
Seqrutinator:  Non-Functional  Homologue  Sequence  Scrutiny  for  the
Generation of large Datatsets for Protein Superfamily Analysis.
Agustín  Amalfitano1&,  Nicolás  Stocchi2&,  Hugo  Marcelo  Atencio3,  Fernando
Villarreal  2  , Arjen ten Have2.
1  Laboratorio  de Procesamiento de Imágenes,  ICyTE-CONICET-UNMdP,  Mar  del
Plata,  Argentina;  2  Computational  Biology  and  Comparative  Genomics,  IIB-
CONICET-UNMdP, Mar del Plata, Argentina; 3 Banco Activo de Germoplasma de
Papa  Andina,  EEA-Balcarce  INTA,  Argentina.  &  These  authors  made  equal
contributions. Corresponding author: fernandovillarreal@mdp.edu.ar .

Abstract
Background: In  recent  years  protein  bioinformatics  has  resulted  in  many  good
algorithms for multiple sequence alignment (MSA) and phylogeny. Little attention
has  been  paid  to  sequence  selection  whereas  notably  recently  published
complete proteomes often have many sequences that are partial or derive from
pseudogenes. Not only do these sequences add noise to the MSA, phylogeny and
other downstream computational analyses, they also instigate many errors in the
processing of the MSAs and downstream analyses, including the phylogeny.
Objective: This work aims to provide and test an objective, automated but flexible
pipeline for the scrutiny of sequence sets from large, complex, eukaryotic protein
superfamilies. The pipeline should classify sequences with high precision and recall
as either functional or non-functional. The pipeline should classify no or only a few
SwissProt sequences as non-functional (high precision) and sequences from other
related superfamilies as non-functional (high recall) and result in a demonstrably
much improved MSA (high performance).
Results: Seqrutinator is a pipeline that consists of five modules written in Python3
that identify and remove sequences that are likely Non-Functional Homologues
(NFH). Here we tested the pipeline using three complex plant superfamilies (BAHD,
CYP and UGT) that act in specialized metabolism, using the complete proteomes
of 16 plant species as input and SwissProt  as a control.  Only 1.94% of SwissProt
sequences with wetlab evidence were identified as NFH and all sequences from
other related superfamilies  were removed. Most NFH sequences are partial  but,
interestingly,  their  removal  results  in highly  improved MSAs.  a few but significant
sequences that instigate large gaps were found. The five modules  show similar
behaviour  when  applied  to  the  16  sequence  sets  of  the  three  analysed
superfamilies. Pipelines with different module orders result in similar classifications
and, moreover, show that different modules often detect the same sequences.
Conclusion and perspective: Seqrutinator forms a consistent pipeline for sequence
scrutiny  that  does  result  in  sequence  sets  that  generate  high  fidelity  MSAs.
Recovery analyses show the method has high precision and recall.
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Introduction
Protein superfamilies,  here defined as protein families with subfamilies that have
different functional characteristics, are the subject of many computational studies
(e.g.  [1–8])  and form the target of many computational  platforms (e.g.  [9–12]).
Structure-function  analysis  aims  not  only  to  identify  which  residues  and/or
subsequences are involved in functional diversification, it also tries to explain and
predict the functional differences and can identify hitherto nondescript subfamilies
(e.g.  [2, 3]). A large set of methods (e.g.  [13–15]) is available and novel methods
are published regularly (for review see [16]) in a research field often referred to as
phylogenomics.

The basis for many protein bioinformatics tools is formed by phylogenies and
their  underlying  Multiple  Sequence  Alignments  (MSAs).  Hence,  a  large  set  of
algorithms  and  programs  has  been  developed  for  both.  Reliable  methods  for
superfamily phylogeny use maximum likelihood (PHYML [17], RAXML [18]; FASTTREE
[19]) or Bayesian inference (MrBayes [20]). The construction of MSAs has improved
significantly in recent years  [21–25] but, likely since more complex protein families
are  now  being  analysed,  is  also  still  one  of  the  major  areas  of  research  in
bioinformatics (e.g. [26]). 

Only recently, attention has been paid to automated sequence scrutiny, the
selection of sequences that are to be included in the analysis  [27–31].  This  is  a
laborious  task  where  a  high  complexity  of  a  protein  family  hampers  the
identification  of  Non-Functional  Homologues  (NFHs).  Information  in  an  MSA
provided by sequences that do not correspond to a Functional Homologue (FH) is
often considered as mere noise that in all likelihood does not have a significant
effect on the outcome of analyses. MSAs are therefore often trimmed in order to
remove columns with low reliability  [32, 33]. We argue that, besides that this is an
actual loss of information, incorrect sequences of NHFs can also prevent or hinder
the correct processing of the MSA, thereby generating erroneous signal. 

There are two major sources of NFH sequences: Pseudogenes and incorrect
sequences. Pseudogenes show similarity levels from low (i.e. non detectable) to
high (i.e.  indistinguishable from FHs).  Since they are no longer  under  functional
constraint they can accumulate not only point mutations but also obtain inserts
and or deletions of subsequences, especially when the original gene contained
introns. Incorrect sequences can, in their turn, result from both sequencing errors
and incorrect gene models. Notably recently published complete proteomes often
contain many incorrect gene models. 

