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ABSTRACT

Codon usage and nucleotide composition of coding sequences have profound effects on
protein expression. However, while it is recognized that different tissues have distinct tRNA
profiles and codon usages in their transcriptomes, the effect of tissue-specific codon
optimality on protein synthesis remains elusive. Here, we leverage existing state-of-the-art
transcriptomics and proteomics datasets from the GTEx project and the Human Protein Atlas
to compute the protein-to-mRNA ratios of 36 human tissues. Using this as a proxy of
translational efficiency, we build a machine learning model that identifies codons enriched or
depleted in specific tissues. In particular, we detect two clusters of tissues with an opposite
pattern of codon preferences. We then use the identified patterns for the development of
CUSTOM, a codon optimizer algorithm which suggests a synonymous codon design in order
to optimize protein production in a tissue-specific manner. In a human cell model, we provide
evidence that codon optimization should indeed take into account particularities of the
translational machinery of the tissues in which the target proteins are expressed and that our
approach can design genes with tissue-optimized expression profiles. Altogether, CUSTOM
could benefit biological and biotechnological research, such as the design of tissue-targeted
therapies and vaccines.

INTRODUCTION

From the advent of synthetic biology, it is widely recognized that gene design needs to be
adapted to the expression requirements of the host1. Within coding sequences, there are
manifold overlapping factors that determine translation, mRNA stability, transcription,
splicing, methylation, or ribosomal frameshifting, among others2. Therefore, while the amino
acid sequence of proteins is maintained, the usage of synonymous codons can be optimized
for heterologous expression.

During the last decades, an extensive number of computational tools have been developed
for gene design3,4. Most commonly, these tools optimize the codon usage in order to
resemble that of the host based on the Codon Adaptation Index (CAI) of the genes to be
optimized or similar metrics. Other more innovative developments also include neural
networks that control translation speed5 or other machine learning algorithms that optimize
mRNA stability6. Although there is no absolute “best” approach, codon optimization is
commonly and successfully applied in gene design. In fact, current knowledge on the effect
of synonymous variants on the heterologous expression of the protein GFP shows up to
46-fold expression differences in HeLa cells7. Similarly, mRNA and protein levels across
thousands of GFP variants strongly correlated with their CAI in S. cerevisiae8.
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Nevertheless, codon optimization in multicellular eukaryotes is more intricately determined,
since different tissues can showcase differences in codon usage and tRNA expression9–11.
The translational efficiency, which constitutes the rate of protein production from mRNA, is
therefore dependent on the balance between the codon usage of genes being translated and
the abundance of a limited tRNA pool10,12. In this context, codons translated by highly
abundant tRNAs generally correspond to optimal codons in the translatome, as has been
reported by ribosome profiling13. However, detecting differences of translational efficiency
between tissues can be challenging, since the larger gene-to-gene variability of protein
levels can obscure the actual tissue-to-tissue differences14.

The advent of high-throughput sequencing has enabled an extensive transcriptome profiling
of human tissues15,16. Based on the mRNA-seq data from the GTEx project, Kames et al.
(2020) developed the public resource TissueCoCoPUTs, containing codon and codon pair
usage tables of tissue transcriptomes11. However, current knowledge indicates that
tissue-specific variability of gene expression is mostly regulated at the post-transcriptional
level and mRNA-seq alone is therefore not able to capture it17,18. Developments in mass
spectrometry have very recently led to the release of deep and quantitative proteome maps
of human tissues19,20.

Using this transcriptomic and proteomic data from the Human Protein Atlas and the GTEx
project, we here compute the protein-to-mRNA (PTR) ratios of 36 human tissues as a proxy
for translational efficiency. To distinguish high-PTR from low-PTR proteins, we build random
forest models that identify which codons are optimal or non-optimal for each tissue. Then we
apply these codon preferences to develop a tool, CUSTOM, that optimizes coding
sequences for a specific tissue. CUSTOM is publicly available as a Python package
(https://github.com/hexavier/CUSTOM) and as a web interface (https://custom.crg.eu). By
optimizing eGFP and mCherry proteins to a human cell model of kidney and lung, we
provide experimental evidence of how tissue codon optimization could be important e.g. in
vaccines or gene therapy.

