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Tropical forests are disappearing at an alarming rate due to human ac-
tivities. Here, we provide spatial models of deforestation in 92 countries
covering all the tropical moist forests in the world. Our results question
the global effectiveness of protected areas in curbing deforestation and allow

5 reinterpreting the impact of roads on deforestation in terms of both accessi-
bility and forest fragmentation. Using our models, we derived high-resolution
pantropical maps of the deforestation risk and future forest cover for the 215
century under a “business-as-usual” scenario based on the deforestation rates
observed in the 2010s. Under this scenario, 48% (39-56%) of tropical moist

10 forests are expected to disappear during the course of the 215 century, and
41 tropical countries will have lost all their forests by 2100. The remaining
forests in 2100 will be highly fragmented and located in remote places, prefer-
entially in protected areas, far from roads and villages, and at high elevations.
We also show that future deforestation will likely concern forests with higher

15 aboveground carbon stocks, and hence that carbon emissions from tropical
deforestation are expected to increase (from 0.432-0.585 Pg/yr in 2020 to
0.583-0.628 Pg/yr in 2100). Considering also the decrease in carbon uptake
in aboveground biomass (from 0.589 Pg/yr in 2000 to 0.312 Pg/yr in 2100)
associated with the decrease in forest cover, tropical moist forests would

20 become a major net carbon source in the 215 century under this scenario.

Keywords: biodiversity, deforestation, tropical forests, COs emissions, scenarios.
Running title: Deforestation scenario in the tropics.


mailto:ghislain.vieilledent@cirad.fr
https://doi.org/10.1101/2022.03.22.485306
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.22.485306; this version posted May 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1 Introduction

Tropical forests are at the heart of concerns when it comes to climate change and bio-
2 diversity loss, which both pose unprecedented threats to human civilization (Cardinale
et al. 2012, IPCC 2014). Commonly called the “Jewels of the Earth”, tropical forests
shelter 30 million species of plants and animals, representing half of the Earth’s wildlife
and at least two-thirds of its plant species (Gibson et al. 2011, Wilson et al. 2012).
Through carbon sequestration, they play an important role in the global carbon cycle
» and regulate the global climate (Baccini et al. 2017). Intact tropical forest ecosys-
tems also prevent outbreaks of zoonoses and reduce the risk of pandemics (Tollefson
2020). At a local scale, tropical forests regulate the regional climate (Dickinson and
Kennedy 1992), cooling the atmosphere (Ellison et al. 2017), and facilitate access to
water (Ellison et al. 2017, Zhang and Wei 2021). They also protect against erosion and
5 flooding (Bradshaw et al. 2007). Close to 1.6 billion people (a quarter of the world’s
population) rely on forest resources for their livelihoods (FAO 2020). Despite the many
ecosystem services they provide, tropical forests are disappearing at an alarming rate
(Hansen et al. 2013, Achard et al. 2014, FAO 2020, Vancutsem et al. 2021), mostly
because of human activities (Geist and Lambin 2002, Curtis et al. 2018). Past studies
w0 have estimated that about 10 Mha of tropical forest (including moist and dry forests) are
disappearing yearly (FAO 2020). At this rate, will there still be any tropical forests left
at the end of the 215 century? If so, where will they be concentrated, and what will be
the consequences of tropical deforestation on carbon emissions and climate in the future?

15 Forecasting forest cover change is paramount as it allows us to foresee the consequences
of deforestation (in terms of carbon emissions, biodiversity loss, or water supply) under
various technological, political, and socio-economic scenarios, and to inform decision
makers accordingly (Clark et al. 2001). The “business-as-usual” scenario is of particu-
lar interest as it makes it possible to predict the likely future in the absence of change

so in deforestation rates, and if necessary, to alert decision-makers to an essential change
of course to avoid any potential environmental disaster. While models and scenarios
of carbon dioxide emission and climate change have been developed for several years
by the Intergovernmental Panel on Climate Change (IPCC 2014) and are now widely
used by the scientific community and known to the general public, equivalent models

55 and scenarios for land-use change and biodiversity at the global scale are still relatively
scarce (Cramer et al. 2004, Titeux et al. 2016, Pereira et al. 2020). Moreover, baseline
scenarios of deforestation and associated carbon dioxide emission are necessary for im-
plementing REDD+ (Reducing Emissions from Deforestation and forest Degradation)
activities in the framework of the Paris Agreement on climate change (Goetz et al. 2015).

s Spatialized forest cover change scenarios are crucial because both forest carbon stocks
(Avitabile et al. 2016, Baccini et al. 2017) and biodiversity (Kremen et al. 2008, Mitter-
meier et al. 2011) vary considerably in space at fine scale. Non-spatial scenarios of forest
cover change (FAO 2020) cannot be used to forecast associated carbon emissions and
change in biodiversity accurately, or for systematic conservation planning at the local

s scale. Spatial forecasts of forest cover change are based on spatial statistical models,
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which enable the estimation of a probability of change in space as a function of a set of
spatial predictors (Rosa et al. 2014). In addition to forecasts, statistical models can be
used to identify the main drivers of deforestation and quantify their relative effects. For
example, models can be used to assess the impact of roads on the risk of deforestation

70 (Laurance et al. 2014) and the effectiveness of protected areas in reducing deforestation
(Andam et al. 2008, Wolf et al. 2021).

