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Abstract

Characterizing spatial patterns in allele frequencies is fundamental to
inference in evolutionary biology because such patterns can inform on
underlying evolutionary processes. However, the spatial scales at which
changing selection, gene flow, and drift act are often unknown. Many
of these processes can operate inconsistently across space (causing non-
stationary patterns). We present a wavelet approach to characterize spa-
tial pattern in genotype that helps solve these problems. We show how our
approach can characterize spatial patterns in ancestry at multiple spatial
scales, i.e. a multi-locus wavelet genetic dissimilarity. We also develop
wavelet tests of spatial differentiation in allele frequency and quantitative
trait loci (QTL). With simulation we illustrate these methods under a
variety of scenarios. We apply our approach to natural populations of
Arabidopsis thaliana and traditional varieties of Sorghum bicolor to char-
acterize population structure and locally-adapted loci across scales. We
find, for example, that Arabidopsis flowering time QTL show significantly
elevated scaled wavelet variance at ∼ 300 − 1300 km scales. Wavelet
transforms of population genetic data offer a flexible way forward to re-
veal geographic patterns and causal processes.

1 Introduction

Since the advent of genotyping, geographic clines in allele frequencies are one
of the classic patterns in evolutionary biology: common in diverse systems,
driven by multiple processes, and important to understanding the maintenance
of biodiversity. By characterizing patterns of spatial turnover, evolutionary
biologists might infer the underlying evolutionary and ecological mechanisms.
Some of the major approaches to characterizing spatial turnover include mea-
suring the proportion of total allele frequency variation that differs between
discrete populations (Lewontin and Krakauer 1973; Wright 1949), calculating
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correlations between spatial functions and genetic variation (Wagner, Chávez-
Pesqueira, and Forester 2017; Yang et al. 2012), and identifying geographic
regions where genetic turnover is particularly high or low (Petkova, Novem-
bre, and Stephens 2016). In recent years researchers have collected many large,
spatially-distributed DNA sequence datasets in species with a wide range of
life histories (Alonso-Blanco et al. 2016; Machado et al. 2021; J. Wang et al.
2020; Yeaman et al. 2016). Statistical inference can be applied to these data to
understand patterns of gene flow, demographic histories, and local adaptation.
Although some of these approaches have a long history of use, there remain a
number of thorny challenges.

1.1 For local adaptation, the selective gradients are un-
known

One important force behind allele frequency clines is changing selection along
environmental gradients that causes local adaptation. However, it is often not
clear what environmental gradients drive local adaptation (Kawecki and Ebert
2004). This is especially true of non-model systems and those with little existing
natural history knowledge. Even for well-studied species, it is not trivial to
identify the specific environmental conditions that change in space and drive
local adaptation. Ecology is complex, and abiotic and biotic conditions are high-
dimensional. Rather than a priori selection of a putative selective gradient, an
alternative approach is to simply search for spatial patterns in allele frequencies
that cannot be explained by neutral processes. This approach is embodied
by several statistics and approaches, such as FST (Weir and Cockerham 1984),
XtX (Gautier 2015), spatial ancestry analysis (SPA) (Yang et al. 2012), Moran’s
eigenvector maps (MEMs) (Wagner, Chávez-Pesqueira, and Forester 2017), and
others.

1.2 The form and scale of spatial patterns is unknown

The functional forms (i.e. shapes) of both spatially-varying selection and neutral
processes (e.g. dispersal kernels) are often unknown, as are the forms of result-
ing spatial patterns. For example, the specific environmental gradients driving
changing selection are often not known, nor is the spatial scale at which they
act, and whether they change at the same rate consistently across a landscape.

In the case of neutral processes, a homogeneous landscape approximately at
equilibrium is rarely of interest to empiricists. Instead, the influence of hetero-
geneous landscapes and historical contingency is usually a major force behind
spatial patterns in allele frequency and traits (Excoffier and Ray 2008). The
influence of drift and range expansion can occur at a variety of spatial scales,
and in different ways across a heterogenous landscape. The scale-specificity and
non-stationarity of such patterns can be challenging to characterize. Estimated
effective migration surfaces (EEMS) (Petkova, Novembre, and Stephens 2016)
are one recently developed approach to characterize non-stationary spatial ge-
netic patterns in ancestry, identifying neighboring populations where migration
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appears less or greater than average.

1.3 Many approaches rely on discretization of population
boundaries

Some of the aforementioned approaches rely on dividing sampled individuals
into discrete spatial groups for the analysis of differences between groups. FST
is one such commonly used approach, that was introduced by Wright (Wright
1949) and defined as the ”correlation between random gametes, drawn from the
same subpopulation, relative to the total”, where the definition of ”total” has
been interpreted differently by different authors (Bhatia et al. 2013).

The classic approach of calculating FST to test for selection was usually
applied to a small number of locations, a situation when discretization (i.e. de-
ciding which individuals genotyped belong in which population) was a simpler
problem. Current studies often sample and sequence individuals from hundreds
of locations, and so the best approach for discretizing these genotyped individ-
uals into defined ’populations’ is less clear. Similarly, the EEMS approach to
studying structure and gene flow still relies on discretization of samples into
a populations along a single arbitrary grid (Petkova, Novembre, and Stephens
2016). However, if delineated populations are larger than the scales at which
some selective gradients or barriers to gene flow act, these will be missed. Con-
versely, dividing samples into too small of local populations can reduce power
to estimate statistics associated with each individual population. In addition
to scale, at issue is precisely where to place the boundaries between popula-
tions. The problem is enhanced for broadly distributed species, connected by
gene flow, that lack clear spatially distinct populations (Josephs et al. 2019).
Integrating a flexible spatial scale and population boundaries into this type of
analysis is the goal of this paper.