RESULTS

Protein-to-mRNA ratios detect differences in translational efficiency among tissues

Translational efficiency (TE) is defined as the rate of protein synthesis from mRNAs, which
can be estimated as the protein-to-mRNA (PTR) ratio. To systematically analyze the PTR
ratios across a total of 36 human tissues, we retrieved the mRNA-seq and proteomics data
from two recent datasets: 29 tissues from the Human Protein Atlas17,20 (HPA) and 24 tissues
from the GTEx project19 (Figure 1A-B, Supplementary Table 1). The first study includes one
sample per tissue, which are concurrently analyzed by mRNA-seq and label-free iBAQ
proteomics. On the latter, a total of 182 matched samples are measured both by mRNA-seq
and tandem mass tag 10plex/MS3 mass spectrometry. By correlating the mRNA expression,
protein abundance and PTR ratios along the 17 tissues in common, we could ascertain a
high correspondence between the two datasets (ED Figure 1A).

Although to date this data is still relatively rare, a more direct readout of TE is the ratio
between ribosome profiling and mRNA abundance. To confirm the validity of using PTR
ratios as an estimate of TE, we therefore compared the PTR values to a ribosome profiling
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dataset of brain, liver, and testis. In all of them we observe a significantly positive correlation
across the human genome21 (Figure 1C, Supplementary Table 1).

We next set out to investigate the tissue-to-tissue differences of PTR ratios in the
aforementioned datasets. For each tissue, we defined a set of high-PTR and a set of
low-PTR genes, described as having a PTR fold change compared to the average of all
other tissues larger than 2, and vice versa (Supplementary Table 1). We find a significant
concordance between the gene sets derived from the HPA and GTEx datasets in most
tissues (p < 0.05, one-tailed binomial test, Supplementary Table 1).

To physiologically interpret the differences between gene sets, we performed an enrichment
map among high-PTR and low-PTR sets linking tissues with high overlap of the respective
gene sets (ED Figure 1B). In agreement with their highly tissue-specific function, we detect
that tissues group according to their role in the body: eg. nervous tissue (brain and tibial
nerve), muscular tissue (skeletal muscle and heart). Moreover, GO analyses of high-PTR
genes show significant enrichments for highly tissue-specific biological processes according
to the physiological and anatomical function of the tissue (p <0.05, Fisher’s exact test, ED
Figure 1C).

We next asked if there could be any confounding factors associated with these gene sets,
such as protein secretion and degradation, that could bias our analyses. On the one hand, it
has been recently reported that constitutively secreted proteins are often detected at the
mRNA but not at the protein level19, which could bias PTR ratios as a measure of TE. While
we also observe these differences in our dataset (ED Figure 2A), the exclusion of secreted
proteins from our gene sets does not affect the downstream results (see following section).
On the other hand, we analyzed the protein half-life of gene sets based on two recent
datasets in five human cell lines22,23 (Supplementary Table 1). The protein half-life is not
significantly different between high-PTR and low-PTR gene sets in most of the tissues (p <
0.05, two-tailed Wilcoxon rank-sum test), nor is there any trend that one of the groups would
be consistently associated with higher or lower half-life (ED Figure 2B).

Taken together, these observations indicate that PTR ratios can efficiently detect
tissue-specific differences in translation. As such, it constitutes an appropriate dataset to
systematically study TE differences across the set of 36 human tissues.

Random Forest models identify two clusters of human tissues with distinct codon
signatures

Recent studies show that different tissues can have different tRNA repertoires and codon
usage10,11, which could have an influence on translational efficiency. Therefore, we wondered
whether high-PTR and low-PTR sets of genes were specifically enriched or depleted of
certain codons. If there is a tissue-specific codon signature, we would expect to be able to
predict these differences in PTR.

To that aim, we built a random forest classifier for each tissue that predicts the high-PTR vs
low-PTR state of genes based on their codon usage. All 36 resulting models perform with an
area under the curve (AUC) of their receiver operating characteristic (ROC) curves higher
than the no-skill model of 0.5 (Figure 2A, Supplementary Table 2). In particular, kidney,
breast, lung, rectum and tonsil showcase the highest tissue-specific profiles (Figure 2A; all
AUC > 0.70). Furthermore, to validate whether these differences in PTR are specifically
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dependent on codon usage and not from nucleotide composition alone, we compared them
with the performance of three control models: +1 and +2 misframed codon usage as well as
dinucleotide composition of genes (Supplementary Table 2). While these control models also
show predictive power, the AUC of the correctly framed codon usage models significantly
outperform the controls (p < 0.05, one-tailed binomial test).

