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Abstract

Characterizing spatial patterns in allele frequencies is fundamental to evolutionary
biology because such patterns can inform on underlying processes. However, the spatial
scales at which changing selection, gene flow, and drift act are often unknown. Many of
these processes can operate inconsistently across space (causing non-stationary
patterns). We present a wavelet approach to characterize spatial pattern in genotype
that helps solve these problems. We show how our approach can characterize spatial
patterns in ancestry at multiple spatial scales, i.e. a multi-locus wavelet genetic
dissimilarity. We also develop wavelet tests of spatial differentiation in allele frequency
and quantitative trait loci (QTL). With simulation we illustrate these methods under a
variety of scenarios. We apply our approach to natural populations of Arabidopsis
thaliana and traditional varieties of Sorghum bicolor to characterize population
structure and locally-adapted loci across scales. We find, for example, that Arabidopsis
flowering time QTL show significantly elevated scaled wavelet variance at ∼ 300− 1300
km scales. Wavelet transforms of population genetic data offer a flexible way to reveal
geographic patterns and underlying processes.

Author summary

Biologists can learn about evolutionary processes by studying spatial/geographic
changes in the genotype of organisms in nature. However, many previous approaches to
measure spatial genetic patterns have been limited by forcing individual samples into
bins of discrete size and location, hindering our ability to learn about evolution. Here we
present a new continuous approach to spatial genetics that allows us to resolve patterns
that change in space and opposing patterns that occur at different spatial scales.

Introduction 1

Since the advent of genotyping, geographic clines in allele frequencies are one of the 2

classic patterns in evolutionary biology: common in diverse systems, driven by multiple 3

processes, and important to understanding the maintenance of biodiversity. By 4

characterizing patterns of spatial turnover, evolutionary biologists might infer the 5

underlying evolutionary and ecological mechanisms. Some of the major approaches to 6

characterizing spatial turnover include measuring the proportion of total allele frequency 7

variation that differs between discrete populations [1,2], calculating correlations between 8

spatial functions and genetic variation [3, 4], and identifying geographic regions where 9

genetic turnover is particularly high or low [5]. In recent years researchers have collected 10
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many large, spatially-distributed DNA sequence datasets in species with a wide range of 11

life histories [6–9]. Statistical inference can be applied to these data to understand 12

patterns of gene flow, demographic histories, and local adaptation. Although some of 13

these approaches have a long history of use, there remain a number of thorny challenges. 14

For local adaptation, the selective gradients are unknown 15

One important force behind allele frequency clines is changing selection along 16

environmental gradients that causes local adaptation. However, it is often not clear 17

what environmental gradients drive local adaptation [10]. This is especially true of 18

non-model systems and those with little existing natural history knowledge. Even for 19

well-studied species, it is not trivial to identify the specific environmental conditions 20

that change in space and drive local adaptation. Ecology is complex, and abiotic and 21

biotic conditions are high-dimensional. Rather than a priori selection of a putative 22

selective gradient, an alternative approach is to simply search for spatial patterns in 23

allele frequencies that cannot be explained by neutral processes. This approach is 24

embodied by several statistics and approaches, such as FST [11], XtX [12], spatial 25

ancestry analysis (SPA) [4], Moran’s eigenvector maps (MEMs) [3], and others. 26

The form and scale of spatial patterns is unknown 27

The functional forms (i.e. shapes) of both spatially-varying selection and neutral 28

processes (e.g. dispersal kernels) are often unknown, as are the forms of resulting spatial 29

patterns. For example, the specific environmental gradients driving changing selection 30

are often not known, nor is the spatial scale at which they act, and whether they change 31

at the same rate consistently across a landscape. 32

In the case of neutral processes, a homogeneous landscape approximately at 33

equilibrium is rarely of interest to empiricists. Instead, the influence of heterogeneous 34

landscapes and historical contingency is usually a major force behind spatial patterns in 35

allele frequency and traits [13]. The influence of drift and range expansion can occur at 36

a variety of spatial scales, and in different ways across a heterogenous landscape. The 37

scale-specificity and non-stationarity of such patterns can be challenging to characterize. 38

Estimated effective migration surfaces (EEMS) [5] are one recently developed approach 39

to characterize non-stationary spatial genetic patterns in ancestry, identifying 40

neighboring populations where migration appears less or greater than average. 41

Many approaches rely on discretization of population boundaries 42

Some of the aforementioned approaches rely on dividing sampled individuals into 43

discrete spatial groups for the analysis of differences between groups. FST is one such 44

commonly used approach, that was introduced by Wright [1] and defined as the 45

”correlation between random gametes, drawn from the same subpopulation, relative to 46

the total”, where the definition of ”total” has been interpreted differently by different 47

authors [14]. 48

The classic approach of calculating FST to test for selection was usually applied to a 49

small number of locations, a situation when discretization (i.e. deciding which 50

individuals genotyped belong in which population) was a simpler problem. Current 51

studies often sample and sequence individuals from hundreds of locations, and so the 52

best approach for discretizing these genotyped individuals into defined ’populations’ is 53

less clear. Similarly, the EEMS approach to studying structure and gene flow still relies 54

on discretization of samples into a populations along a single arbitrary grid [5]. 55

However, if delineated populations are larger than the scales at which some selective 56

gradients or barriers to gene flow act, these will be missed. Conversely, dividing samples 57
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into too small of local populations can reduce power to estimate statistics associated 58

with each individual population. In addition to scale, at issue is precisely where to place 59

the boundaries between populations. The problem is enhanced for broadly distributed 60

species, connected by gene flow, that lack clear spatially distinct populations [15]. 61

Integrating a flexible spatial scale and population boundaries into this type of analysis 62

is the goal of this paper. 63

Some approaches to characterizing spatial genetic pattern are not limited by 64

discretization, and might be generally termed ”population-agnostic” because 65

populations are not defined. These instead use ordination of genetic loci or geographic 66

location. Approaches that use ordination (such as PCA) of genetic loci look for 67

particular loci with strong loadings on PCs [16] or traits with an unexpectedly high 68

correlation with individual PCs [15]. Alternatively, ordination of distance or spatial 69

neighborhood matrices can create spatial functions that can be used in correlation tests 70

with genetic loci [3]. However, ordinations to create individual rotated axes are not 71

done with respect to biology and so might not be ideal for characterizing biological 72

patterns. For example, ordinations of genetic loci are heavily influenced by global 73

outliers of genetic divergence [17]. The approach we present below overcomes this 74

limitation and is not based on specific data rotations. 75

Wavelet characterization of spatial pattern 76

Instead of discretizing sampled locations into populations, a more flexible approach 77

would be to identify localized and scale-specific spatial patterns in allele frequency. 78

Wavelet transforms allow one to characterize the location and the scale/frequency of a 79

signal [18]. Daubechies [18] gives a nice analogy of wavelet transforms: they are akin to 80

written music, which indicates a signal of a particular frequency (musical notes of 81

different pitch) at a particular location (the time at which the note is played, in the case 82

of music). Applying this analogy to spatial genetic patterns, the frequency is the rate at 83

which allele frequencies change in space, and the location is the part of a landscape 84

where allele frequencies change at this rate. Applying wavelet basis functions to spatial 85

genetic data can allow us to characterize localized patterns in allele frequency, and 86

dilating the scale/frequency of these functions can allow us to characterize scale-specific 87

patterns in allele frequency (see Figure S1 for an example). 88

Keitt [19] created a wavelet approach for characterizing spatial patterns in ecological 89

communities. He used this approach to identify locations and scales with particular high 90

community turnover, and applied null-hypothesis testing of these patterns. These 91

spatial patterns in the abundance of multiple species are closely analogous to spatial 92

patterns in allele frequency of many genetic markers across the genome, and previous 93

spatial genetic studies have also profited by borrowing tools from spatial community 94

ecology [20,21]. Here we modify and build on this approach to characterize spatial 95

pattern in allele frequency across the genome and at individual loci. 96

Results 97

Wavelet characterization of spatial pattern in allele frequency 98

Our implementation here begins by following the work of Keitt [19] in characterizing 99

spatial community turnover, except that we characterize genomic patterns using allele 100

frequencies of multiple loci in place of abundances of multiple species in ecological 101

communities. In later sections of this paper we build off this approach and develop new 102

tests for selection on specific loci. Wavelets allow estimation of scale-specific signals 103

(here, allele frequency clines) centered on a given point, a, b, in two-dimensional space. 104
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We use a variant of the Difference-of-Gaussians (DoG) wavelet function (Figure S1) [22]. 105