Some approaches to characterizing spatial genetic pattern are not limited by
discretization, and might be generally termed ”population-free” because popula-
tions are not defined. These instead use ordination of genetic loci or geographic
location. Approaches that use ordination (such as PCA) of genetic loci look for
particular loci with strong loadings on PCs (Duforet-Frebourg et al. 2016) or
traits with an unexpectedly high correlation with individual PCs (Josephs et al.
2019). Alternatively, ordination of distance or spatial neighborhood matrices
can create spatial functions that can be used in correlation tests with genetic
loci (Wagner, Chávez-Pesqueira, and Forester 2017). However, ordinations to
create individual rotated axes are not done with respect to biology and so might
not be ideal for characterizing biological patterns. For example, ordinations of
genetic loci are heavily influenced by global outliers of genetic divergence (Peter,
Petkova, and Novembre 2020). The approach we present below overcomes this
limitation and is not based on specific data rotations.
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1.4 Wavelet characterization of spatial pattern

Instead of discretizing sampled locations into populations, a more flexible ap-
proach would be to identify localized and scale-specific spatial patterns in allele
frequency. Wavelet transforms allow one to characterize the location and the
scale/frequency of a signal (Daubechies 1992). Daubechies (1992) gives a nice
analogy of wavelet transforms: they are akin to written music, which indicates a
signal of a particular frequency (musical notes of different pitch) at a particular
location (the time at which the note is played, in the case of music). Applying
this analogy to spatial genetic patterns, the frequency is the rate at which allele
frequencies change in space, and the location is the part of a landscape where
allele frequencies change at this rate. Applying wavelet basis functions to spatial
genetic data can allow us to characterize localized patterns in allele frequency,
and dilating the scale/frequency of these functions can allow us to characterize
scale-specific patterns in allele frequency (see Figure S1 for an example).

Keitt (2007) created a wavelet approach for characterizing spatial patterns
in ecological communities. He used this approach to identify locations and
scales with particular high community turnover, and applied null-hypothesis
testing of these patterns. These spatial patterns in the abundance of multiple
species are closely analogous to spatial patterns in allele frequency of many
genetic markers across the genome, and previous spatial genetic studies have
also profited by borrowing tools from spatial community ecology (Fitzpatrick
and Keller 2015; Lasky, Des Marais, et al. 2012). Here we modify and build
on this approach to characterize spatial pattern in allele frequency across the
genome and at individual loci.

2 Results

2.1 Wavelet characterization of spatial pattern in allele
frequency

Our implementation here begins by following the work of Keitt (2007) in char-
acterizing spatial community turnover, except that we characterize genomic
patterns using allele frequencies of multiple loci in place of abundances of mul-
tiple species in ecological communities. In later sections of this paper we
build off this approach and develop new tests for selection on specific loci.
Wavelets allow estimation of scale-specific signals (here, allele frequency clines)
centered on a given point, a, b, in two-dimensional space. We use a variant of
the Difference-of-Gaussians (DoG) wavelet function (Figure S1) (Muraki 1995).
The Gaussian smoothing function centered at a, b for a set of sampling points
Ω = {(u1, v1), (u2, v2), . . . (un, vn)} takes the form

ηsa,b(x, y) =
k(x−as , y−bs )∑

(u,v)∈Ω k(u−as , v−bs )
, (1)

where s controls the scale of analysis and k(x, y) is the Gaussian kernel
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k(x, y) = e−(x2+y2)/2.
The DoG wavelet filter then takes the form

ψsa,b(x, y) = ηsa,b(x, y)− ηβsa,b(x, y) (2)

where β > 1, and so the larger scale smooth function is subtracted from
the smaller scale smooth to characterize the scale-specific pattern. If we use
β = 1.87, then the dominant scale of analysis resulting from the DoG is s
distance units (Keitt 2007). This formulation of the wavelet kernel is similar in
shape to the derivative-of-Gaussian kernel and has the advantage of maintaining
admissibility (Daubechies 1992) even near boundaries as each of the smoothing
kernels ηsa,b are normalized over the samples such that their difference integrates
to zero.

Let fi(u, v) be the allele frequency of the ith locus from a set of I bial-
lelic markers at a location with spatial coordinates u, v. The adaptive wavelet
transform of allele frequency data at locus i, centered at a, b and at scale s is
then

(Twavfi)(a, b, s) =
1

ha,b(s)

∑
(u,v)∈Ω

ψsa,b(u, v)fi(u, v), (3)

where the right summation is of the product of the smooth function and
the allele frequencies across locations. The magnitude of this summation will
be greatest when the DoG wavelet filter matches the allele frequency cline.
That is, when the shape of the wavelet filter matches the allele frequency cline
in space, the product of ψsa,b(u, v) and fi(u, v) will resonate (increase in am-
plitude) yielding greater variation in (Twavfi)(a, b, s), the wavelet-transformed
allele frequencies. When the spatial pattern in the wavelet filter and allele fre-
quencies are discordant, the variation in their product, and hence the wavelet-
transformed allele frequency, is reduced. Note that the sign of fi(u, v) and
thus (Twavfi)(a, b, s) hold no meaning to our purposes here, because we do not
use information on reference versus alternate, or ancestral versus derived allelic
state.

The ha,b(s) term in equation 3 is used to normalize the variation in the
wavelet filter so that the wavelet transforms Twavfi are comparable for different
scales s:

ha,b(s) =

√ ∑
(u,v)∈Ω

[ψsa,b(u, v)]2 (4)

. Below we illustrate how to apply this wavelet transform (equation 3) of spatial
allele frequency patterns to characterize genome-wide patterns, as well as to test
for local adaption at individual loci.

2.1.1 Wavelet characterization of spatial pattern in multiple loci

Researchers are often interested in characterizing spatial patterns aggregated
across multiple loci across the genome to understand patterns of relatedness,
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population structure, and demographic history. To do so, we use

Dwav
a,b (s) =

√√√√ I∑
i=1

[(Twavfi)(a, b, s)]2 (5)

to calculate a ”wavelet genetic distance” or ”wavelet genetic dissimilarity.”
This wavelet genetic dissimilarity is computed as the Euclidean distance (in the
space of multiple loci’s allele frequencies) between the genetic composition cen-
tered at a, b and other locations across s distance units. This wavelet genetic
dissimilarity Dwav

a,b (s) is localized in space and scale-specific. This quantity cap-
tures the level of genetic turnover at scale s centered at a, b, and is capturing
similar information as the increase in average genetic distance between a geno-
type at a, b and other genotypes s distance units away (Figure 1E and 1F). A
benefit of using the wavelet filter is that it smoothly incorporates patterns from
genotypes that are not precisely s distance units away and can be centered at
any location of the analysts choosing. To get the average dissimilarity across
the landscape, one can also calculate the mean of Dwav

a,b (s) across locations a, b
at each sampled site, to get a mean wavelet genetic dissimilarity for s.

2.1.2 Testing the null hypothesis of no spatial pattern in allele fre-
quency

A null hypothesis of no spatial pattern in allele frequencies can be generated
by permuting the location of sampled populations among each other. Most
empirical systems are not panmictic, and so this null model might be considered
trivial in a sense. However, comparison with this null across scales and locations
can reveal when systems shift from small-scale homogeneity (from local gene
flow) to larger scale heterogeneity (from limited gene flow) (Keitt 2007).

