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The observation of genetic correlations between disparate traits has been
interpreted as evidence of widespread pleiotropy, altered theories of human
genetic architecture, and spurred considerable research activity across the
natural and social sciences. Here, we introduce cross-trait assortative mating
(xAM) as an alternative explanation for observed genetic correlations. We
observe that xAM is common across a broad array of phenotypes and that
phenotypic cross-mate correlation estimates are strongly associated with ge-
netic correlation estimates (R2 = 76%). Then, we present theoretical and
simulation-based results demonstrating that, under xAM, genetic correlation
estimators yield significant estimates even for traits with entirely distinct
genetic bases. We demonstrate that existing xAM plausibly accounts for sub-
stantial fractions of genetic correlation estimates in two large samples (N =
827,960). For example, previously reported genetic correlation estimates be-
tween many pairs of psychiatric disorders are fully consistent with xAM alone.
Finally, we provide evidence for a history of xAM at the genetic level using
a novel approach based on cross-trait even/odd chromosome polygenic score
correlations. Together, our results demonstrate that previous reports have
likely overestimated the true genetic similarity between many phenotypes.
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1 INTRODUCTION

1 Introduction
Over the previous decade, considerable research activity has focused on using genetic data
to infer the extent to which pairs of complex traits share overlapping genetic bases [1–7].
These efforts have been propelled by the development of genetic correlation estimators
designed to use summary statistics from genome-wide association studies (GWAS) [3,
8, 9], which have become a fundamental statistical tool across many domains of human
complex trait genetics, including psychiatry [2, 10], economics [11, 12], and medicine [13,
14]. The results of these analyses have been striking: many trait pairs, even those with
limited phenotypic similarity, display nontrivial genetic correlations (e.g., 0.209 [se =
0.042] for Attention-deficit Hyperactivity Disorder [ADHD] and body mass index [BMI]
in [2]). These findings have been broadly interpreted as evidence for widespread pleiotropy
across the phenome [3–5, 15], and, in the case of psychiatric disorders, have raised con-
cerns about the suitability of the existing nosology in the face of shared pathogenesis at
the genetic level across ostensibly distinct phenotypes [2, 7].

However, such interpretations assume that genetic correlation estimators index shared
genetic architectures, and various alternative explanations have been explored in consid-
erable detail (e.g., vertical pleiotropy and diagnostic errors [5, 16]). Here, we consider a
previously unexamined source of potential bias: cross-trait assortative mating (xAM), the
phenomenon whereby mates are correlated across distinct traits (i.e., individuals’ values
of phenotype Y are correlated with their partners’ values of phenotype Z). There are at
least four reasons to be concerned with this potential oversight: First, the single trait ran-
dom effects model, which genetic correlation estimators generalize, is misspecified under
single-trait AM and as a result overestimates SNP heritability [17]. Second, single-trait
AM is widespread across multiple domains for which substantial genetic correlations have
been observed, including anthropometric, psychosocial, and disease traits [2, 4, 5]. Third,
recent work has provided genetic-level evidence for a history of single-trait AM with re-
spect to some of these same phenotypes [18]. Fourth, xAM is known to generate spurious
results for other marker-based inference procedures, including Mendelian randomization
[19] and GWAS [20].

The present investigation comprises the first systematic investigation of the impact of
xAM on genetic correlation estimates. We first compile the largest to-date atlas of cross-
mate cross-trait phenotypic correlations, examining a broad array of previously-studied
metabolic, anthropometric, psychosocial, and psychiatric phenotypes across two large
population based samples in the United Kingdom (n=81,394) and Denmark (n=746,566).
We find that these cross-mate correlations, which are derived from phenotypic measure-
ments, explain a major portion of empirical marker-based genetic correlation estimates
for the same trait pairs (R2=76% across datasets). We next present theoretical and
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2 RESULTS

simulation-based results demonstrating that xAM biases genetic correlation estimates
and yields significant estimates even among traits with uncorrelated genetic effects. We
then use a simulation-based approach to evaluate the extent to which empirical level of
xAM alone might plausibly explain empirical genetic correlation estimates among pre-
viously studied traits, finding that substantial fractions of empirical genetic correlation
estimates are congruent with expectations for biologically independent traits subject to
xAM. Lastly, we present a multivariate extension of the work of Yengo and colleagues [18],
who utilized correlations between even versus odd chromosome-specific polygenic scores to
detect genetic signatures of single trait AM. We find that cross-trait even/odd polygenic
score correlations mirror cross-mate phenotypic correlation patterns and, through this
association, can explain substantial variation in empirical genetic correlation estimates.

Together, our findings imply that xAM-induced artifacts comprise a common, previously
unaddressed systematic source of bias in the genetic correlation literature. We discuss
these results in the context of the widespread application of the genetic correlation as a
measure of shared etiology, suggesting that many previously reported genetic correlations
are overestimated.

2 Results

2.1 Genetic correlation estimates mirror cross-mate phenotypic
correlations

We begin by quantifying the extent to which empirical genetic correlation estimates align
with cross-trait spousal correlations across a broad array of previously studied pheno-
types: a set of 20 anthropometric, metabolic, and psychosocial traits measured in the
UK Biobank (UKB) [21] and a collection of five psychiatric disorder diagnoses ascertained
from Danish civil registry data [22–26]. We first identified 40,697 spousal pairs within
the UKB sample and randomly selected 373,283 mate pairs within the Danish sample
and then estimated cross-mate correlations. For a pair of phenotypes Y , Z, there are
three cross-mate correlation parameters: ryy (resp. rzz) the correlation between mates
on phenotype Y (resp. phenotype Z) and ryz, the cross-mate cross-trait correlation; we
generically denote these quantities rmate, and present these estimates in the diagonal and
sub-diagonal entries of Figures 1a and 1b. We also compiled LDSC genetic correlation
estimates, denoted ρ̂β;LDSC, for each pair of phenotypes, which we present in the super-
diagonal entries of Figures 1a and 1b. In the context of an ordinary least squares (OLS)
regression model, ρ̂β;LDSC were strongly associated with rmate estimates across both sam-
ples (Figure 1c; meta-analytic R2=75.99%, 95% CI: 68.60% - 83.39%). We also fit a
Bayesian linear model accounting for heteroskedasticity and sampling error in rmate es-
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2 RESULTS

timates, which yielded comparable results (R2=76.95%, 95% CI: 74.19% - 79.72%). All
pairwise estimates are provided in Table S1.

2.2 Defining genetic correlation

Having established that a large degree of the variance in genetic correlation estimates can
be predicted from phenotypic mating correlations, we now provide theoretical intuition
as to why this might occur. We start by defining two distinct notions of genetic similarity
between phenotypes.

We consider a pair of phenotypes Y , Z composed of the additive effects ofm standardized
haploid variants X1, . . . Xm with phenotype-specific effects βy, βz:

Y =
m∑
i=1

Xiβy;i︸ ︷︷ ︸
:=`y

+ εy, Z =
m∑
i=1

Xiβz;i︸ ︷︷ ︸
:=`z

+ εz. (1)

Each phenotype is composed of a heritable liability component `, the true polygenic score,
and a non-heritable component ε. For convenience, we assume that causal variants are
initially unlinked and both Y and Z have unit variance under random mating (panmixis),
such that the panmictic heritabilities are h2

y;pan = βᵀ
yβy and h2

z;pan = βᵀ
zβz.

Classically, genetic correlation is defined as the correlation between the heritable compo-
nents of two traits [5, 27]. We will refer to this quantity as the score correlation:

ρ` = cor(`y, `z),

as it reflects the correlation between the true polygenic scores. This is distinct from the
correlation between effects, which we refer to as the effect correlation ρβ, and which
indexes the similarity of variant effects on two phenotypes:

ρβ = cor(βy,βz).

We will refer to a pair of traits as genetically orthogonal when their effects are uncorre-
lated; i.e., when ρβ = 0. Variance components models aim to estimate ρβ [28–30]. Within
the standard random effects model framework, which assumes genotypes are independent
of effect sizes, ρ` and ρβ are equivalent and hence seldom discussed as separate quantities.

We note that both of these measures are distinct from pleiotropy, which refers to the
extent to which two traits are affected by the same causal variants. Pleiotropy is a
necessary precondition for effect correlation, but it is possible to have independent effects
with or without pleiotropy (Section 5.1.2).

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.21.485215doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485215
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 RESULTS

Figure 1: (a) Cross-mate correlation and genetic correlation estimates for previously studied
UK Biobank phenotypes. Diagonal and sub-diagonal heatmap entries correspond to cross-mate
phenotype correlation estimates derived from 40,697 putative spouse pairs in the UK Biobank.
Super-diagonal entries correspond to empirical LDSC correlation estimates among unrelated Eu-
ropean ancestry UK Biobank participants. Phenotypic correlations are sex- and age-adjusted
partial correlation estimates. (b) Cross-mate correlation and genetic correlation estimates for
psychiatric disorders. Diagonal and sub-diagonal entries reflect cross-mate tetrachoric correla-
tions among 373,283 spousal pairs sampled from the Danish population. Super-diagonal entries
are previously-reported LDSC correlation estimates [2]. (c) Association between empirical cross-
mate phenotypic correlation and genetic correlation estimates (meta-analytic R2 ≈ 76%). Note:
all numbers have been rounded to two decimal places; the sex-constrained structural model for
the cross-mate correlation between heel bone mineral density (BMD) and subjective happiness
failed to converge and is omitted from the first heatmap.
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2 RESULTS

Less intuitively, score correlations (ρ`) can be nonzero when the effects themselves are
independent (i.e., ρβ=0). That is, traits with uncorrelated effects can have collinear
polygenic scores. Under xAM, all causal variants affecting trait Y become correlated
with all causal variants affecting trait Z and these correlations are directionally consistent
with their respective effects (see Supplementary Materials S1.1 for details). For example,
conditional on having inherited a trait-increasing allele for phenotype Y from one parent,
an individual is more (resp. less) likely to have inherited a trait-increasing (resp. -
decreasing) allele for phenotype Z from the other parent when parents have positively
assorted across Y and Z. As we will demonstrate in the following section, this results in
a non-zero genetic correlation ρ` in the direction of the cross-mate cross-trait phenotypic
correlation, even for genetically orthogonal traits.

