a non-oscillatory parameter regime (r0 = 0.5).
We observed a dramatic difference in evolutionary speed and drift between
the deterministic and stochastic dynamics (Figure 3A). To test the generality
of this result, we treated θ = r1 ≥ 0 as an adjustable parameter and fixed
r0 = 4. The deterministic dynamics are oscillatory only if r1 . 0.16 and we
started the population in a non-oscillatory parameter regime (r1 = 0.8). The
evolutionary dynamics, Figure 3B, are qualitatively similar to that in Fig.
3A. In both cases, those populations with stochastic gene dynamics robustly
identified the direction of the oscillatory parameter regime and consistently
improved their fitness, while those with deterministic gene dynamics diffused
randomly in the non-oscillatory parameter space.

These evolutionary results suggest that the fitness landscape sensed by de-
terministic gene dynamics and stochastic gene dynamics are fundamentally
different. We measured the fitness landscape in each experimental setting
in Figs. 3C and D, as functions of the adjustable parameter r0 and r1, re-
spectively. The fitness landscape of the deterministic gene dynamics is flat
outside the parameter regime admitting oscillatory dynamics, which is con-
sistent with diffusive evolutionary dynamics. In contrast, the landscape of
the stochastic gene dynamics showed a smoothed extension of the fitness
landscape into the non-oscillatory parameter regime. Thus, a population of
non-identical genotypes with stochastic gene dynamics will evolve towards
oscillatory parameters because the gradient of the fitness landscape will se-
lect the fitter variants that are closer to the bifurcation point.
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2.6.2. Titration oscillator evolution

To verify that our results are not particular to the repressilator, we also
evolved a population of titration oscillators because the positive and nega-
tive feedback loops generate more complex dynamics, and these could affect
stochastic amplification. We first ran a one-dimensional evolutionary algo-
rithm for two different parameter cases: (1) an evolvable βBX ≥ 0 with a
fixed βFX = 12, and (2) an evolvable βFX ≥ 0 with a fixed βBX = 200. In the
first case, there are two bifurcation points and the deterministic dynamics
are oscillatory only if 179.20 . βBX . 268.62. In the second case, there are
two bifurcation points and the deterministic dynamics are oscillatory only if
10.08 . βFX . 19.36. In both cases, we started the evolutionary processes in
distinct, non-oscillatory regimes outside the low and high bifurcation points.

We again observed that stochastic gene dynamics significantly accelerate
the evolutionary processes of finding an oscillatory parameter regime, with
the exception of the region below βFX ≈ 10 (Fig. 4D). In agreement with our
previous results, the fitness landscapes (Figs. 4C and F) extend into regions
adjacent to the bifurcation points due to stochastic amplification. This is true
even for the region below βFX ≈ 10, where there is still a small extension of
the fitness landscape near the bifurcation point (Fig. 4F). To verify that our
results were not a consequence of evolving one parameter at a time, we simu-
lated a two-dimensional evolutionary processes of the titration model, where
θ =

(
βFX , β

B
X

)
are both mutable. We initialized our population at eight differ-

ent parameter settings outside the parameter regime permitting determinis-
tic oscillatory dynamics. Seven out of eight populations with stochastic gene
dynamics rapidly evolved into the oscillatory parameter regime (Fig. 5A),
whereas the deterministic populations were still randomly diffusing in the
non-oscillatory parameter space. As expected, the fitness landscape of the
stochastic populations (Fig. 5B) was broader and provided a smooth gradient
towards oscillatory parameters, when compared to the flat fitness landscape
of deterministic populations in Fig. 5A. Thus, smooth extensions of the fit-
ness landscape induced by the stochastic gene dynamics is a robust result.
Some directions showed a larger fitness landscape extension when compared
to other directions, suggesting that some parameters are more susceptible to
the effects of noise-induced oscillation and accelerated evolution.