Few authors have attempted to provide spatialized forest cover change scenarios in

the tropics at large spatial scales. The most significant studies to date have focused

7 on modelling and forecasting forest cover change at the scale of the Amazonian basin

(Soares-Filho et al. 2006, Swann et al. 2015, Aguiar et al. 2016). In this paper, we used

high-resolution spatial data to model and forecast deforestation at the pantropical scale.

This was made possible by the recent availability of pantropical spatial datasets of forest

cover change (Vancutsem et al. 2021) and of global spatial datasets of explanatory factors

so related to deforestation at the required resolution (World Database on Protected Areas,

SRTM Digital Elevation Database, and OpenStreetMap). We combine these extensive

datasets in a spatial statistical model to test the effectiveness of protected areas in

reducing deforestation and assess the impact of roads on the risk of deforestation at

the pantropical scale. Assuming a business-as-usual scenario, we derive high-resolution

ss maps of deforestation risk and future forest cover over the 215 century in the humid

tropics. We also estimate the carbon emissions associated with projected deforestation

to assess whether tropical forests will act as a carbon source or sink in the future and
conduct an uncertainty analysis.
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2 Methods

o We present below a summary of the materials and methods used in this study. A more
detailed description of the workflow using the Republic Democratic of the Congo as an
example can be find in the ST Appendiz, Materials and Methods.

2.1 Study-areas and data

We modelled the spatial deforestation process for 119 study-areas representing 92 coun-
s tries in the three tropical continents (America, Africa, and Asia), see SI Appendiz,
Fig. S1. Study-areas cover all the tropical moist forest in the world, at the exception of
some islands (eg. Sao Tome and Principe or Wallis-and-Futuna). For each study-area,
we derived past forest cover change maps on two periods of time: January 15% 2000—
January 1% 2010, and January 15 2010-January 15 2020, from the annual forest cover
o change product by Vancutsem et al. (2021) at 30 m resolution (ST Appendiz, Fig. S2 and
Table S1). For the forest definition, we only considered natural old-growth tropical moist
forests, disregarding plantations and regrowths. We included degraded forests (not yet
deforested) in the forest definition. To explain the observed deforestation in the period
2010-2020, we considered a set of spatial explanatory variables (ST Appendiz, Fig. S3-
105 56) describing: topography (altitude and slope, 90 m resolution), accessibility (distances
to the nearest road, town, and river, 150 m resolution), forest landscape (distance to
forest edge, 30 m resolution), deforestation history (distance to past deforestation, 30 m
resolution), and land conservation status (presence of a protected area, 30 m resolution).
This set of variables was selected based on a priori knowledge of the spatial deforesta-
1o tion process in the tropics (ST Appendiz, Materials and Methods). Data for explanatory
variables were extracted from extensive global data-sets (World Database on Protected
Areas, SRTM Digital Elevation Database, and OpenStreetMap) and had a resolution
close to the original resolution of the forest cover change map (30 m, see SI Appendiz,
Table S2).

s 2.2 Sampling

For each study-area, we built a large dataset from a sample of forest cover change obser-
vations in 2010-2020. We performed a stratified balanced sampling between deforested
and non-deforested pixels in the period 2010-2020. Pixels in each category were sampled
randomly (S7 Appendiz, Fig. S7). The number of sampled observations in each study-
120 areas was a function of the forest area in 2010. Datasets included between 2,398 (for
Sint Maarten island in America) and 100,000 (for study-areas with high forest cover such
as the Amazonas state in Brazil, Peru, DRC, and Indonesia) observations. The global
data-set included a total of 3,186,698 observations: 1,601,810 of non-deforested pixels
and 1,584,888 of deforested pixels, corresponding to areas of 144,163 ha and 142,647 ha,
s respectively (ST Appendiz, Table S3).
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2.3 Statistical model

Using sampled observations of forest cover change in the period 2010-2020, we modelled
the spatial probability of deforestation as a function of the explanatory variables using a
logistic regression (ST Appendiz, Eq. S1). To account for the residual spatial variation in
the deforestation process, we included additional spatial random effects for the cells of a
10 x 10 km spatial grid covering each study-area (SI Appendiz, Fig. S8). Spatial random
effects account for unmeasured or unmeasurable variables that explain a part of the
residual spatial variation in the deforestation process which is not explained by the fixed
spatial explanatory variables already included in the model (such as local population
density, local environmental law enforcement, etc.). Spatial random effects were assumed
spatially autocorrelated through an intrinsic conditional autoregressive (iCAR) model
(SI Appendiz, Eq. S1). Variable selection for each study area was performed using
a backward elimination procedure and parameter inference was done in a hierarchical
Bayesian framework (ST Appendiz, Tables S4-S9).

2.4 Model performance

Using a cross-validation procedure, we compared the performance of the iCAR model at
predicting the spatial probability of deforestation with three other statistical models: a
null model, a simple generalized linear model (equivalent to a simple logistic regression
without spatial random effects), and a Random Forest model. These two last mod-
els have been commonly used for deforestation modelling (SI Appendiz, Materials and
Methods).