2.3 The impact of xAM in simulations

We ran a series of forward-time simulations using realistic genotype data (see Online
Methods) to investigate the impact of xAM on multiple measures of genetic correlation.
We began with a founder population of 335,550 of unrelated European ancestry UK
Biobank participants’ phased haploid genotypes at 1,000,000 common single nucleotide
polymorphisms (SNPs). We then simulated two phenotypes, Y and Z, by randomly
selecting 10,000 causal variants and drawing two corresponding sets of standardized effects
from the bivariate Gaussian distribution with variances h2

y;pan, h2
z;pan and correlation ρβ.

Non-heritable components εy, εz were drawn independently from univariate Gaussian
distributions with variances 1 − h2

y;pan, 1 − h2
z;pan, such that both phenotypes had unit

variance at panmixis.

At each generation, individuals (consisting of a set of genotypes together with two phe-
notypes) were matched to achieve target cross-mate correlation parameters. Throughout
this section, we assume the cross-mate phenotypic correlations are non-negative and ex-
changeable for simplicity; i.e., that ryy, rzz, and ryz are all equal to a single parameter,
which we denote rmate ≥ 0. Extension to dissassortative mating, wherein rmate < 0, is
trivially achieved by reversing the sign of either phenotype. We also assume the two
phenotypes have equal panmictic heritabilities, which we denote h2

pan = h2
y;pan = h2

z;pan.
We later consider general cross-mate correlation structures and differing panmictic heri-
tabilities.

We constructed offspring genotypes by simulating meiosis according to empirically de-
rived recombination frequencies in order to preserve local LD. Each generation’s haploid
genotypes were thus permutations of the founder haplotypes. We performed sensitivity
analyses (see Online Methods) to confirm that our results did not depend on simulation
parameters, including the number of causal variants (Figure S1), mate selection algorithm
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2 RESULTS

(Figure S2), recombination scheme (Figure S3), and whether causal variants with orthog-
onal genetic effects were located on overlapping loci (Figure S4). Having constructed new
genotypes, we generated phenotypes as above and estimated effect correlation (ρ̂β) using
LD score regression (LDSC, denoted ρ̂β;LDSC; [3]), Haseman-Elston regression (HE, de-
noted ρ̂β;HE; [31]), and residual maximum likelihood (REML; ρ̂β;REML; [28, 32]). We also
computed true score correlations (ρ`), which is possible when the true genetic effects are
known. Additionally, we conducted supplementary simulation studies investigating the
impact of xAM on GWAS effect size estimates (Section 5.6, Figure S5) and the impact
of xAM on effect correlation estimates in the presence of misdiagnosis (Supplementary
Materials S1.2.2, Figure S6).

2.3.1 xAM induces nonzero score correlations among genetically orthogonal traits

We confirmed that xAM induces substantial score correlations across a broad array of
simulation parameters. This was perhaps most striking for traits with orthogonal effects:
Figure 2a demonstrates the increase in the true score correlation across multiple gener-
ations of xAM for a pair of traits with ρβ = 0, rmate = 0.5, and h2

pan = 0. Averaging
across simulation replicates, after a single generation of xAM, the score correlation was
0.11, and after three generations of xAM, the score correlation was 0.24. The fraction of
shared causal variants had no discernible impact on this behavior (Figure S4); that is,
when ρβ = 0, the extent to which the causal variants affecting two traits overlapped was
unimportant.

Intuitively, this behavior occurs because xAM induces correlations between causal loci
consistent in sign with the directions of their effects (see S1.1.1 for details). That is, pairs
of trait increasing or trait decreasing loci become positively correlated whereas pairs of
loci discordant with respect to the direction of their effects become negatively correlated.
We can decompose the liability correlation into two disjoint sums:

cor(`y, `z) =
∑
i=j

βy;iβz;j +
∑
i6=j

cor(xi, xj)βy;iβz;j. (2)

The first sum is proportional to ρβ and will only be nonzero when ρβ 6= 0. On the other
hand, the second sum does not depend on ρβ, but, due to sign-consistent global LD
induced by xAM, will be greater than zero at all pairs of causal loci for Y and/or Z.

2.3.2 Effect correlation estimates are biased upwards

Although xAM induces nonzero score correlations between genetically orthogonal traits,
these correlations are not artifactual in the sense that individuals’ latent liabilities truly do
become correlated. On the other hand, effect correlation estimators, which assume that
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2 RESULTS

Figure 2: Forward-time simulation results demonstrating the impact of xAM on score corre-
lation (ρ`) and effect correlation estimates (ρ̂β) for two synthetic phenotypes with true effect
correlation ρβ and panmictic heritabilities h2

pan. The single mating correlation parameter rmate
denotes the value of the two cross-mate single-trait correlations and the cross-mate cross-trait
correlation. (a) xAM increases the true score correlation among two genetically orthogonal phe-
notypes. The HE, LDSC, and REML estimators all overestimate ρβ, and the magnitude of this
bias increases over subsequent generations. (b) After three generations of xAM, ρ̂β estimates
are upwardly biased for trait pairs with true effect correlations less than one (i.e., genetically
distinct phenotypes). (c) The impact of three generations of xAM increases with the phenotypic
correlation among mates. (d) The impact of three generations of xAM increases monotonically
with the panmictic heritabilities.
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the contributions of causal haplotypes are pairwise independent (i.e., cov(Xiβy;i, Xjβz;i) =
0 for distinct loci i, j) [17], are mispecified under xAM and yield upwardly biased esti-
mates of the true effect correlation ρβ. Returning to the case of genetically orthogonal
traits presented in Figure 2a, after a single generation of assortative mating, the REML
estimator yielded ρ̂β=0.15 and the method-of-moments estimators, HE and LDSC, which
are mathematically equivalent to each other [33, 34], yielded average estimates of ρ̂β=0.21
and ρ̂β=0.21, respectively, all of which are substantally higher than the true effect correla-
tion of zero. After three generations of xAM, this upward bias becomes more pronounced,
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2 RESULTS

with REML and LDSC yielding effect correlation estimates of ρ̂β=0.30 and ρ̂β=0.44, re-
spectively.

2.3.3 The true score correlation and estimated effect correlation are
monotonically related to ρβ, rmate, and h2

pan

So far we have restricted our focus to the instructive case of genetically orthogonal traits,
though many trait pairs subject to cross-trait xAM will truly have correlated genetic
effects. Figure 2b illustrates the relationship between ρβ, ρ`, and ρ̂β for two traits with
h2

pan = 0.5 and subject to three generations of xAM with rmate = 0.5. Excepting the case
of ρβ = 1.0 (a pair of genetically identical phenotypes), the pattern of results remains
consistent with the genetically orthogonal case, where the correlation between effects is
lower than the true score correlation, which is in turn lower than the upwardly biased
ρ̂β estimates provided by REML, HE, and LDSC. For example, when ρβ = 0.25, LDSC
yields ρ̂β=0.62 after three generations of xAM. The impact of cross-trait xAM on both
ρ` and ρ̂β is greater for traits subject to higher cross-mate correlations (i.e., stronger
assortment induces more substantial bias; Figure 2c) and for traits with greater panmictic
heritabilites (i.e., the genetic consequences of xAM are more substantial for more heritable
phenotypes; Figure 2d).

2.4 xAM alone can plausibly explain substantial variance in
empirical genetic correlation estimates

Having established in simulations that xAM can induce substantial ρ̂β estimates regard-
less of shared biological basis, we sought to quantify the extent to which empirical ρ̂β
estimates for previously-studied trait pairs could be explained by xAM alone, assum-
ing genetic orthogonality. As there are currently no unbiased estimators of ρβ under
xAM, we proceeded with a simulation-based approach, restricting our focus to method-
of-moments estimators in light of the widespread usage of LDSC regression. We present
two self-contained analyses focused on the UKB (Figure 1a) and Danish sample pheno-
types (Figure 1b), respectively.

Within each sample, we first identified mate pairs and estimated the phenotypic cross-
mate correlations ryy, rzz, and ryz for each pair of traits as described above. We then used
these estimates, together with empirical heritability estimates, as inputs to a forward-time
simulation where separate, non-overlapping collections of causal variants were assigned
to the two phenotypes, thereby constraining the true effect correlation to zero. At each
generation, we estimated the effect correlation, ρβ, using method-of-moments. These
projected effect correlation estimates, which we denote ρ̂xAM, can be interpreted as the
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2 RESULTS

expected LDSC effect correlation estimate for the two traits in the complete absence
of pleiotropy after a given number of generations of xAM with mating proceeding in
accordance with empirical spousal correlation estimates.