Datasets  that  consist  of  sequences  from  many  complete  proteomes  are
often prohibitively long due to an accumulation of various errors. E.g. sequence-
specific inserts provide information that can derail proper MSA. Sequence scrutiny
is  therefore  required  but  this  demands  a  huge effort  when  large  datasets  are
studied. Existing methods are either not fully objective [27], directed at improving
existing MSAs by removing subsequences [29], or only remove outliers [28, 30, 31].
None  of  these  methods  is  fully  automated  and  directed  at  removing  NFH
sequences from large sequence sets in order to obtain clean datasets. Most of the
existing algorithms are only tested on simulated datasets and none of them directs
the problem of large gap regions. This is  likely caused by the fact that defining
inclusion thresholds is troublesome and will almost by definition result in both false
positives and false negatives. In addition, no real benchmark datasets of FHs exist
and  any  attempt  to  construct  a  benchmark  set  will  result  in  a  set  that  is  too
restrictive.
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We developed a method for  objective  sequence scrutiny  named Seqrutinator,
directed at the removal of sequences from NFHs. As such, with scrutiny, we refer to
the identification and removal of NFH sequences. The method was developed and
tested by performing the sequence mining of three of the most complex single
domain  superfamilies  in  plants,  to  wit  cytochrome  P450  (CYP),  UDP-Glycosyl
Transferase (UGT), and BAHD acyltransferases (BAHD). Interestingly, many enzymes
of these superfamilies function in specialized metabolism by which these families
show  a  high  evolutionary  rate.  This  explains  in  part  the  high  diversity  and
complexity of these superfamilies and makes sequence scrutiny of these families
hard. The case studies were used to improve the procedure with the final objective
of constructing an automated pipeline.  Here we present the pipeline,  separate
scripts  and  methods.  We  show  numerical  data  generated  by  the  three  case
studies  directed  at  the  validation  of  the  method. We  show  that  the  MSAs  of
scrutinized datasets are significantly more reliable and that the method is flexible
and robust. Most importantly, Seqrutinator appears to remove mostly real NFHs, it
has only a few false positives (FHs classified as NFH) whereas no false negatives
(NFHs classified as FH) were detected. Furthermore, we present a detailed recovery
analysis  that,  besides  the  high  performance of  Seqrutinator,  shows  the relative
ease of sequence analysis once a high-quality MSA has been obtained.

Design of the pipeline and its modules.

Objective
We  define  the  objective  of  this  work  as  to  provide  and  test  an  objective,
automated but flexible pipeline for the scrutiny of sequence sets for large, complex
eukaryotic protein superfamilies. Conceptually, the method classifies sequences as
either  functional  or  non-functional.  Input  sequence  sets  represent  all  identified
probable  homologues  of  a  protein  superfamily,  obtained  by  a  sensitive  data-
mining methodology. Output sets consist of the aligned sequence set of FHs and
the NFH sequence set. The FH set should be aligned without much uncertainty. The
NFH set should be subjected to a recovery analysis in order to prevent inadvertent
false positives (FHs classified as NFH). The method should not be seen as a method
to  predict  whether  a  sequence  is  functional  or  not.  It  merely  removes  many
sequences  that  likely  correspond to NFHs  with  the objective  to  obtain  a  high-
quality MSA representing a protein superfamily.
Definition of Non-Functional Homologue 
To scrutinize protein sequence datasets for NFHs, we need to define NFH in terms of
sequence characters. We describe two major classes of NFH sequences that are
further  subdivided.  First,  NFH  sequences  can  result  from  either  incorrect  gene
modelling  or  sequencing  errors.  Second,  NFH  sequences  can  correspond  to
pseudogenes, where we define a pseudogene as a gene that no longer encodes
its supposed or original function. As such, the scrutiny we develop is (super)family-
dependent.

Incorrect gene modelling and sequencing errors can result in several issues.
First, some sequences will lack either N- or C-terminal subsequences as a result of a
missed start and/or stop codon. Other sequences are incomplete as a result of
incomplete  sequencing  or  incorrect  assembly.  Second,  missed  start  and  stop
codons can also lead to additional subsequences at either the N- or C-terminus.
Third,  not  all  introns  are  identified  from  eukaryotic  sequences.  Coding
subsequences that are incorrectly identified as intron form the fourth problem. Both
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these intron issues can lead to intron-sized gaps or a switch in the reading frame
and the untimely stop of the coding sequence.

Pseudogenes are no longer under constraint and will as such accumulate
mutations.  This can result in two scenarios. It will result in an increased sequence
and evolutionary distance, as can often be seen in phylogenetic trees. It may also
result  in  the loss  or  gain of  start  and stop codons  as  well  as  splice donor  and
acceptor sites. As such, many pseudogenes will have issues similar to those found
in NFH sequences that result from incorrect gene modelling or sequencing errors.
The last issue is that depending on the sensitivity of the initial data mining and the
possible  existence  of  homologous  superfamilies,  certain  initially  identified
sequences may be functional but do not belong to the superfamily of interest. For
simplicity, we consider these also as NFH.

Based on the above problem description we hypothesize that:
1 Relatively short sequences are unlikely functional.
2 The presence of large continuous regions of gap-rich columns in MSAs can be
instigated  by  one  or  more  non-functional  sequences  with  intron-derived
subsequences incorrectly called as exons during gene modelling. 
3 The presence of large continuous gaps in aligned sequences at otherwise amino
acid-rich columns can occur in non-functional sequences due to the absence of
exon-derived subsequences incorrectly called as intron during gene modelling.
4 Low similarity of a sequence to a HMMER profile suggests the sequence does not
belong to the protein  family  presented by the HMMER profile,  being either  not
functional or having a different function.

Modules and algorithms will be designed to find NFH sequences based on these
four hypotheses. Note that the resulting method, named Seqrutinator, is based on
the concept of homology which makes Seqrutinator principally not a valid method
for protein families with different domain architectures.