2.5 Deforestation risk and future forest cover

Using rasters of explanatory variables at their original resolution, and the fitted iCAR
model for each study-area including estimated spatial random effects (SI Appendiz,
Fig. 59), we computed the spatial probability of deforestation at 30 m resolution for
the year 2020 for each study-area (S Appendiz, Fig. S10). For each study-area, we also
estimated the mean annual deforested area (in ha/yr) for the period 2010-2020 from the
past forest cover change map (S Appendiz, Tables S14-S15). Using the mean annual
deforested area in combination with the spatial probability of deforestation map, we
forecasted the forest cover change on the period 20202110 with a time step of 10 years,
assuming a “business-as-usual” scenario of deforestation (ST Appendiz, Fig. S11 and Ta-
bles S16-S17). The business-as-usual scenario makes the assumption of an absence of
change in both the deforestation intensity and the spatial deforestation probability in
the future.

2.6 Carbon emissions associated with deforestation

We estimated the carbon emissions associated with past deforestation (2010-2020) and
projected deforestation (2030-2110) using three different global or pantropical above-
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ground dry biomass maps at either 1 km (WUR map, Avitabile et al. 2016), 100 m
(ESA CCI map, Santoro et al. 2021), or 30 m (WHRC map, Zarin et al. 2016) resolu-
65 tion (ST Appendiz, Figs. S12-S13, and Table S18). We used the IPCC default carbon
fraction of 0.47 (McGroddy et al. 2004) to convert biomass to carbon stocks. We as-
sumed no change of the forest carbon stocks in the future. We estimated average annual
carbon emissions for ten-year periods from 2010 to 2110. Under a “business-as-usual”
scenario of deforestation, the change in mean annual carbon emissions in the future is
o only attributable to the spatial variation of forest carbon stocks and to the location of
future deforestation. We also used annual rates of aboveground net biomass change for
old-growth tropical rainforests (+1.0, +1.3 and +0.7 Mg/ha/yr for America, Africa, and
Asia, respectively, Requena Suarez et al. 2019) to estimate the change in the ability of
moist tropical forests to uptake carbon from the atmosphere through photosynthesis and
s tree growth in the future.

2.7 Uncertainty and alternative scenarios

To account for the uncertainty around the mean annual deforested area in our predic-
tions, we computed the 95% confidence interval of the annual deforested area for each
study area considering the deforestation observations in the period 2010-2020 (ST Ap-

o pendiz, Table S19). We thus obtained three different predictions of the forest cover
change and associated carbon emissions: an average prediction considering the mean
annual deforested area, and two additional predictions considering the lower and up-
per bound estimates of the mean annual deforested area per study area (SI Appendiz,
Figs. S14-S15, and Data S1, S2).

s 2.8 Software

To perform the analyses, we used the forestatrisk Python package (Vieilledent 2021)
which has been specifically developed to model and forecast deforestation at high reso-
lution on large spatial scales (ST Appendiz, Materials and Methods).
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3 Results

w 3.1 Model performance

Results of the cross-validation showed that the iCAR model had better predictive perfor-
mance than the three other statistical models (ST Appendiz, Tables S12). In particular,
the Random Forest model overfitted the data and was less performant at predicting
the probability of deforestation at new sites than the iCAR model. The iCAR model

105 increased the explained deviance from 39.3 to 53.3% in average in comparison with the
simple generalized linear model. Environmental explanatory variables alone explained
a relative small part of the spatial deforestation process. Including spatial random ef-
fects to account for unexplained residual spatial variability strongly improved model’s fit
(4+14.0% of deviance explained in average) and model predictive performance (+47.4% for

20 the TSS for example). Similar results were obtained when comparing accuracy indices
between models at the continental scale (S Appendiz, Tables S13).

3.2 Effectiveness of protected areas at reducing deforestation

We found that protected areas significantly reduced the risk of deforestation for 70 study
areas out of 119 (59% of the study areas). These 70 study areas accounted for 88% of

205 the tropical moist forest in 2010 (ST Appendiz, Table S6). But, the magnitude of this
effect was relatively low: on average, protected areas reduced the risk of deforestation by
34% (Figs. 1 and ST Appendiz, Table S5). Also, the effect of protected areas was highly
variable between regions (SI Appendiz, Table S6). For 18 study areas with a forest
cover greater than 1 Mha in 2010, the effect of protected areas in reducing deforestation

210 was not significant. Moreover, for the 47 study-areas with a forest cover greater than
1 Mha in 2010 for which the effect of protected areas was significant, the decrease in
the deforestation risk within protected areas was highly variable (standard deviation =
18.72%) going from 5% (for the Bahia state in Brazil) to 82% (for Malaysia).

3.3 Effect of distances to road and forest edge on the
215 deforestation risk

We found that a greater distance to the road significantly reduced the risk of defor-
estation in 61 study areas out of 119 (51% of the study areas). These 61 study areas
accounted for 90% of the tropical moist forest in 2010 (ST Appendiz, Table S7). On aver-
age, a distance of 10 km to the road reduced the risk of deforestation by 14% (Figs. 1 and
20 S1 Appendiz, Tables S5, S9). But the distance to forest edge was by far more important
in explaining the deforestation risk than the distance to road (Fig. 1). The distance to
forest edge was the most important variable in determining the risk of deforestation (57
Appendiz, Table S5). We estimated that, on average, a distance of 1 km to the forest
edge reduced the risk of deforestation by 91%, and a distance of 10 km reduced the risk
»s  of deforestation by almost 100% (Figs. 1 and SI Appendiz, Tables S5, S9).
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3.4 High resolution pantropical map of the deforestation risk

We obtained high resolution (30 m) maps of the deforestation risk for the year 2020
for the 119 study-areas. Combining these maps, we obtained a pantropical map of the
risk of deforestation (Fig. 3 and ST Appendix, Fig. S10). The effect of protected areas
and the effects of distances to road and forest edge on the risk of deforestation were
clearly visible when looking at the map at the country and regional scales (Fig. 3 and
SI Appendiz, Fig. S10). Also, hotspots of deforestation (areas with a higher risk of
deforestation), corresponding to areas with intense deforestation in the past (Fig. ST
Appendiz, Fig. S2), were clearly identifiable on the map (Fig. ST Appendiz, Fig. S10).