Given that both marker-based and pedigree-based heritability estimators (which we de-
note ĥ2

SNP and ĥ2
PED, respectively) are biased under AM (albeit in different directions;

[17, 35]) and that neither approach directly estimates the panmictic heritability, we
conducted two sets of simulations, one assuming h2

pan = ĥ2
SNP and the other assuming

h2
pan = ĥ2

PED. We focus discussion in the primary manuscript on the simulations which
assumed h2

pan = ĥ2
PED as the impact of xAM depends on the total heritability of the traits

involved, not just that tagged by common variants, though results assuming h2
pan = ĥ2

SNP

are presented in the supplement.

We next compared the projected correlation estimates under xAM alone, ρ̂xAM, to empir-
ical LDSC effect correlation estimates using real (rather than synthetic) phenotype data,
which we denote ρ̂emp. To simplify discussion, we define the ratio

γ̂ = ρ̂xAM/ρ̂emp, (3)

which measures the strength of the projected LDSC effect correlation estimate due to
xAM-induced artifact relative to the empirical LDSC effect correlation estimate for a
given pair of phenotypes. When γ̂ is close to zero, empirical effect correlation estimates
are far greater than what might be attributable to xAM alone. On the other hand, when
γ̂ is close to one, empirical estimates are entirely consistent with xAM-induced artifact.
We caution that γ̂ does not constitute a direct estimate of the fraction of the empirical
genetic correlation estimate attributable to xAM.

2.4.1 Expected effect correlation estimates for UK Biobank phenotypes in the
absence of pleiotropy

As we were concerned with the misinterpretation of xAM-induced artifacts for evidence
of pleiotropy, we restricted our attention to 132 (of 190 possible) pairs of phenotypes with
nominally significant LDSC genetic correlation estimates (Table S1). We first obtained
pedigree-based heritability estimates for each of the traits of interest from the exist-
ing literature, using estimates derived in UK-based samples when available (Table S2).
Together with the phenotypic mating correlations (Figure 1a), these comprised inputs
for the forward time simulations used to compute ρ̂xAM, which we in turn compared to
empirical LDSC effect correlation estimates (ρ̂emp) to obtain γ̂ as illustrated in Figure 3a.

Across 132 trait pairs, 42 evidenced γ̂ values significantly greater than zero after a single
generation of xAM, which increased to 74 trait pairs after three generations. Figure 3b
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2 RESULTS

Figure 3: Comparison of empirical genetic correlations (ρ̂emp) to expected estimates in the
absence of pleiotropy (ρ̂xAM) for assorted UK Biobank phenotypes. Error bars throughout
represent 95% credible intervals. (a) For each trait pair, we ran 400 replicate forward time
simulations without pleiotropy with panmictic heritabilities obtained from pedigree-based es-
timates and selecting mates to match empirical cross-mate correlation estimates. After each
generation, we computed the method-of-moments genetic correlation estimate (ρ̂xAM), which we
interpret as the expected LDSC genetic correlation estimate in the absence of pleiotropy after
a given number of generations of xAM. We compared this quantity to empirical LDSC genetic
correlation estimates in the UK Biobank (ρ̂emp) to obtain the ratio γ̂ := ρ̂xAM/ρ̂emp. (b) The
top 20 γ̂ estimates after up to five generations of simulated xAM across previously-studied UK
Biobank phenotype pairs with nominally significant LDSC genetic correlations. (c) Projected
versus empirical LDSC estimates for all UK Biobank phenotypes with nominally significant
genetic correlation estimates. (b) Inverse variance weighted average γ̂ estimates within and
between UK Biobank phenotypes in qualitatively similar domains.
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presents the first 20 pairs in descending order of γ̂ and Figure 3c presents the raw projected
and empirical effect correlation estimates across all 132 pairs (see Table S3, Figures S7
to S9 for detailed results spanning one to five generations of xAM). Averaging across
all trait pairs (including those not significantly different from zero), the inverse variance
weighted average γ̂ estimate was 0.25 (se=0.005). The relative strengths of within-
and cross-domain projections varied substantially when aggregating across qualitative
clusters of phenotypes (see Figure 1a and Table S2 for domain definitions). For example,
relatively small fractions of empirical ρ̂β estimates among metabolic phenotypes were
congruent with expectations under five generations of xAM alone (γ̂=0.08, se=0.01) in
comparison to those between psychosocial phenotypes (γ̂=0.21, se=0.01). We note that
these domain-averages are highly dependent on the set of traits considered and should
be interpreted with care.

2.4.2 Expected effect correlation estimates among psychiatric disorders in the
absence of pleiotropy

We next computed projected effect correlation estimates assuming up to five generations
of xAM under empirically derived cross-mate correlation structures for a collection of five
psychiatric disorders, as estimated in sample of 373,283 spousal pairs randomly selected
from the Danish population (see S1.3 for details). Again, we obtained pedigree-based
heritabilities for each disorder, preferring studies using samples from Scandinavian coun-
tries when available (Table S4), and used these estimates, together with the cross-mate-
correlations, to compute ρ̂xAM. We then compared these projections to the LDSC genetic
correlation estimates presented by Anttila and colleagues [2]. We focused on Anttila et
al.’s manuscript as their interpretation of the genetic correlation as a direct measure of
biological overlap is broadly representative of the views of many complex trait geneticists
[3–5, 7].

Across all pairwise combinations of disorders, we observed an average ratio of γ̂ = 0.309
(se=0.037; Figures 4a and 4b) after five generations of xAM. Some trait pairs evidenced
considerably greater empirical effect correlation estimates than might be explained by
xAM alone (e.g., for anxiety disorders and major depression, γ̂=0.231, 95% CI: 0.129 -
0.390), whereas for other pairs this discrepancy was modest (e.g., for anxiety disorders
and Schizophrenia, γ̂=0.855, 95% CI: 0.461 - 2.583). We present detailed results across
one to five generations of xAM in Table S5 and Figures S10 and S11.

xAM exacerbates the impact of misdiagnosis on effect correlation estimates among
psychiatric disorders Given the combined effects of xAM and measurement error in
terms of inflating effect correlation estimates (see S1.2.2), we next extended our method
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2 RESULTS

Figure 4: Comparison of empirical effect correlation estimates among psychiatric phenotypes
to expectations in the absence of pleiotropy. (a) Ratios (γ̂ := ρ̂xAM/ρ̂emp) of projected LDSC
effect correlation estimate (ρ̂xAM) assuming xAM and no pleiotropy relative to the empirical
effect correlation estimates (ρ̂emp) of [2] for five psychiatric disorders with 95% credible intervals.
Projections assume up to five generations of xAM matching empirical cross-mate correlations in
the Danish sample and assume panmictic heritabilities equal to pedigree-based estimates from
demographically-comparable studies (Table S4). (b) Projected versus empirical LDSC estimates
across psychiatric phenotype paits. (c) The potential joint impacts of bidirectional errors in
diagnosis and xAM on effect correlation estimates for selected psychiatric disorder pairs. The
red dashed line corresponds to γ̂ = 1 across all panes.
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for deriving ρ̂xAM to incorporate errors in diagnosis and applied this extension to each
pair of psychiatric disorders. At each generation, we dichotomized continuous phenotypes
using empirical prevalence estimates (Table S4) and introducing misdiagnosis errors prior
to estimating the effect correlation. We considered bidirectional misclassification errors
(one disorder might be mistaken for another and vice-versa) ranging from 0% to 10%
and up to three generations of xAM in accordance with empirical spousal-correlation
estimates (Figure S11). Results demonstrated that some of the empirical effect correlation
estimates presented by [2] were entirely consistent with artifacts induced by xAM coupled
with moderate diagnostic error rates for some trait pairs but not others. Whereas high
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(i.e., ≥10%) rates of misdiagnostic errors are necessary to fully account observed effect
correlations between ADHD and anxiety disorders in the absence of xAM, five generations
of xAM coupled with a 5% misdiagnosis rate would account for nearly all of the empirical
genetic correlation estimate (γ̂=0.808, 95% CI: 0.363 − 5.106). On the other hand, the
same extent of xAM and misdiagnosis would account for a considerably smaller fraction of
the empirical genetic correlation estimate between anxiety disorders and major depression
(γ̂=0.370, 95% CI: 0.242 − 0.665). Figure 4c highlights the potential impacts of xAM
and diagnostic errors on four selected trait pairs.

2.5 Genetic evidence for xAM recapitulates empirical cross-mate
correlations

We have thus far established that one or more generations of xAM consistent with em-
pirical cross-mate correlation estimates could plausibly induce substantial bias in genetic
correlation estimates for many previously studied traits. We now assess evidence for a
history of phenotypically-mediated xAM at the genetic level. Previous work has used
even/odd chromosome polygenic score correlations to examine evidence for AM with re-
spect to a single trait [18]. We adapted this approach to the bivariate case by computing
cross-trait even/odd polygenic score correlations (ρ̂`;eo; Table S6). In the absence of xAM
or other sources of population structure, polygenic scores computed on even chromsomes
for one trait versus those computed on odd chromosomes for a second trait are expected
to be orthogonal. On the other hand, the long-range sign-consistent LD induced by xAM
will induce correlations between polygenic scores on separate chromosomes (see Supple-
mental Materials S1.1.3). Further, these correlations should positively associate with
cross-mate phenotypic correlations.