To examine the tissue-specificity of codons, we next analyzed which particular codons are
predictive for high vs low PTR states in each tissue. The relative feature importances of each
random forest classifier measure the contribution of codons in the decision trees (ED Figure
3A). In general, only a few codons (5 to 10) are relevant for each model, but they differ
across tissues. A recursive feature elimination of each model similarly substantiates that
fewer than 10 codons are sufficient to achieve the maximum AUC performance (ED Figure
3B).

In addition, by computing the ratio between the codon usage of high-PTR vs low-PTR genes,
we observe the enrichment or depletion of codons in specific tissues (Figure 2B). There are
two main clusters of tissues with opposite codon optimality profiles: the first generally
preferring A/T-ending codons while the second favoring C/G-ending ones. Also, as expected,
tissues with higher AUC performances showcase more definite codon profile patterns both in
terms of their enrichment/depletion (Figure 2B) as well as their importance (ED Figure 3A).
As mentioned in the previous section, we also repeated the same analyses with the
secretome-excluded sets of genes, which have a highly similar codon optimality profile with
all correlations of codon ratios over 0.95 (Supplementary Table 2).

Given that some reports highlight the role of codon pair bias in translation11,24, we similarly
analyzed the codon pair usage ratios between high-PTR vs low-PTR genes (Supplementary
Table 3). A principal component analysis (PCA) of these ratios perfectly separates the exact
same two clusters observed above with single codons alone (ED Figure 4A). To further
analyze how much codon pair variance is explained by single codons alone, we compared
observed codon pair ratios with their expected values based on their constituent single
codons. They relate highly linearly as shown by linear regression models (ED Figure 4B,
Supplementary Table 3), which indicates that differences in codon pair ratios can be
explained by single codons alone. In fact, codon pairs that deviate the most from linearity
just correspond to outliers with very low counts within gene sets (ED Figure 4C).

Overall, our random forest classifiers can predict the PTR of genes in a certain tissue based
on their codon usage. As such, the observed differences in codon preference or avoidance
across tissues can be exploited to optimize tissue-specific gene design.

CUSTOM generates fluorescent variants with desired tissue-specific expression

To translate differences in tissue-specific PTR into a codon optimizer tool, we developed
CUSTOM as a probabilistic approach (see Methods, https://custom.crg.eu). Given a certain
amino acid sequence and a target tissue, codons are selected with a probability proportional
to their tissue importance in the model (ED Figure 3A). Then, based on the ratio of the
selected codon (Figure 2B), it is either added or avoided in the generated sequence. This
process is performed along the whole sequence, and repeated iteratively to generate a pool
of hundreds of optimized sequences. Among this pool of sequences, given that
tissue-specific codon usage is not the only factor influencing coding sequences2, the top
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scoring ones can be selected based on other commonly used parameters of codon bias or
mRNA stability3 (Codon Adaptation Index, Codon Pair Bias, Minimum Free Energy, Effective
Number of Codons, see Methods).

To validate the predictor, we chose the proteins eGFP and mCherry, and optimized them
with CUSTOM to either kidney or lung (Supplementary Table 4). Taking eight among the top
optimized sequences (Figure 3A, 2x eGFPKidney, 2x eGFPLung, 2x mCherryKidney, 2x
mCherryLung), we then designed four constructs, placing in each of them one eGFP and one
mCherry optimized each one for a different tissue and under an inducible bidirectional
promoter (Figure 3B). These constructs were then simultaneously expressed in the lung and
kidney cell lines A549 and HEK293T, respectively. Based on available proteomics data of
these cell lines25, the proteome of A549 clearly resembles that of lung, while HEK293 is a
closer model to kidney (ED Figure 5A).