Within the oscillatory parameter regime, the fitness of the stochastic gene
dynamics is lower than that of deterministic dynamics (compare determinis-
tic and stochastic fitness landscapes in Fig. 4C and F). The reduced fitness of
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stochastic dynamics is a consequence of the destructive properties of noise on
precise time-keeping or frequency matching. As such, there is an interesting
trade-off between stochastic and deterministic dynamics: outside the oscilla-
tory parameter regime, the former is better in “sensing” the direction towards
oscillatory parameters, but once inside the oscillatory parameter regime, the
latter is better in generating coherent oscillation.

2.6.3. Noise as an evolvable parameter during the evolution of oscillation

So far, we ran evolutionary simulations in which all the cell circuits are
either modeled using deterministic or stochastic gene dynamics. However,
Figure 4 showed that the deterministic gene dynamics can be more advan-
tageous in the oscillatory parameter regime because they are more coherent.
It is natural to ask the following questions: What is the evolutionary process
if each cell is allowed to change its noise strength? Would the population
first select stochastic gene dynamics for better fitness and then more effi-
ciently evolve towards oscillatory parameter space, with a later switch to
deterministic dynamics for a more coherent oscillation?

To test this hypothesis, we considered a three dimensional evolutionary
process, where the evolvable parameters are θ =

(
βFX , β

B
X , log10 Ω

)
. Recall

that Ω is the system-size parameter controlling the strength of the intrin-
sic noise in the stochastic gene dynamics; larger Ω corresponds to smaller
intrinsic noise. We allowed each cell to have its own Ω to be mutated and
selected by the evolutionary processes. The cells could evolve their volume
in the range of 103 < Ω < 105. At Ω ≥ 105, we switched to a determinis-
tic simulator (Det) because the stochastic simulator became inefficient and
time-consuming.

Figure 6A shows a two-dimensional projection of the evolutionary trajec-
tories. For most trajectories, there were three evolutionary phases. In the
first phase, the cells immediately evolved to a regime with lower Ω and in-
creased stochastic noise. These noisier cells exhibited better noise-induced os-
cillations and increased their fitness in the non-oscillatory parameter regime.
Importantly, these noisier cells could sense a smooth, increasing fitness gra-
dient. Thus, in the second phase, cells responded to this fitness gradient and
evolved towards the oscillatory parameter regime. This effect can be seen
in the corresponding plots of fitness (Figure 6B-6I) and system size (Figure
6J-6Q) over generation time, where cells kept noise high and evolved up the
fitness landscape. Once cells crossed the bifurcation point into the oscillatory
regime, noise became more detrimental to overall fitness. Thus, cells enter
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a third and final phase where they evolved to increase system size to pro-
duce more coherent oscillation via deterministic dynamics. Most populations
followed these three evolutionary phases; however, there were exceptions for
the region near or below βFX ≈ 10, where the stochastic dynamics landscape
was flatter (Figure 6F-6H) and the populations tended to diffuse randomly
in all three parameters, including Ω. However, we note that two of those
populations eventually diffused to regions of parameter space where they
could sense the noise-induced fitness gradient, at which point they entered
the second phase (more noise, generate and follow the fitness gradient) and
third phase (less noise, more coherent oscillation, increased fitness).

2.7. Mechanisms of noise-induced oscillation and stochastic amplification

To provide a mechanistic understanding of why stochastic gene expres-
sion accelerates the evolutionary processes, we plotted a phase portrait and
stability analysis of the deterministic system for three parameter sets that
cross different types of bifurcation boundaries, and we super-imposed the
corresponding stochastic dynamics trajectories; see Figure 7.