In order to compute cross-chromosome polygenic score correlations, we first computed
GWAS effect estimates and clumped results in a training subsample of 80% of unrelated
European ancestry UK Biobank participants and then computed polygenic scores specific
to even and odd chromosomes for the remaining 20% using multiple p-value thresholds.
We then regressed the estimated even/odd polygenic score correlations on the correspond-
ing cross-mate cross-trait correlations (or cross-mate same-trait correlations in the case of
univariate even/odd correlations; Section 5.9). Finally, we regressed the estimated cross-
trait even/odd polygenic score correlations on the corresponding LDSC effect-correlation
estimates.

In an OLS model using scores built with all clumped variants, cross-mate phenotypic cor-
relation estimates (rmate) explained substantial variance in the cross-chromosome even/odd
polygenic score correlations (ρ̂`;eo; R2=47.66%, se=0.060; Figure 5a). As before, account-
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Figure 5: Genetic level evidence consistent with xAM in the UK Biobank. (a) Correlation
between even and odd chromosome-specific polygenic scores as a function of the cross-mate
phenotypic correlation. For a single trait, the vertical axis reflects the correlation between even
and odd chromosome polygenic scores ˆ̀even, ˆ̀odd and the horizontal axis reflects the cross-
mate correlation. For a pair of traits Y , Z, the vertical axis reflects a single parameter to
which the correlations between ˆ̀

y;even, ˆ̀
z;odd and between ˆ̀

y;odd, ˆ̀
z;even are both constrained,

and the horizontal axis reflects the cross-mate cross-trait correlation. (b) Cross-trait even/odd
polygenic score correlations as a function of empirical LDSC effect correlation estimate. The
positive association of these quantities is consistent with our hypothesis that empirical effect
correlations capture genetic structure in addition to signals of biological overlap.
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ing for measurement error and heteroskedasticity in a Bayesian linear model yielded nearly
identical results. This association persisted across polygenic score p-value thresholds
ranging from 3.00e-3 to 1.00; Figure S12).

Additionally, cross-trait even/odd chromosome polygenic score correlations were posi-
tively associated with empirical LDSC effect correlation estimates (ρ̂β;LDSC; R2=34.81%,
se=0.045; Figure 5b). This is consistent with the hypothesis that empirical effect cor-
relation estimates are capturing additional structure beyond the signatures of biological
overlap. Further, regressing ρ̂β;LDSC on ρ̂`;eo and r̂yz simultaneously revealed that the as-
sociation between ρ̂β;LDSC and ρ̂`;eo is mediated via r̂yz (∆R2<0.001; partial effect p=0.48
for ρ̂`;eo versus p<5e-8 for r̂yz). Thus, any alternative sources of population structure
beyond xAM captured by ρ̂`;eo do not appear to explain the positive association between
ρ̂`;eo and ρ̂β;LDSC.

3 Discussion
Nonzero effect correlation estimates have been widely interpreted as evidence that two
traits share overlapping genetic bases. It is therefore surprising that substantial variation
in genetic correlation estimates can be explained by cross-mate phenotypic correlations
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(Figure 1c). Further, given the strength of this association, the consequences of the
random mating assumption implicit in all commonly used genetic correlation estimators
[3, 8, 28, 31, 36] warrant critical attention.

We have demonstrated that xAM increases the score correlation (ρ`) between a pair of
traits by inducing long-range sign-consistent LD across all pairs of causal variants, even
when the causal effects themselves are uncorrelated (ρβ = 0). Marker-based genetic
correlation estimators, however, implicitly assume that ρ` = ρβ, and under this misspeci-
fication substantially overestimate ρβ after even a single generation of xAM (Figure 2a).
In this context, we sought to quantify this potential source of bias across a broad ar-
ray of phenotypes by compiling the largest to-date collection of empirical cross-mate
cross-trait correlation estimates and using these to anticipate ρ̂xAM, the projected ef-
fect correlation estimate purely due to xAM-induced artifact. Across numerous pairs of
nominally genetically correlated traits, xAM alone could plausibly produce substantial
ρ̂β values relative to empirical LDSC estimates, though the relative magnitude of such
effects varied considerably across phenotype pairs. Additionally, we provided evidence
congruent with a history of xAM at the genetic level by demonstrating that cross-trait
even/odd chromosome polygenic score correlations mirror phenotypic cross-mate corre-
lations. Moreover, we showed that cross-trait even/odd chromosome polygenic score
correlations explain substantial variation in genetic correlation estimates through their
association with cross-mate phenotypic correlations, consistent with the hypothesis that
changes to global LD structure induced by previous generations of xAM have resulted in
biased genetic correlation estimates.

Taken together, our results show that assortment across phenotypes will bias effect corre-
lation estimates, that cross-mate cross-trait phenotypic correlations among many pairs of
phenotypes are strong enough that one or more generations of assortment would substan-
tially inflate effect correlation estimates, and that the joint distribution of causal variants
and their estimated effects coincides with what we would expect after one or more gen-
erations of xAM. We therefore conclude that xAM provides a previously ignored source
of systematic bias in the study of genetic similarity across complex traits, one that pre-
cludes the interpretation of the effect correlation estimate as a direct index of biological
similarity.

This is perhaps most salient in scientific domains where effect correlation estimates may
be interpreted through a clinical lens. In order to better understand the potential conse-
quences of xAM-naïve approaches, we reexamined the results Anttila and colleagues [2],
who, in chorus with others [7], interpret substantial effect correlation estimates among
psychiatric disorders as evidence of shared pathogenesis that contradicts existing dis-
ease classifications. Though our results are agnostic with respect to the adequacy of
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psychiatric nosology, they illustrate that effect correlation estimates alone do not imply
shared pathogenesis and suggest that a substantial fraction of the effect correlation es-
timates among many pairs of psychiatric traits are largely consistent with xAM alone.
Further, modest levels of diagnostic error, when coupled with xAM, can fully account for
some previously published estimates (Figures 4c and S11). Reassuringly, our results also
demonstrate that particular trait pairs with high rates of comorbidity or characterized
by similar symptomatology (i.e., anxiety disorders/major depression and bipolar disor-
ders/Schizophrenia; [26, 37]) exhibit effect correlation estimates greater than what we
could plausibly attribute to xAM and diagnostic error. Though it is still possible that
such estimates are biased upwards to some extent by either or both factors, the general
qualitative interpretation that these disorders share overlapping genetic bases appears
robust.

Our results also complicate the interpretation of a number of multivariate analytic frame-
works beyond effect correlation estimators. For example, genomic structural equation
modeling [6], which takes marker-based genetic correlation estimates as inputs, will prop-
agate xAM induced biases. The consequences for methods such as MTAG [38] are not
obvious as xAM will not necessarily decrease prediction R2 (e.g., see Figure S5b). That
is, the apparent gain in predictive performance of multi-phenotype polygenic score aggre-
gates could arise from the global patterns sign-consistent LD induced by xAM. Broadly
speaking, our findings mirror recent results regarding the potential impacts of assorta-
tive mating across other areas of statistical genetics, including marker-based heritability
estimation [17], and Mendelian randomization [19, 39].

There are a number of limitations to the current investigation. Foremost among these
are the constellation of assumptions required to predict the expected effect correlation
estimate under xAM alone (ρ̂xAM), which here reflect a particular model of assortment
(see Supplemental Materials S1.1 for further details). Even in the simplified context of
two additive traits with uncorrelated effects, anticipating ρ̂β values under xAM alone
necessitates numerous unconfirmed assumptions about the dynamics of a particular pop-
ulation, including but not limited to: the panmictic heritabilities, the stability of cross-
mate phenotypic correlation structures over succeeding generations, and the stability and
transmissability of environmental factors, each of which comprises an active research area
[17, 20, 40]. We proceeded under a relatively tractable dynamical framework assuming
a fixed number of generations of assortment on two additive phenotypes with constant
cross-mate correlations, stable non-heritable sources of variation, and no vertical trans-
mission. Though each of these assumptions is likely to prove untenable for particular
trait pairs and thereby compromise the accuracy of our projections, we hypothesize that
the general qualitative phenomenon whereby xAM inflates effect correlation estimates is
likely to persist for a number of traits. Nonetheless, we caution that these projections
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3 DISCUSSION

are contingent upon a number of consequential decisions, noting that all existing meth-
ods are only able to sidestep these decisions by making the strong (and likely incorrect)
assumption that mating is random.

Separate from this collection of necessary modeling decisions is the more elemental as-
sumption of primary phenotypic assortment–that mate selection is mediated through both
the heritable and non-heritable factors underlying a pair of phenotypes. This assumption
represents a middle ground between the two extreme scenarios of genetic homogamy, in
which mates assort exclusively on genotype, and social homogamy, where mates assort
exclusively on environmental factors [41]. Critically, xAM under pure social homogamy,
which is conceptually equivalent to primary phenotypic assortment across 0% heritable
phenotypes, would have no impact on either the score correlation or effect correlation es-
timator (this can be intuited by extrapolating toward h2

pan = 0 in Figure 2d). However, if
pure social homogamy were widespread, we would not expect to observe any association
between cross-trait even/odd chromosome polygenic score correlations and cross-mate
cross-trait correlations, which was not the case empirically (Figure 5a). To the extent
that the assumption of primary phenotypic assortment is violated, it is most likely to
be a matter of degree (i.e., heritable and non-heritable phenotype components may be
weighted disproporitionately but both impact mate choice to some extent), and can be
conceived of as another modeling procedure unlikely to dramatically alter our qualitative
conclusions. Still, constructing a generative model that reconciles the association between
empirical mating patterns and genetic correlation estimates is a ill-posed inverse problem
for which there are multiple solutions, of which we have only explored one.