We then analyzed the eGFP and mCherry fluorescence of each construct in each cell line.
For all cases, we observe that the eGFP/mCherry ratio is significantly higher in the tissue for
which eGFP is optimized (Figure 3C, p < 0.05, two-tailed Wilcoxon rank-sum test, ED Figure
5B), which validates our tissue-specificity hypothesis. We further observe that (1) the two
constructs with eGFPLung have generally lower eGFP/mCherry ratios compared to the ones
with eGFPKidney, and (2) the differences in eGFP/mCherry ratios between constructs are more
variable in HEK293 than A549 cells. Altogether, these observations suggest that A/T-ending
codons are generally lower expressed than C/G-ending counterparts, but tissues like lung
tolerate them better.

DISCUSSION

Current analyses of the mRNA and protein levels among human tissues distinguish between
across-gene and within-gene (i.e. across-tissue) variability14. In fact, the coefficient of
variation of mRNA and protein levels across genes highly exceeds that of across tissues. In
consequence, studies of codon usage on human transcriptomes and PTR ratios so far were
dominated by the across-gene variability, and thus overlooked the smaller across-tissue
differences11,17. The approach taken here puts the focus on the across-tissue variability of
PTR ratios rather than the overall genome, which is actually the major source of
post-transcriptional regulation17,18. In fact, we provide evidence that high-PTR gene sets of
tissues are particularly enriched for tissue-specific functions.

Given the high GC content of the human genome as a whole, G/C-ending codons are
generally more abundant (i.e. higher CAI), and relate to higher mRNA and protein
expression levels7,26,27. But again, moving away from this across-gene perspective of human
codon usage to look at the across-tissue variation, we here report that distinct tissues
showcase different codon preferences. All in all, as also determined experimentally, we
observe that the expression of a certain protein is dependent on two axes: (1) the
across-gene axis with G/C-ending codons favoring higher absolute expression, and (2) the
tissue-specific axis with the codon preferences observed in Figure 2B. Moreover, we also
report that some tissues have a more definite codon profile than others, where this second
axis is less evident. In agreement with our observed tissue-specific axis, Allen et al. (2022)
recently reported that testis and brain (in contrast to other tissues such as ovary) better
tolerate the translation of rare A/T-ending codons in Drosophila melanogaster28.
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The codon optimization tool CUSTOM is able to exploit these codon preferences for the
design of tissue-targeted genes. In fact, all four designed constructs expressed in a kidney
and lung cell line showed the predicted tissue-specificity. To make CUSTOM readily
available to the community, we developed it completely open source and made it accessible
through a web server.

Human tissues are ensembles of heterogeneous cell types, and therefore observed
differences in codon optimality are actually a composition of the constituent cell types.
However, single-cell technologies of mRNA and protein measurements fall still far from
complete cellular atlases29. Instead, we used the most up-to-date and complete tissue-wide
maps of the human transcriptome and proteome, which have been generated by
cutting-edge mass spectrometry and mRNA sequencing techniques15,19,20.

Finally, the results presented here constitute a proof-of-concept that tissue-specific codon
usage exists and can be applied to gene design. In particular, this tool could be used in the
development of optimized gene therapies or mRNA vaccines with more targeted tissue
targets and therefore potentially less side effects. Nevertheless, factors other than codon
usage also play a role in gene expression2, and therefore changes in synonymous codons
can as well interfere with other processes such as mRNA folding and stability, mRNA
modifications, protein folding, or translational kinetics30,31. As such, tissue-specific codon
usage will constitute one additional instrument in the gene design tool set.

METHODS

Codon optimizer for tissue-specific expression

CUSTOM is implemented in Python (version >= 3.7) and available on GitHub
(https://github.com/hexavier/CUSTOM) and as a web interface (https://custom.crg.eu). The
landscape of possible synonymous sequences is vast and manifold factors overlap in
defining the code. Therefore, we follow a simple probabilistic approach with two steps: (1)
translate tissue-specific codon preferences into a pool of optimal sequences, and (2) select
the desired sequence based on other parameters of relevance.