The Gaussian smoothing function centered at a, b for a set of sampling points 106

Ω = {(u1, v1), (u2, v2), . . . (un, vn)} takes the form 107

ηsa,b(x, y) =
k(x−a

s , y−b
s )∑

(u,v)∈Ω k(
u−a
s , v−b

s )
, (1)

where s controls the scale of analysis and k(x, y) is the Gaussian kernel 108

k(x, y) = e−(x2+y2)/2. 109

The DoG wavelet filter then takes the form 110

ψs
a,b(x, y) = ηsa,b(x, y)− ηβsa,b(x, y) (2)

where β > 1, and so the larger scale smooth function is subtracted from the smaller 111

scale smooth to characterize the scale-specific pattern. If we use β = 1.87, then the 112

dominant scale of analysis resulting from the DoG is s distance units [19]. This 113

formulation of the wavelet kernel is similar in shape to the derivative-of-Gaussian kernel 114

and has the advantage of maintaining admissibility [18] even near boundaries as each of 115

the smoothing kernels ηsa,b are normalized over the samples such that their difference 116

integrates to zero. 117

Let fi(u, v) be the allele frequency of the ith locus from a set of I biallelic markers 118

at a location with spatial coordinates u, v. The adaptive wavelet transform of allele 119

frequency data at locus i, centered at a, b and at scale s is then 120

(Twavfi)(a, b, s) =
1

ha,b(s)

∑
(u,v)∈Ω

ψs
a,b(u, v)fi(u, v), (3)

where the right summation is of the product of the smooth function and the allele 121

frequencies across locations. The magnitude of this summation will be greatest when 122

the DoG wavelet filter matches the allele frequency cline. That is, when the shape of 123

the wavelet filter matches the allele frequency cline in space, the product of ψs
a,b(u, v) 124

and fi(u, v) will resonate (increase in amplitude) yielding greater variation in 125

(Twavfi)(a, b, s), the wavelet-transformed allele frequencies. When the spatial pattern in 126

the wavelet filter and allele frequencies are discordant, the variation in their product, 127

and hence the wavelet-transformed allele frequency, is reduced. Note that the sign of 128

fi(u, v) and thus (Twavfi)(a, b, s) hold no meaning to our purposes here, because we do 129

not use information on reference versus alternate, or ancestral versus derived allelic 130

state. 131

The ha,b(s) term in equation 3 is used to normalize the variation in the wavelet filter 132

so that the wavelet transforms Twavfi are comparable for different scales s: 133

ha,b(s) =

√ ∑
(u,v)∈Ω

[ψs
a,b(u, v)]

2 (4)

. Below we illustrate how to apply this wavelet transform (equation 3) of spatial allele 134

frequency patterns to characterize genome-wide patterns, as well as to test for local 135

adaption at individual loci. 136

Wavelet characterization of spatial pattern in multiple loci 137

Researchers are often interested in characterizing spatial patterns aggregated across 138

multiple loci across the genome to understand patterns of relatedness, population 139

structure, and demographic history. To do so, we use 140
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Dwav
a,b (s) =

√√√√ I∑
i=1

[(Twavfi)(a, b, s)]2 (5)

to calculate a ”wavelet genetic distance” or ”wavelet genetic dissimilarity.” This 141

wavelet genetic dissimilarity is computed as the Euclidean distance (in the space of 142

multiple loci’s allele frequencies) between the genetic composition centered at a, b and 143

other locations across s distance units. This wavelet genetic dissimilarity Dwav
a,b (s) is 144

localized in space and scale-specific. This quantity captures the level of genetic turnover 145

at scale s centered at a, b, and is capturing similar information as the increase in 146

average genetic distance between a genotype at a, b and other genotypes s distance 147

units away (Figure 1E and 1F). A benefit of using the wavelet filter is that it smoothly 148

incorporates patterns from genotypes that are not precisely s distance units away and 149

can be centered at any location of the analysts choosing. To get the average 150

dissimilarity across the landscape, one can also calculate the mean of Dwav
a,b (s) across 151

locations a, b at each sampled site, to get a mean wavelet genetic dissimilarity for s. 152

Testing the null hypothesis of no spatial pattern in allele frequency 153

A null hypothesis of no spatial pattern in allele frequencies can be generated by 154

permuting the location of sampled populations among each other. Most empirical 155

systems are not panmictic, and so this null model might be considered trivial in a sense. 156

However, comparison with this null across scales and locations can reveal when systems 157

shift from small-scale homogeneity (from local gene flow) to larger scale heterogeneity 158

(from limited gene flow) [19]. 159

Simulated neutral patterns across a continuous landscape 160

We conducted forward landscape genetic simulations under neutrality (or below under 161

spatially varying selection on a quantitative trait) using the SLiM software [23], building 162

off published approaches [24]. We simulated outcrossing, iteroparous, hermaphroditic 163

organisms, with modest lifespans (average of ∼ 4 yrs/time steps). Mating probability 164

was determined based on a Gaussian kernel as was dispersal distance from mother [24]. 165

Individuals became mature in the time step following their dispersal. All code is 166

included in supplemental files. These parameters roughly approximate a short lived 167

perennial plant with gene flow via to pollen movement and seed dispersal. Below we 168

indicate in some figures the expected standard deviation of gene flow from the combined 169

mechanisms, which is equal to the square root of the summed variances of each kernel 170

(mating and propagule dispersal). 171

We began by characterizing a simple spatial pattern: smooth population structure 172

and isolation by distance across continuous landscape. We simulated a square two 173

dimensional landscape measuring 25 units on each side. In this first simulation there 174

were only neutral SNPs. The population was allowed to evolve for 100,000 time steps 175

before we randomly sampled 200 individuals and 1,000 SNPs with a minor allele 176

frequency of at least 0.05. The first two principal components (PCs) of these SNPs show 177

smooth population structure across the landscape, and that these two PCs nearly 178

perfectly predict the spatial location of each sample (Figure S2). 179

We then calculated wavelet dissimilarity Dwav
a,b (s) for each sampled location at a 180

range of spatial scales s. Here and below we use a set of scales increasing by a constant 181

log amount, which tends to result in linear increases in dissimilarity with increasing s. 182

The mean across sampled locations for each scale was calculated and compared to the 183

null distribution for that scale (Figure S2). The null was generated by permuting 184

locations of sampled individuals as described above, and observed mean of dissimilarity 185
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was considered significant if it was below the 2.5 percentile or above the 97.5 percentile 186

of dissimilarity from null permutations. 187

When comparing our simulated data to the null, we found that mean wavelet genetic 188

dissimilarity was significantly less than expected under the null model at scales s ≤ 0.93, 189

due to local homogenization by gene flow (standard deviation = 0.28). At scales 190

s ≥ 1.24, wavelet dissimilarity was significantly greater than expected, due to isolation 191

by distance, with monotonically increasing wavelet genetic dissimilarity at greater scales. 192

These results give some intuition into how our approach characterizes spatial pattern in 193

allele frequency. 194

Simulated neutral patterns in a range-expanding species 195

We next simulated a scenario where we expected greater heterogeneity in patterns of 196

relatedness and genetic dissimilarity across a landscape. We simulated an invasion 197

across a square landscape of the same size as above, but beginning with identical 198

individuals only in the middle at the bottom edge of the landscape (Figure 1). We 199

sampled 200 individuals at times 100, 250, 500, 1000, 1500, 2000 years, through the full 200

populating of the landscape around 2500 years and until the 3000th year. 201

We characterized wavelet genetic dissimilarity across the landscape over time. There 202

was strong heterogeneity in spatial patterns in allele frequency, demonstrated via by the 203

variation in wavelet dissimilarity in different regions (red versus blue in Figure 1A-D). 204

This heterogeneity in isolation-by-distance can be seen by contrasting genotypes from 205

different regions. Near the expansion front, there is relative homogeneity and low 206

diversity locally in new populations, but with rapid turnover in genotypes separated by 207

space, resulting in high wavelet dissimilarity at intermediate spatial scales (Figure 1E). 208

In the range interior, there is greater local diversity and less turnover in genotype across 209

space, i.e. a weaker isolation by distance (Figure 1F). Supporting the role of founder 210

effects and low diversity at expanding range margins in driving these patterns, we 211

observed a decline in medium- and large-scale wavelet dissimilarity in later years (Fig 212