Finally, though we demonstrate that empirical levels of xAM are substantial enough to
have induced systemic bias in the genetic correlation literature, we have not explicitly
estimated the extent to which empirical genetic correlation estimates reflect biological
versus structural factors. Thus, the development of quantitative methods that jointly
model causal loci and their effects (i.e., do not assume ρ` and ρβ are equivalent) com-
prises a prime target for future research. We further remark that xAM is, in essence,
a form of population structure, and suggest that the development of such methods may
provide insight into residual sources of variation not captured by conventional principal
component or mixed-model based correction. Given the increasing evidence that exist-
ing methods fail to completely address structural factors, even in ostensibly ancestrally
homogenous groups [42, 43], a broader characterization of population structure and new
methods for addressing such structure will like be necessary to generate results that are
maximally clinically relevant and can be applied equitably.
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5 Online methods

5.1 Simulation framework

We present results derived from two forward-time simulation frameworks: a highly real-
istic but computationally intensive scheme (hereafter referred to as the large-scale frame-
work) and a simplified, computationally efficient scheme (hereafter referred to as the
simplified framework), both of which we describe in detail in the following section. We
justify employing the simplified framework by validating its output against that of the
realistic framework, concluding that the simplified framework is sufficient for modeling
the effects of xAM. Further, comparing these methods allows us to isolate the impacts
(or lack thereof) of several phenomena of interest, including pleiotropy and local linkage
disequilibrium (LD). We provide the code necessary to repeat or extend these analyses at
https://github.com/rborder/xAM_and_gen_corr. All analyses were conducted using
R v4.0.2 or R v4.1.0 [44] unless otherwise stated.

5.1.1 Large-scale framework

With the exception of extending the mating scheme to the bivariate case, we proceded
as in [17]. Briefly, we used the genotypes of unrelated European ancestry UK Biobank
participants at one million phased, imputed HapMap3 SNPs with minor allele frequency
(MAF) ≥ 0.01 as founder population. Meoisis was simulated by dividing the genome into
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10 kB blocks and deriving recombination probabilities from a linear interpolation of 1000
Genomes Project Phase 3 recombination map [45], thus preserving the existing local LD
structure.

For each simulation, m=1e4 loci were selected as causal variants for the two pheno-
types Y, Z such that their standardized effects βy,βz were jointly bivariate Gaussian
with respective variances m−1h2

y;pan,m
−1h2

z;pan and correlation ρβ. Phenotypes were then
generated according to the additive model in (1). Individuals (represented by pairs of phe-
notype values) were mated according to the exchangeable cross-mate correlation regime
described in Section 5.1.3.

In order to avoid any potential confounds due to within-sample relatedness, each cou-
pling produced a single offspring, thereby halving the sample size with each successive
generation and ensuring no pairs of individuals share any indentical-by-descent segments
with respect to the founder population. At each generation, we obtained heritability
and genetic correlation estimates from HE regression as implemented in GCTA v1.93.2b
[28], LDSC regression as implemented in LDSC v1.0.1 [3], and REML as implemented in
BOLT-LMM v2.3.4 [29]. For LDSC, we estimated LD scores within sample using input
paramater ld-wind-cm=1.0 and obtained GWAS summary statistics using plink2 v2.0
[46]. To improve computational efficiency, we analyzed subsamples of n=4e5 individu-
als, with the exception of the fourth and fifth generation results presented in Figure 2a,
which were respectively limited to n=2e5, 1e5 by the diminishing sample size at each
generation.

5.1.2 Simplified framework

Given the computational resources required by the large-scale framework in light of the
large number of trait pairs we wanted to base simulations on (each run of the large-scale
framework generates several terrabytes of output), we developed a simplified framework
using entirely synthetic data and only including causal loci. We constructed founder
genotypes by randomly drawing 2m haploid SNPs with m allele frequencies distributed
uniformly on [0.01, 0.99] independently for n individuals, with meiosis proceeding as de-
scribed in Section 5.1.2. Any potential confounds due to relatedness were avoided as in
the large-scale framework described above.

Phenotype simulation with and without pleiotropy We again generated phenotype
pairs according to the additive model (1), restricting our focus to the case of genetically or-
thogonal traits. Given a specified effect correlation (in this case ρβ = 0), pleiotropy is irrel-
evant. We demonstrated this by simulating phenotypes under either complete pleiotropy
(all causal variants have non-zero effects on both phenotypes) and zero pleiotropy (all
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causal variants have non-zero effects on only one of pair of phenotypes).We independently
sampled genetic effects βy,βz from the univariate Gaussian distributions with respective
variances m−1h2

y;pan,m
−1h2

z;pan, using a single set of m causal variants to simulate com-
plete pleiotropy and two independent sets of m/2 causal variants for to simulate zero
pleiotropy. Figure S4 demonstrates that, as expected, the fraction of causal variants
shared between phenotypes has no bearing on the impact of xAM. However, as the zero
pleiotropy simulation procedure reduced sampling variance across simulations (in a finite
sample, ρβ has greater variance when causal variants overlap), we utilized this approach
for the results presented in Section 2.4 . The number of causal variants had no apparent
impact on quantities of interest (Figure S1).

Manipulating local LD Denoting the first and second copies of an individual’s haploid
genotypes at the jth diploid locus by X [1]

j , X
[2]
j , respectively, we manipulated local LD

during meiosis I by enforcing recombination events at each single line with probability
precomb. and each double line with probability 0.5 below:

X
[1]
1 X

[1]
2 · · · X [1]

c X
[1]
c+1 X

[1]
c+2 · · · X

[1]
2c · · · · · · X [1]

m

X
[2]
1 X

[2]
2 · · · X [2]

c X
[2]
c+1 X

[2]
c+2 · · · X

[2]
2c · · · · · · X [2]

m

(4)

Here c = m/20 divides the genome into 20 independently inherited “chromosomes”.
Within each chromosome, recombination events occurs between contiguous loci with prob-
ability precomb. ∈ (0.0, 0.5], such that precomb.=0.5 corresponds to unlinked loci, with the
strength of local LD in the subsequent generation increasing as precomb. → 0. Figure S3
demonstrates the irrelevance of precomb. with respect to liability correlation and estimated
effect correlation; simulations with strong local LD (precomb. = 0.01) and weak local LD
(precomb. = 0.5) yielded results consistent with the realistic framework simulation results.

5.1.3 Mating regimes

For two phenotypes Y, Z, denote their joint distribution across mates by
Y ∗

Z∗

Y ∗∗

Z∗∗

 ∼MVN
0,


1
syz 1
ryy ryz 1
ryz rzz syz 1



 , (5)

where the number of asterisks distinguish the two mates. Whereas the within-mate single-
trait correlation (i.e., the conventional phenotype correlation) syz is unaffected by mating
patterns within a given generation, the cross-mate single-trait correlations ryy, rzz and
the cross-mate cross-trait correlation ryz are free parameters determined by the mating
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regime.

For the large-scale simulations presented in Section 2.3, individuals were mated by ran-
domly splitting the sample in half and pairing individuals across the two subsamples,
ordering each subsample on a linear combination of their phenotypic values and Gaus-
sian noise. This corresponds to an exchangeable cross-mate correlation structure with all
cross-mate correlations ryy, ryz, rzz equal to a single input parameter rmate. Though this
method is computationally efficient and thus well-suited to this particular use-case, it is
incapable of achieving arbitrary cross-mate correlation structures. Thus, a more flexible
approach was required for the simulations presented in Section 2.4, which were based on
empirical estimates of the cross-mate correlation parameters.

We achieved arbitrary cross-mate correlation structures, a problem for which we were
unable to find a previously published solution, by using an ad hoc approach based on
propensity-score matching methods as implemented in the R package MatchIt v4.2.0
[47]. Specifically, we randomly split the sample in half and used the nearest Mahalanobis
distance matching algorithm on a scalar multiple of each of the two phenotypes, their
product, and their difference. The multiplier hyperparameter was chosen numerically
by finding the rational function of the correlation parameters in (5) that minimized
the average `∞ distance between the desired and achieve cross-mate correlations across
replicate samples. Discrepancies between target correlations and achieved correlations
were modest: across all generations of UKB simulations, the average median discrepancy
was 0.0007 and 90% of all cross-mate correlations were within 0.02 of their target values
(see Tables S3 and S5). We further validated this approach by directly comparing it to
the linear combination ordering approach described above, specifying a single value for
each of the parameters ryy = rzz = ryz = rmate. Both methods yielded equivalent results
(Figure S2).

5.2 Phenotyping

We examined a broad array of phenotypes across two large cohorts for which cross-mate
correlation estimation was feasible. This included 341,997 unrelated European ancestry
UK Biobank participants [21] and 373,283 spousal pairs drawn from Danish registry data
[22–25].