The Modules and the Default Pipeline
The fully automated Seqrutinator pipeline is  implemented in a larger procedure
that  starts  with  a  user-guided  sequence collection  and  ends  with  user-guided
recovery  analyses,  as  shown  in  Figure  1  and  described  in  more  detail  in
Supplemental  Document 1.  Sequence collection from multiple sequence sets is
fully automated using a simple script named Multiple FASta Aligner (MUFASA, see
also Supplemental  Document 1).  This  requires  a HMMER profile as  well  as  initial
sequence sets (e.g. complete proteomes) as input. All sequences from a complete
proteome with hits against the HMMER profile are collected in a single fasta file
and aligned automatically. A reference sequence selected by the user is aligned
to each MSA using MAFFT add in order to remove non-homologous N- and C-
terminal  subsequences  which  may  negatively  interfere  with  the  automated
procedure.

Seqrutinator is  a flexible pipeline made of five different modules.  The user
can select the modules and their order and change settings that will  affect the
stringency of the automated scrutiny. Below we describe the default procedure
(see Figure 1) and its reasoning. Table 1 shows which defective sequences may be
detected by which modules.  The pipeline always starts  with a single script  that
removes all sequences with non-IUPAC code. All other details are in the detailed
description of the pipeline and modules in Supplemental Document 1.
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Figure 1: Schematic of the Default Seqrutinator Pipeline. The complete workflow for
protein superfamily sequence mining consists of three blocks (left). The first block
concerns the preparation of the input for the automated Seqrutinator pipeline in
the second block. Each of Seqrutinators modules, here shown in its default order,
and its  iterations  end with  re-alignment  of  the  remaining  sequences.  The  third
block concerns analyses for the recovery of inadvertently removed FH sequences.
1.fsa, 2.fsa, 3.fsa, 4.fsa and 5.fsa are archives in which the removed sequences of
the subsequent pipeline modules are temporarily stored for recovery analyses. The
schematic MSAs on the right show how the truncation of block 1, and how the
modules of the automated pipeline in block 2, function.

Table 1: Seqrutinator modules and their
actions.  Each modules is directed at a
certain  error  but  will  also  identify  a
number of other errors.

Problem SSR NHHR GIR CGSRPR
Sequence
error

ATG/Stop X X X X
Splice site X X X X

Pseudo-
gene

ATG/Stop X X X X
Splice site X X X X
Similarity X X

Non-Homologous Hit X X X
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The first step is the Short Sequence Remover (SSR) directed at short sequences. For
this,  a  reference  sequence  is  included  in  the  preparation  of  the  dataset.
Sequences of proteins for which a structure has been resolved are preferred since
these typically concern the final active protein, possibly following post-translational
modifications such as propeptide cleavage. By default, sequences that have a
length of 65% or less of the reference sequence are removed.

The second step is the Non-Homologous Hit Remover (NHHR) which removes
outliers  and  is  meant  to  remove  non-homologous  sequences.  It  constructs  a
HMMER profile and screens all sequences by hmmsearch. Sequences are removed
according to the 3σ rule applied to total HMMER scores: Sequences with a score
lower than the mean minus three standard deviations are removed, which, in a
data set with normal distribution, corresponds with 0.3% of the sequences.

The third module in the default pipeline is the Gap Instigator Remover (GIR)
which removes sequences that instigate large gaps in MSAs. By default, the GIR
removes sequences that induce regions of 30 or more continuous gap columns,
where a gap column is defined as a column that has 90% or more gaps, in order to
circumvent problems with certain residues that may have become aligned to the
insert.  This default region size setting is based on the minimal intron size observed
among most eukaryotes but may depend on the organism [34]. Sequences with
additional N- and/or C-terminal subsequences will  also be removed. Sequences
are removed on a one-by-one basis (the sequence that instigates the largest gap
first) and GIR is iterated, where iterations start with realignment.

The fourth module is the Continuous Gap Sequence Remover (CGSR). This
removes sequences that show one or more instances of large continuous gaps in
the MSA. Again default setting is at 30 columns whereas only gaps in columns with
less  than  50%  gaps  are  considered.  This  is  in  order  to  allow  subfamily  specific
subsequences.  CGSR  removes  sequences  in  a  threshold-controlled  batch  (See
supplemental  Document  1  for  more  detail)  and  is  iterated.  Note  that  not  all
sequences  that  lack  a  subsequence  due  to  incorrect  gene  modelling  will  be
detected. Residues that enclose the absent subsequence may align somewhere in
the corresponding area, thereby splitting the region in two or more gap regions.

The last  module  in  the default  pipeline is  the Pseudogene Remover  (PR)
which is identical to the NHHR module except that it is iterated. The names of the
NHHR and PR modules are as such based on the intent of the modules. Although
there is no clear-cut threshold that can discriminate between a non-homologous
hit and a pseudogene, the first can be expected to show less similarity and be
more disturbing. As such, NHHR is by default the first module and not iterated. PR is
iterated since pseudogene identification is more delicate and works with a much
improved MSA that corresponds with a different HMMER score distribution. As a
result,  PR  is  more  sensitive  than  NHHR  and  by  default  the  last  module  of  the
pipeline.