2.7.1. Simple Hopf bifurcation and noise-induced oscillations

The first parameter set shown in Figure 7B-D traverses a simple Hopf
bifurcation (Strogatz, 2014). For parameters inside the bifurcation bound-
ary, the deterministic trajectory converges to a globally stable limit cycle
(SLC); see Fig. 7B. As the critical parameter moves towards the boundary,
the amplitude of the deterministic limit cycle continuously shrinks to zero
(Fig. 7C). Once beyond the boundary, the system no longer has limit cy-
cles (Fig. 7D) and all trajectories spiral to a stable fixed point (SFP). As
expected, stochastic gene dynamics perturb deterministic limit cycles and
have less coherent oscillation inside the boundary, which reduces fitness (see
green trajectories in Figs. 7B-C). However, outside the bifurcation boundary,
stochastic gene dynamics has a positive influence on fitness by perpetually
“kicking” the state out of the neighborhood of SFP and relaxing back to the
stable fixed point with a spiral trajectory (i.e. under-damped oscillation).
The two forces, the former “fluctuation” and the latter “relaxation”, are re-
sponsible for generating noise-induced oscillations; see stochastic time series
(Fig. S1G) and frequency mode in the PSD (Fig. S2G). This well-known
phenomenon is called a stochastic Hopf bifurcation (Schenk-Hoppé, 1996;
Ma, 2012; Arnold et al., 1999; Li and Zhang, 2019; Simpson et al., 2021).
The noise-induced oscillations have a frequency whose value is related to the
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imaginary part of the eigenvalues of the Jacobian at the fixed point under-
lying deterministic dynamics. We note that the noise-induced oscillations of
the repressilator have the same origin and mechanism as the parameter set
described here because the repressilator has a simple Hopf bifurcation.

2.7.2. Bautin bifurcation and noise-induced oscillations

The second parameter set shown in Figure 7E-G shows the signature of
a generalized Hopf bifurcation, also known as a Bautin bifurcation (Gucken-
heimer and Holmes, 2002). Near the bifurcation and inside the oscillatory
parameter regime, Figs. 7E,F there exist an unstable fixed point, an unsta-
ble limit cycle (ULC), and a stable limit cycle (SLC). The SLC and ULC
partition the entire phase space, such that any initial state inside or out-
side the ULC will eventually converge to the SFP or SLC, respectively. As
the critical parameter moves towards the bifurcation point, the ULC grows
larger (Fig. 7F) and eventually collides with and annihilates the SLC at the
bifurcation point. The amplitude of the oscillation will suddenly vanish as
the finite-size SLC is destroyed by the ULC. This is in contrast to the sim-
ple Hopf bifurcation, whose amplitude continuously converged to zero at the
bifurcation. Such a sudden annihilation is reflected in Fig. 4C, where the
deterministic fitness function has a discontinuity at the Bautin bifurcation.

Beyond the bifurcation point, the flow in the phase portrait still re-
tains “pseudo SLC” dynamic, a dominant one-dimensional convergence path
that resembles the annihilated SLC (Fig. 7G). As the system spirals to its
SFP with a spiral trajectory (i.e. under-damped oscillation), noise will oc-
casionally kick it to the pseudo SLC basin and generate large amplitude
noise-induced oscillations; see stochastic trajectory in Fig. S1E. The pseudo
SLC basin and associated large amplitude noise-induced oscillations are more
clearly visible at slightly larger system size (Fig. S1K), where the intrinsic
noise is smaller and cannot reliably kick the system to pseudo SLC every
time the state is near the SFP. In this regime, the state stays near the SFP
for a random time before noise induces a larger cycle along the pseudo SLC.
If noise becomes too small (larger Ω), then the system is unable to access
the pseudo SLC (Fig. S1N, Q, T). Conversely, if noise is too large (smaller
Ω), then noise-induced oscillations become less coherent and more variable
(Fig. S1B). This suggests that a moderate amount of noise generates the
largest peak in PSD (higher amplitude, more coherent noise-induced oscilla-
tions); see Fig. S2E,H. We return to this phenomenon, generally known as
“coherence resonance”, in the excitable case study below.
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2.7.3. Excitation-relaxation and coherence resonance