1G) after the landscape had been populated. 213

Simulated long-term neutral patterns in a heterogeneous landscape 214

We next simulated neutral evolution across a patchy, heterogeneous landscape, using 215

simulated patchy landscapes (generated from earlier work) [25]. This landscape 216

contained a substantial portion of unsuitable habitat where arriving propagules 217

perished. We used the same population parameters as previously and simulated 100,000 218

years to reach approximate stability in relatedness patterns. We then calculated wavelet 219

dissimilarity using 1,000 random SNPs of 200 sampled individuals. Wavelet dissimilarity 220

showed localized and scale-specific patterns of low and high dissimilarity (Figure 2). 221

Notably, the same two relatively isolated ”islands” (top left and bottom right of 222

landscape in Figure 2) are more similar than the null at fine scales and are less similar 223

than the null at larger scales. Stated another way, these islands have lower diversity 224

locally (e.g. within populations) but when compared to the mainland populations they 225

exhibit greater divergence (relative to mainland populations a similar distance apart, 226

Figure 2). To aid interpretation of the wavelet patterns (Figure 2), we also present the 227

first two principal components of SNPs (Figure S3), which separated each island 228

population, respectively, from the rest of the landscape. These results highlight the 229

capacity of the method to contrast patterns across scales in a consistent manner and 230

only requiring dilation of the analyzing kernel, or equivalently, rescaling the spatial 231

coordinates. 232
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Fig 1. Wavelet genetic dissimilarity at neutral loci during an invasion across
a homogeneous landscape. Wavelet genetic dissimilarity at neutral loci during an
invasion across a homogeneous landscape. Left column of panels (A-D) shows a map of
the landscape through time, with 200 sampled individuals at each time step and the
wavelet dissimilarity at s = 3.9 at their location. In the last time step, 3000, two regions
are highlighted (D), one with higher dissimilarity at s = 3.9 (E) and one with lower
dissimilarity at this scale (F). (E-F) show pairwise Euclidean geographic and genetic
distances for samples from these regions. These highlight the greater increase in genetic
distance with geographic distance at this scale (vertical dashed lines) in (E), compared
to the smaller increase in genetic distance across these distances in (F). Loess
smoothing curves are shown in (E-F). (G) Mean wavelet dissimilarity across the
landscape changes over time.

Finding the loci of local adaptation 233

Using wavelet transforms to identify outliers of spatial pattern in allele 234

frequency 235

We can use our approach to identify particular genetic loci and the regions and spatial 236

scales of turnover in allele frequency. Our strategy is to calculate (Twavfi)(a, b, s) for 237
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Fig 2. Neutral evolution in a heterogeneous landscape. Habitat is gray (in the
background) and unsuitable areas are white. Sampled individuals are circles. Colors
represent sampling locations where wavelet genetic dissimilarity was significantly high
(red) or low (blue), with s, the wavelet scale, shown at top of each panel. At the
smallest scales (top panels), samples are usually more similar than expected, especially
in more isolated regions at lower right and upper left of the landscape. At larger spatial
scales (bottom panels), all locations have significantly greater dissimilarity than
expected due to limited gene flow. However, the same isolated regions at lower right
and upper left of the landscape show the greatest dissimilarity at large scales (lower
panels), due to their high genetic difference from the ”mainland” samples at center.

March 26, 2022 8/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


each locus i at each sampling point a, b for a set of chosen spatial scales s ∈ S. Dividing 238

the wavelet transforms of allele frequency by the standard deviation of global allele 239

frequency variation for each locus i, sd(fi), yields a scaled measure of spatial turnover 240

in allele frequency, (Twavfi)(a, b, s)/sd(fi), for a given location and scale. This 241

normalization by sd(fi) results in all loci having a scaled standard deviation and 242

variance equal to unity. This facilitates comparison of the spatial pattern of loci 243

differing in total variance due to differences in their mean allele frequency that may 244

arise due to different histories of mutation and drift, but arising from the same 245

demographic processes. We then take the variance across sampling locations of 246

(Twavfi)(a, b, s)/sd(fi), which we define the ”scaled wavelet variance.” This scaled 247

wavelet variance is akin to FST in being a measure of spatial variation in allele 248

frequency normalized to total variation (which is determined by mean allele frequency). 249

High scaled wavelet variance for a given locus indicates high variation at that scale 250

relative to the total variation and mean allele frequency. We then used a χ2 null 251

distribution across all genomic loci to calculate parametric p-values [2, 26] and used the 252

approach of Whitlock and Lotterhos [27] to fit the degrees of freedom of this 253

distribution to the distribution of scaled wavelet variances (see Supplemental Methods). 254

We simulated a species with the same life history parameters as in simulations above, 255

with the addition of spatially varying viability selection on a quantitative trait. We 256

imposed two geometries of spatially varying selection, one a linear gradient and the 257

other a square patch of different habitat selecting for a different trait value. We also 258

tested false positive rates for detecting loci under selection on the neutral patchy 259

landscape studied above. As above with the neutral simulations, simulations began with 260

organisms distributed across the landscape, with an ancestral trait value of zero. In 261

these simulations, 1% of mutations influenced the quantitative trait with additive effects 262

and with effect size normally distributed with a standard deviation of 5. For the linear 263

gradient, the optimal trait value was 0.5 at one extreme and -0.5 at the other extreme, 264

on a 25x25 square landscape. Selection was imposed using a Gaussian fitness function 265

to proportionally reduce survival probability, with standard deviation σk. In this first 266

simulation, σk = 0.5. Carrying capacity was roughly 5 individuals per square unit 267

area [24]. Full details of simulation, including complete code, can be found in 268

supplemental materials. 269

There were 3 selected loci with major allele frequency (MAF) at least 0.1 for 270

simulations with the linear selective gradient, where the scale of mating and propagule 271

dispersal each σ = 1.1, after 2,000 years . The two loci under stronger selection were 272

clearly identified by var((Twavfi)(a, b, s)/sd(fi)) at the larger spatial scales (Figure 3). 273

When there is a linear selective gradient across the entire landscape, the largest spatial 274

scale is the one most strongly differentiating environments and the strongest scaled 275

wavelet variance was at the largest scale (Figure 3). However, power may not be 276

greatest at these largest scales, because population structure also is greatest at these 277

largest scales. Instead, power was greatest at intermediate scales, as seen by the lowest 278

p-values being detected at these intermediate scales (Figure 3). At these scales there is 279

greater gene flow but still some degree of changing selection that may maximize power 280

to detect selection. 281

We next simulated discrete habitat variation, with a large central patch that selected 282

for distinct trait values (trait optimum = 0.5) compared to the outer parts of the 283

landscape (trait optimum = -0.5). Selection was initially weakly stabilizing (σk = 3 284

around the optimum of zero for the first 500 years to accumulate some variation, and 285

then the patch selective differences were imposed with stronger selection, σk = 0.08. 286

The scales of mating and propagule dispersal were each σ = 2. Carrying capacity was 287

was roughly 50 individuals per square unit area. 288

In this simulation we present results after 3000 years, where there was a single QTL 289
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Fig 3. Scaled wavelet variance test applied to simulations with a linear
selective gradient. (top panel) Genome-wide variation in scaled wavelet variance,
var((Twavfi)(a, b, s)/sd(fi)), for six different scales s and (bottom panel) upper-tail
p-values for χ2 test using fitted values of d.f. Each point represents a SNP at a specific
scale, red is the largest scale of ∼ 12.2 and blue is the smallest scale of ∼ 1.6, with the
intermediate scales being ∼ 2.9, 5.2, 6.9, and 9.2. Simulations included a linear selective
gradient and 2000 years(time steps). Loci under selection are indicated with vertical
lines along with the absolute value of the derived allele’s effect on the trait and MAF.
At upper right the mean scaled wavelet variance across all genomic loci is shown for
each scale s. The scale of mating and propagule dispersal were each σ = 1.1. Gaussian
viability selection was imposed with σk = 0.5. Carrying capacity was roughly 5
individuals per square unit area.