The  third  block  is  the  recovery  analysis  since  we  envisage  certain  FH
sequences will be inadvertently removed. Recovery analysis is performed correct
overzealous sequence removal. The Seqrutinator output provides data that show
the scrutiny in detail including some graphs that can assist in quality analysis. We
performed a recovery analysis since there is no benchmark dataset available to
quantitatively determine the performance of Seqrutinator.
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Design of the Performance Analysis
In order to develop automated sequence scrutiny, we generated the algorithms
while  testing  their  performance using  superfamily  datasets.  Although the  basic
problems are straightforward, the implementation of any quantitative scrutiny is
hampered by the fact that it will be difficult to use reliable cut-off thresholds and
settings.  The  performance  of  a  binary  classifier  such  as  Seqrutinator  is  usually
determined  in  terms  of  precision  and  recall.  NFHs  are  referred  to  as  relevant
instances,  as  real  positives  when  detected  and  as  false  negatives  when  not
detected. FHs detected as NFH are false positives. Unfortunately, determining error
rates is not possible since no benchmark datasets are available. Hence, we need
other  methods  to  shed  light  on  Seqrutinator  performance.  UniProtKB/Swiss-Prot
(SwissProt)  is,  to  the  best  of  our  knowledge,  the  most  appropriate  dataset  for
qualitative benchmarking of the pipeline. It contains a large number of sequences
that  come with  biochemical  and/or  transcript  evidence.  However,  it  does  also
contain sequences that do not have any actual evidence for functionality. Hence,
we can expect that some sequences will be NFH sequences.

We tested the pipeline on superfamilies with many homologues to allow for
the statistical  approach used in  the outlier  modules.  We selected superfamilies
involved in specialized metabolism since this provides a number of challenges. First,
enzymes  from specialized  metabolism are  under  less  functional  constraint  than
enzymes from primary metabolism [35] by which datasets will show high sequence
diversity. Then, specialized metabolism generates a plethora of chemically related
compounds via parallel,  diverging and converging pathways  [35]. We envisage
that promiscuous enzyme activity is often related to specialized metabolism and
superfamily  enzymes.  The  functional  constraint  will  often  act  on  (part  of)  the
superfamily  rather  than on specific paralogues,  which contributes  to  sequence
variation. The complexity of the superfamilies we will use is so high that no reliable
function  annotation  is  at  hand  for  many  homologues.  Note  that  enzyme
promiscuity can result in incorrect sequence annotation. the last issue we foresee is
that  certain  subfamilies  are  taxon-specific  which  may  result  in  the  inadvertent
removal of FH sequences.

We tested the pipeline by simultaneously performing sequence mining for
three  functionally  related  and  complex  superfamilies  in  16  complete  plant
proteomes. Cytochrome P450 (CYP) and UDP-Glycosyl Transferase (UGT) constitute
4.17% and 7.81%, respectively, of the known flavonoid metabolism in potato.  The
BAHD  acyltransferase superfamily  derives  its  name  from  its  major  enzymes:
benzylalcohol O-acetyl transferase; anthocyanin O-hydroxycinnamoyl transferase;
N-hydroxycinnamoyl anthranilate benzoyl transferase; and deacetylvindoline 4-O-
acetyltransferase, constitutes a further  11.98%, of a total of 384 proteins that are
classified in 59 Pfam domains (see Figure 2). As such, these three superfamilies form
part  of  our  major  biological  research  interest  which  is  to  model  flavonoid
metabolism in potato (Solanum tuberosum). As such we need to functionally assign
sequences of  these three complex superfamilies.  This  can be performed by for
instance  Panther  [36],  which  assigns  at  the  subfamily  level,  rather  than  Pfam
[9] which assigns at the superfamily level. Recently we developed HMMERCTTER
[37],  a  software  for  the  clustering  and  classification  of  protein  superfamily
sequences, which outperformed Panther in classifying three protein superfamilies.
HMMERCTTER classification shows 100% precision and recall (100% P&R) but needs
reliable sequence sets, i.e. sets that contain only a few NFH sequences.
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Figure  2:  Cartoon  Depicting  the  Phenylpropanoid/Flavonoid  Biosynthesis  Network  in
Potato. Three major superfamilies cover approximately 25% of the enzymatic reactions. The
superfamily  subnetworks  show a partial  overlap.  The  BAHD and UGT  superfamilies  are
shifted  towards  end-products  that  are  conjugated  and  transported  to  the  vacuole,
thereby changing the effective sink.

Automated sequence scrutiny of three superfamilies in 16 higher plants allows for a
comparative analysis that will shed light on its performance. This is based on the
hypothesis that performance on complete proteomes depends on the quality of
the complete proteome rather than the superfamily that is analysed. Each of the
applied algorithms  should identify  no  or  only  a  few NFH sequences  in  a  high-
quality  sequence set such as the complete proteome from the model organism
Arabidopsis thaliana (TAIR10).  On the other hand, complete proteomes that have
either  been  published  only  recently  or  cannot  count  on  a  large  research
community,  are  more  likely  to  contain  many  NFH  sequences.  There  are  large
differences between the number of sequences of the complete proteomes and
although differences consist in the number of actual paralogues in different plants,
we expect a certain level of convergence. For  A. thaliana  we included TAIR v6,
besides the latest and supposedly superb set of TAIR v10. The actual superfamily
analyses will be published elsewhere, here we report the numerical data from the
sequence scrutiny to show the performance of the methods.

Finally,  we  considered  how  to  detect  false  positives,  i.e.  inadvertently
removed FH sequences. To do so we must understand the method and the biases
of the initial datasets. For instance, a complete proteome from a single organism
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will  have  a  different  bias  than  the  SwissProt  sequence  set  or,  for  instance,  all
sequences from a single Pfam seed alignment. 