Similar to the first parameter set, the deterministic flow analysis of the
third parameter set shows a Hopf bifurcation where the amplitude of the
SLC continuously decreases to zero as the parameters approach the bifurca-
tion boundary (Figs. 7H and I). However, unlike the first parameter set, the
SFP is non-oscillatory and over-damped for parameters beyond the bound-
ary. The phase portrait exhibits a flow where trajectories can have long,
excitable excursions that relax back to the globally-stable SFP; see Fig. 7J.
A consequence of this flow is that a stochastic “kick” in the right direction
will induce a large amplitude excursion in phase space. If noise is too large
(small Ω), then it generates incoherent excursions; see stochastic trajectories
in Fig. S1C and F. If noise is too small (large Ω), then the system is incapable
of escaping the SFP and being regularly kicked into an excitable excursion;
see Fig. S1U. This noise-induced phenomenon for excitation-relaxation sys-
tems is known as “coherence resonance” (Pikovsky and Kurths, 1997), where
an optimal level of noise induces coherent noise-induced oscillations. This
is best seen in the PSD of the excitation-relaxation system as a function of
intrinsic noise (system size), where there is a well-defined mode at ∼ 0.09
that peaks at intermediate levels of noise (Fig. S2O). We note that the sec-
ond parameter set also exhibits a well-defined mode that appears to peak at
intermediate levels of noise (Fig. S2H), suggesting that parameters outside
the Bautin bifurcation exhibit coherence resonance.

3. Discussion

The goal of this study was to understand the impact of biochemical noise,
an intrinsic property of living systems, on the evolution of a dynamical phe-
notype (i.e., oscillation) in gene regulatory networks. Ideally, this could be
addressed using laboratory evolution of gene circuits in bacteria or yeast.
However, such an approach is infeasible because (1) the biophysical param-
eters of gene circuits are mostly unknown and unmapped to the genome
sequence, (2) the timescale of laboratory evolution is too long, and (3) the
level of biochemical noise in a living system is not easily tunable. Here,
we used computer simulation to mimic the process of evolution of simple
gene circuits, where biophysical parameters are randomly mutated and fitter
variants that oscillate better and more robustly are selected each generation.
Importantly, this in silico approach allowed us to directly measure the effects
of gene expression noise on the process of evolution because we can vary the
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level of intrinsic noise by changing the system size in the Gillespie simulation
of stochastic gene expression dynamics.

We evolved two different gene circuit architectures, the repressilator and a
titration-based oscillator. All circuits started with initial biophysical parame-
ters (genotype) where the underlying deterministic dynamic is non-oscillatory
and converges to a stable fixed point (phenotype). Gene expression noise
accelerated the speed at which evolution finds parameters that oscillate ro-
bustly, both for the repressilator (Fig. 3) and titration-based oscillator (Figs.
4, 5). This counter-intuitive effect arises because stochastic noise perturbs
the circuit into a oscillatory-like dynamics with non-zero fitness. Impor-
tantly, these noise-induced oscillations generate a fitness landscape whose
increasing gradient guides evolution across the bifurcation into a region of
parameter space with robust oscillations. We tested the idea that noise is
adaptive by allowing cells to evolve their level of gene expression noise. All
circuits started with deterministic dynamics (no noise) at the beginning of
the evolutionary simulation. Most evolving cells immediately increased their
gene expression noise and generated noise-induced oscillations with non-zero
fitness. This was followed by the accelerated evolution of biophysical param-
eters towards the bifurcation point via the fitness gradient (Fig. 6). Once
across the bifurcation point, cells evolved back to deterministic limit cycles
because noise reduced the maximum possible fitness. These results show that
gene expression noise can be adaptive and, thus, imparts a benefit to living
organisms.