under selection, with a MAF = 0.46 and the effect of one derived QTL allele on the 290

trait = 0.497 (Figure 5). We found several spurious large scale peaks in scaled wavelet 291

variance (Figure 4A), but when using the χ2 test we clearly identified the single QTL 292

under selection, with lowest p-values for intermediate scales (Figure 4B). 293

We then compared the application of FST to this same simulated data set (local 294

adaptation to a single patch), using arbitrarily delineated populations. In this case, the 295

specific delineation of populations has a major influence on whether FST can identify 296

the selected loci. We used ’hierfstat’ package in R [28] to calculate FST using the 297

approach of Nei [29]. 298

The most frequent locus underlying local adaptation in this simulation was only 299

identified as a modest FST peak one of the two arbitrary grids we used to delineate 300

populations (Figure 4D), highlighting how it can be easy to miss patterns (Figure 4C) 301

due to these arbitrary decisions of how to subdivide samples into populations. 302
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Fig 4. Scaled wavelet variance test applied to simulations with a single
discrete patch of different habitat. (A) Genome-wide variation in scaled wavelet
variance var((Twavfi)(a, b, s)/sd(fi)) and (B) χ2 p-values for six different scales s, for a
discrete habitat difference after 3000 simulated years. Each point in the left panels
represents a SNP, and wavelet statistics (A-B) at specific scales, with red being the
largest scale of ∼ 12.2 and blue being the smallest scale of ∼ 1.6. (B) At right also
shows a map of the landscape with individuals’ genotypes at the causal QTL indicated
with color. The locus under selection is indicated with a vertical line along with the
absolute value of a derived allele’s effect on the trait and MAF. (C-D) Implementation
of FST using arbitrary boundaries for populations. This approach can easily miss causal
loci (C) if the delineated population boundaries do not match habitat boundaries. (A)
At upper right the mean scaled wavelet variance across all loci is shown for each scale s.
The scale of mating and propagule dispersal were each σ = 2. Gaussian viability
selection was imposed with σk = 0.08.
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Initial evaluation of the scaled wavelet variance test 303

We conducted simulations on three types of landscapes with varying life history 304

parameters as an initial assessment of the general appropriateness of the scaled wavelet 305

variance test we proposed above. These simulations were not meant to be an exhaustive 306

evaluation of the performance of this new test; we leave a more extensive evaluation for 307

future studies. 308

Here, we again used the linear gradient landscape and the discrete habitat patch 309

landscape but with a wider range of parameter variation. Only simulations where 310

parameter combinations resulted in local adaptation were included. However, we also 311

included the neutral simulations described in the previous parts of the paper to test 312

false positive rates under these scenarios. 313

Overall our simulations showed good false positive rates. Across simulations and 314

scales, the proportion of SNPs with χ2 upper-tail p < 0.05 was nearly always close to 315

but usually less than 0.05, indicating a slightly conservative test. FDR control nearly 316

always resulted in all neutral SNPs having q > 0.05. Power to detect SNPs under 317

selection ranged from low to high, depending on whether there were few SNPs or a 318

larger number of SNPs under selection. Although selected SNPs were not all detected at 319

q < 0.05, they were often closely linked to neutral SNPs that did have q < 0.05, though 320

we did not consider such QTL as true positives in our conservative evaluation here. We 321

also note that here we did not use any criteria about the distribution of selected SNPs 322

across environments, i.e. their true role in local adaptation. Thus some of these SNPs 323

under selection that we did not detect may have played a small role in actual local 324

adaptation, despite their effect on the phenotype under selection (cf. [27]). 325

326

Testing for spatial pattern in quantitative trait loci (QTL) 327

When testing for spatially-varying selection on a quantitative trait. One approach is ask 328

whether QTL identified from association or linkage mapping studies show greater allele 329

frequency differences among populations than expected [30,31]. Here we implement 330

such an approach to compare wavelet transformed allele frequencies for QTL L to a set 331

of randomly selected loci of the same number and distribution. 332

For this test we calculated the mean of scaled wavelet variance for all QTL with 333

MAF at least 0.05 among sampled individuals (for brevity, we did not also simulate the 334

process of mapping QTL; we leave that for future work). We then permuted the identity 335

of causal QTL across the genome and recalculated the mean scaled wavelet variance, 336

and repeated this process 10000 times to generate a null distribution of mean scaled 337

wavelet variances of QTL for each scale s. 338

We used a similar simulation of adaptation to a square patch of habitat in the 339

middle of a landscape. However in this case we adjusted life history parameters to result 340

in a larger number of QTL for local adaptation (specifically we reduced the scale of the 341

two gene flow parameters to σ = 0.5, relaxed the strength of selection so that it was 342

now σK = 0.5, and reduced carrying capacity to approximately 5 individuals per square 343

unit area). 344

After 1000 generations we sampled 300 individuals, from which there were 13 QTL 345

for the trait under selection with MAF at least 0.05. We then calculated the mean 346

scaled wavelet variance, var((Twavfi)(a, b, s)/sd(fi)), for these QTL across scales s. To 347

generate a null expectation for the mean of scaled wavelet variance for these QTL, we 348

randomly selected 13 SNPs from the genome and recalculated mean 349

var((Twavfi)(a, b, s)/sd(fi)), and did this resampling 1000 times. 350

We found significantly higher mean var((Twavfi)(a, b, s)/sd(fi)) for the QTL than 351

the null expectation at all 6 scales tested. Although the scaled wavelet variance was 352

March 26, 2022 12/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


L
an

d
sc
ap

e
K

σ
ti
m
e

(y
ea
rs
)

F
a
ls
e
p
o
s.

p
<

0.
05

F
a
ls
e

p
o
s.

(p
<

0
.0
5
,

m
a
x
.

a
cr
o
ss

sc
al
es
)

F
a
ls
e

p
o
s.

q
<

0.
05

N se
le
ct
ed

S
N
P
s

N se
le
ct
ed

S
N
P
s

p
<

0
.0
5

N se
le
ct
ed

S
N
P
s

q
<

0
.0
5

H
om

og
en
eo
u
s

5
0.
2

10
00
00

0.
02

7
0.
03

4
0

H
om

o.
co
lo
n
iz
at
io
n

5
0.
2

50
0

0.
00

1
0.
06

0
0

H
om

o.
co
lo
n
iz
at
io
n

5
0.
2

15
00

0.
01

1
0.
05

2
0

H
om

o.
co
lo
n
iz
at
io
n

5
0.
2

30
00

0.
01

4
0.
03

9
0

N
eu

tr
a
l
p
at
ch
y

5
0.
2

10
00
00

0.
02

3
0.
05

2
<

0.
00

1
S
el
ec
ti
on

:
p
at
ch

5
0.
5

10
00

0.
02

8
0.
04

0
0

7
3

0
S
el
ec
ti
on

:
p
at
ch

5
0.
5

20
00

0.
05

6
0.
06

0
0

7
4

0
S
el
ec
ti
on

:
p
at
ch

50
2

30
00

0.
04

0
0.
06

1
<

0.
00

1
1

1
1

S
el
ec
ti
on

:
p
at
ch

25
0.
1

50
00

0.
00

9
0.
05

1
0

2
0

0
S
el
ec
ti
on

:
p
at
ch

25
0.
1

50
00

0.
04

3
0.
06

1
0.
00

7
1

0
0

S
el
ec
ti
on

:
li
n
ea
r

5
1.
1

20
00

0.
04

3
0.
05

6
0

2
2

2
S
el
ec
ti
on

:
li
n
ea
r

10
2

30
00

0.
03

9
0.
04

9
0.
00

2
2

2
2

S
el
ec
ti
on

:
li
n
ea
r

10
2

70
00

0.
03

3
0.
03

9
0.
00

2
7

3
2

S
el
ec
ti
on

:
li
n
ea
r

5
0.
5

30
00

0.
03

8
0.
04

8
0

4
2

0
S
el
ec
ti
on

:
li
n
ea
r

10
0.
2

30
00

0.
04

8
0.
05

8
0

8
4

0
S
el
ec
ti
on

:
li
n
ea
r

10
1

40
00

0.
03

8
0.
05

8
0.
00

1
4

3
3

S
el
ec
ti
on

:
li
n
ea
r

10
2

80
00

0.
03

5
0.
04

5
0.
00

1
4

3
1

T
a
b
le

1
.
A
ss
es
si
n
g
th
e
p
er
fo
rm

an
ce

of
ou

r
sc
al
ed

w
av
el
et

va
ri
an

ce
te
st

ac
ro
ss

a
va
ri
et
y
of

si
m
u
la
ti
on

sc
en

ar
io
s.

S
im

u
la
ti
on

s
ar
e
d
es
cr
ib
ed

in
gr
ea
te
r
d
et
ai
l
in

th
e
m
ai
n
te
x
t.
K

is
ro
u
gh

ly
th
e
ca
rr
y
in
g
ca
p
ac
it
y
p
er

gr
id

u
n
it
(6
25

to
ta
l
u
n
it
s
on

la
n
d
sc
ap

e)
,
σ
is

th
e
st
an

d
ar
d
d
ev
ia
ti
o
n
o
f

m
at
in
g
an

d
p
ro
p
ag

u
le

d
is
p
er
sa
l
d
is
ta
n
ce

d
is
ta
n
ce
.
W
e
p
re
se
n
t
fa
ls
e
p
os
it
iv
e
ra
te
s
av
er
ag

ed
ac
ro
ss

sc
al
es

te
st
ed

(o
r
th
e
m
ax

im
u
m

a
cr
o
ss

sc
a
le
s

w
h
er
e
in
d
ic
at
ed
).