Create a pool of tissue-optimized sequences

The algorithm requires two main input data: the amino acid sequence to be optimized (or
DNA sequence) and the target tissue. For each iteration of the optimization, the sequence is
optimized taking two factors into account: how important the codon is in defining
tissue-specificity (relative feature weights in ED Figure 3A) and whether it is enriched or
depleted in the tissue (codon ratios in Figure 2B). Therefore, for each amino acid, a certain
codon is selected with a probability proportional to the first. If the selected codon is enriched
in the tissue, it is incorporated into the sequence. If it is depleted, the codon is excluded and
another codon is selected based on the same probabilities as before. This process is
repeated along the full sequence, and for as many iterations as desired. Furthermore, given
that 5-10 top codons are often sufficient to achieve the full AUC prediction (ED Figure 3B),
users can also control whether optimizing all codons or only the top ones.
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Selecting the top scoring candidates

Once a pool of optimized sequences has been generated, the best-ranked ones can be
selected as the user desires. Given that no ground truth is known, the default select_best
method of the package measures a list of standard metrics frequently used in gene design
and computes an average to select the top scoring sequences. The following factors can be
included:

● Minimum Free Energy (MFE): a measure of mRNA stability from the ViennaRNA
package32. CUSTOM distinguishes between the first 40 nucleotides (whose weak
secondary structure leads to increased translation initiation) and the rest of the
sequence (whose strong secondary structure relates to longer mRNA half-lives)3.

● Codon Adaptation Index (CAI): a measure of similarity between the codon usage of
the sequence and that of the human genome33.

● Codon Pair Bias (CPB): a measure of similarity between the codon pair usage of the
sequence and that of the human genome24.

● Effective Number of Codons (ENC): a measure of codon evenness. A value of 20
means that all 100% codons are biased towards the most common codon, while 61
corresponds to no bias at all34.

● GC content: a measure of similarity between the sequence GC content and a desired
target value of GC.

● Homopolymers: filters out sequences with homopolymers of a certain length, which
can lead to worse expression.

● Motifs: filters out sequences containing certain motifs.

Experimental model and protocol

Human cell models

The cell lines included in this study are HEK293T and A549. The sex of each cell line is as
follows: HEK293T, female; A549, male. Cells were maintained at 37°C in a humidified
atmosphere at 5% CO2 in DMEM 4.5 g/l Glucose with UltraGlutamine media supplemented
with 10% of FBS and 1% penicillin/streptomycin.

Expression vectors design

We applied CUSTOM to the protein sequences of eGFP and mCherry (Uniprot ID: C5MKY7,
X5DSL3). Sequences were optimized to either lung or kidney, generating a total of n_pool =
1000. Sequences with homopolymers equal or larger than 7 were filtered out and scored
with:

opt.select_best(by={"MFE":"min", "MFEini":"max", "CAI":"max", "CPB":"max",
"ENC":"min"}, homopolymers=7, top=10)

Among the top 10 scoring candidates of each optimization, we selected 2x eGFPKidney, 2x
eGFPLung, 2x mCherryKidney, and 2x mCherryLung (Supplementary Table 4).

  For gene overexpression experiments, the two selected eGFP and and mCherry were
cloned into a modified version of the XLone-GFP vector (Addgene#96930). The modification
consisted of replacing the promoter of XLone-GFP with a bidirectional TRE3G promoter

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2022.03.22.485268doi: bioRxiv preprint 

http://sciwheel.com/work/citation?ids=3791109&pre=&suf=&sa=0
https://doi.org/10.1101/2022.03.22.485268
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Clontech), which allows the simultaneous expression of both genes. The four constructs
consisted in a combination of eGFPLung + mCherryKidney and eGFPKidney + mCherryLung.

Flow cytometry

HEK293T and A549 cells were seeded in 6-well plates. Gene expression was induced with
500 ng/mL of doxycycline during 48h. To measure the expression of the fluorescent proteins,
cells were trypsinized and resuspended with 500 µL of media. Samples were applied on a
FACS Fortessa analyser. Approximately 104 live single-cell events were collected per
sample. BD FACSDiva software was used for gating and analysis. The fluorescence
intensity for each population in the FITC channel and PE–Texas Red channel was obtained.

Data sources

Protein-to-mRNA ratios

The PTR ratios of the HPA were directly retrieved from the Table EV3 of Eraslan et al.
(2019). In this dataset, protein levels are determined as absolute abundances based on their
iBAQ quantification. As for the GTEx data, we retrieved protein and mRNA levels from Table
S2 and Table S3 of Jiang et al. (2020), respectively. In this case, the proteomics
measurements are relative quantifications from a tandem mass tag (TMT) 10plex/MS3 mass
spectrometry strategy. To compute their PTR ratios, we followed the same pipeline as in the
HPA: (1) proteins with an abundance of 0 were considered as missing values (NA); (2)
protein quantifications were adjusted to have in each tissue the same median than the
overall median; (3) genes with a TPM lower than 10 were taken as non-transcribed (NA).
With that, comparable PTR values between HPA and GTEx are obtained (ED Figure 1A).