2.1.3 Simulated neutral patterns across a continuous landscape

We conducted forward landscape genetic simulations under neutrality (or below
under spatially varying selection on a quantitative trait) using the SLiM software
(Haller and Messer 2019), building off published approaches (Battey, Ralph, and
Kern 2020). We simulated outcrossing, iteroparous, hermaphroditic organisms,
with modest lifespans (average of ∼ 4 yrs/time steps). Mating probability was
determined based on a Gaussian kernel as was dispersal distance from mother
(Battey, Ralph, and Kern 2020). Individuals became mature in the time step
following their dispersal. All code is included in supplemental files. These
parameters roughly approximate a short lived perennial plant with gene flow
via to pollen movement and seed dispersal. Below we indicate in some figures
the expected standard deviation of gene flow from the combined mechanisms,
which is equal to the square root of the summed variances of each kernel (mating
and propagule dispersal).

We began by characterizing a simple spatial pattern: smooth population
structure and isolation by distance across continuous landscape. We simulated
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a square two dimensional landscape measuring 25 units on each side. In this
first simulation there were only neutral SNPs. The population was allowed to
evolve for 100,000 time steps before we randomly sampled 200 individuals and
1,000 SNPs with a minor allele frequency of at least 0.05. The first two principal
components (PCs) of these SNPs show smooth population structure across the
landscape, and that these two PCs nearly perfectly predict the spatial location
of each sample (Figure S2).

We then calculated wavelet dissimilarity Dwav
a,b (s) for each sampled location

at a range of spatial scales s. The mean across sampled locations for each scale
was calculated and compared to the null distribution for that scale (Figure
S2). The null was generated by permuting locations of sampled individuals as
described above, and observed mean of dissimilarity was considered significant
if it was below the 2.5 percentile or above the 97.5 percentile of dissimilarity
from null permutations.

When comparing our simulated data to the null, we found that mean wavelet
genetic dissimilarity was significantly less than expected under the null model
at scales s ≤ 0.93, due to local homogenization by gene flow (standard deviation
= 0.28). At scales s ≥ 1.24, wavelet dissimilarity was significantly greater than
expected, due to isolation by distance, with monotonically increasing wavelet
genetic dissimilarity at greater scales. These results give some intuition into
how our approach characterizes spatial pattern in allele frequency.

2.1.4 Simulated neutral patterns in a range-expanding species

We next simulated a scenario where we expected greater heterogeneity in pat-
terns of relatedness and genetic dissimilarity across a landscape. We simulated
an invasion across a square landscape of the same size as above, but beginning
with identical individuals only in the middle at the bottom edge of the landscape
(Figure 1). We sampled 200 individuals at times 100, 250, 500, 1000, 1500, 2000
years, through the full populating of the landscape around 2500 years and until
the 3000th year.

We characterized wavelet genetic dissimilarity across the landscape over
time. There was strong heterogeneity in spatial patterns in allele frequency,
demonstrated via by the variation in wavelet dissimilarity in different regions
(red versus blue in Figure 1A-D). This heterogeneity in isolation-by-distance
can be seen by contrasting genotypes from different regions. Near the expan-
sion front, there is relative homogeneity and low diversity locally in new popula-
tions, but with rapid turnover in genotypes separated by space, resulting in high
wavelet dissimilarity at intermediate spatial scales (Figure 1E). In the range in-
terior, there is greater local diversity and less turnover in genotype across space,
i.e. a weaker isolation by distance (Figure 1F). Supporting the role of founder
effects and low diversity at expanding range margins in driving these patterns,
we observed a decline in medium- and large-scale wavelet dissimilarity in later
years (Fig 1G) after the landscape had been populated.
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Figure 1: Wavelet genetic dissimilarity at neutral loci during an invasion across
a homogeneous landscape. Left column of panels (A-D) shows a map of the
landscape through time, with 200 sampled individuals at each time step and
the wavelet dissimilarity at s = 3.9 at their location. In the last time step,
3000, two regions are highlighted (D), one with higher dissimilarity at s = 3.9
(E) and one with lower dissimilarity at this scale (F). (E-F) show pairwise Eu-
clidean geographic and genetic distances for samples from these regions. These
highlight the greater increase in genetic distance with geographic distance at
this scale (vertical dashed lines) in (E), compared to the smaller increase in ge-
netic distance across these distances in (F). Loess smoothing curves are shown
in (E-F). (G) Mean wavelet dissimilarity across the landscape changes over time.
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2.1.5 Simulated long-term neutral patterns in a heterogeneous land-
scape

We next simulated neutral evolution across a patchy, heterogeneous landscape,
using simulated patchy landscapes (generated from earlier work) (Lasky and
Keitt 2013). This landscape contained a substantial portion of unsuitable habi-
tat where arriving propagules perished. We used the same population parame-
ters as previously and simulated 100,000 years to reach approximate stability in
relatedness patterns. We then calculated wavelet dissimilarity using 1,000 ran-
dom SNPs of 200 sampled individuals. Wavelet dissimilarity showed localized
and scale-specific patterns of low and high dissimilarity (Figure 2). Notably, the
same two relatively isolated ”islands” (top left and bottom right of landscape
in Figure 2) are more similar than the null at fine scales and are less similar
than the null at larger scales. Stated another way, these islands have lower
diversity locally (e.g. within populations) but when compared to the mainland
populations they exhibit greater divergence (relative to mainland populations a
similar distance apart, Figure 2). To aid interpretation of the wavelet patterns
(Figure 2), we also present the first two principal components of SNPs (Fig-
ure S3), which separated each island population, respectively, from the rest of
the landscape. These results highlight the capacity of the method to contrast
patterns across scales in a consistent manner and only requiring dilation of the
analyzing kernel, or equivalently, rescaling the spatial coordinates.