A first minor concern is that of sequences that have been removed by the
PR  module  because  of  a  biased HMMER  profile.  Although HMMER profiles  are
weighted,  they  cannot  account  for  large  differences  in  clade  distance.  In  a
superfamily  with  various  equidistant  subfamilies  and  a  single,  more  distant
subfamily, sequences of the distant subfamily will show low scores in a hmmsearch
and might have been removed by the PR. This  problem is  exacerbated by our
approach of scrutinizing complete proteomes, which come with divergent MSAs
and HMMER profiles  with low precision and recall.  These inadvertently removed
sequences can be identified by cluster analyses of the combined sequences that
were removed from the various individual sequence sets. 

Another  major  concern  is  that  of  taxon-specific  sequences.  Complex
superfamilies  show a high rate of  evolution by which taxon-specific  sequences
should  be  expected.  Any  type  of  mutation  can  result  in  a  novel  functional
subfamily  and as  such functional  sequences  can have been removed by GIR,
CGSR or PR. Cluster analysis is  likely to fail  when the sequence is taxon-specific,
hence  additional  sequence  mining  may  be  required  in  order  to  enlarge  the
sequence space that is to be analysed. 

Results and Discussion
Comparison Of The Pipeline On 19 Complete Proteomes Shows It Is Consistent.
We subjected 19 sequence sets to sensitive HMMER searches with HMMER profiles
for BAHD, CYP and UGT. This resulted in a total of three times 19 sequence sets
representing the crude BAHDomes, CYPomes and UGTomes of the 16 plant species
(Figure 3A), of which  A. thaliana is represented with v6 and v10 of its complete
proteome, as well as two SwissProt plant sequence sets (standard and with protein/
transcript evidence, from here on referred to as curated). All crude sequence sets
were then prepared for and subjected to the Seqrutinator pipeline using default
settings. The numbers of homologues after each module were recorded can be
found  in  Supplemental  File  1  and  are  resumed  in  Figure  3B.  This  shows  similar
patterns for the scrutiny and sequence removal on the three superfamilies were
obtained, which suggests scrutiny performance is consistent. 

The table (Figure 3C) shows how many sequences were removed by each
module from each of the three times 19 datasets. We normalized the number of
removed  sequences  n (per  module,  superfamily  and  complete  proteome)  by
expressing them proportionally to the number of finally accepted sequences  N.
This n/N ratio is a relative indication of how many sequences were removed and
was used to compare the performance of the SSR, GIR and CGSR modules for
each superfamily (the NHHR and the PR module remove too few sequences for
meaningful  comparison).  Figure  3C  highlights  which  modules  removed  more
sequences than the average for which superfamilies.  As hypothesized, relatively
few sequences were removed from the  A. thaliana  datasets.  No real difference
was  found  comparing  v6  with  the  more  recent  v10.  Also,  the  Marchantia
polymorpha  (duckweed),  Oryza  sativa  (rice), H.  annuus (sunflower), Medicago
truncatula  (barrelclover) and  Populus  trichocarpa  (black  cottonwood  poplar)
datasets appear to have only a few NFHs. GIR removed six sequences from the
SwissProt dataset but only three from the SwissProt with protein/transcript evidence
dataset.  Pinus taeda  (loblolly pine), on the other hand, shows consistently many
NFHs, detected by the SSR, GIR and CGSR modules 
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Figure  3:  Seqrutinator  Performance  on  19  BAHDomes,  CYPomes  and  UGTomes. A:
Taxonomy  of  selected  species.  B: Numbers  of  BAHD,  CYP  and  UGT  homologues  per
species found and recovered after each step of the Seqrutinator pipeline. C: Number of
Removed Sequences (default pipeline). Shown are the numbers of the initial and finally
accepted sequences  as well  as  the number  of  removed sequences per  module  and
superfamily (B: BAHD, C: CYP and U: UGT). Red shading indicates a proportionally high
number of NFH was removed (see also main text and Supplemental File 1, SSR, GIR and
CGSR only). D: Seqrutinator performance for BAHDomes, CYPomes and UGTomes. Shown
is the proportion of the numbers of finally accepted sequences and the numbers of initial
sequences per species.

from all three superfamily datasets. Note that this result, rather than for instance the
detection  of  many  outliers,  corresponds  with  a  low-quality  proteome.  Also,
lycophyte  Selaginella  moellendorffii,  Amborella  trichopoda and  S.  tuberosum
appear to have many NFHs removed by SSR, GIR and CGSR. Hence, it seems the
performance  of  the  modules  is  largely  explained  by  the  complete  proteome
dataset provided rather than by the superfamily. This is in correspondence with our
hypothesis and seems to indicate that Seqrutinator has a good performance. On a
side note, it seems that a number of genome consortia have applied sequence
scrutinies towards partial sequences.

The  most  effective  step  is  SSR,  which  indicates  that  many  sequences,  in
particular from the complete proteome of P. taeda, are partial. Both versions of the
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A. thaliana complete proteome appear with a few partials (3, 8 and 1 for BAHD,
CYP and UGT, respectively for v10). CGSR also removed many sequences which is
explained by the relaxed setting of SSR (<65% of length reference sequence). GIR
was the third most efficient module and removed, except for  P. taeda and the
algae  Chlamydomonas reinhardtii, a few sequences per dataset.  It  appears to
remove relatively many sequences from the UGT superfamily which suggests this
case comes with false positives.