An analysis of the dynamics for non-oscillatory parameters near the bi-
furcation boundary suggests that the mechanism of noise-induced oscillation
is very generic. Remnants of limit cycle-like dynamics (“ghosts”) are still
present in the deterministic flow field, and the overall effect of stochastic
noise is to continuously perturbs the system into limit cycle-like excursions
(Fig. 7). If the noise is too small, then the deterministic flow field dominates
and the pseudo-oscillation have small amplitude (see power spectral density,
PSD, in Figures S2). If the noise is too large, the limit cycle-like dynamics
are strongly perturbed and the PSD frequency peak broadens and flattens.
There is an optimal level of noise where pseudo-oscillations have a maximum
PSD at some characteristic frequency. This phenomenon is known as “co-
herence resonance” and was first described for excitable systems (Pikovsky
and Kurths, 1997). Our results suggest that coherence resonance (i.e., noise-
induced oscillations that arise outside the bifurcation boundary at intermedi-
ate levels of noise) occurs for other types of bifurcations. Most importantly,
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coherence resonance generates a non-zero fitness landscape whose gradient
guides and accelerates evolution across the bifurcation boundary towards
robust, self-sustaining oscillations.

Although our work specifically focused on the evolution of oscillation
in gene regulatory networks, we suspect that noise will have similar effects
on the evolution of other dynamics (e.g., multi-stability) near bifurcation
boundaries. Namely, noise will perturb the dynamical system and reveal
remnants of multi-stable-like dynamics, such that it will guide and accelerate
the evolution of multi-stability. Evolutionary algorithms are part of a class
of algorithms used in Machine Learning and the optimization of information
processing networks (e.g. neural networks, electronic circuits). Similar to
our results, previous work showed that adding noise to Machine Learning
algorithms can significantly improve learning. Existing examples include the
probabilistic computational unit built in fuzzy logic (Novák et al., 2012),
stochastic inputs in Mixup training (Zhang et al., 2018; Thulasidasan et al.,
2019), stochastic computational processes in variational inference algorithms
(Kingma and Welling, 2014; Salimans et al., 2015), and noisy recurrent neu-
ral networks (Lim et al., 2021). The common idea in these approaches is
that adding noise or “misinformation” to the learning processes forces the
algorithm to learn more robust solutions. Our work suggests that adding
noise to these networks could also accelerate and guide the learning process
by revealing “cryptic” phenotypes outside the bifurcation boundary. Thus,
noise may provide two separate benefits (accelerated learning and robust
solutions) for Machine Learning algorithms in general.

4. Limitations of the study

There are several observations regarding noise-induced oscillations and
the evolution of biological oscillators. First, although the fitness landscape
extends beyond the deterministic bifurcation boundary, the fitness extension
was larger for some parameters compared to others. Cells in those extended
regions evolved faster and in more directed fashion compared to populations
in less extended regions (Figure 5). This suggests that some regimes of
biophysical parameters are more evolvable than others, and that this depends
on the underlying circuit topology and associated bifurcations. Thus, not
all circuits and populations are equally evolvable and this may constrain
the types of oscillators that evolve first and fastest. Second, the efficacy
of gene expression noise to accelerate and guide the evolution of oscillators
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depends on the level of intrinsic noise, the underlying process of evolution,
and the distance of the initial population from a bifurcation boundary. For
example, non-oscillatory parameters further away from bifurcation will not
have a strong gradient and, thus, noise is expected to have less effect on the
speed of evolution. Conversely, if the mutation step size is large enough for
the parameters to randomly diffuse into robust oscillatory parameter space
within a few steps, then noise will have less effect on the speed of evolution.
The extent to which noise accelerates and guides evolution of oscillation in
natural biological systems remains to be determined.
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9. Appendix