2.2 Finding the loci of local adaptation

2.2.1 Using wavelet transforms to identify outliers of spatial pattern
in allele frequency

We can use our approach to identify particular genetic loci and the regions
and spatial scales of turnover in allele frequency. Our strategy is to calculate
(Twavfi)(a, b, s) for each locus i at each sampling point a, b for a set of cho-
sen spatial scales s ∈ S. Dividing the wavelet transforms of allele frequency
by the standard deviation of global allele frequency variation for each locus
i, sd(fi), yields a normalized measure of spatial turnover in allele frequency,
(Twavfi)(a, b, s)/sd(fi), for a given location and scale. This normalization by
sd(fi) allows comparison of the spatial pattern of loci differing in total variance
due to differences in their mean allele frequency that may arise due to different
histories of mutation and drift, but arising from the same demographic processes.
We then take the variance across sampling locations of (Twavfi)(a, b, s)/sd(fi),
which we define the ”scaled wavelet variance.” This scaled wavelet variance is
akin to FST in being a measure of spatial variation in allele frequency normalized
to total variation (which is determined by mean allele frequency). High scaled
wavelet variance for a given locus indicates high variation at that scale rela-
tive to the total variation and mean allele frequency. We then used a χ2 null
distribution across all genomic loci to calculate parametric p-values (Cavalli-
Sforza 1966; Lewontin and Krakauer 1973) and used the approach of Whitlock
and Lotterhos (2015) to fit the degrees of freedom of this distribution to the
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Figure 2: Neutral evolution in a heterogeneous landscape, where habitat is gray
(in the background) and unsuitable areas are white. Sampled individuals are
circles. Colors represent sampling locations where wavelet genetic dissimilarity
was significantly high (red) or low (blue), with s, the wavelet scale, shown at
top of each panel. At the smallest scales (top panels), samples are usually
more similar than expected, especially in more isolated regions at lower right
and upper left of the landscape. At larger spatial scales (bottom panels), all
locations have significantly greater dissimilarity than expected due to limited
gene flow. However, the same isolated regions at lower right and upper left of
the landscape show the greatest dissimilarity at large scales (lower panels), due
to their high genetic difference from the ”mainland” samples at center.
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distribution of scaled wavelet variances (see Supplemental Methods).
We simulated a species with the same life history parameters as in sim-

ulations above, with the addition of spatially varying viability selection on a
quantitative trait. We imposed two geometries of spatially varying selection,
one a linear gradient and the other a square patch of different habitat selecting
for a different trait value. We also tested false positive rates for detecting loci
under selection on the neutral patchy landscape studied above. As above with
the neutral simulations, simulations began with organisms distributed across
the landscape, with an ancestral trait value of zero. In these simulations, 1% of
mutations influenced the quantitative trait with additive effects and with effect
size normally distributed with a standard deviation of 5. For the linear gradient,
the optimal trait value was 0.5 at one extreme and -0.5 at the other extreme, on
a 25x25 square landscape. Selection was imposed using a Gaussian fitness func-
tion to proportionally reduce survival probability, with standard deviation σk.
In this first simulation, σk = 0.5. Carrying capacity was roughly 5 individuals
per square unit area (Battey, Ralph, and Kern 2020). Full details of simulation,
including complete code, can be found in supplemental materials.

For simulations with the linear selective gradient with an organism with the
scale of mating and propagule dispersal each σ = 1.1 at 2,000 years there were
3 selected loci with major allele frequency (MAF) at least 0.1, the two loci
under stronger selection were clearly identified by var((Twavfi)(a, b, s)/sd(fi))
at the larger spatial scales (Figure 3). When there is a linear selective gradient
across the entire landscape, the largest spatial scale is the one most strongly
differentiating environments and the strongest scaled wavelet variance was at
the largest scale (Figure 4). However, power may not be greatest at these
largest scales, because population structure also is greatest at these largest
scales. Instead, power was greatest at intermediate scales, as seen by the lowest
p-values being detected at these intermediate scales (Figure 3). At these scales
there is greater gene flow but still some degree of changing selection that may
maximize power to detect selection.

We next simulated discrete habitat variation, with a large central patch
that selected for distinct trait values (trait optimum = 0.5) compared to the
outer parts of the landscape (trait optimum = -0.5). Selection was initially
weakly stabilizing (σk = 3 around the optimum of zero for the first 500 years
to accumulate some variation, and then the patch selective differences were
imposed with stronger selection, σk = 0.08. The scales of mating and propagule
dispersal were each σ = 2. Carrying capacity was was roughly 50 individuals
per square unit area.

In this simulation we present results after 3000 years, where there was a
single QTL under selection, with a MAF = 0.46 and the effect of one derived
QTL allele on the trait = 0.497 (Figure 5). We found several spurious large
scale peaks in scaled wavelet variance (Figure 4A), but when using the χ2 test
we clearly identified the single QTL under selection, with lowest p-values for
intermediate scales (Figure 4B).

We then compared the application of FST to this same simulated data set
(local adaptation to a single patch), using arbitrarily delineated populations.
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Figure 3: (top panel) Genome-wide variation in scaled wavelet variance,
var((Twavfi)(a, b, s)/sd(fi)), for six different scales s and (bottom panel) upper-
tail p-values for chi-square test using fitted values of d.f. Each point represents a
SNP at a specific scale, red is the largest scale of ∼ 12.2 and blue is the smallest
scale of ∼ 1.6, with the intermediate scales being ∼ 2.9, 5.2, 6.9, and 9.2. Sim-
ulations included a linear selective gradient and 2000 years(time steps). Loci
under selection are indicated with vertical lines along with the absolute value of
the derived allele’s effect on the trait and MAF. At upper right the mean scaled
wavelet variance across all genomic loci is shown for each scale s. The scale of
mating and propagule dispersal were each σ = 1.1. Gaussian viability selection
was imposed with σk = 0.5. Carrying capacity was roughly 5 individuals per
square unit area.
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Figure 4: (A) Genome-wide variation in scaled wavelet variance
var((Twavfi)(a, b, s)/sd(fi)) and (B) χ2 p-values for six different scales s,
for a discrete habitat difference after 3000 simulated years. Each point in the
left panels represents a SNP, and wavelet statistics (A-B) at specific scales, with
red being the largest scale of ∼ 12.2 and blue being the smallest scale of ∼ 1.6.
(B) At right also shows a map of the landscape with individuals’ genotypes at
the causal QTL indicated with color. The locus under selection is indicated
with a vertical line along with the absolute value of a derived allele’s effect on
the trait and MAF. (C-D) Implementation of FST using arbitrary boundaries
for populations. This approach can easily miss causal loci (C) if the delineated
population boundaries do not match habitat boundaries. (A) At upper right
the mean scaled wavelet variance across all loci is shown for each scale s. The
scale of mating and propagule dispersal were each σ = 2. Gaussian viability
selection was imposed with σk = 0.08.
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In this case, the specific delineation of populations has a major influence on
whether FST can identify the selected loci. We used ’hierfstat’ package in R
(Goudet 2005) to calculate FST using the approach of Nei (Nei 1987).