We a priori selected a variety of previously-studied phenotypes discussed in two influential
publications [2, 3], discarding measures redundant with available measures of higher
quality. For example, in the UK Biobank, we excluded college completion (f.6138)
which factors into the higher-resolution measure of years of education, while retaining the
latter. Similarly, we excluded total cholesterol (f.30690) while retaining the component
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phenotypes LDL cholesterol (f.23405), HDL cholesterol (f.23405), and triglycerides
(f.30870). Blood biochemistry phenotypes were further adjusted for statin usage.

5.3 Identification of mating pairs in the UK Biobank

We identified putative mate pairs in the UK Biobank using a procedure broadly similar to
that of Howe and colleagues [48] with two distinctions: 1. we incorporated geographical
information to impute cohabitation status, and 2. we relaxed the condition that both
potential mates must report having lived in the same location for precisely the same
number of years. We considered sex-discordant pairs of European ancestry participants
from the same assessment centers (f.54) who reported living with a spouse (f.699),
excluding pairs discordant on any of the following measures:

• latitude / longitude of home location rounded to the nearest kilometer (f.20074,
f.20075)

• inverse distance between home and nearest road / major road (f.24010, f.24012)

• coastal proximity (f.24508)

• household size (f.709)

• number of vehicles (f.728)

• accommodation type (f.670)

• rental status (f.680)

To minimize the possibility of identifying cohabitating relatives, we required pairs to
be discordant on the age of at least one parent (f.1807, f.1846, f.2946, f.3526) and
removed third degree or closer relatives as via estimated kinship coefficients (see Supple-
mental Materials S1.3.1 for kinship estimation details). Finally, we removed all partici-
pant groupings meeting these criteria including more than two individuals. This resulted
in a total of 40,697 putative mate pairs (i.e., 81,394 individuals).

5.4 Identification of mating pairs in the Danish population cohort

We obtained empirical estimates of spousal correlations for five psychiatric disorders in
the Danish Population using the Danish Civil Registration System [23, 24], the Danish
National Patient Register [25], and the Danish Psychiatric Central Research Register
[22]. We first randomly selected 500,000 individuals born between 1981 and 2005 from
the Danish Civil Registration System. The parents of these individuals served as our
sample of mates (373,283 spousal pairs total).
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5.5 Cross-mate phenotypic correlation estimation

We estimated cross-mate correlations using a structural equation modeling approach via
the R package lavaan v0.6-8 [49]. Specifically, for the UK Biobank phenotypes, we
estimated the sex-constrained structural model corresponding to Eq. (5), with Y and Z
representing a pair of phenotypes after regressing out the effects of sex, age, sex×age and
age2 (with the exception of metabolic phenotypes, which were also adjusted for statin use).
For the psychiatric phenotypes, which were dichotomous, we proceded similarly, using the
corresponding liability-threshold models to estimate cross-mate tetrachoric correlations.
All models were estimated via maximum likelihood with asymptotic standard errors and
using pairwise complete observations.

5.6 Estimation of GWAS summary statistics in the UK Biobank

For each phenotype of interest, we estimated association regression weights at 1,157,133
imputed HapMap3 SNPs with missingness < 0.01, Hardy-Weinberg equilibrium p > 1e-5,
INFO imputation quality score > 0.9, and MAF > 0.01 using plink v2.0 [46]. Covariates
included sex, age, sex×age, age2, 21 genomic principal components, assessment center,
and genotyping batch (though we note that metabolic phenotypes were further adjusted
for statin use as detailed above). Analyses were restricted to a subset of 341,997 un-
related European ancestry individuals (see Supplemental Materials S1.3.1 for details of
relatedness estimation).

5.7 Empirical heritability and genetic correlation estimates

5.7.1 UK Biobank cohort

We estimated marker-based heritabilities and genetic correlations using LDSC v1.0.1 [30]
with internal summary statistics (see previous section) and LD scores (computed for
regression SNPs with input parameter ld-wind-cm 1.0). We obtained pedigree-based
heritability estimates from the empirical literature, preferring estimates derived in UK-
based samples whenever available. In the case of classical twin studies, we used results
from “ACE” models, which are expected to yield downward-biased heritability estimates
under AM [35] and thus constitute the more conservative option, when available (Table
S2).

5.7.2 Literature-derived estimates for psychiatric disorders

We used a subset of the LDSC heritability and effect correlation estimates reported by
Anttila and colleagues [2] corresponding to the set of psychiatric disorders for which we
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estimated cross-mate cross-trait correlations in the Danish population cohort. As with
the UK Biobank phenotypes, we extracted pedigree-based heritability estimates from
demographically comparable samples preferring “ACE” estimates when available (Table
S4).

5.8 Projected genetic correlation estimates under xAM alone

We implemented a simulation based approach to quantify the magnitudes of empirical
ρ̂β estimates with respect to expectations for genetically orthogonal traits under xAM
alone. For each pair of traits Y, Z we ran 400 replicate simulations with a founder
population size of n=64,000, setting the panmictic heritability parameters to empirical
marker or pedigree-based heritability estimates and allocating m = 1000 distinct causal
variants for each phenotype (thus ensuring ρβ = 0). We then simulated three generations
of xAM using empirical estimates of the cross-mate correlations r̂yy, r̂zz, r̂yz, at each
generation obtaining method-of-moment estimates of ρβ, which we denote ρ̂xAM, using
HE regression, which, as demonstrated in Figures 2a to 2d, produces results equivalent
to LDSC regression.

In order to propagate uncertainty in the empirical estimates through the simulations,
simulation inputs were randomly sampled from the asymptotic sampling distributions of
the corresponding empirical estimates. We first randomly sampled the empirical genetic
correlation estimate ρ̂emp and the input parameters h2

y;pan, h2
z;pan, ryy, rzz, ryz from their

joint sampling distribution

(
ρ̂β;emp, h

2
y;0, h

2
z;0, ryy, rzz, ryz

)
∼MVN

((
ρ̂β, ĥ

2
y, ĥ

2
z, r̂yy, r̂zz, r̂yz

)
, Ω̂
)
, (6)

where Ω̂ denotes the empirical variance-covariance matrix. We then compared the ρ̂emp

to the estimate projected by the simulation, which we denote ρ̂xAM, to compute the ratio
statistic γ̂ = ρ̂xAM/ρ̂emp. The empirical quantiles of γ̂, which approximate its posterior
distribution, were then used to compute credible intervals. For each trait pair, we pro-
duced two sets of results, once substituting pedigree-based heritability estimates ĥ2

PED for
the panmictic heritability inputs and again substituting marker-based heritability esti-
mates ĥ2

SNP. Unfortunately, the sample variance-covariances of ĥ2
y, ĥ2

z, ρ̂β are not reported
by the LDSC software and were not available for any of the literature-derived estimates,
and were treated as independent by necessity. That is, only the off-diagonal elements
of Ω̂ corresponding to the cross-mate correlation parameters, which we estimated via
structural equation modeling, were nonzero.
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5.9 Cross-chromosome correlation of polygenic scores in the UK
Biobank

We first randomly split the UK Biobank into two disjoint subsamples, with 80% of par-
ticipants comprising the training set and the remaining 20% comprising the test data.
Next, we ran a GWAS for each phenotype in the training sample using covariates and
procedures identical to those described in Section 5.6 and clumped results using plink
v1.90b6.21 using a 250kB sliding window and an R2 threshold of 0.05. We then used
the training sample summary statistics to compute polygenic scores for separately for
even and odd chromosomes using up to 20 p-value thresholds spaced logarithmically on
the interval [5e-8, 1.0] , with the resulting number of scores depending on the maximally
significant SNP for a given trait.

For any given pair of phenotypes Y, Z, there are two potential even/odd chromosome
polygenic score correlations, cor(ˆ̀

y;even, ˆ̀
z;odd) and cor(ˆ̀

y;odd, ˆ̀
z;even), neither of which is of

greater interest than the other. Thus, we estimated both quantities via a single parameter,
ρ`;eo, in the constrained structural model


ˆ̀
y;even
ˆ̀
y;odd

ˆ̀
z;even
ˆ̀
z;odd

 ∼MVN
0,


1
φyy 1
ψyz ρ`;eo 1
ρ`;eo ψzy φzz 1



 , (7)

where ρ`;eo is the only free parameter of interest. For the simpler case of single-trait
even/odd correlations, we used the correspondingly simple bivariate Gaussian structural
model. Again, we estimated structural models using the R package lavaan v0.6-8 [49] via
maximum likelihood with asymptotic standard errors.

Finally, we evaluated the relationships between even/odd chromosome polygenic score
correlation estimates and both cross-mate cross-trait correlation estimates and genetic
correlation estimates across all pairs of UKB sample phenotypes. We examined these
associations in the context of naïve linear models, which don’t account for heteroskedas-
ticity and sampling error in the predictor, but also using a Bayesian measurement error
model as implemented in the R package brms v1.8 [50], which does.
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S1.1 Theory of assortative mating

S1.1.1 Long range sign-consistent LD

Denote quantities relating to the members of a parent-parent-offspring trio by [·]∗, [·]∗∗, [̃·],
respectively. Let Et[·] denote the expectation of a quantity after t generations of positive
xAM. Let Xi, Xj denote mean-deviated trait-increasing-allele counts at two causal loci
for mean-deviated phenotypes Y, Z, respectively. We assume that Xi, Xj are unlinked at
panmixis (when t = 0). For simplicity, we assume each variant is causal for one and only
one of the two phenotypes, i.e.,

βy,i 6= 0 = βy,j, and βz,i = 0 6= βz,j,
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and we assume the cross-mate covariances are positive and symmetric such that for all
t ≥ 0

Et[Y ∗Y ∗∗] ≥ 0, Et[Z∗Z∗∗] ≥ 0,
Et[Y ∗Z∗∗] = Et[Y ∗∗Z∗] > 0.