9.1. Stochastic formulation of the repressilator and circadian clock

The stochastic process can be fully specified by a Chemical Master Equa-
tion (CME) describing the evolution of the system’s time-dependtnt joint
probability distribution (van Kampen, 2007; Gardiner, 2009). Following the
procedures described in van Kampen (2007); Lin and Buchler (2017); Lin
et al. (2019), we construct continuous-time Markov chains describing the
stochastic reaction events in a finite system (Ω < ∞). For the repressilator
model, the joint probability distribution is

pi,j,k(t) := P {NX(t) = i, NY (t) = j,NZ(t) = k} , (13)

where NX(t), NY (t), NZ(t) are random variables describing the discrete,
non-negative, and integer-valued populations of the species X, Y , and Z at
time t, respectively. The CME is a countably infinite set of coupled ordinary
differential equations:

ṗi,j,k = Ω ·H
(
j

Ω

)
· [pi−1,j,k − pi,j,k]

+Ω ·H
(
k

Ω

)
· [pi,j−1,k − pi,j,k]

+Ω ·H
(
i

Ω

)
· [pi,j,k−1 − pi,j,k]

+δ · [(i+ 1) pi+1,j,k − ipi,j,k]
+δ · [(j + 1) pi,j+1,k − jpi,j,k]
+δ · [(k + 1) pi,j,k+1 − kpi,j,k] (14)

with boundary conditions pi,j,k(t) = 0 if i < 0, j < 0, or k < 0. As for the
titration model, the joint probability distribution is

pi,j,k,l(t) := P {NX(t) = i, NY (t) = j, SX(t) = k, SY (t) = l} , (15)
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and the CME is (Lin and Buchler, 2017):

ṗi,j,k,l = (pi−1,j,k,l − pi,j,k,l)1{k<N}ΩβFX
+ (pi−1,j,k,l − pi,j,k,l)1{k=N}Ωβ

B
X

+ (pi,j−1,k,l − pi,j,k,l)1{l<N}ΩβFY
+ (pi,j−1,k,l − pi,j,k,l)1{l=N}ΩβBY
+ δX [(i+ 1) pi+1,j,k,l − ipi,j,k,l]
+ δY [(j + 1) pi,j+1,k,l − jpi,j,k,l]

+
α

Ω
[(i+ 1) (j + 1) pi+1,j+1,k,l − ijpi,j,k,l]

+
κX

Ω

[
(i+ 1) pi+1,j,k−1,l − i1{k<N}pi,j,k,l

]
+
κY

Ω

[
(i+ 1) pi+1,j,k,l−1 − i1{l<N}pi,j,k,l

]
+ θX

[
pi−1,j,k+1,l − 1{k>0}pi,j,k,l

]
+ θY

[
pi+1,j,k,l+1 − 1{l>0}pi,j,k,l

]
. (16)

Here, 1{condition} is the characteristic function: it is equal to 1 when the
condition is true, otherwise 0. We also impose the boundary conditions that
pi,j,k,l = 0 if i < 0 or j < 0.

The deterministic dynamics of the stochastic processes governed by Eqs. (14)
and (16) can be derived by performing the Kramers–Moyal expansion to the
lowest-order expansion O (Ω0) (van Kampen, 2007; Gardiner, 2009; Lin et al.,
2019). The procedure yields a Liouville equation describing the correspond-
ing deterministic dynamics in the infinite population limit Ω→∞, in which
regime the gene expression noise diminishes to zero.
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Algorithm 1 Evolutionary algorithm.

Require: Zeroth-generation parameter θ0, population size M , number of
simulated generations L, selected fraction φ, mutation kernel µ (θ′|θ).