The most frequent locus underlying local adaptation in this simulation was
only identified as a modest FST peak one of the two arbitrary grids we used to
delineate populations (Figure 4D), highlighting how it can be easy to miss pat-
terns (Figure 4C) due to these arbitrary decisions of how to subdivide samples
into populations.

2.2.2 Initial evaluation of the scaled wavelet variance test

We conducted simulations on three types of landscapes with varying life history
parameters as an initial assessment of the general appropriateness of the scaled
wavelet variance test we proposed above. These simulations were not meant to
be an exhaustive evaluation of the performance of this new test; we leave a more
extensive evaluation for future studies.

Here, we again used the linear gradient landscape and the discrete habitat
patch landscape but with a wider range of parameter variation. Only simula-
tions where parameter combinations resulted in local adaptation were included.
However, we also included the neutral simulations described in the previous
parts of the paper to test false positive rates under these scenarios.

Overall our simulations showed good false positive rates. Across simulations
and scales, the proportion of SNPs with χ2 upper-tail p < 0.05 was nearly always
close to but usually less than 0.05, indicating a slightly conservative test. FDR
control nearly always resulted in all neutral SNPs having q > 0.05. Power to
detect SNPs under selection ranged from low to high, depending on whether
there were few SNPs or a larger number of SNPs under selection. Although
selected SNPs were not all detected at q < 0.05, they were often closely linked
to neutral SNPs that did have q < 0.05, though we did not consider such
QTL as true positives in our conservative evaluation here. We also note that
here we did not use any criteria about the distribution of selected SNPs across
environments, i.e. their true role in local adaptation. Thus some of these
SNPs under selection that we did not detect may have played a small role in
actual local adaptation, despite their effect on the phenotype under selection
(cf. (Whitlock and Lotterhos 2015)).

2.3 Testing for spatial pattern in quantitative trait loci
(QTL)

When testing for spatially-varying selection on a quantitative trait. One ap-
proach is ask whether QTL identified from association or linkage mapping stud-
ies show greater allele frequency differences among populations than expected
(Berg and Coop 2014; Price et al. 2018). Here we implement such an approach to
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compare wavelet transformed allele frequencies for QTL L to a set of randomly
selected loci of the same number and distribution.

For this test we calculated the mean of scaled wavelet variance for all QTL
with MAF at least 0.05 among sampled individuals (for brevity, we did not also
simulate the process of mapping QTL; we leave that for future work). We then
permuted the identity of causal QTL across the genome and recalculated the
mean scaled wavelet variance, and repeated this process 10000 times to generate
a null distribution of mean scaled wavelet variances of QTL for each scale s.

We used a similar simulation of adaptation to a square patch of habitat
in the middle of a landscape. However in this case we adjusted life history
parameters to result in a larger number of QTL for local adaptation (specifically
we reduced the scale of the two gene flow parameters to σ = 0.5, relaxed the
strength of selection so that it was now σK = 0.5, and reduced carrying capacity
to approximately 5 individuals per square unit area).

After 1000 generations we sampled 300 individuals, from which there were 13
QTL for the trait under selection with MAF at least 0.05. We then calculated
the mean scaled wavelet variance, var((Twavfi)(a, b, s)/sd(fi)), for these QTL
across scales s. To generate a null expectation for the mean of scaled wavelet
variance for these QTL, we randomly selected 13 SNPs from the genome and
recalculated mean var((Twavfi)(a, b, s)/sd(fi)), and did this resampling 1000
times.

We found significantly higher mean var((Twavfi)(a, b, s)/sd(fi)) for the QTL
than the null expectation at all 6 scales tested. Although the scaled wavelet
variance was greatest at the largest scales for the QTL, these scales did not
show as great a distinction when comparing to the null. The greatest mean
wavelet variance of QTL relative to null came at the intermediate scales of 3-5,
which was approximately 1/3-1/2 the width of the habitat patch (Figure 5).

2.4 Application to empirical systems

2.4.1 Genome-wide wavelet dissimilarity

We applied our approach to two empirical datasets of diverse, broadly dis-
tributed genotypes with dense marker data: 999 genotypes from 764 natural
populations of the model plant, Arabidopsis thaliana (Brassicaceae), and 1846
traditional local varieties (landraces) from 1484 locations of the crop sorghum,
Sorghum bicolor (Poaceae). We used the Arabidopsis dataset from (Alonso-
Blanco et al. 2016), only including Eurasian populations, and calculated allele
frequency for locations with more than one accession genotyped, resulting in
72,567 SNPs filtered for minor allele frequency (MAF> 0.1) and LD. We ob-
tained the Sorghum dataset from an integrated GBS panel of over 10K geno-
types (Hu et al. 2019), from which we only included landraces, and calculated
allele frequency for locations with more than one accession genotyped, resulting
in 335,926 SNPs filtered for MAF> 0.1. We used the R package SNPRelate
(Zheng et al. 2012) to generate the SNP matrix for each dataset.

For both species, we first calculated the genome-wide wavelet dissimilarity,
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Figure 5: Testing for selection on QTL by comparing mean scaled wavelet vari-
ance var((Twavfi)(a, b, s)/sd(fi)) for QTL to that of random SNPs, for six
different scales s (red = large scale and blue = small scale). Populations were
locally adapted to a discrete habitat patch and results are shown after 1000
simulated time steps. QTL with MAF of at least 0.05 are indicated with verti-
cal lines at left. The histograms at right show null distributions of mean scaled
wavelet variance var((Twavfi)(a, b, s)/sd(fi)) based on random samples of an
equal number of markers as there were QTL (with MAF at least 0.05, n=13
here) and the observed scaled wavelet variance of QTL and its z-score.

Dwav
a,b (s). In both species, we observed increasing mean genome-wide wavelet

dissimilarity at larger scales (Figure 6), a pattern indicative of isolation by
distance, on average, across the landscape. Both species showed significantly
low dissimilarity at smaller scales, likely due to the homogenizing effect of gene
flow. Sorghum had significantly low dissimilarity up to the ∼ 47 km scale, while
Arabidopsis already exhibited significantly high dissimilarity by the ∼ 20 km
scale. This suggests the scale of gene flow due to human mediated dispersal
is greater for the crop sorghum than for Arabidopsis. While both species are
primarily self-pollinated, Arabidopsis lacks clear dispersal adaptations (though
seeds of some genotypes form mucus in water that increases buoyancy) (Saez-
Aguayo et al. 2014).