3.5 Forest cover change under a business-as-usual scenario of
deforestation

We estimated that around 6.4 Mha (4.5-8.3 Mha) of tropical moist forest have been
disappearing each year during the last decade (2010-2020) (Table 1). We show that
under a business-as-usual scenario of deforestation, 48% (39-56%) of the world’s tropical
moist forests will have disappeared over the course of the 21%* century (Table 1). We
observed marked differences in the percentage of projected forest cover loss at continental
and country scales (Fig. 2, Table 1, and ST Appendiz, Tables S16-S17). The percentage
of forest cover loss over the 21 century would reach 67% (52-79%), 53% (45-60%), and
38% (31-45%) for Southeast Asia, Africa, and Latin America respectively (Table 1).
Under a constant deforestation rate, three-quarters of the tropical moist forests that
remained in 2000 will have disappeared around years 2120, 2160, and 2220 in Southeast
Asia, Africa, and Latin America, respectively, with an average uncertainty of +45 years
(Fig. 2 and Table 1). At the country scale, we predicted that 41 countries (16 in Latin
America, 21 in Africa, and four in Southeast Asia) out of the 92 we studied, plus 14
states in Brazil and one region in India, should lose all their tropical moist forests by
2100 (SI Appendizx, Table S16).

3.6 Pantropical forest cover change maps for the 215t century

Combining maps of the deforestation risk and the projected forest cover for years 2030,
2040, ..., 2110 for each study area, we obtained pantropical forest cover change maps
under a business-as-usual scenario of deforestation for the 215 century in the humid
tropics (Fig. 4 and ST Appendiz and Fig. S11). Three large “blocks” of relatively intact
tropical moist forest should remain in 2100 (Fig. 4) in the upper part of the Amazo-
nian basin (including forests from Peru, Ecuador, Colombia, Venezuela, and the Guiana
Shield), in the western part of the Congo basin (including forests from Gabon, Equato-
rial Guinea, Cameroon, the Central African Republic, and the Republic of Congo), and
in Melanesia (including forests from Papua New Guinea, Solomon Islands, and Vanu-
atu). Apart from these three large and relatively intact forest blocks, the tropical moist
forest remaining in 2100 should be highly fragmented (Fig. 4). In Africa for example,
forests in the Democratic Republic of the Congo (DRC) will be highly fragmented (57
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25 Appendiz, Fig. S11) and completely separated from the large forest block located in the
western part of the Congo basin (Fig. 4). The remaining forests will be concentrated in
remote areas (far from roads and towns), preferentially in protected areas, and at high
elevations. For example, the remaining forests of Borneo in 2100 will be concentrated in
the Betung Kerihun and Kayan Mentarang National Parks (Figs. 3, 4, and SI Appendiz,

20 Tables S4-S9).

3.7 Carbon emissions under a business-as-usual scenario of
deforestation

Predictions obtained from both the ESA CCI and the WUR biomass maps suggested a
substantial increase in carbon emissions associated with deforestation in the future, from

25 0.432 Pg/yr in 2010-2020 with the ESA CCI map (0.467 Pg/yr with the WUR map)
to 0.590 Pg/yr in 2090-2100 (0.628 Pg/yr, respectively). This would correspond to a
27% (35%, respectively) increase in annual carbon emissions (Fig. 5 and SI Appendiz,
Fig. S13). Using either the ESA CCI or WUR maps, this increase in carbon emissions
in the future was predicted for all three continents. This increase was not observed

20 with the WHRC biomass map. In this case, we estimated that annual carbon emissions
associated with deforestation at the global scale should remain stable throughout the
215 century at about 0.600 Pg/yr (ST Appendiz, Fig. S13). At the continental scale,
whatever the biomass map we used, we predicted a decrease in annual carbon emissions
starting from 2070-2080 for Southeast Asia which followed a period of increase in carbon

25 emissions (Fig. 5 and ST Appendiz, Fig. S13). Using annual rates of aboveground net
biomass change for old-growth tropical rainforests and our estimates of forest cover
change (Table 1), we estimated that the amount of carbon absorbed annually by tropical
moist forests should drop by 47% (38-55%) during the 215 century, from 0.589 Pg/yr
in 2000 to 0.312 Pg/yr (0.267-0.363 Pg/yr) in 2100.
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w 4 Discussion

4.1 Reassessing the effects of protected areas and roads on the
deforestation risk

Here we have shown that protected areas significantly reduced the risk of deforestation

in 59% of the study areas, representing 88% of the tropical moist forest in 2010, but that

25 the magnitude of this effect was relatively low (34%). In a recent global study, Wolf et
al. (2021) estimated that deforestation was 41% lower inside protected areas, a value
higher than the estimate in our study which was restricted to tropical moist forests. This
means that protected areas do not prevent deforestation (deforestation does not stop at
the boundaries of the protected areas) in the tropics and that the risk of deforestation

s0 is only reduced to some extent within protected areas. Moreover, our study has shown
that the effectiveness of protected areas for reducing deforestation was very variable
between study-areas, ranging from 0% to 82% reduction, and that the question of the
effectiveness of protected areas must be preferentially answered on a case-by-case basis.
Like several other studies reporting the effect of protected areas on deforestation