W
e
al
so

gi
ve

th
e
n
u
m
b
er

of
se
le
ct
ed

S
N
P
s
in

th
e
an

al
y
ze
d
sa
m
p
le

of
30
0
in
d
iv
id
u
al
s
w
it
h
M
A
F
at

le
as
t
0.
1,

as
w
el
l
as

th
e
n
u
m
b
er

of
se
le
ct
ed

S
N
P
s
id
en
ti
fi
ed

as
si
gn

if
ic
an

t
in

at
le
as
t
on

e
sc
al
e.

6
sc
al
es

w
er
e
te
st
ed
:
∼

1.
6,

2.
9,

5.
2,

6.
9,

9.
2,

12
.2
,
fo
r
th
e
la
n
d
sc
ap

es
th
at

w
er
e
25
x
25
.

March 26, 2022 13/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


greatest at the largest scales for the QTL, these scales did not show as great a 353

distinction when comparing to the null. The greatest mean wavelet variance of QTL 354

relative to null came at the intermediate scales of 3-5, which was approximately 1/3-1/2 355

the width of the habitat patch (Figure 5). 356

Fig 5. Testing for selection on QTL using wavelet transforms. Comparing
mean scaled wavelet variance var((Twavfi)(a, b, s)/sd(fi)) for QTL to that of random
SNPs, for six different scales s (red = large scale and blue = small scale). Populations
were locally adapted to a discrete habitat patch and results are shown after 1000
simulated time steps. QTL with MAF of at least 0.05 are indicated with vertical lines
at left. The histograms at right show null distributions of mean scaled wavelet variance
var((Twavfi)(a, b, s)/sd(fi)) based on random samples of an equal number of markers
as there were QTL (with MAF at least 0.05, n=13 here) and the observed scaled
wavelet variance of QTL and its z-score.

Application to empirical systems 357

Genome-wide wavelet dissimilarity 358

We applied our approach to two empirical datasets of diverse, broadly distributed 359

genotypes with dense marker data: 999 genotypes from 764 natural populations of the 360

model plant, Arabidopsis thaliana (Brassicaceae), and 1846 traditional local varieties 361

(landraces) from 1484 locations of the crop sorghum, Sorghum bicolor (Poaceae). We 362

used a published Arabidopsis dataset [6], only including Eurasian populations, and 363

calculated allele frequency for locations with more than one accession genotyped, 364

resulting in 72,567 SNPs filtered for minor allele frequency (MAF> 0.1) and LD. We 365

obtained the Sorghum dataset from an integrated GBS panel of over 10K genotypes [32], 366

from which we only included landraces, and calculated allele frequency for locations with 367

more than one accession genotyped, resulting in 335,926 SNPs filtered for MAF> 0.1. 368

We used the R package SNPRelate [33] to generate the SNP matrix for each dataset. 369

For both species, we first calculated the genome-wide wavelet dissimilarity, Dwav
a,b (s), 370

across a series of increasing scales s. In both species, we observed increasing mean 371

genome-wide wavelet dissimilarity at larger scales (Figure 6), a pattern indicative of 372

isolation by distance, on average, across the landscape. Both species showed 373

significantly low dissimilarity at smaller scales, likely due to the homogenizing effect of 374

gene flow. Sorghum had significantly low dissimilarity up to the ∼ 47 km scale, while 375

Arabidopsis already exhibited significantly high dissimilarity by the ∼ 20 km scale. This 376

suggests the scale of gene flow due to human mediated dispersal is greater for the crop 377

sorghum than for Arabidopsis. While both species are primarily self-pollinated, 378
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Arabidopsis lacks clear dispersal adaptations (though seeds of some genotypes form 379

mucus in water that increases buoyancy) [34]. 380

The specific locations of scale-specific dissimilarity revealed several interesting 381

patterns. In Arabidopsis, at the ∼ 47 km scale, there were three notable regions of 382

significantly high dissimilarity: northeastern Iberia and extreme southern and northern 383

Sweden (Figure 6). The high dissimilarity at this scale in northeastern Iberia 384

corresponds to the most mountainous regions of Iberia, suggesting that limitations to 385

gene flow across this rugged landscape have led to especially strong isolation among 386

populations at short distances. In northern Sweden, Long et al. [35] previously found a 387

particularly steep increase in isolation-by-distance. Alonso-Blanco et al. [6] found that 388

genetic distance was greatest among accessions from Southern Sweden at scales from 389

∼ 20− 250 compared to some other discrete regions (though not including northern 390

Sweden). At larger, among-region scales, dissimilarity was significantly high across the 391

range, with Iberia and northern Sweden again being most dissimilar at ∼ 619 km and 392

joined by central Asia at ∼ 1459 km as being most dissimilar. Iberia and northern 393

Sweden contain many accessions distantly related to other accessions, likely due to 394

isolation during glaciation and subsequent demographic histories [6]. This scale in Asia 395

separates populations in Siberia from those further south in the Tian Shan and 396

Himalayas, indicating substantial divergence potentially due to limited gene flow across 397

the heterogeneous landscape. 398

In sorghum, there were also major differences among regions. At the ∼ 263 km scale 399

there were still regions with significantly low dissimilarity. In particular Chinese 400

landraces had significantly low dissimilarity at this scale, potentially reflecting their 401

more recent colonization (< 2 kya, versus e.g. ∼ 5 kya for colonization of 402

Punjab) [36,37], and the rapid spread of closely related genotypes. By contrast, at the 403

same ∼ 263 km scale there was particularly high dissimilarity along the Rift Valley in 404

Ethiopia, a region of high sorghum diversity and great topographic and climate 405

heterogeneity [38], as well as in eastern India, a region where two very distinct genetic 406

clusters meet [7]. At the among-region scale of ∼ 1459 km, we found significantly high 407

dissimilarity everywhere, especially greatest in West Africa (Burkina Faso to Nigeria), 408

SE Africa (Zambia to Mozambique), which both correspond to the early axes of 409

sorghum spread out of east Africa [36] and are regions of turnover in major genetic 410

clusters [7], as well as western India and Pakistan, which corresponds to sharp rainfall 411

gradients along which sorghum landraces may be locally adapted [38]. 412

Identifying putative locally-adapted loci 413

For Arabidopsis, we focused on genotypes that were not a part of distantly related 414

lineages (”relicts”) [6] leaving 976 genotypes, from 741 locations, for which we 415

calculated allele frequency for locations with more than one accession genotyped. This 416

resulted in 1,359,253 SNPs with MAF> 0.1. For sorghum, we focused on landraces from 417

sub-saharan Africa to identify putative locally adapted loci within the continent, and 418

calculated allele frequency for locations with more than one accession genotyped, 419

leaving 1,438 landraces from 1,094 locations and 123,334 SNPs with MAF> 0.1. 420

The scaled wavelet variance test identified putative locally adapted loci in both 421

species, where p-values were lower for the medium to smaller scales we tested (Figures 422

S4 and S5). Among notable loci for Arabidopsis, the #5 SNP at the #1 locus (and 5 kb 423

from the #1 SNP) for the ∼ 282 km scale was in the DOG1 gene (Figure 7A). This 424

SNP, Chr. 5, 18,590,327 was a peak of association with flowering time at 10ºC and 425

germination [39] and tags known functional polymorphisms at this gene that are likely 426

locally adaptive [39]. The spatial pattern of variation at this locus (Figure 7A) is 427

complicated, highlighting the benefit of the flexible wavelet approach. By contrast, 428

imposing a grid on this landscape, or using national political boundaries to calculate 429
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Fig 6. Genome-wide wavelet dissimilarity, Dwav
a,b (s), for Arabidopsis and

sorghum genotypes. Top panels show the average dissimilarity across scales
compared to the null expectation. The bottom four panels show selected scales and
highlight the changes is dissimilarity across locations, with each circle indicating a
genotyped sample. Red indicates significantly greater wavelet dissimilarity than
expected, blue significantly less than expected. For the map panels, the intensity of
color shading indicates the relative variation in Dwav

a,b (s) among significant locations.
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FST could easily miss the signal as did Horton et al. [40]. The climate gradients driving 430

this variation are also complicated and non-monotonic [39, 41], making it challenging for 431

genotype-environment association approaches. At the ∼ 1359 km scale, the #4 locus 432

and SNP (Figure 7B) was on chromosome 5, 648 bp upstream from SNRK2-3, which is 433

in the family of Snf1-related kinases2 and plays an important role in signaling in 434

response to the key abiotic stress response hormone abscisic acid (ABA) [42,43]. This 435