The specific locations of scale-specific dissimilarity revealed several inter-
esting patterns. In Arabidopsis, at the ∼ 47 km scale, there were three no-
table regions of significantly high dissimilarity: northeastern Iberia and extreme
southern and northern Sweden (Figure 6). The high dissimilarity at this scale
in northeastern Iberia corresponds to the most mountainous regions of Iberia,
suggesting that limitations to gene flow across this rugged landscape have led
to especially strong isolation among populations at short distances. In north-
ern Sweden, Long et al. (2013) previously found a particularly steep increase in
isolation-by-distance. Alonso-Blanco et al. (2016) found that genetic distance
was greatest among accessions from Southern Sweden at scales from ∼ 20− 250
compared to some other discrete regions (though not including northern Swe-
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Figure 6: Genome-wide wavelet dissimilarity, Dwav
a,b (s), for Arabidopsis and

sorghum genotypes. Top panels show the average dissimilarity across scales
compared to the null expectation. The bottom four panels show selected scales
and highlight the changes is dissimilarity across locations, with each circle indi-
cating a genotyped sample. Red indicates significantly greater wavelet dissimi-
larity than expected, blue significantly less than expected. For the map panels,
the intensity of color shading indicates the relative variation in Dwav

a,b (s) among
significant locations.
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den). At larger, among-region scales, dissimilarity was significantly high across
the range, with Iberia and northern Sweden again being most dissimilar at ∼ 619
km and joined by central Asia at ∼ 1459 km as being most dissimilar. Iberia and
northern Sweden contain many accessions distantly related to other accessions,
likely due to isolation during glaciation and subsequent demographic histories
(Alonso-Blanco et al. 2016). This scale in Asia separates populations in Siberia
from those further south in the Tian Shan and Himalayas, indicating substan-
tial divergence potentially due to limited gene flow across the heterogeneous
landscape.

In sorghum, there were also major differences among regions. At the ∼
263 km scale there were still regions with significantly low dissimilarity. In
particular Chinese landraces had significantly low dissimilarity at this scale,
potentially reflecting their more recent colonization (< 2 kya, versus e.g. ∼ 5
kya for colonization of Punjab) (Kimber 2000; Qingshan and Dahlberg 2001),
and the rapid spread of closely related genotypes. By contrast, at the same
∼ 263 km scale there was particularly high dissimilarity along the Rift Valley in
Ethiopia, a region of high sorghum diversity and great topographic and climate
heterogeneity (Lasky, Upadhyaya, et al. 2015), as well as in eastern India, a
region where two very distinct genetic clusters meet (J. Wang et al. 2020). At
the among-region scale of ∼ 1459 km, we found significantly high dissimilarity
everywhere, especially greatest in West Africa (Burkina Faso to Nigeria), SE
Africa (Zambia to Mozambique), which both correspond to the early axes of
sorghum spread out of east Africa (Kimber 2000) and are regions of turnover
in major genetic clusters (J. Wang et al. 2020), as well as western India and
Pakistan, which corresponds to sharp rainfall gradients along which sorghum
landraces may be locally adapted (Lasky, Upadhyaya, et al. 2015).

2.4.2 Identifying putative locally-adapted loci

For Arabidopsis, we focused on genotypes that were not a part of distantly re-
lated lineages (”relicts”) (Alonso-Blanco et al. 2016) leaving 976 genotypes, from
741 locations, for which we calculated allele frequency for locations with more
than one accession genotyped. This resulted in 1,359,253 SNPs with MAF> 0.1.
For sorghum, we focused on landraces from sub-saharan Africa to identify pu-
tative locally adapted loci within the continent, and calculated allele frequency
for locations with more than one accession genotyped, leaving 1,438 landraces
from 1,094 locations and 123,334 SNPs with MAF> 0.1.

The scaled wavelet variance test identified putative locally adapted loci in
both species, where p-values were lower for the medium to smaller scales we
tested (Figures S4 and S5). Among notable loci for Arabidopsis, the #5 SNP
at the #1 locus (and 5 kb from the #1 SNP) for the ∼ 282 km scale was in the
DOG1 gene (Figure 7A). This SNP, Chr. 5, 18,590,327 was a peak of association
with flowering time at 10oC and germination (Mart́ınez-Berdeja et al. 2020)
and tags known functional polymorphisms at this gene that are likely locally
adaptive (Mart́ınez-Berdeja et al. 2020). The spatial pattern of variation at this
locus (Figure 7A) is complicated, highlighting the benefit of the flexible wavelet

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


approach. By contrast, imposing a grid on this landscape, or using national
political boundaries to calculate FST could easily miss the signal as did Horton
et al. (2012). The climate gradients driving this variation are also complicated
and non-monotonic (Mart́ınez-Berdeja et al. 2020) (Gamba et al. 2022), making
it challenging for genotype-environment association approaches. At the ∼ 1359
km scale, the #4 locus and SNP (Figure 7B) was on chromosome 5, 648 bp
upstream from SNRK2-3, which is in the family of Snf1-related kinases2 and
plays an important role in signaling in response to the key abiotic stress response
hormone abscisic acid (ABA) (Cai et al. 2020; K. Wang et al. 2018). This SNP
was correlated to two small indels predicted to cause alternate splicing (Alonso-
Blanco et al. 2016): one 9 bp insertion found in 32 ecotypes (position 26711798)
was always found with the SNP reference allele, and a 1 bp deletion found in
156 ecotypes was 57% of the time with the reference allele. A third insertion
was present in one ecotype and overall the SNP we identified was significantly
associated with the putative alternate splice variants at SNRK2-3 (Kruskal-
Wallis test, p < 10−5), suggesting we identified spatially structured functional
variation in a key abiotic stress responsive signalling gene.

For Sorghum in sub-Saharan Africa, at the ∼ 60 km scale, the #2 locus and
SNP (Chr. 6, 1,344,827 bp) was closest to (∼ 18 kb distant) Sobic.006G009000,
a putative calcium-activated chloride channel regulator primarily expressed in
roots (McCormick et al. 2018). As expected based on the spatial scale at which
this locus emerged in our genome scan, this locus showed highly heterogeneous
spatial distribution, apparently much more so than expected based on the ge-
nomic distribution of SNPs (Figure 7C). Given previous evidence that sorghum
landraces are adapted along relatively fine-scale soil gradients (Lasky, Upad-
hyaya, et al. 2015), we hypothesize that the pattern we detected at this lo-
cus is involved in soil adaptation. At the largest scales of ∼ 1400 − 3000 km
the #1 locus and SNP (Chr. 1, 5,016,136 bp) fell in the coding region of So-
bic.001G065800, which is a glutathione S-transferase, genes that play important
roles in both abiotic and biotic stressors (Gullner et al. 2018). At this locus the
reference allele is nearly fixed in west Africa while the alternate allele is near
fixed in southeastern Africa, regions that differ in a wide range of environmental
conditions (Figure 7D).