25 (Andam et al. 2008, Wolf et al. 2021, Yang et al. 2021), our study shows that pro-
tected areas are effective on average in displacing deforestation outside protected areas

in tropical countries, but not necessarily that protected areas play a role in reducing
the deforestation intensity per se. Indeed, the factors that drive the intensity of de-
forestation at the country scale are more socio-economic or political, such as the level

s of economic development, which determines people’s livelihood and the link between
people and deforestation (Geist and Lambin 2002), the size of the population (Barnes
1990), or the environmental policy (Soares-Filho et al. 2014). In tropical countries with
weak governance (where environmental law enforcement is low) and with a low level of
development (where the pressure on forests is high), it is very unlikely that protected

a5 areas will remain forested. Under a business-as-usual deforestation scenario, deforesta-
tion intensity is assumed constant over time. When all forests outside protected areas
will have disappeared, deforestation is expected to occur inside protected areas (Fig. 4).

In this scenario, protected areas are efficient at protecting forests with high conservation
value in the medium term, i.e., forests will be concentrated in protected areas, where

»0 the probability of deforestation is lower. In the long term, forests should completely
disappear from protected areas (Fig. 4). This phenomenon is already clearly visible in
countries or states where deforestation is advanced, such as in Rondonia state (Brazil) in
South America (Ribeiro et al. 2005), Ivory Coast (Sangne et al. 2015) and Madagascar
(Vieilledent et al. 2020) in Africa, or Cambodia (Davis et al. 2015) in Southeast Asia. In

»s these countries, several forested protected areas have been entirely deforested (e.g., the
Haut-Sassandra protected forest in Ivory Coast, or the PK-32 Ranobe protected area in
Madagascar) or severely deforested (e.g., the Beng Per wildlife sanctuary in Cambodia).
Regarding the effect of roads on the risk of deforestation, we have found that a distance

of 10 km from a road reduces the risk of deforestation by 14% on average but that the

s0  distance to the forest edge was by far the most important variable in determining the
risk of deforestation. On average, we found that a distance of 1 km from the forest edge
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reduced the risk of deforestation by 91%, in agreement with the results of other studies
showing the importance of forest fragmentation on the risk of deforestation in the tropics
(Hansen et al. 2020). Consequently, building new roads in non-forest areas but close

15 to existing forest edges would significantly increase forest accessibility and the risk of
deforestation in the nearby forest. But this negative impact would be greatly amplified if
new roads were opened in the heart of forest areas. In addition to the direct deforestation
associated with road building in the forest (Kleinschroth and Healey 2017), this would
involve creating new forest edges and dramatically increase the deforestation risk in

s the area concerned. While road networks are expanding rapidly worldwide, notably
in remote areas in tropical countries (Laurance et al. 2014), our results underline the
importance of conserving large roadless and unfragmented forest areas.

4.2 Spatial scenarios of deforestation by 2100

We have estimated that around 6.4 Mha (4.5-8.3 Mha) of tropical moist forest have
us been disappearing each year during the last decade (2010-2020), which corresponds to
an annual area of 64,000 km?2, about the size of Greece or West Virginia. We have
shown that under a business-as-usual scenario of deforestation, 48% (39-56%) of the
world’s tropical moist forests should disappear over the course of the 215° century. The
percentage of lands covered by tropical moist forests would then decrease from 8.5%
30 (1259 Mha) in 2000 to 4.7% (656 Mha) in 2100. Few studies have provided tropical forest
cover projections for the 215 century at the global scale. Using historical deforestation
rates from Achard et al. (2002) and Malhi and Grace (2000) within the period 1990
2000 (4.9-12.9 Mha/yr), Cramer et al. (2004) estimated that 46-80% of the tropical
forests should disappear between 2000 and 2100 under a business-as-usual scenario.
35 Considering historical deforestation rates for the period 1997-2002, Soares-Filho et al.
(2006) estimated that the Amazonian forest would be reduced by 40% between 2003
and 2050 under a business-as-usual scenario. In our study, this percentage of loss for
Latin America was not reached before 2100 (Fig. 2). These differences show first, that
our predictions are rather conservative, and second, that predictions depend on the
w0 forest cover change product and on the reference period used to compute the historical
deforestation rates. In our study, we used the most comprehensive and accurate forest
cover change data available to date for moist tropical forests (Vancutsem et al. 2021)
and performed an uncertainty analysis to see how differences in historical deforestation
rates impacted forest cover change and carbon emission projections (Figs. 2, 5 and S/