SNP was correlated to two small indels predicted to cause alternate splicing [6]: one 9 436

bp insertion found in 32 ecotypes (position 26711798) was always found with the SNP 437

reference allele, and a 1 bp deletion found in 156 ecotypes was 57% of the time with the 438

reference allele. A third insertion was present in one ecotype and overall the SNP we 439

identified was significantly associated with the putative alternate splice variants at 440

SNRK2-3 (Kruskal-Wallis test, p < 10−5), suggesting we identified spatially structured 441

functional variation in a key abiotic stress responsive signalling gene. 442

For Sorghum in sub-Saharan Africa, at the ∼ 60 km scale, the #2 locus and SNP 443

(Chr. 6, 1,344,827 bp) was closest to (∼ 18 kb distant) Sobic.006G009000, a putative 444

calcium-activated chloride channel regulator primarily expressed in roots [44]. As 445

expected based on the spatial scale at which this locus emerged in our genome scan, this 446

locus showed highly heterogeneous spatial distribution, apparently much more so than 447

expected based on the genomic distribution of SNPs (Figure 7C). Given previous 448

evidence that sorghum landraces are adapted along relatively fine-scale soil 449

gradients [38], we hypothesize that the pattern we detected at this locus is involved in 450

soil adaptation. At the largest scales of ∼ 1400− 3000 km the #1 locus and SNP (Chr. 451

1, 5,016,136 bp) fell in the coding region of Sobic.001G065800, which is a glutathione 452

S-transferase, genes that play important roles in both abiotic and biotic stressors [45]. 453

At this locus the reference allele is nearly fixed in west Africa while the alternate allele 454

is near fixed in southeastern Africa, regions that differ in a wide range of environmental 455

conditions (Figure 7D). 456

Testing for local adaptation in quantitative trait loci (QTL) 457

We tested for non-random scaled wavelet variance of Arabidopsis flowering time QTL. 458

We used previously published data on flowering time: days to flower at 10ºC measured 459

on 1003 genotypes and days to flower at 16ºC measured on 970 resequenced 460

genotypes [6]. We then performed mixed-model genome wide association studies 461

(GWAS) in GEMMA (v 0.98.3) [46] with 2,048,993 M SNPs filtered for minor allele 462

frequency (MAF> 0.05), while controlling for genome-wide similarity among ecotypes. 463

We found that top flowering time GWAS SNPs showed significantly elevated scaled 464

wavelet variance at several intermediate spatial scales tested. For flowering time at both 465

10º and 16ºC, scaled wavelet variance was significantly elevated for the top 100 SNPs at 466

the ∼ 282, 619, and 1359 km scales, but not the largest or smallest scales Fig 8. In 467

particular the scaled wavelet variances were greatest for the ∼ 619 km scale, where the 468

observed wavelet variance of QTL was 10.0 standard deviations above the mean of null 469

permutations for 10ºC. For both temperature experiments, results were nearly 470

equivalent if we instead used the top 1k SNPs. 471

Discussion 472

Geneticists have long studied spatial patterns in allele frequency to make inference about 473

underlying processes of demography, gene flow, and selection. While many statistical 474

approaches have been developed, few are flexible enough to incorporate patterns at a 475

range of scales that are also localized in space. Because wavelet transforms have these 476

properties, we think they may be useful tools for geneticists. Here we demonstrated 477
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Fig 7. SNP allelic variation (colors) that were top outliers for scaled wavelet
variance test at different scales (indicated by bars above each panel). The
ranks of the locus and SNP for each scale are given, where locus are defined as nearby
SNPs (within 10 kb).

several applications of wavelet transforms to capture patterns in whole genome variation 478

and at particular loci, under a range of neutral and non-neutral scenarios. 479

Many existing approaches are based on discretization of spatially-distributed samples 480

into spatial bins, i.e. putative populations. However, without prior knowledge of 481

selective gradients, patterns of gene flow, or relevant barriers, it is often unclear how to 482

delineate these populations. For example, we can see how the specific discretization can 483

hinder our ability to find locally-adapted loci in our simulations (Figure 4) and in 484

empirical studies of Arabidopsis in the case of the phenology gene DOG1 that was 485

missed in previous FST scans [6, 40]. 486

Our goal in this paper was to provide a new perspective on spatial population 487

genetics using the population-agnostic, and spatially smooth approach of wavelet 488

transforms. We showed how these transforms characterize scale-specific and localized 489

population structure across landscapes (Figures 1, 2, 6). We also showed how wavelet 490

transforms can capture scale-specific evidence of selection on individual genetic loci 491

(Figures 3, 4, 7) and on groups of quantitative trait loci (Figure 5 and 8). Our 492

simulations and empirical examples showed substantial heterogeneity in the scale of 493

patterns and localization of patterns. For example, the wavelet genetic dissimilarity 494

allowed us to identify regions near a front of range expansion with steeper isolation by 495

distance at particular scales due to drift (Figure 1). Additionally, we identified loci 496

underlying local adaptation and showed an example where the evidence for this 497

adaptation was specific to intermediate spatial scales (Figure 4). While existing 498

approaches to characterizing population structure or local adaptation have some ability 499

to characterize scale specific patterns, e.g. those based on ordinations of geography [3] 500

or SNPs [15], and some can capture localized patterns (e.g [5]), there are few examples 501
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Fig 8. Testing for selection on Arabidopsis flowering time QTL. We compared
scaled wavelet variance, var((Twavfi)(a, b, s)/sd(fi)), of QTL with random SNPs, for
five different scales s, for flowering time measured at 10ºC and 16ºC. The observed
mean of the top 100 flowering time SNPs is indicated with a vertical line and a z-score.
The histograms at right show null distributions of scaled wavelet variance based on
permutations of an equal number of markers with an equal distribution as the flowering
time QTL.
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of approaches that merge both abilities. Moran’s eigenvector maps (MEMs) [3] may 502

come closest to this goal, though their scale-specificity and localization is dependent on 503

the specific rotation of geographic axes. 504

The test for spatial pattern in individual loci we developed owes greatly to previous 505

work from Lewontin and Krakauer [2] who initially developed χ2 tests applied to the 506

distribution of FST values, and from Whitlock and Lotterhos [27]’s approach of inferring 507

the degrees of freedom of the χ2 distribution using maximum likelihood and FST across 508

loci. The χ2 distribution underlies a number of related genetic applied across loci [47], 509

and here shows further utility. However, we note that this test may be slightly 510

conservative in some situations, given that we found under some demographic scenarios 511

a failure to detect all selected loci (itself a conservative criterion for evaluating 512

simulations) at FDR = 0.05. Nevertheless, we believe there were important signs in our 513

work that this χ2-based test was valuable. In particular, we found in our simulation of 514

adaptation to a habitat patch that the scaled wavelet variance was greatest at large 515

spatial scales but at neutral sites, which obscured spatial pattern at the causal locus 516

(Figure 4). When applying the χ2 test, we were able to clearly map the causal locus 517

while spurious loci with high scaled wavelet variance fell away because spatial patterns 518

at those loci still fit within the null distribution. 519

Relatedly, we found in other simulations and our empirical examples that the 520

strongest evidence for local adaptation was often not at the largest spatial scales 521

(Figure 8), even when the selective gradient was linear across the landscape (i.e. the 522

largest scale, Figure 3). This enhanced power at scales sometimes smaller than the true 523

selective gradients may be due to the limited power to resolve true adaptive clines at 524

large scales from the genome-wide signal of isolation by distance at these scales. At 525

intermediate scales, there may be a better balance of sufficient environmental variation 526

to generate spatial pattern with a reduced spatial differentiation due to limited gene 527

flow. 528

We note that there remain several limitations to our approach proposed here. First, 529

the ability of wavelet transforms to capture patterns depends on the correspondence 530

between the wavelet form (shape) and the form of the empirical patterns we seek to 531

enhance, and there may be better functional forms to filter spatial patterns in allele 532

frequency. Generally speaking, a more compact smoothing kernel with minimum weight 533

in the tails will be better at revealing abrupt spatial transitions, but at the necessary 534

cost of less precise determination of scale [48]. Smoothing kernels such as the tricube 535