Codon and codon pair usage tables

The codon usage and codon pair usage tables of Homo sapiens from RefSeq were
downloaded from the Codon/Codon Pair Usage Tables (CoCoPUTs) project release as of
June 9th, 202035. Regarding the codon usage of misframed coding sequences and their
dinucleotide composition, we computed them from the latest release of the CCDS database
of human sequences (release 22)36.

Translational efficiencies

The processed data of matched ribosome profiling and mRNA-seq samples from brain, liver
and testis was retrieved from ArrayExpress (E-MTAB-7247)21. Translational efficiencies were
then computed as the ratio FPKMRibo-seq/FPKMmRNA-seq.

Protein half-life

The log-10-transformed protein half-lives for B cells, NK cells, hepatocytes, monocytes, and
HeLa cells were downloaded from Eraslan et al. (2019)22,23. Given the concordance of
half-lives among the five cell types (Supplementary Table 1), we used their average for the
analysis in this work (ED Figure 2B).

Blood secretome

Using the predictions by the HPA16, there are 2641 secretome genes, 729 of which are
secreted to blood. Given that we were concerned on proteins that are not detected at the
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protein levels because of their systemic rather than local secretion, we focused our analysis
on the latter (Supplementary Table 1).

Computational analysis

High-PTR and low-PTR gene sets

As PTR values from GTEx were computed from relative TMT proteomics in contrast to the
absolute iBAQ quantification of HPA, they were not directly comparable and thus we defined
the high-PTR and low-PTR gene sets for each dataset separately. On the one hand,
high-PTR genes fulfilled three conditions: (1) genes having a PTR fold change compared to
the average of all other tissues larger than 2, (2) genes with the highest PTR among all
tissues, (3) genes detected in at least 3 tissues in the dataset. On the other hand, low-PTR
genes were defined as: (1) genes having a PTR fold change compared to the average of all
other tissues smaller than 0.5, (2) genes with the lowest PTR among all tissues, (3) genes
detected in at least 3 tissues in the dataset. As a result, we defined one high-PTR and one
low-PTR gene set for each tissue in each dataset. For those 17 tissues in common between
both HPA and GTEx datasets, the union between both datasets was taken except for genes
with contradictory labels, which were excluded.

Random Forest classifiers

To identify the most important codons determining high-PTR vs low-PTR genes, we
computed their codon usage normalized by length, so that all 61 amino-acid-encoding
codons sum up to 1. Taking this table of normalized codon usage as features, we applied a
Random Forest (RF) classifier, populated with 100 decision trees, using the scikit-learn
package37. Therefore, for each of the 36 tissues, we developed a model for predicting the
high-PTR vs low-PTR genes based on their codon usage. To control for size differences
between high-PTR and low-PTR groups, we iteratively sampled equal-sized groups, for n =
100 iterations. Furthermore, we validated the results with a stratified 5-fold cross-validation.
In order to evaluate the performance of the RF models, we computed the Area Under the
Curve (AUC) of Receiver Operating Characteristic (ROC) plots (Figure 2A). We took the
average and standard deviation across all iterations. Similarly, we computed the relative
feature weights corresponding to each of the 61 codons (Figure 2B).

To validate that the predictive potential of RF classifiers were codon-specific, we similarly
computed the length-normalized codon usage of +1 and +2 misframed coding sequences as
well as dinucleotide usage. By running the exact same pipeline as above, we determined the
average AUC of these three control RF classifiers (Supplementary Table 2). We used a
one-tailed binomial test to analyze whether the AUCs of controls were lower than the original
model more often than expected by chance (p = 1/2).

While the relative feature weights determine the importance of each codon in distinguishing
high-PTR vs low-PTR genes, they do not provide any directionality. To analyze whether
codons are enriched or depleted in high-PTR vs low-PTR genes, we computed the ratios
between the average length-normalized codon usage of high-PTR and low-PTR genes.
Similarly, codon pair ratios were computed in the same way.