s Appendiz, Data S1, S2).
Despite the uncertainty surrounding the mean annual deforested area for each country
(ST Appendiz, Figs. S14-S15, and Table S19), the consequences of a business-as-usual
deforestation scenario on the forest cover loss and associated carbon emissions by 2100
remain clear and alarming (Figs. 2, 5 and ST Appendiz, Data S1, S2). Given the cur-
s rent global context, the business-as-usual deforestation scenario can be considered as
conservative and might not be the most likely. For example, we do not account for the
effect of future population growth (Raftery et al. 2012), which will likely have a major
impact on deforestation, particularly in Africa, where a large part of the population de-
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pends on slash-and-burn agriculture for their livelihood (Barnes 1990, Vieilledent et al.
w5 2020). Nor do we account for the increasing demand for agricultural commodities from
the tropics, such as palm oil, beef and soybean, which will likely lead to a significant
increase in deforestation (Karstensen et al. 2013, Strona et al. 2018). Our projections
using high estimates of the annual deforested area for each study area, corresponding to
a total deforestation of 8.3 Mha/yr at the pantropical scale, give an indication on the
;0 consequences of a 30% increase in the annual deforested area in the future. This would
lead to a 56% loss of tropical moist forest cover over the 21%° century and the percentage
of lands covered by tropical moist forests would then drop to 3.7% (554 Mha) in 2100
(SI Appendiz, Fig. S15).
Our study provides estimates of forest cover change and associated carbon emission
;s under a business-as-usual scenario for all countries having tropical moist forests. Our
estimates are based on high resolution data (< 1 km) for both forest cover changes and
carbon stocks. Previous studies providing scenarios of forest cover change and carbon
emissions have generally worked at the continental scale (Cramer et al. 2004, Aguiar
et al. 2016) or focused on particular countries (Soares-Filho et al. 2006) using data
;0 at coarser resolutions (> 1 km). Using higher resolution data should provide more
accurate results as both the deforestation risk and carbon stocks vary significantly over
short distances (< 1 km, eg. effect of the distance to forest edge on the deforestation
risk). Although the business-as-usual scenario might not be the most likely, it is of
particular importance as it makes it possible to predict the likely future in the absence
s of change and can serve as a reference scenario for scenario comparisons. It is also
used as the baseline scenario for the REDD+ mechanism (Goetz et al. 2015) which
has been recognized as a major nature-based solution to fight climate change in the
Paris Agreement on climate. The current methodology used to derive the baseline
scenario in REDD-+ projects has been intensively discussed recently (West et al. 2020,
wo  Guizar-Coutino et al. 2022) in particular because of the risk of overestimating avoided
deforestation and of displacement of deforestation outside the area of the project (also
known as “leakage”). By providing maps of deforestation risk and forest cover change
as well as carbon emissions at the jurisdictional level (national or subnational scale),
our approach could help overcome these issues and provide a transparent and common
ws  methodology for implementing REDD-+ at scale with more confidence.

4.3 Likely increase in carbon emissions under a business-as-usual
scenario of deforestation

Using both the ESA CCI and the WUR maps, we predicted a substantial increase
in carbon emissions associated with deforestation under a business-as-usual scenario,
a0 from 0.432-0.467 Pg/yr in 2010-2020 to 0.590-0.628 Pg/yr in 2090-2100. We obtained
different results with the WHRC map annual for which carbon emissions should remain
stable throughout the 21** century at around 0.600 Pg/yr. Part of these differences could
be explained by the fact that the WHRC map by Zarin et al. (2016) expands upon the
methodology used for deriving the WHRC map by Baccini et al. (2012) which has
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a5 shown higher overestimation of low biomass (< 100 Mg/ha) and higher underestimation
of high biomass (> 100 Mg/ha) than the ESA CCI and WUR maps (Vieilledent et
al. 2016, Avitabile et al. 2016, Araza et al. 2022). These differences underline the
importance of increasing the accuracy of global forest carbon maps, as underlined by
previous studies (Ploton et al. 2020, Araza et al. 2022). Nonetheless, the estimates of

20 0.432-0.585 Pg/yr (range from the three maps) of aboveground carbon emissions due to
tropical deforestation for 2010-2020 were consistent with those of several previous studies
(Pan et al. 2011, Achard et al. 2014, Baccini et al. 2017, Harris et al. 2021). These
studies estimated aboveground carbon emissions from tropical deforestation at 0.267—
0.669 Pg/yr within the period 2000-2019. The value of 0.432-0.585 Pg/yr from our

w5 study would represent 4.1-5.5% of the total anthropogenic carbon emissions estimated
at 10.6 Pg/yr in 2011-2020 (Friedlingstein et al. 2021). Assuming a value of 0.30 for the
belowground to aboveground biomass ratio (IPCC 2019), and that biomass represents
42% of the forest total carbon stock (including other compartments such as soil) (Pan et
al. 2011), tropical deforestation would account for 12.7-17.0% of the total anthropogenic

;0 carbon emissions estimated in 2011-2020, in agreement with figures from previous studies
(van der Werf et al. 2009, Harris et al. 2021, Friedlingstein et al. 2021).

Increase in carbon emissions predicted with the ESA CCI and WUR map is explained
by the fact that future deforestation will concern forests with higher carbon stocks. Sev-
eral studies have shown that elevation is an important variable in determining spatial

a5 variation of forest carbon stocks (Saatchi et al. 2011, Vieilledent et al. 2016, Cuni
Sanchez et al. 2021). Forest carbon stocks are expected to be optimal at mid-elevation
(Vieilledent et al. 2016) due to higher orographic precipitation at this elevation and be-
cause the climatic stress associated with winds and temperature is lower at mid-elevation
than at high elevation. Here, we show that low-elevation areas have been more defor-

s ested than high-elevation areas (SI Appendiz, Tables 54, S5). This can be explained
by the fact that low-elevation areas are more accessible to human populations and by
the fact that arable lands are concentrated at low elevation, where the terrain slope is
usually lower and the soil is more productive (Geist and Lambin 2002). Consequently,
the predicted increase in carbon emissions can be explained by the deforestation moving

as  towards higher elevation areas where forest carbon stocks are higher. Moreover, remote
forest areas less disturbed by human activities in the past have accumulated large quan-
tities of carbon (Dargie et al. 2017, Brinck et al. 2017). The progressive deforestation
of more intact forests could also explain the predicted increase in carbon emissions. We
have also predicted a decrease in annual carbon emissions starting from ca. 2070 for