(kx ≃
[
1− x3

]3
) have been shown to optimize certain trade-offs in this space and could 536

be used to construct a difference-of-kernels wavelet. However, the overall influence of 537

kernel shape tends to be much less than the influence of kernel bandwidth in our 538

experience. Second, we have not yet implemented localized tests for selection (i.e. 539

specific to certain locations) as we did with genome-wide dissimilarity. A challenge 540

applying this test at individual loci is that there is a very large number of resulting tests 541

from combinations of loci, locations, and scales. Therefore we have not fully exploited 542

the localized information we derive from the wavelet transforms. 543

There are number of interesting future directions for research on wavelet 544

characterization of spatial pattern in evolutionary biology. First, we could apply the 545

wavelet transforms to genetic variation in quantitative traits measured in common 546

gardens, to develop tests for selection on traits akin to the QST - FST test [15,49]. 547

Second, we could follow the example of Al-Asadi et al. [50] and apply our measures of 548

genetic dissimilarity to haplotypes of different size to estimate relative variation in the 549

age of population structure. Third, we should test the performance of our tools under a 550

wider range of demographic and selective scenarios to get a nuanced picture of their 551

strengths and weaknesses. Fourth, null models for wavelet dissimilarity could be 552

constructed using knowledge of gene flow processes (instead of random permutation) to 553

March 26, 2022 20/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


identify locations and scales with specific deviations from null patterns of gene flow. 554

Conclusion 555

Population genetics (like most fields) has a long history of arbitrary discretization for 556

the purposes of mathematical, computational, and conceptual convenience. However, 557

the real world usually exists in shades of gray, where there are not clear boundaries 558

between populations and where processes act simultaneously at multiple scales. We 559

believe that wavelet transforms are one of a range of tools that can move population 560

genetics into a richer but still useful characterization of the natural world. 561

Materials and methods 562

Simulations with SLiM 563

We developed our simulations by building off the spatial neutral simulation model of 564

Battey et al. [24] and model recipes in the SLiM software [23] for spatially varying 565

selection on quantitative traits. Parameters differed among scenarios as described 566

previously. Additionally some parameters were consistent across all simulations. The 567

genome had 108 positions, with a mutation rate of 10−7 and a recombination rate of 568

10−8 per generation. The fecundity of individuals in each year was a draw from a 569

Poisson distribution with mean 0.25. Competition occurred among neighbors, 570

potentially resulting in an increased probability of mortality above the 5% minimum 571

probability. 572

Null model test for wavelet transformed patterns at individual 573

loci 574

Even under neutrality, individual loci differ in their history and thus not hall have 575

identical spatial patterns. To develop a null expectation for the distribution of scaled 576

wavelet variance in allele frequencies across loci, we use the basic approach of 577

Cavalli-Sforza [26] and Lewontin and Krakauer [2]. Lewontin and Krakauer [2] used χ2
578

null-model tests for FST values across multiple loci. The distribution of the sum of 579

squares of n independent standard normal variables is χ2 with n− 1 degrees of freedom, 580

so that F̂ST (n−1)
¯FST

is also χ2 distributed with n− 1 degrees of freedom where n is the 581

number of populations and F̄ST is the mean FST among loci [2]. However, the 582

assumption of independence among variables (here, allele frequencies among 583

populations) is often violated, and they instead are embedded in different locations in a 584

heterogeneous (but usually unknown) metapopulation network [27,51–53]. 585

To solve this problem of non-independence among populations we use the same 586

strategy that Whitlock and Lotterhos [27] applied to FST : we use the distribution of 587

scaled wavelet variances for each locus to infer the effective number of independent 588

populations (giving the degrees of freedom) for the χ2 distribution. We used the [27] 589

method: we trimmed outliers (here the bottom 2.5% SNPs for scaled wavelet variance) 590

in scaled wavelet variance, for each scale s, then used maximum likelihood to infer the 591

number of independent populations (using the χ2 maximum likelihood estimation of 592

Whitlock and Lotterhos [27]), recalculated outliers, and then refit the χ2 distribution 593

iteratively. Mean scaled wavelet variance was also calculated in this process while 594

excluding SNPs in the bottom 2.5% tail as well as those with significantly high scaled 595

wavelet variance at FDR = 0.05. We then used that estimate of the number of effective 596

March 26, 2022 21/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


independent populations to determine the null χ2 distribution for scaled wavelet 597

variance. 598

We then used this null distribution to calculate upper tail probabilities as one-sided 599

p-values, and then used Benjamini Hochberg FDR to get q-values. We found (like [27]) 600

that the χ2 distribution was sensitive to the inclusion of low MAF variants and thus we 601

also excluded any SNPs with MAF < 0.1. 602

Supporting information 603

S1 Fig. An example of applying a difference of Gaussians (DoG) wavelet to 604

spatial allele frequency patterns (here in one dimension). (A) shows the change 605

in allele frequency across the spatial dimension x. (B-C) show two DoG wavelets (black 606

curves) of two different scales s, centered at location a = 0, with the allele frequency 607

pattern overlain in gray. The two selected scales (B-C) are shown because they are the 608

scales at which variation across space in the wavelet transformed allele frequency, i.e. 609

the product of the allele frequency and DoG, is greatest (D). These two scales capture 610

the small scale variation in allele frequency between areas where different alleles are 611

fixed (B), and the large scale variation between the center of the landscape where the 612

alternate allele is present in some locations versus the edges of the landscape where the 613

alternate allele is totally absent (C). 614

S2 Fig. Simulated two dimensional landscape. (A) with continuous population 615

structure among 200 sampled individuals (circles), illustrated by the first two PCs of 616

1000 randomly selected SNPs (colors). In (A), each individual’s color gives its SNP 617

loadings on PC1 and PC2 according to the key at upper right. Mean of observed 618

wavelet dissimilarities (B) among the 200 samples at a range of spatial scales s 619

(connected by a solid black line) in comparison with the null expectation (gray ribbon) 620

from permuted sample locations (2.5-97.5th percentiles of 100 permutations). The 621

standard deviation of gene flow distance is indicated (dashed line). 622

S3 Fig. Principal component analysis on 1000 random SNPs from the 623

neutral evolution simulation on a heterogeneous landscape. Habitat is shown 624

as gray in the background and unsuitable areas are white. Sampled individuals are 625

circles. Colors represent the first two PCs and show how the two populations on islands 626

in upper left and bottom right are genetically distinct. 627

S4 Fig. Scaled wavelet variance test results for SNPs of Arabidopsis. Scales 628

shown go from blue (small scale) to red (large scale), specifically, ∼ 12, ∼ 59, ∼ 282, 629

∼ 619, ∼ 1359, ∼ 2980 km. 630

S5 Fig. Scaled wavelet variance test results for SNPs of sorghum. Scales 631

shown go from blue (small scale) to red (large scale), specifically, ∼ 12, ∼ 59, ∼ 282, 632

∼ 619, ∼ 1359, ∼ 2980 km. 633
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3. Wagner HH, Chávez-Pesqueira M, Forester BR. Spatial detection of outlier loci
with Moran eigenvector maps;17(6):1122–1135. doi:10.1111/1755-0998.12653.

4. Yang WY, Novembre J, Eskin E, Halperin E. A model-based approach for
analysis of spatial structure in genetic data;44(6):725–731. doi:10.1038/ng.2285.

5. Petkova D, Novembre J, Stephens M. Visualizing spatial population structure
with estimated effective migration surfaces;48(1):94–100. doi:10.1038/ng.3464.

6. Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt K,
et al. 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis
thaliana;166:481–491. doi:10.1016/j.cell.2016.05.063.

7. Wang J, Hu Z, Upadhyaya HD, Morris GP. Genomic signatures of seed mass
adaptation to global precipitation gradients in sorghum;124(1):108–121.
doi:10.1038/s41437-019-0249-4.

8. Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, et al. Broad
geographic sampling reveals the shared basis and environmental correlates of
seasonal adaptation in Drosophila;10:e67577. doi:10.7554/eLife.67577.

9. Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, et al.
Convergent local adaptation to climate in distantly related
conifers;353(6306):1431–1433.

10. Kawecki TJ, Ebert D. Conceptual issues in local adaptation;7(12):1225–1241.
doi:10.1111/j.1461-0248.2004.00684.x.

11. Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population
Structure;38(6):1358–1370. doi:10.2307/2408641.