We assume primary phenotypic assortment: mates’ genotypes are conditionally indepen-
dent given the heritable component of either mate’s phenotype. Denoting the heritable
components of Y, Z by `y, `z, respectively, we assume

p[X∗iX∗∗j |`∗y, `∗z] = p[X∗i |`∗y, `∗z]p[X∗∗j |`∗y, `∗z].

Denote the conditional expectation of an individual’s causal variant genotype at locus i
given the heritable components of their phenotypes by

φy,i,t(y) := Et[X∗i |`∗y = y] = Et[X∗∗i |`∗∗y = y],

and denote the conditional expectation of an individual’s causal variant genotype given
their mate’s heritable phenotype components by

ψy,i,t(z) := Et[X∗i |`∗∗z = z] = Et[X∗∗i |`∗z = z].

We assume that φi,t(y), ψi,t(z) are monotone functions in their respective arguments that
cross the origin and that agree in sign with the effect of locus i such that

φy,i,t(y) = βy,i · φ̃y,t(y),
ψy,i,t(z) = βy,i · ψ̃y,t(z),

where φ̃, ψ̃ are non-trivial monotone increasing functions that cross the origin. That is, we
assume that for a trait-increasing allele for Y (i.e., when βy,i > 0) φy,i,t(y) is an increasing
function, and further, as Y and Z are positively correlated across mates, ψy,i,t(z) will also
be increasing. Likewise, if Xi is trait-decreasing, φy,i,t(y) and ψy,i,t(z) will be decreasing in
their respective arguments. Though rather technical in specification, these assumptions
are intuitive: if I know one mate is “high” with respect to (the heritable component of)
phenotype Y , I expect “higher” genotypic values at their own loci and their partner’s loci
that increase Y and “lower” genotypic values at their own and their partner’s loci that
decrease Y . Further, this is a weaker assumption than those of previous authors (e.g. in
the single-trait case [51] assumes linearity such that φy,i,t(y) ∝ βy,i · y).

Having introduced our assumptions, we seek to investigate the linkage disequilibrium
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between Xi, an arbitrary causal variant for phenotype Y and Xj, an arbitrary causal
variant for phenotype Z, after t > 0 generations of positive xAM across Y and Z. At
every generation, we can factor the covariance E[X̃iX̃j] using the possible patterns of
inheritance:

E[X̃iX̃j] = 1
4E[X∗iX∗j ] + 1

4E[X∗iX∗∗j ] + 1
4E[X∗∗i X∗j ] + 1

4E[X∗∗i X∗∗j ]

= 1
2E[X∗iX∗j ] + 1

2E[X∗iX∗∗j ].

As by definition
Et−1[X̃iX̃j] = Et[X∗iX∗j ],

this induces the following recurrence relation:

Et[XiXj] = 1
2Et−1[X∗iX∗j ] + 1

2Et−1[X∗iX∗∗j ]

= 2−tE0[XiXj] +
t−1∑
l=1

2t−lEl[X∗iX∗∗j ].

By hypothesis, Xi, Xj are unlinked at panmixis and thus E0[XiXj] is zero. That leaves
us with the sequence of cross-mate cross-locus moments {El[X∗iX∗∗j ]}t−1

l=0 terms.

Applying the assumption of primary phenotypic assortment, we have

Et[X∗iX∗∗j ] =
∫

Et[X∗i |`∗y]Et[X∗∗j |`∗z]dP (`∗y, `∗z)

= βy,iβz,j

∫
φ̃y,0(`∗y)ψ̃y,0(`∗z)dP (`∗y, `∗z).

The above integral is strictly positive, thereby yielding

sgn
[
Et[X∗iX∗∗j ]

]
= sgn [βy,i] · sgn [βz,j] 6= 0.

All together, we have

Et[XiXj] =
t−1∑
l=1

2t−lEl[X∗iX∗∗j ],

where each of the terms in the above sum has sign sgn [βy,i] · sgn [βz,j], establishing that

sgn [Et[XiXj]] = sgn [βy,i] · sgn [βz,j].

S1.1.2 Inflation of GWAS statistics

We now show that assortment on a single trait (sAM) leads to inflated GWAS effect
estimates. This is a simplification of the bivariate case.
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By the same argument used in the previous section, it is easy to see that sAM on pheno-
type Y induces sign-consistent long-range LD such that

sgn [E[XiXj]] = sgn[βy;i]sgn[βy;j]

for all causal variants indexed i, j. Without loss of generality, assume all variants i, j ∈
{1, . . . ,m} are causal and denote the correlation between standardized variants at loci
index i, j by

ωij := E[XiXj].

We estimate the GWAS effect of variant Xi on Y as

E[β̂i] = n−1E[βTXTX.i]

=
m∑
j=1

ωijβj

= βi +
∑
j 6=i

ωijβj.

Each of the above summands has sign

sgn ωijβj = sgn βi · sgn βj · sgn βj = sgn βi.

Thus, when βi > 0 we have E[β̂i] > βi and when βi < 0 we have E[β̂i] < βi. That is, the
magnitude of the GWAS effect estimate is inflated upwards.

S1.1.3 Correlation of even/odd chromosome cross-trait polygenic scores

We now consider the correlation between polygenic scores for Y and Z constructed on
disjoint sets of loci (as in even/odd chromosome polygenic score correlations). Partition
the indices of the genome into two non-empty sets E , O, such that {1, . . . ,m} is their
disjoint union. Define the estimated polygenic scores

ˆ̀
y;E :=

∑
i∈E

Xiβ̂y;i, ˆ̀
z;O :=

∑
j∈O

Xjβ̂z;j.

These correspond to a polygenic score for Y built only on even chromsomes and a poly-
genic score for Z built only on odd chromsomes. The expected cross-trait even/odd
correlation polygenic score covariance is then equal to

E[ρ̂`;eo] =
∑
i∈E

∑
j∈O

ωijE[β̂y;iβ̂z;j]
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=
∑
i∈E

∑
j∈O

∑
k,l

ωijωikωjlβy;kβz;l.

Compare this to the true cross-trait even/odd chromsome polygenic score correlation

ρ`;eo =
∑
i∈E

∑
j∈O

ωijβy;iβz;j.

Pulling this out of the previous expression yields

E[ρ̂`;eo] = ρ`;eo +
∑
i∈E

∑
j∈O

∑
k 6=i

∑
l 6=j

ωijωikωjlβy;kβz;l.

Dealing with the above summand requires fulling understanding the relationship βy;i, βz;j

and ωij for all i, j, which is beyond the scope of the current manuscript. For now, we
address the simpler case of the correlation between polygenic scores for a single phenotype
Y restricted to disjoint sets of chromosomes as analyzed in [18]. Again, we assume that
i ∈ E ∪ O =⇒ βy;i 6= 0 for simplicity. In this case, we have

E[ρ̂`;eo] = ρ`;eo +
∑
i∈E

∑
j∈O

∑
k 6=i

∑
l 6=j

ωijωikωjlβy;kβy;l, (8)

where each of the above summands has sign

sgn ωijωikωjlβy;kβz;l = (sgn βy;i)2(sgn βy;j)2(sgn βy;k)2(sgn βy;l)2 = +1.

Likewise, the summands comprising the true correlation

ρ`;eo =
∑
i∈E

∑
j∈O

ωijβy;iβy;j

also all have sign +1, altogether yielding the chain of strict inequalities

E[ρ̂`;eo] > ρ`;eo > 0.

That is, as anticipated by Yengo et al. [18], sAM induces a true correlation between
genetic liabilities restricted to disjoint collections of loci. Note that we do not require the
assumption of equilibrium.
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S1.2 Supplementary simulation study results

S1.2.1 GWAS effect estimates are biased upwards under xAM

We performed additional simulation studies examining the impact of xAM on GWAS
effect estimates by comparing estimated regression slopes to their true values at each
generation in the context of the simplified forward-time simulation framework described
in the Online Methods. In contrast to effect correlation estimators, on which single-
trait AM (sAM) has limited effects [5, 52], association statistics are biased upwards in
magnitude under sAM as each causal variant weakly will tag every other causal variant
(see S1.1.1 and S1.1.2 ). We therefore sought to distinguish the effects of sAM and
xAM by varying the cross-mate cross-trait correlation ryz independently of the cross-
mate single-trait correlations ryy and rzz. Specifically, we consider two phenotypes Y , Z,
each withm = 2,000 non-overlapping causal variants and panmictic heritabilities equal to
0.5. Letting asterisks distinguish mates, we varied the cross-mate correlation parameters
governing assortment

cor




Y ∗

Z∗

Y ∗∗

Z∗∗



 =


1
syz 1
ryy ryz 1
ryz rzz syz 1

 , (9)

fixing rzz ≡ 0.5 and varying (ryy, ryz) ∈ {0.0, 0.25, 0.5}2, running 100 simulation replicates
per experimental condition. Focusing on Y , we have sAM when ryy > 0 and ryz = 0 and
xAM when ryz > 0

At each generation, we emulate a GWAS by regressing Y on each of the 2m standardized
genotypes to estimate βj, j = 1, . . . , 2m in a sample of size n =32,000. We then report
two metrics: the average magnitude of GWAS slope error relative to the average effect
size (mean((β − β̂) · sgn β)/

√
(h2

y;pan/2m); hereafter termed slope inflation), which we
present in Figure S5a, and the correlation between the true liability `y = ∑

iXiβi and
estimated polygenic score (ˆ̀y = ∑

iXiβ̂i; hereafter termed score correlation ), which we
present in Figure S5b.