0 Southeast Asia. This decrease could be explained partly by the lower carbon stocks of
future deforested areas (driven by the environment, such as lower carbon stocks at very
high elevation) and partly by a decrease in the total deforested area at the continental
scale, as countries progressively lose all their forest. In Southeast Asia, we expect that
four countries which account for a significant proportion of the annual deforested area in

w5 the continent in 20102020 (407,498 ha/yr out of 2,001,803 ha/yr, corresponding to 20%
of the deforestation, see SI Appendiz, Tables S14, S15) will lose all their forests between
2070 and 2110 (SI Appendiz, Table S16). This likely explains most of the predicted
decrease in carbon emissions in Southeast Asia from 2070 on.
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Another consequence of tropical forest cover loss on the global carbon cycle is that the

w0 ability of tropical forests to uptake carbon from the atmosphere through photosynthesis
and tree growth will decrease in the future. Using annual rates of aboveground net
biomass change for old-growth tropical forests (Requena Suarez et al. 2019), we have
estimated that the amount of carbon absorbed annually by tropical moist forests will
drop by 47% (38-55%) during the 21 century, from 0.589 Pg/yr in 2000 to 0.312 Pg/yr

w5 (0.267-0.363 Pg/yr) in 2100. These estimates are rather conservative as annual rates
of carbon uptake by old-growth tropical forests are predicted to decrease in the 215
century, in particular under the effect of climate change (Hubau et al. 2020). Recent
studies have also shown that regrowth of tropical secondary forests could absorb large
amounts of carbon from the atmosphere (Poorter et al. 2021, Heinrich et al. 2023).

w0 However, many secondary forests are not permanent and are cleared within a decade
or two (Schwartz et al. 2020), so they cannot significantly contribute to carbon uptake
from the atmosphere in the long term. Because carbon sequestration by tropical forests
will not compensate for increasing carbon emissions from tropical deforestation (0.583—
0.628 Pg/yr in 20902100, range derived from the three biomass maps), tropical forests

a5 will likely act as an increasing net carbon source under a business-as-usual scenario
of deforestation, thus reinforcing climate change in the future. If we consider a total
deforestation of 8.3 Mha/yr at the pantropical scale, which gives an indication on the
consequences of a 30% increase in the annual deforested area in the future, carbon
absorption by tropical forests would drop down to 0.267 Pg/yr in 2100, and carbon

a0 emissions would increase up to 0.749-0.793 Pg/yr (Fig. 5 and SI Appendiz, Fig. S13),
turning tropical moist forests into an even bigger net carbon source. Our study provides
new insights into the role of tropical forests in carbon emissions and climate change

for the 215 century. Although we have used lower annual deforestation rates for the
projections than in previous studies (Cramer et al. 2004, Soares-Filho et al. 2006),

w5 tropical forests are likely to become a major net carbon source in the 215 century
both due to a decrease in forest cover, which will limit carbon uptake, and due to the
deforestation of forests with higher carbon stocks in the future. These updated and
forward-looking figures underline the importance of conserving tropical forests in the
fight against climate change. The conservation of existing old-growth tropical forests is

a0 essential to avoid new carbon emissions and to maintain their function as a carbon sink.
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5 Tables

Table 1: Past and predicted changes in forest cover. We provide past and predicted
forest cover for the three continents and for the three countries with the highest forest
cover in 2010 for each continent (Brazil in America, the DRC in Africa, and Indonesia
in Asia). Past forest cover areas (in thousand hectares, Kha) refers to their status on
January 1% 2000, 2010, and 2020 (“fc2000”, “fc2010”, and “fc2020”, respectively). We
provide the mean annual deforested area d (Kha/yr) for the last ten-year period from
January 1% 2010 to January 1%° 2020, and the corresponding mean annual deforestation
rate p (%/yr). Projected forest cover areas are given for the years 2050 and 2100 (“fc2050”
and “fc2100”). Projections are based on the forest cover in 2020 (“fc2020”) and the
mean annual deforested area (d) assuming a business-as-usual scenario of deforestation.
Column “loss21” indicates the projected percentage of forest cover loss during the 21°¢
century (2100 vs. 2000). We estimate the year (“yr75”) at which 75% of the forest cover
in 2000 will have disappeared.