Figure 3D shows how many sequences are classified as FHs, relative to the
initial number of sequences, for each species and each superfamily. Clearly, the
complete proteome of  A. thaliana  appears as the best, with 85, 87 and 86% of
each  of  the  originally  identified  BAHD,  CYP  and  UGT  sequences  classified  as
functional. On the other hand, the recently published complete proteome of  P.
taeda  appears  as  very  poor  with  a  mere  18,  16  and  20%  of  the  sequences
classified  as  functional.  The  largest  differences  in  scrutiny  numbers  amongst
superfamilies  are  found  for  Zea  mays  (corn,  76,  58  and  56%)  and  Solanum
lycopersicum  (tomato,  61,  71  and  55%).  However,  this  may  be  the  result  of
differences in the initial number of homologues. For example, S. lycopersicum has
relatively few, 356,  CYP homologues of which 267 are considered functional  (S.
tuberosum has 586 homologues of which 253 are considered functional).  Z. mays
has relatively few, 120, BAHD homologues of which 91 are functional (O. sativa has
142 homologues of which 94 are considered as functional). Hence, although the
numbers  of  removed  sequences  can  differ,  the  final  numbers  of  accepted
homologues are similar which suggests that sequence scrutiny was consistent. 

Most importantly,  the SwissProt sequence set appears to have only a few
sequences that were detected as NFH (4.6, 2.8 and 7.9% of the curated SwissProt
dataset (see supplemental File 1)). This suggests the scrutiny was not overzealous
but recovery analysis will have to show if these removed  sequences are indeed
not functional.

Removal of NFH sequences Results in Improved MSA Quality
The ultimate goal of Seqrutinator is to obtain a sequence set that can be aligned
with high fidelity.  There are several  methods that can be used to calculate the
quality of an MSA. TCS [38] is one of the most accurate measures but, besides that
it  is  computationally  expensive,  it  does  not  provide highly  discriminative scores,
which makes it a difficult method for benchmarking. Hence, we sought alternative
methods. A simple method is to look at the length of the MSA, as compared to the
length of the mature protein. Now although this is a quantitative measure, MSA
length does not accurately describe its quality since, for instance, a single large
insert leads to a large MSA but does not necessarily result in either a good or bad
MSA. As such, also the sum-of-pairs [39] is also not a very discriminative score.

A more sophisticated method is  to  determine the number of  columns of
trimmed MSAs. Since MSAs of complex superfamilies by definition have regions that
are  either  not  too  reliable  or  specific  to  certain  subfamilies  (hence  not  truly
homologous),  MSAs  are  usually  trimmed  prior  to  phylogenetic  reconstruction.
Trimmers such as BMGE [32] or trimAl [33] remove columns with either high amounts
of  gaps  or  high  entropy. As  such,  the  length  of  an  MSA  following  trimming
conceptually reflects the number of reliable columns and can as such be used as
a  quality  measure  to  compare  MSAs  of  the  same  or,  as  in  this  case,  similar
datasets. Figure 4 shows the result of the scrutinies we performed. The number of
reliable columns increases in almost all steps for all species and the three 
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superfamilies. Besides that the MSAs
clearly improve, typically with a factor 2 to
4, there appears to be a convergence of
trimmed MSA length.  Note that  the non-
seed plants scrutinies end with only a few
sequences (Figure 3), by which the MSAs
show  low  complexity  and  are  typically
larger  following  trimming  (Figure  4).
Another interesting detail is that, among a
few others, the initial  P. taeda MSAs of all
three  superfamilies  appear  completely
unreliable. On the other end, the trimmed
MSASs from the SwissProt and  A. thaliana
datasets increase in length. In general, the
largest  increases  in  trimmed  MSA  length
occurs following the SSR and CGSR steps.
This  despite  the  fact  that  GIR  removes
sequences  that  induce large gap areas.
This is likely related to the large number of
sequences these modules removed.

Thus,  Seqrutinator  results  in
sequence  sets  that  show  significant
improvement  in  quality,  as  demonstrated
by the increase of the number of reliable
columns of MSAs. 

Figure 5: Number of Reliable Columns of MSAs After Each Step of the Seqrutinator Pipeline.

Comparison of Seqrutinator Module Performance
The  performance  of  the  five  scrutiny  modules  was  analysed.  First  of  all,  we
wondered how changing the cut-off threshold of the outlier modules affects the
results.  Rather than the default setting of  3σ (Means – 3 standard deviations), we
applied  2.35σ,  which  corresponds  with  95%  inclusion  according  to  a  normal
distribution. We performed analyses with different module orders with the major
goal to determine if different modules detect the same NFHs. We tested pipe 4235
to see whether CGSR can replace SSR and at what cost. We tested pipe 134 to see
the effect of omitting outlier removal and to test if GIR and CGSR detect outliers.
Pfam scans with different cut-off thresholds were included as an external reference
in order to shed light on performance in terms of precision and recall. Figure 6A
shows the design and results of the analyses.

Alluvial plots show the fate of the sequences in all pipelines and Pfam scans.
Interestingly we see most exchange combinations occur. For instance, in the 4235
pipe,  CGSR  not  only  takes  care  of  all  sequences  SSR  removes  in  the  default
pipeline, it  also removes a number of sequences that are normally removed by
GIR. This confirms the idea that many NFH sequences suffer from more than one of
the initially  described problems.  The results  with different outlier  cut-offs suggest
that particularly for PR, a more stringent screen will yield too many false positives.