`← 0 . Initialize
for i in {1, . . .M} do . Initialize first generation

θ
[i]
0 ← θ ∼ µ (·|θ0) . Assign randomized θ to ith individual

end for
for ` in {1, . . . L} do

for i in {1, . . .M} do
Simulate time series {x(ti)}i with θ

[i]
`

Compute PSD (f), PSDmax, fmax, and evaluate fitness F
(
θ

[i]
`

)
end for
S` ←

{
θ

[i]
`

∣∣F (θ[i]
`

)
ranks in top φ fraction of M

}
. Selection

for i in {1, . . .M} do . Reproduction
u ∼ Uniform({1, 2, . . . φM}) . Choose one to reproduce

θ
[i]
`+1 ← θ ∼ µ

(
·|θ[u]

`

)
. Reproduce an offspring with mutated θ

end for
end for
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Figure 1: Deterministic and stochastic dynamics of the repressilator and a
titration-based circadian clock. (A) Simplified model of the repressilator, a nega-
tive feedback ring oscillator where protein production is given by a repressive Hill function
H(x) and proteins are degraded with first-order kinetics. (B) Simplified titration-based
circadian clock, where X is an activator that binds both its own promoter (positive feed-
back) and the promoter of an inhibitor Y. The inhibitor irreversibly binds and sequesters X
into an inactive complex (negative feedback loop). (C and D) Deterministic and stochastic
simulation of the repressilator for oscillatory parameters, r0=5, r1=0. (E and F) Deter-
ministic and stochastic simulation of the circadian clock for oscillatory parameters, βF

x =15,
βB
x =200. (G and H) Deterministic and stochastic simulation of the repressilator for non-

oscillatory parameters, r0=0.2, r1=0. (I and J) Deterministic and stochastic simulation
of the circadian clock for oscillatory parameters, βF

x =10, βB
x =200.
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Figure 2: Evolutionary algorithm. Each generation, we simulated the deterministic
or stochastic gene network dynamics (“phenotype”) of the repressilator or titration-based
oscillator in each cell given each cell’s parameters θ (“genotype”). We performed a power
spectral density (PSD) analysis of each cell’s network dynamics to calculate “fitness” (F ),
such that those cells with large amplitude oscillations at a target frequency are fitter cells.
We then selected the top fraction (φ) of fittest cells, followed by random replication to
replace the remaining population. Each replicated cell inherited the genotype (parameters
θ) of the selected parent with a probability of mutation µ(θ

′ |θ) to each parameter.
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Figure 3: Noise accelerates the evolution of a repressilator by creating a fitness
landscape that guides new mutations towards oscillation. (A,C) Starting from
an identical population at r0 = 0.5 (non-oscillatory phenotype), we ran 10 independent
and identical evolutionary simulations for cells with deterministic and stochastic gene
dynamics. The horizontal dashed line indicates the value at which a bifurcation occurs
and the deterministic system exhibits limit cycles. (A) We plotted r0 of the cell with the
best fitness value each generation. (C) We calculated the expected fitness for all values of
r0. (B,D) Same as above, but we evolved r1 starting from 0.8 (non-oscillatory phenotype).
(B) We plotted r1 of the cell with the best fitness value each generation. (D) We calculated
the expected fitness for all values of r1. The evolutionary parameters were σ = 0.025 and
ftarget = 0.3. We simulated gene dynamics to T = 1000, with a snapshot every ∆t = 0.1.
The system size was Ω = 500 for our stochastic simulations.

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.21.485207doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Noise also accelerates the evolution of a titration-based oscillator.
Starting from an identical population at (A) βB

X = 175 and (B) βB
X = 300 (non-oscillatory

phenotypes), we ran 10 independent and identical evolutionary simulations for cells with
deterministic and stochastic gene dynamics. The horizontal dashed line indicates the value
at which a bifurcation occurs and where the deterministic system exhibits limit cycles.
(A-B) We plotted βB

X of the cell with the best fitness value each generation. (C) We
calculated the expected fitness for all values of βB

X . (D-F) Same as above, but we evolved
populations starting from (D) βF

X = 7.5 and (E) βF
X = 25 (non-oscillatory phenotypes).