2.4.3 Testing for local adaptation in quantitative trait loci (QTL)

We tested for non-random scaled wavelet variance of Arabidopsis flowering time
QTL. We used previously published data on flowering time: days to flower at
10oC measured on 1003 genotypes and days to flower at 16oC measured on 970
resequenced genotypes (Alonso-Blanco et al. 2016). We then performed mixed-
model genome wide association studies (GWAS) in GEMMA (v 0.98.3) (Zhou
and Stephens 2012) with 2,048,993 M SNPs filtered for minor allele frequency
(MAF> 0.05), while controlling for genome-wide similarity among ecotypes.

We found that top flowering time GWAS SNPs showed significantly elevated
scaled wavelet variance at several intermediate spatial scales tested. For flower-
ing time at both 10o and 16oC, scaled wavelet variance was significantly elevated
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Figure 7: SNP allelic variation (colors) that were top outliers for scaled wavelet
variance test at different scales (indicated by bars above each panel). The ranks
of the locus and SNP for each scale are given, where locus are defined as nearby
SNPs (within 10 kb).
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for the top 100 SNPs at the ∼ 282, 619, and 1359 km scales, but not the largest
or smallest scales (Figure 8). In particular the scaled wavelet variances were
greatest for the ∼ 619 km scale, where the observed wavelet variance of QTL
was 10.0 standard deviations above the mean of null permutations for 10oC. For
both temperature experiments, results were nearly equivalent if we instead used
the top 1k SNPs.

3 Discussion

Geneticists have long studied spatial patterns in allele frequency to make infer-
ence about underlying processes of demography, gene flow, and selection. While
many statistical approaches have been developed, few are flexible enough to in-
corporate patterns at a range of scales that are also localized in space. Because
wavelet transforms have these properties, we think they may be useful tools for
geneticists. Here we demonstrated several applications of wavelet transforms
to capture patterns in whole genome variation and at particular loci, under a
range of neutral and non-neutral scenarios.

Many existing approaches are based on discretization of spatially-distributed
samples into spatial bins, i.e. putative populations. However, without prior
knowledge of selective gradients, patterns of gene flow, or relevant barriers, it
is often unclear how to delineate these populations. For example, we can see
how the specific discretization can hinder our ability to find locally-adapted
loci in our simulations (Figure 4) and in empirical studies of Arabidopsis in
the case of the phenology gene DOG1 that was missed in previous FST scans
(Alonso-Blanco et al. 2016; Horton et al. 2012).

Our goal in this paper was to provide a new perspective on spatial pop-
ulation genetics using the population-free, and spatially smooth approach of
wavelet transforms. We showed how these transforms characterize scale-specific
and localized population structure across landscapes (Figures 1, 2, 6). We also
showed how wavelet transforms can capture scale-specific evidence of selection
on individual genetic loci (Figures 3, 4, 7) and on groups of quantitative trait loci
(Figure 5 and 8). Our simulations and empirical examples showed substantial
heterogeneity in the scale of patterns and localization of patterns. For example,
the wavelet genetic dissimilarity allowed us to identify regions near a front of
range expansion with steeper isolation by distance at particular scales due to
drift (Figure 1). Additionally, we identified loci underlying local adaptation
and showed an example where the evidence for this adaptation was specific to
intermediate spatial scales (Figure 4). While existing approaches to character-
izing population structure or local adaptation have some ability to characterize
scale specific patterns, e.g. those based on ordinations of geography (Wagner,
Chávez-Pesqueira, and Forester 2017) or SNPs (Josephs et al. 2019), and some
can capture localized patterns (e.g Petkova, Novembre, and Stephens 2016),
there are few examples of approaches that merge both abilities. Moran’s eigen-
vector maps (MEMs) (Wagner, Chávez-Pesqueira, and Forester 2017) may come
closest to this goal, though their scale-specificity and localization is dependent
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Figure 8: Testing for selection on Arabidopsis flowering time QTL by compar-
ing scaled wavelet variance, var((Twavfi)(a, b, s)/sd(fi)), of QTL with random
SNPs, for five different scales s, for flowering time measured at 10oC and 16oC.
The observed mean of the top 100 flowering time SNPs is indicated with a verti-
cal line and a z-score. The histograms at right show null distributions of scaled
wavelet variance based on permutations of an equal number of markers with an
equal distribution as the flowering time QTL.
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on the specific rotation of geographic axes.
The test for spatial pattern in individual loci we developed owes greatly to

previous work from Lewontin and Krakauer (1973) who initially developed χ2

tests applied to the distribution of FST values, and from Whitlock and Lotter-
hos (2015)’s approach of inferring the degrees of freedom of the χ2 distribution
using maximum likelihood and FST across loci. The χ2 distribution underlies
a number of related genetic applied across loci (François et al. 2016), and here
shows further utility. However, we note that this test may be slightly conserva-
tive in some situations, given that we found under some demographic scenarios
a failure to detect all selected loci (itself a conservative criterion for evaluating
simulations) at FDR = 0.05. Nevertheless, we believe there were important
signs in our work that this χ2-based test was valuable. In particular, we found
in our simulation of adaptation to a habitat patch that the scaled wavelet vari-
ance was greatest at large spatial scales but at neutral sites, which obscured
spatial pattern at the causal locus (Figure 4). When applying the χ2 test, we
were able to clearly map the causal locus while spurious loci with high scaled
wavelet variance fell away because spatial patterns at those loci still fit within
the null distribution.

Relatedly, we found in other simulations and our empirical examples that the
strongest evidence for local adaptation was often not at the largest spatial scales
(Figure 8), even when the selective gradient was linear across the landscape (i.e.
the largest scale, Figure 3). This enhanced power at scales sometimes smaller
than the true selective gradients may be due to the limited power to resolve
true adaptive clines at large scales from the genome-wide signal of isolation by
distance at these scales. At intermediate scales, there may be a better balance
of sufficient environmental variation to generate spatial pattern with a reduced
spatial differentiation due to limited gene flow.