12. Gautier M. Genome-Wide Scan for Adaptive Divergence and Association with
Population-Specific Covariates;201(4):1555–1579.
doi:10.1534/genetics.115.181453.

13. Excoffier L, Ray N. Surfing during population expansions promotes genetic
revolutions and structuration;23(7):347–351. doi:10.1016/j.tree.2008.04.004.

14. Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting
FST: The impact of rare variants;23(9):1514–1521. doi:10.1101/gr.154831.113.

15. Josephs EB, Berg JJ, Ross-Ibarra J, Coop G. Detecting Adaptive Differentiation
in Structured Populations with Genomic Data and Common
Gardens;211(3):989–1004. doi:10.1534/genetics.118.301786.

16. Duforet-Frebourg N, Luu K, Laval G, Bazin E, Blum MGB. Detecting Genomic
Signatures of Natural Selection with Principal Component Analysis: Application
to the 1000 Genomes Data;33(4):1082–1093. doi:10.1093/molbev/msv334.

March 26, 2022 23/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


17. Peter BM, Petkova D, Novembre J. Genetic Landscapes Reveal How Human
Genetic Diversity Aligns with Geography;37(4):943–951.
doi:10.1093/molbev/msz280.

18. Daubechies I. Ten lectures on wavelets. SIAM;.

19. Keitt TH. On the quantification of local variation in biodiversity scaling using
wavelets; p. 168–80.

20. Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH.
Characterizing genomic variation of Arabidopsis thaliana: the roles of geography
and climate;21(22):5512–5529. doi:10.1111/j.1365-294X.2012.05709.x.

21. Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling
of biodiversity: mapping the genomic landscape of current and future
environmental adaptation;18(1):1–16. doi:10.1111/ele.12376.

22. Muraki S. Multiscale volume representation by a DoG wavelet;1(2):109–116.
doi:10.1109/2945.468408.

23. Haller BC, Messer PW. SLiM 3: Forward Genetic Simulations Beyond the
Wright–Fisher Model;36(3):632–637. doi:10.1093/molbev/msy228.

24. Battey C, Ralph PL, Kern AD. Predicting geographic location from genetic
variation with deep neural networks;9:e54507. doi:10.7554/eLife.54507.

25. Lasky JR, Keitt TH. Reserve Size and Fragmentation Alter Community
Assembly, Diversity, and Dynamics.;182(5):E142–E160. doi:10.1086/673205.

26. Cavalli-Sforza LL. Population structure and human evolution;164(995):362–379.
doi:10.1098/rspb.1966.0038.

27. Whitlock MC, Lotterhos KE. Reliable Detection of Loci Responsible for Local
Adaptation: Inference of a Null Model through Trimming the Distribution of
FST;186:S24–S36. doi:10.1086/682949.

28. Goudet J. hierfstat, a package for r to compute and test hierarchical
F-statistics;5(1):184–186. doi:10.1111/j.1471-8286.2004.00828.x.

29. Nei M. Molecular Evolutionary Genetics. Columbia University Press;. Available
from: http://www-degruyter-com/document/doi/10.7312/nei-92038/html.

30. Berg JJ, Coop G. A Population Genetic Signal of Polygenic
Adaptation;10(8):e1004412. doi:10.1371/journal.pgen.1004412.

31. Price N, Moyers BT, Lopez L, Lasky JR, Monroe JG, Mullen JL, et al.
Combining population genomics and fitness QTLs to identify the genetics of local
adaptation in Arabidopsis thaliana;115(19):5028–5033.
doi:10.1073/pnas.1719998115.

32. Hu Z, Olatoye MO, Marla S, Morris GP. An Integrated
Genotyping-by-Sequencing Polymorphism Map for Over 10,000 Sorghum
Genotypes;12(1):180044. doi:10.3835/plantgenome2018.06.0044.

33. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A
high-performance computing toolset for relatedness and principal component
analysis of SNP data;28(24):3326–3328. doi:10.1093/bioinformatics/bts606.

March 26, 2022 24/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.21.485229doi: bioRxiv preprint 

http://www-degruyter-com/document/doi/10.7312/nei-92038/html
https://doi.org/10.1101/2022.03.21.485229
http://creativecommons.org/licenses/by-nc/4.0/


34. Saez-Aguayo S, Rondeau-Mouro C, Macquet A, Kronholm I, Ralet MC, Berger A,
et al. Local Evolution of Seed Flotation in Arabidopsis;10(3):e1004221.
doi:10.1371/journal.pgen.1004221.

35. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, et al. Massive
genomic variation and strong selection in Arabidopsis thaliana lines from
Sweden;45(8):884–890. doi:10.1038/ng.2678.

36. Kimber CT. Origins of domesticated sorghum and its early diffusion to India and
China; p. 3–98.

37. Qingshan L, Dahlberg JA. Chinese Sorghum Genetic Resources;55(3):401–425.

38. Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, et al.
Genome-environment associations in sorghum landraces predict adaptive
traits;1(6):e1400218. doi:10.1126/sciadv.1400218.

39. Mart́ınez-Berdeja A, Stitzer MC, Taylor MA, Okada M, Ezcurra E, Runcie DE,
et al. Functional variants of DOG1 control seed chilling responses and variation
in seasonal life-history strategies in Arabidopsis thaliana;117(5):2526–2534.
doi:10.1073/pnas.1912451117.

40. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, et al.
Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana
accessions from the RegMap panel;44:212–216. doi:10.1038/ng.1042.

41. Gamba D, Lorts C, Haile A, Sahay S, Lopez L, Xia T, et al.. The genomics and
physiology of abiotic stressors associated with global elevation gradients in
Arabidopsis thaliana;. Available from:
https://www.biorxiv.org/content/10.1101/2022.03.22.485410v1.

42. Wang K, He J, Zhao Y, Wu T, Zhou X, Ding Y, et al. EAR1 Negatively
Regulates ABA Signaling by Enhancing 2C Protein Phosphatase
Activity;30(4):815–834. doi:10.1105/tpc.17.00875.

43. Cai G, Wang Y, Tu G, Chen P, Luan S, Lan W. Type A2 BTB Members
Decrease the ABA Response during Seed Germination by Affecting the Stability
of SnRK2.3 in Arabidopsis;21(9):3153. doi:10.3390/ijms21093153.

44. McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The
Sorghum bicolor reference genome: improved assembly, gene annotations, a
transcriptome atlas, and signatures of genome organization;93(2):338–354.
doi:10.1111/tpj.13781.
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S1 Fig. An example of applying a difference of Gaussians (DoG) wavelet to
spatial allele frequency patterns (here in one dimension). (A) shows the change
in allele frequency across the spatial dimension x. (B-C) show two DoG wavelets (black
curves) of two different scales s, centered at location a = 0, with the allele frequency
pattern overlain in gray. The two selected scales (B-C) are shown because they are the
scales at which variation across space in the wavelet transformed allele frequency, i.e.
the product of the allele frequency and DoG, is greatest (D). These two scales capture
the small scale variation in allele frequency between areas where different alleles are
fixed (B), and the large scale variation between the center of the landscape where the
alternate allele is present in some locations versus the edges of the landscape where the
alternate allele is totally absent (C).
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S2 Fig. Simulated two dimensional landscape. (A) with continuous population
structure among 200 sampled individuals (circles), illustrated by the first two PCs of
1000 randomly selected SNPs (colors). In (A), each individual’s color gives its SNP
loadings on PC1 and PC2 according to the key at upper right. Mean of observed
wavelet dissimilarities (B) among the 200 samples at a range of spatial scales s
(connected by a solid black line) in comparison with the null expectation (gray ribbon)
from permuted sample locations (2.5-97.5th percentiles of 100 permutations). The
standard deviation of gene flow distance is indicated (dashed line).
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S3 Fig. Principal component analysis on 1000 random SNPs from the
neutral evolution simulation on a heterogeneous landscape. Habitat is shown
as gray in the background and unsuitable areas are white. Sampled individuals are
circles. Colors represent the first two PCs and show how the two populations on islands
in upper left and bottom right are genetically distinct.
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S4 Fig. Scaled wavelet variance test results for SNPs of Arabidopsis. Scales
shown go from blue (small scale) to red (large scale), specifically, ∼ 12, ∼ 59, ∼ 282,
∼ 619, ∼ 1359, ∼ 2980 km.

S5 Fig. Scaled wavelet variance test results for SNPs of sorghum. Scales
shown go from blue (small scale) to red (large scale), specifically, ∼ 12, ∼ 59, ∼ 282,
∼ 619, ∼ 1359, ∼ 2980 km.
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