The comparison with the Pfam scans also sheds light on performance. The
original  sequence  sets  were  obtained  with  Pfam  profiles  but  included  all
sequences with a score above HMMERs inclusion threshold. Pfam normally applies
a more strict gathering threshold for each profile: a bitscore and corresponding
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Figure  6:  Seqrutinator  is  a  Robust  and  Flexible  Pipeline.  A: Sequence  fate  in
scrutinies with different pipelines. Top: Alluvial plot showing the fate of initial BAHD,
CYP  and UGT  representatives  (2003,  6782  and 3994  sequences  respectively)  in
each of the applied scrutiny methods. Bottom: Schematic illustration of applied
pipelines (S: SSR (1); N: NHHR (2); G: GIR (3) C: CGSR (4); P: PR (5); PS: Pfam Scan
with cut-off thresholds as indicated; and A: accepted). The outlier removal cut-off
was tested by comparing the default 3σ to the more strict 2.35σ cut-off in NHHR
(α2) or PR (α5). B: HMMERCTTER clustering of BAHD sequence sets. Top: Cluster-wise
coloured ML trees of five BAHD sequence-sets as indicated: Input: Partition of initial
sequences; Pfam: Partition of sequences obtained with highly significant Pfam cut-
off threshold (Expect value 1E-50); 12345 def: Partition of sequences accepted by
default Seqrutinator pipeline; 4235 and 134: Partitions of sequences accepted by
alternative Seqrutinator pipelines. Each cluster is assigned a different colour, black
leaves  are  orphan  (not  clustered)  sequences.  Bottom:  Numerical  abstract  of
clustering  analysis  of  all  nine  tested  datasets.  Shown  are  the  total  number  of
sequences, the number and percentage of clustered sequences, the number of
clusters and the cluster scores, ((Clustered sequences-Orphans)/Total Sequences).
C: Boxplots of cluster sizes of obtained HMMERCTTER partitions.  The dotted lines
show the mean and the standard deviation.
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E-value are set  such that all  sequences from the seed alignment are included.
Note that application of the gathering threshold can result in missing homologues,
as was the case for four BAHD sequences. We applied more stringent cut-offs in our
analyses. Except for the UGTome, the most stringent  cut-off of 1E-50 still accepts
many partial sequences that are removed by either SSR or CGSR. A similar result is
observed for GIR. On the other hand, many sequences that are not removed by
Seqrutinator, hence accepted in the final dataset, are not accepted by Pfam using
these stringent cut-offs.  As such we conclude that Pfam scans suffer from poor
precision and recall, which is a recurrent issue in clustering and classification and
related to the fact that single profiles for complex superfamilies are used. The most
conspicuous Pfam scan result was obtained when we applied 1E-50 to the UGT
dataset.  Only  12  sequences  were accepted as  FH,  of  which intriguingly  one is
normally removed by the SSR and another one by the CGSR module. The last detail
cannot be observed in this particular alluvial plot due to the order of the datasets
we applied in the figure.

Since function is conserved, we assume that functional families show mutual
preservation where NFHs show lower conservation levels. HMMERCTTER clustering is
a method in which superfamily sequences are clustered based on phylogeny and
a HMMER score that is determined to include all sequences of a clade [37]. Only
clusters  with  100% P&R are  accepted and as  such  HMMERCTTER  partitions  are
conserved. If NFH sequences are less conserved clustering of a sequence set that
lacks NFH sequences should therefore result in fewer but larger clusters. As such, we
performed  unguided  HMMERCTTER  clustering  on  the  BAHD  datasets  and
compared the resulting partitions (Figure 6B).

As expected, HMMERCTTER clustering of the crude dataset results in a very
poor  partition,  with  more  orphans  than  clustered  sequences  as  shown  by  the
negative cluster score ((Clustered sequences-Orphans)/Final Sequences). It should
be noted that HMMERCTTER clustering uses score rather than E-value by which
many partial  sequences will  end up as orphan sequence. The Pfam 1E-50 tree
shows much fewer orphans and has a much better cluster score. The best cluster
score (57.4, see Table in Figure 6B) is obtained with the dataset that results from the
1234a5 pipeline in which a substantial  number of  low-scoring outliers  has been
removed. The default pipeline has cluster score of 51.7 which reflects a trade-off
between a larger number of accepted sequences and a slightly lower number of
clusters. As compared to the default pipeline, the 4235 pipeline has a slightly lower
performance  which,  combined  with  its  substantially  longer  runtime,  shows  the
default pipeline is preferred. Whether a more strict cut-off should be applied for the
PR module depends on whether high precision or high sensitivity is preferred. Not
applying any outlier module (pipe 134) results however in a substantially reduced
cluster score of 29.6,  even though only a few outliers are detected.

Figure  6B  shows  that,  based  on  the  above-made  assumption,  the
application  of  Seqrutinator  in  superfamily  sequence  mining  results  in  largely
improved datasets. This is also reflected by the distribution of cluster size (Figure 6C).
Although Pfam scan with a very strict cut-off threshold of 1E-50 shows an increase
in  cluster-size,  it  has  very  few  large  clusters  (>50  sequences  per  cluster),  as
compared to the Seqrutinator-derived datasets.

Recovery Screen of SwissProt BAHDome, CYPome and UGTome.
We performed a recovery screen directed at the detection of false positives, i.e.
sequences of FHs that were inadvertently removed by the automated scrutiny. The
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recovery screens consisted largely of a number of alignment analyses directed at
understanding  why  certain  sequences  were  removed.  In  general,  this  can  be
performed in order to recover inadvertently removed sequences. In this study, the
major goal was to show if scrutiny was not overzealous. Hence first, we applied
recovery screens to the SwissProt-based datasets that served as a positive control.
Table 2 summarizes the results and shows performance in terms of false positives.
Supplemental  document  2  contains  an  elaborate  description  of  the  complete
recovery  screen  including  the  analysis  of  the  three  16-proteome  sequence
scrutinies.