Among the total of amino-acid-encoding 61 codons, we also analyzed how many of them
were actually informative in the models using a Recursive Feature Elimination (RFE).
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Therefore, for each tissue, we started by building a full model with all 61 codons and then
recursively removed the least important one, as determined by the relative feature weights,
until only one was left. At each step, we computed the AUC of the ROC curve of the model
as explained above (ED Figure 3B).

Enrichment map

For this analysis, in order to allow an overlap between tissue gene sets, we used a slightly
less stringent tissue-specificity definition. High-PTR sets were defined as (1) genes having a
PTR fold change compared to the average of all other tissues larger than 2 and (2) genes
detected in at least 3 tissues in the dataset, and vice versa for low-PTR sets.

To analyze the overlap between tissue gene sets, we used the EnrichmentMap app from
Cytoscape38. We defined a generic input of high-PTR and low-PTR sets of proteins per
tissue. Similarity was computed as the overlap coefficient ([size of (A intersect B)] / [size of
(minimum(A ,B))]).

Gene Ontology enrichment analysis

Gene Ontology (GO) categories of Biological Processes were analyzed for enrichment as of
May 27th, 202139. Enrichment analyses were performed by PANTHER using the Fisher’s
exact test and Bonferroni correction for multiple testing40.

Principal Component Analysis of codon pairs

We applied Principal Component Analysis to the codon pair ratios of each tissue in order to
explore the main variability among tissues along the 4096 codon pair ratios.

Linear regression of codon pairs

We fitted a linear regression model between the observed codon ratios (dependent variable)
and the expected ratios based on single codons alone (independent variable). The expected
values were computed as the product of the ratios of the two codons that constitute the pair.
For each model, we computed the R squared, the Residual Standard Error (RSE), and the
model p-value (Supplementary Table 3).

Statistical analysis

All details of the statistical analyses can be found in the Results section and the figure
legends. We used a significance value of 0.05.
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FIGURES

Figure 1. Protein-to-mRNA ratios detect differences in translational efficiency among tissues.
(A) Proteomics and mRNA-seq data included in this study contains samples from the GTEx project19

and Human Protein Atlas20. (B) Using these datasets, we compute the protein-to-mRNA ratios (PTR)
and define tissue-enriched and tissue-depleted sets of proteins for each tissue. By comparing the
codon usage of these two sets, we identify the codon optimality pattern of tissues. Using this
information, we develop a gene design tool called CUSTOM and validate the method using an in vitro
cellular model. (C) Spearman correlation between the median translational efficiency21 (ratio between
ribo-seq and mRNA-seq FPKMs) and PTR20 across genes in brain, liver, and testis. The color code
depicts the density of points in the scatter plot.
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Figure 2. Random Forest models identify two clusters of human tissues with distinct codon
signatures. (A) Receiver operating characteristic (ROC) curves of lung and kidney random forest
classifiers, in which the codon usage of genes is used to predict whether they are high-PTR or
low-PTR in the respective tissue (see Methods). (B) Ratios of the codon usage between high-PTR
and low-PTR genes in each tissue. Codons and tissues are hierarchically clustered using euclidean
distances and the complete-linkage method. The barplot on the left shows the mean AUC of the ROC
curve of the RF model of each tissue.
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Figure 3. CUSTOM generates fluorescent variants with desired tissue-specific expression. (A)
Selected eGFP and mCherry sequences optimized to lung and kidney using CUSTOM. The color
code corresponds to the optimality ratios of Fig. 2B. (B) Using these sequences, we designed four of
constructs by placing a mCherry and an eGFP with opposite tissue-specificity under an inducible
bidirectional promoter. (C) Ratios of eGFP and mCherry for each of the four constructs detected by
flow cytometry. The number of cells within each group is specified. Center values represent the
median. Statistical differences were determined by two-tailed Wilcoxon rank-sum test, and are
denoted as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Two additional replicates are
shown in ED Figure 5A.
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EXTENDED DATA FIGURES