As expected, we observed that the strength of single-trait correlation biases GWAS effects
upwards in magnitude regardless of the cross-trait correlation (e.g., after three genera-
tions, the average slope inflation per 0.05 increase in ryy was 0.143 [se=0.0374%]). We
also saw that cross-mate cross-trait correlation alone causes upwards inflation and exac-
erbates the inflation caused by single trait correlations (e.g., after three generations, the
average slope inflation per 0.05 increases in ryz were 0.157% [SE 0.0097%] and 0.143%
[SE 0.0310%] for ryz=0 and ryz>0, respectively). To summarize, both assortment on a
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single trait and assortment across multiple traits upwardly bias GWAS effect estimates in
subsequent generations, and these biases are exacerbated when both forms of assortment
are present.

Polygenic score results are less straightforward as single- versus cross-trait assortment
exert countervailing influences on the correlation between the true and estimated poly-
genic scores. Regressing the difference between the score correlations for phenotype Y
after three generations of assortment and those at generation zero (panmixis), the dif-
ference score increases by 3.46e-3 (SE: 2.59e-5) per 0.05 increase in ryy and decreases
by 1.10e-3 (SE: 2.59e-5) per 0.05 increase in ryz. We interpret this to mean that single-
trait assortment, even though it increases the average effect estimate error, leads to a
stronger correlation between the true and estimated polygenic scores, presumably be-
cause all causal variants tag one another. On the other hand, cross-trait assortment,
which induces correlations between causal variants for one trait and causal variants for
another, inflates GWAS slope estimates while decreasing the score correlation, at least
when the two traits are genetically orthogonal.

S1.2.2 xAM exacerbates the impacts of misclassification errors on effect
correlation estimates

We ran an additional set of simulations again using the simplified forward-time simulation
framework to characterize the impact of xAM on binary traits subject to misclassification.
We again simulated two continuous phenotypes with no pleiotropy, this time fixing all
the cross-mate correlation parameters to 0.5 while varying trait prevalence as well as the
rate and directionality of misclassification errors. Prior to effect correlation estimation,
we dichotomized phenotypes using the cutoffs derived from the standard normal quantile
function. We introduced misclassification errors by randomly selecting a fixed number
of true cases for the first phenotype and relabeling them as controls for the first and
cases for the second, an preceding analogous for the second phenotype. As anticipated,
misclassification errors induced artifactual ρ̂β estimates among genetically orthogonal
traits and this inflation was in turn exacerbated by the extent of xAM across the two traits
(Figure S6). Further, in contrast to xAM, the impacts of misclassification errors depended
on trait prevalence such that classification-induced ρ̂β inflation was more pronounced for
less common binary traits (Figure S6).

S1.3 Psychiatric phenotype definitions

The Danish Civil Registration System has been registering all people legally residing in
Denmark since 1968, and it includes information about sex, date of birth, parental links,

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.21.485215doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485215
http://creativecommons.org/licenses/by-nc-nd/4.0/


S1 SUPPLEMENTAL MATERIAL

and life events (e.g., migration or death). The System is linked via anonymized iden-
tification numbers to the Danish National Patient Register and the Danish Psychiatric
Central Research Register that include all diagnostic information regarding general medi-
cal conditions and specific psychiatric conditions, respectively, including all inpatient and
outpatient contacts. We estimated estimated cross-mate tetrachoric correlations within
and across five psychiatric phenotypes considering both ICD-8 and ICD-10 definitions
(Table S1). The definitions are based on those by the iPSYCH initiative [53].

Table S1: Psychiatric phenotype definitions

Phenotype ICD-8 code ICD-10 code

ANX Anxiety disorders NA F40.0-F40.2,
F41.0-F41.1, F42,
F43.0-F43.1

ADHD Attention deficit/
hyperactivity disorder

NA F90.0

BIP Bipolar disorders 296.19, 296.39, 298.19 F30-F31
MDD Single and recurrent

depressive disorder
296.09, 296.29,
298.09, 300.49

F32-F33

SCZ Schizophrenia 295.x9 (excl 295.79) F20

S1.3.1 Identification of unrelated European-ancestry individuals in the UK
Biobank

From among 488,363 UK Biobank participants, we retained putative “White British” indi-
viduals using field f.22006 (n=409,692). We then filtered out 199 individuals with excess
genotype missingness (>0.05), 312 individuals with a mismatch between self-reported and
genetic sex, 999 inviduals with excess heterozygosity (≥5 standard deviations above the
mean), and 90 individuals who requested their data be redacted. We then removed 629
individuals related to ten or more individuals (KING coefficient ≥ 2−9/2) as a preprocess-
ing step to the application of the maximal_independent_set algorithm implemented in
the NetworkX Python package [54]. This resulted in 342,257 unrelated individuals. In
contrast to [21], who estimated kinships using ≈92,000 common SNPs with small loadings
onto the first few PCs in the full sample (including multiple ancestries; see S3.7 of [21]
), we esitmated kinships using 561,780 common SNPS in a sample of European ances-
try individuals. The close relatives the UKB identified in f.22021 are a subset of our
more conservative approach: we identified all 81,218 related individuals in this subsample
identified by the UKB plus an additional 3,261 not identitified by [21].
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Supplementary Figures
Figure S1: Varying the number of causal variants has no impact on (a) true score correla-
tions or (b) estimated effect correlations across simulations of genetically orthogonal traits with
panmictic heritabilities and cross-mate correlations fixed at 0.5.
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Figure S2: Equivalence of mating regimes under exchangeable correlation structure for ge-
netically orthogonal traits with respect to (a) true score correlation or (b) estimated effect
correlation. Panmictic heritabilities and cross-mate correlations were fixed at 0.5 across simu-
lations.
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Figure S3: Impact of local LD in synthetic data for genetically orthogonal traits with panmictic
heritabilities and cross-mate correlations fixed at 0.5. Enforcing recombination probabilities
between continguous loci (ρrecom.) at varying fixed values or using an empirical recombination
map has no impact on the (a) true score correlation or (b) estimated effect correlation across
simulations.
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Figure S4: Score correlation and estimated effect correlation for genetically orthogonal traits
subject to xAM with and without pleiotropy under orthogonal effects. Across simulations,
panmictic heritabilities and cross-mate were correlations fixed at 0.5. Under the separate casual
variants regime, βy;i 6= 0 if and only if βz;i = 0 for each causal variant indexed i, whereas under
the shared causal variants regime, every variant is causal for both Y and Z but the effects are
drawn independently.
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Figure S5: Impact of assortative mating on GWAS regression weights and polygenic scores.
Across all simulations, the panmictic heritabilities for Y and Z are set at 0.5, the true effect
correlation is fixed at 0.0, and the cross-mate correlation with respect to Z, rzz, is fixed at
0.5, whereas ryy and ryz vary across experimental conditions. (a) Slope inflation of GWAS
estimates with respect to Y under positive xAM depends strongly on ryy and modestly on ryz.
(b) Correlation between the true and estimated polygenic scores for Y is inflated by ryy and
deflated by ryz. Intuitively, increasing ryy induces sign-consistent LD among causal variants for
Y whereas increasing ryz induces sign-consistent LD across causal variants for Y and Z
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Figure S6: Impact of xAM and misdiagnosis errors on effect correlation estimates between
genetically orthogonal binary traits. Panmictic heritabilities and cross-mate correlations are all
fixed at 0.5. Under the unidirectional scheme, individuals with disorder A are mislabeled as
controls for disorder A and cases for disorder B, regardless of their true status for disorder B,
at the rate reflected on the x axis. Under the bidirectional scheme, the analogous misdiagnoses
are enforced for disorder B as well. The induced bias in both cases in more pronounced for less
common disorders.
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Figure S7: Projected versus empirical ρ̂β for UK Biobank trait pairs as a function of number
of generations of xAM.
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S1 SUPPLEMENTAL MATERIAL

Figure S8: Projected ρ̂β estimates relative to empirical estimates for UK Biobank trait pairs
(1 of 2).
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S1 SUPPLEMENTAL MATERIAL

Figure S9: Projected ρ̂β estimates relative to empirical estimates for UK Biobank trait pairs
(2 of 2).
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S1 SUPPLEMENTAL MATERIAL

Figure S10: Projected versus empirical ρ̂β for psychiatric trait pairs
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S1 SUPPLEMENTAL MATERIAL

Figure S11: Projected ρ̂β estimates relative to empirical estimates for psychiatric trait pairs
under xAM and misdiagnosis rates
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S1 SUPPLEMENTAL MATERIAL

Figure S12: Cross-chromosome polygeneic score correlations and cross-mate phenotypic cor-
relations for varying p-value thresholds
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