Regions £c2000 fc2010 £c2020 d P £c2050 fc2100 loss21  yr75
(Kha) (Kha) (Kha) (Kha/yr) (%/yr) (Kha) (Kha) (%)
Countries
Brazil 374,282 348,650 334,948 1,370 0.4 293,844 225336 40 2204
DRC 131,298 125,605 118,283 732 0.6 96,318 59,711 55 2134
Indonesia 139,358 126,473 117,072 940 0.8 88,876 41,883 70 2111
Continents
America 687,339 646,685 621,229 2,545 0.4 544,869 427,790 38 2220
Africa 274,993 258,401 239,681 1,871 0.7 188,403 129,045 53 2163
Asia 297,090 268,058 248,035 2,002 0.8 188,558 98,922 67 2117
All cont. 1,259,422 1,173,144 1,108,945 6,418 0.6 921,830 655,757 48 2192
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Figure 1: Effects of protected areas, roads, and distance to forest edge on
the spatial probability of deforestation. For this figure, we used a representative
dataset at the pantropical scale where the number of observations for each study area
was proportional to its forest cover in 2010. We sampled 798,859 observations from the
original dataset. Left: The dots represent the observed mean probability of deforestation
in each forest protection class, either protected or unprotected. Bars represent the mean
of the predicted probabilities of deforestation obtained from the deforestation model for
all observations in each class. Right: The dots represent the local mean probability of
deforestation for each bin of 10 percentiles for the distance. Lines represent the mean
of the predicted probabilities of deforestation obtained from the deforestation model for
all observations in each bin. Note that for distance to forest edge, the first dot accounts
for three bins while for distance to road, bins for a distance > 23 km are not shown.
For both left and right panels, confidence intervals for predictions were too small to be
represented because of the high number of observations per class and bin.
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Figure 2: Projected forest cover loss per continent. Points represent the observed
percentage of forest cover loss (in comparison with the year 2000) for the years 2000
(0%), 2010, and 2020, for America, Africa, and Asia. Lines represent the projected
percentage of forest cover loss (in comparison with the year 2000) from 2020 to 2275 per
continent. For the deforestation projections, we assumed no diffusion of the deforestation
between countries. Under this assumption, deforestation at the continent scale is rapidly
decreasing (dash lines) once large countries (Brazil for America, DRC for Africa, and
Indonesia for Asia) have lost all their forests (ca. 2260, 2180, and 2140, respectively, see ST
Appendiz, Table S16). The horizontal black line indicates a loss of 75% of the continental
forest cover. Under a business-as-usual scenario, this would happen in ca. 2120, 2160,
and 2220 for Asia, Africa, and America, respectively. The confidence envelopes around
the mean are obtained using the lower and upper bounds of the confidence intervals of
the mean annual deforested areas for all study areas.

17


https://forestatrisk.cirad.fr/article/Vieilledent2023-preprint-SI.pdf
https://forestatrisk.cirad.fr/article/Vieilledent2023-preprint-SI.pdf
https://doi.org/10.1101/2022.03.22.485306
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.22.4853086; this version posted May 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1000 2000 km

Figure 3: Pantropical map of the risk of deforestation. Upper panels: Maps of the
spatial probability of deforestation at 30 m resolution for the three continents. Maps
of the spatial probability of deforestation at the study area level were aggregated at
the pantropical level. The horizontal black line represents the Equator. Study area
boundaries are represented by dark grey lines. Coloured pixels represent forest pixels
for the year 2020. Inside each study area, forest areas in dark red have a higher risk of
deforestation than forest areas in green. Lower panels: Detailed maps for three 100 x
100 km regions (black squares in the upper panels) in the Mato Grosso state (Brazil), the
Albertine Rift mountains (Democratic Republic of the Congo), and the West Kalimantan
region (Borneo Indonesian part). Deforestation probability is lower inside protected
areas (black shaded polygons) and increases when the forest is located at a distance closer
to roads (dark grey lines) and forest edge. An interactive map of the spatial probability
of deforestation is available at https://forestatrisk.cirad.fr/maps.html.
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Figure 4: Pantropical map of the predicted change in forest cover. Maps show
the predicted change in tropical moist forest cover in the three continents (America,
Africa, and Asia) for the period 2020-2100 under a business-as-usual scenario of defor-
estation. The horizontal black line represents the Equator. Study area boundaries are
represented by dark grey lines. For the deforestation projections, we assumed no diffusion
of the deforestation between countries. Forest areas in red are predicted to be defor-
ested in the period 2020-2100, while forest areas in green are likely to still exist in 2100.
Several countries are expected to lose all their tropical moist forests by 2100 (including
Nicaragua and Mexico in Central America, Madagascar and Ghana in Africa, and Laos
and Vietnam in Asia). We predict progressive fragmentation of the remaining forest in
the future, with an increasing number of isolated forest patches of smaller size (e.g., Para
state in Brazil, the Democratic Republic of the Congo, and Indonesia). These maps make
it possible to identify both future hotspots of deforestation and forest refuge areas (e.g.,
concentrated in the heart of the Amazon, West Central Africa, and Papua New Guinea).
An interactive map is available at https://forestatrisk.cirad.fr/maps.html.
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Biomass map: ESA CCI (Santoro et al. 2021)
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Figure 5: Annual carbon emissions associated with projected deforestation.
Mean annual carbon emissions (Pg/yr) are estimated for ten-year intervals from 2010—
2020 to 2100-2110. The dots represent the observed mean annual carbon emissions
(based on past deforestation maps) in 2010-2020, for the three continents (America,
Africa, and Asia), and the three continents combined. Lines represent the projected
mean annual carbon emissions based on projected forest cover change maps from 2020-
2030 to 2100-2110 per continent, and for all continents together. The confidence en-
velopes around the mean are obtained using the lower and upper bounds of the confidence
intervals of the mean annual deforested areas for all study areas. The results shown here
were obtained using the ESA CCI aboveground biomass map version 3. See S Appendiz,
Fig. S13 for comparison with results obtained with other aboveground biomass maps.
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