Extended Data Figure 1. Protein-to-mRNA ratios detect differences in translational efficiency
among tissues, related to Figure 1. (A) Correspondence between GTEx and Human Protein Atlas
datasets at the mRNA-seq, proteomics and PTR levels. The histograms show the Spearman
correlation of each gene along all 17 tissues in common between both datasets. Only correlations of
genes detected in more than 5 tissues were computed. (B) Enrichment Map of high-PTR (red) and
low-PTR (blue) sets of proteins among tissues. Edges show significant enrichments between sets with
a similarity coefficient >0.33. The width of edges is proportional to the similarity coefficient. The size of
nodes is proportional to the number of genes in the set, and their color depicts their tissue type based
on the BRENDA Tissue Ontology41. Tissues with no significant edges are not shown. (C) GO
enrichment analysis of biological processes for the high-PTR sets of four tissues. The top 10
significant GO terms with a Bonferroni-corrected p-value ≤ 0.05 are shown.

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2022.03.22.485268doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.22.485268
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 2. Differences in secretion and protein half-life among tissues, related to
Figure 1. (A) Number of proteins secreted to blood in the low-PTR and high-PTR sets of genes in
each tissue. (B) Average protein half-life of low-PTR and high-PTR sets of genes per tissue. Statistical
differences were determined by two-tailed Wilcoxon rank-sum test and corrected for multiple
comparisons using the Holm-Bonferroni method. Only significant differences are shown and are
denoted as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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Extended Data Figure 3. Random Forest models identify two clusters of human tissues with
distinct codon signatures, related to Figure 2. (A) Based on the random forest classifiers, the
heatmap shows the relative feature weights of every codon for each of the 36 human tissues, which
measure the contribution of each codon in the decision trees. Codons and tissues were hierarchically
clustered using euclidean distances and the complete-linkage method. The barplot on the left shows
the mean AUC of the ROC curve of the RF model of each tissue. (B) Recursive Feature Elimination of
the random forest model of each tissue.
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Extended Data Figure 4. Differences between tissues are also observed at the codon pair level.
(A) Principal Component Analysis (PCA) of the log-2-transformed ratios between high-PTR and
low-PTR codon pair usage. The first axis completely separates the same two clusters detected in Fig.
2. (B) Linear regression in kidney and lung between the observed log-2-transformed codon pair ratios
and the expected values based on the contribution of their constituent codons alone (see Methods).
Codon pairs with a standardized residual higher than 4 are labeled. (C) For each standardized
residual interval, number of codon pair counts in high-PTR and low-PTR gene sets. All tissues are
merged together.
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Extended Data Figure 5. CUSTOM generates fluorescent variants with desired tissue-specific
expression, related to Figure 3. (A) Difference between the standardized Spearman correlation of
the proteomics profiles of A549 and HEK29325 against all tissues in the HPA20. (B) Ratios of eGFP
and mCherry for each of the four constructs detected by flow cytometry. The number of cells within
each group is specified. Center values represent the median. Statistical differences were determined
by two-tailed Wilcoxon rank-sum test, and are denoted as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
****p ≤ 0.0001.
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SUPPLEMENTARY TABLES

Supplementary Table 1. Protein-to-mRNA ratios among tissues. (A) Protein-to-mRNA
ratios of the Human Protein Atlas. (B) Protein-to-mRNA ratios of GTEx. (C) GTEx samples.
(D) Translational efficiency of brain, liver and testis. (E) High-PTR and low-PTR sets of
proteins for each tissue. (F) Concordance of protein sets between tissues in both HPA and
GTEx. (G) Protein half-lives of five different human cell lines. (H) Proteins secreted to blood.

Supplementary Table 2. Random Forest models of codon usage. (A) Results of RF
models for each of the 36 tissues. (B) Codon ratios between high-PTR vs low-PTR proteins
for each tissue. (C) Codon ratios between high-PTR vs low-PTR proteins for each tissue,
after excluding secretome proteins. (D) Random Forest models based on codon usage of
misframed CDSs and dinucleotide usage.

Supplementary Table 3. Models of codon pair usage. (A) Codon pair ratios between
high-PTR vs low-PTR proteins for each tissue. (B) Linear regression between observed vs
expected codon pair ratios.

Supplementary Table 4. TisOpt-optimized fluorescent variants. (A) Relative Codon
Usage of optimized protein variants. (B) Sequences of optimized protein variants.
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