We note that there remain several limitations to our approach proposed
here. First, the ability of wavelet transforms to capture patterns depends on
the correspondence between the wavelet form (shape) and the form of the em-
pirical patterns we seek to enhance, and there may be better functional forms to
filter spatial patterns in allele frequency. Generally speaking, a more compact
smoothing kernel with minimum weight in the tails will be better at reveal-
ing abrupt spatial transitions, but at the necessary cost of less precise deter-
mination of scale (Heisenberg 1927). Smoothing kernels such as the tricube

(kx '
[
1− x3

]3
) have been shown to optimize certain trade-offs in this space

and could be used to construct a difference-of-kernels wavelet. However, the
overall influence of kernel shape tends to be much less than the influence of ker-
nel bandwidth in our experience. Second, we have not yet implemented localized
tests for selection (i.e. specific to certain locations) as we did with genome-wide
dissimilarity. A challenge applying this test at individual loci is that there is a
very large number of resulting tests from combinations of loci, locations, and
scales. Therefore we have not fully exploited the localized information we derive
from the wavelet transforms.

There are number of interesting future directions for research on wavelet
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characterization of spatial pattern in evolutionary biology. First, we could apply
the wavelet transforms to genetic variation in quantitative traits measured in
common gardens, to develop tests for selection on traits akin to the QST -
FST test (Josephs et al. 2019; Whitlock and Guillaume 2009). Second, we
could follow the example of Al-Asadi et al. (2019) and apply our measures of
genetic dissimilarity to haplotypes of different size to estimate relative variation
in the age of population structure. Third, we should test the performance of
our tools under a wider range of demographic and selective scenarios to get
a nuanced picture of their strengths and weaknesses. Fourth, null models for
wavelet dissimilarity could be constructed using knowledge of gene flow processes
(instead of random permutation) to identify locations and scales with specific
deviations from null patterns of gene flow.

3.1 Conclusion

Population genetics (like most fields) has a long history of arbitrary discretiza-
tion for the purposes of mathematical, computational, and conceptual conve-
nience. However, the real world usually exists in shades of gray, where there
are not clear boundaries between populations and where processes act simul-
taneously at multiple scales. We believe that wavelet transforms are one of a
range of tools that can move population genetics into a richer but still useful
characterization of the natural world.
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5 Supplemental material

5.1 Supplemental methods

Even under neutrality, individual loci differ in their history and thus not hall
have identical spatial patterns. To develop a null expectation for the distribu-
tion of scaled wavelet variance in allele frequencies across loci, we use the basic
approach of Cavalli-Sforza (1966) and Lewontin and Krakauer (1973). Lewontin
and Krakauer (1973) used χ2 null-model tests for FST values across multiple
loci. The distribution of the sum of squares of n independent standard nor-

mal variables is χ2 with n − 1 degrees of freedom, so that F̂ST (n−1)
¯FST

is also

χ2 distributed with n − 1 degrees of freedom where n is the number of popu-
lations and F̄ST is the mean FST among loci (Lewontin and Krakauer 1973).
However, the assumption of independence among variables (here, allele frequen-
cies among populations) is often violated, and they instead are embedded in
different locations in a heterogeneous (but usually unknown) metapopulation
network (Lewontin and Krakauer 1975; Nei and Maruyama 1975; Robertson
1975; Whitlock and Lotterhos 2015).

To solve this problem of non-independence among populations we use the
same strategy that Whitlock and Lotterhos (2015) applied to FST : we use
the distribution of scaled wavelet variances for each locus to infer the effec-
tive number of independent populations (giving the degrees of freedom) for
the χ2 distribution. We used the Whitlock and Lotterhos (2015) method: we
trimmed outliers (here the bottom 2.5% SNPs for scaled wavelet variance) in
scaled wavelet variance, for each scale s, then used maximum likelihood to infer
the number of independent populations (using the χ2 maximum likelihood es-
timation of Whitlock and Lotterhos 2015), recalculated outliers, and then refit
the χ2 distribution iteratively. Mean scaled wavelet variance was also calculated
in this process while excluding SNPs in the bottom 2.5% tail as well as those
with significantly high scaled wavelet variance at FDR = 0.05. We then used
that estimate of the number of effective independent populations to determine
the null χ2 distribution for scaled wavelet variance.

We then used this null distribution to calculate upper tail probabilities as
one-sided p-values, and then used Benjamini Hochberg FDR to get q-values. We
found (like Whitlock and Lotterhos 2015) that the χ2 distribution was sensitive
to the inclusion of low MAF variants and thus we also excluded any SNPs with
MAF < 0.1.
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Figure S1: An example of applying a difference of Gaussians (DoG) wavelet
to spatial allele frequency patterns (here in one dimension). (A) shows the
change in allele frequency across the spatial dimension x. (B-C) show two DoG
wavelets (black curves) of two different scales s, centered at location a = 0,
with the allele frequency pattern overlain in gray. The two selected scales (B-C)
are shown because they are the scales at which variation across space in the
wavelet transformed allele frequency, i.e. the product of the allele frequency
and DoG, is greatest (D). These two scales capture the small scale variation in
allele frequency between areas where different alleles are fixed (B), and the large
scale variation between the center of the landscape where the alternate allele is
present in some locations versus the edges of the landscape where the alternate
allele is totally absent (C).
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Figure S2: Simulated two dimensional landscape (A) with continuous popula-
tion structure among 200 sampled individuals (circles), illustrated by the first
two PCs of 1000 randomly selected SNPs (colors). In (A), each individual’s
color gives its SNP loadings on PC1 and PC2 according to the key at upper
right. Mean of observed wavelet dissimilarities (B) among the 200 samples at
a range of spatial scales s (connected by a solid black line) in comparison with
the null expectation (gray ribbon) from permuted sample locations (2.5-97.5th
percentiles of 100 permutations). The standard deviation of gene flow distance
is indicated (dashed line).
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Figure S3: Principal component analysis on 1000 random SNPs from the neutral
evolution simulation on a heterogeneous landscape. Habitat is shown as gray in
the background and unsuitable areas are white. Sampled individuals are circles.
Colors represent the first two PCs and show how the two populations on islands
in upper left and bottom right are genetically distinct.
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Figure S4: Scaled wavelet variance test results for SNPs of Arabidopsis. Scales
shown go from blue (small scale) to red (large scale), specifically, ∼ 12, ∼ 59,
∼ 282, ∼ 619, ∼ 1359, ∼ 2980 km.

Figure S5: Scaled wavelet variance test results for SNPs of Sorghum. Scales
shown go from blue (small scale) to red (large scale), specifically, ∼ 12, ∼ 59,
∼ 282, ∼ 619, ∼ 1359, ∼ 2980 km.
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