(D-E) We plotted βF
X of the cell with the best fitness value each generation. (F) We

calculated the expected fitness for all values of βF
X . The evolutionary parameters were

σ = 0.02 and ftarget = 1.5. We simulated gene dynamics to T = 50, with a snapshot every
∆t = 0.005. The system size was Ω = 1000 in our stochastic simulations.
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Figure 5: The fitness landscape of a titration-based oscillator is extended and
smoothened by stochastic amplification. (A) Fitness landscape and evolutionary
trajectories of populations with (A) Deterministic gene dynamics, and (B) Stochastic
gene dynamics. The evolutionary parameters were identical to Figure 4, except that
diag (0.01, 0.4), which accounts for distinct timescales of evolution for βF

X and βB
X (see

Fig. 5C and F). We simulated 200 generations.
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Figure 6: Titration model, 3D evolution

Figure 6: The evolutionary process selects for noise-induced oscillation outside
the bifurcation boundary. (A) Evolutionary trajectories of all populations. We plot
the parameters of the fittest member of each evolving population, including system size
(103 < Ω < 105 is purple, whereas Ω ≥ 105 is yellow and deterministic). The alphabetic
labels are associated with the plots of (B-I) fitness F (θ) and (J-Q) system size Ω over
evolutionary time. The evolutionary parameters were identical to Figure 5, except that
diag (0.01, 0.4, 0.1) and all populations started with a system size of Ω = 104. Note that
the mutation of the system size Ω takes place in the log10 space, leading to a log-normal
mutation kernel of Ω. We simulated 300 generations.
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Figure 7: Mechanisms of noise-induced oscillation. (A) We considered three parame-
ter sets that cross different bifurcation boundaries. Each parameter set contains one point
inside the boundary, one inside-but-close to the boundary, and one outside the boundary.
The system size was set to Ω = 1000 for stochastic simulation. (B-D) We plot the phase
portraits of the system along with the stochastic and deterministic trajectories for fixed
βF
X = 15 and variable βB

X = 182, 175, and 170 respectively. (E-G) Phase portraits and
dynamics of the system for fixed βF

X = 15 and variable βB
X = 255, 255.7, and 260 respec-

tively. (H-J) Phase portraits and dynamics of the system for fixed βB
X = 200 and variable

βF
X = 10.5, 10.09, and 10 respectively. SLC = stable limit cycle, ULC = unstable limit

cycle, SFP = stable fixed point.
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Figure S1: Stochastic dynamics of the titration-based oscillator as a function
of intrinsic noise. The parameter sets are (βF

X , β
B
X) = (15, 170) (left column), (15, 260)

(middle column), (9.8, 200) (right column), and correspond to Panels D, G, J in Figure
7, respectively. We adjusted the strength of intrinsic noise by changing the system size
parameter Ω. From the top to the bottom row, we set Ω = 102, 102.5, 103, 103.5, 104,
104.5, and 105. A system with larger Ω has smaller intrinsic noise. The dynamics with
these parameter sets exhibit noise-induced oscillations: the stochastic dynamics exhibit
oscillatory behavior despite the parameters sets do not admit deterministic oscillations.
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Figure S2: Power-spectral analysis of the titration-based oscillator as a function
of intrinsic noise. The parameter sets are (βF

X , β
B
X) = (15, 170) (left column), (15, 260)

(middle column), (9.8, 200) (right column), and correspond to Panels D, G, J in Figure
7, respectively. From the top to the bottom row, we set Ω = 102, 102.5, 103, 103.5, 104,
104.5, and 105. We collected 218 snapshots for performing power-spectral density analysis
after discarding the first 104 transient, initial-condition-dependent snapshots. For the first
two parameter sets, we chose ∆t = 0.005. For the last parameter set, we chose ∆t = 0.05
because the noise-induced oscillations have a longer timescale. We also plot the smoothed
density estimation obtained by Welch’s method using 5 × 103 snapshots after discarding
5 × 103 initial snapshots, as we did for the evolutionary processes. This shows that the
density estimation of the shorter time series by Welch’s method reasonably captures the
behavior of the raw PSD using a longer time series. Segments of the time series are
visualized in Supplementary Fig. S1.
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