Table 2: Recovery Analysis SwissProt Datasets. B, C and U indicate BAHD, CYP and
UGT  case  respectively.  P  and  T  indicate  sequences  with  protein  or  transcript
evidence, H means inferred from homology, U uncertain. * Third hit since second hit,
K4D422,  was  not  representative.  False  +  means  the  sequence  was  incorrectly
identified as NFH. NA means Not Applicable.

Length
Accession NR Query2nd hitModuleAnnotation detail/Additional evidence Conclusion
Q69UD7 BH 431 439 GIR Unique 65 aa insert, HxxxD, DFGWG Pseudogene
Q5SMQ0 BT 319 433 CGSR DFGWG Partial
H2DH23.1 CT 245 523 SSR NA Partial
P85191 CP 155 495 SSR NA Partial
C7J3A2.1 CU 299 505 SSR “Putative Pseudogene” Partial
Q5Y750.1 CU 145 488 SSR “Putative Pseudogene” Partial
P37119.1 CT 365 507 CGSR NA Partial
P0DKI2.1 CH 417 497 CGSR “Inactive cytochrome P450 76AD1” Partial
I3V6B1.1 CT 440 481 CGSR ID Sequence of 480 in Reference Proteins Partial
H2DH24.1 CT 363 527 CGSR NA Partial 
B3LF83.1 CT 384 492 CGSR “Probable inactive linolenate hydroxyperoxide lyase” Partial
H2DH24.1 CT 363 527 CGSR NA Partial
Q43078.1 CT 552 576 CGSR BLASTP Reference Proteins False +?
Q40286 UT 241 496* SSR NA Partial
Q40289 UT 287 456 SSR NA Partial
Q9M8Z7 UP 637 615 NHHR 47.2% Identity to single hit Q9XIG1, Glyco_transf_28 Related SF
Q9XIG1 UP 615 637 NHHR 47.5% Identity to single hit Q9M8Z7, Glyco_transf_28 Related SF
K4D422 UT 344 496 CGSR BLASTP Reference Proteins Partial
Q9LNE6 UP 435 473 CGSR BLASTP Reference Proteins False +
Q40285 UT 346 449 CGSR BLASTP Reference Proteins Partial
Q40288 UT 394 449 CGSR BLASTP Reference Proteins Partial

Not a single sequence was removed from the curated BAHD SwissProt  set,  two
sequences were removed from the non-curated SwissProt sequence set.  Despite
that its total length of 431 residues is similar to what is found for BAHD sequences,
Q69UD7  was  removed  by  GIR  because  of  a  unique  ~65-residue  long  insert.
Furthermore,  two  of  the  key  motifs  defining  the  BAHD superfamily  (HxxxD  and
DFGWG) are missing in this entry. Then, a BLAST search vs. the SwissProt database
shows that the second hit (Q0DKA5) has a mere 38.8% of identity with the query.
Together, these results suggest that Q69UD7 is a pseudogene. Q5SMQ0 appears to
be a partial sequence that lacks a C-terminal fragment with the DFGWG motif. 

All  but  one SwissProt  sequences  that  were  removed  from the  initial  CYP
homologue set were partial and as such correctly removed (See Table 2).  Most
BLAST alignments we performed with these SwissProt sequences against SwissProt
showed the absence of either or both the N- and the C-terminus. Only Q43078.1
showed an internal gap, as demonstrated by aligning its sequence to the final MSA
using  MAFFT  add.  BLASTP  against  SwissProt,  however,  showed  no  large  gap
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suggesting this sequence may represent an FH and a first false positive. None of
the  sequences  had  evidence  at  the  protein  level  and  some  sequences  had
annotations that suggested they are NFHs. Two sequences were removed from the
non-curated SwissProt dataset by CGSR. The curated dataset had two additional
sequences removed, i.e. sequences that were not removed from the non-curated
dataset.  This  indicates  that  although  the  procedure  is  fully  objective,  its
performance depends on the data. 

We also performed an analysis of the sequence scrutiny obtained with NHHR
applying  a  more  strict  cut-off threshold.  This  did  remove  a  number  of  FHs.
Orthologues  of  these  SwissProt  sequences  were  sometimes  removed  from  a
complete proteome by the PR module with the default setting. Hence, the strict
NHHR scrutiny of the well-annotated SwissProt set can be seen as predictive for the
performance  on  other  datasets  as  is  described  in  detail  in  Supplemental
document 2. This also shows how some automatically generated graphs can assist
in the recovery analysis. 

In the case of the UGTome, eight sequences with either protein or transcript
evidence were removed. The two sequences removed by NHHR show over 47%
mutual identity. Pfam scan indicates these are enzymes from the related protein
family of Glycosyl Transferase 28 (GT28, PF03033). Interestingly, similar instances of
GT28 sequence homologues were removed by NHHR (6), GIR (12), CGSR (33), and
PR  (10)  from  the  16  proteomes.  A  more  profound  analysis  is  described  in
Supplemental  Document 2 and shows these are indeed not UGTs.  Not a single
GT28  sequence  was  retained  as  UGT  by  Seqrutinator.  This  indicates  that
Seqrutinator is also sensitive albeit that NHHR did not detect all GT28 sequences.
Since PR at the same threshold did identify all GT28 sequences that were missed by
NHHR, GIR and CGSR, we conclude that this is caused by the rather poor initial
MSA. Note that these results also explain the relatively high number of sequences
that GIR removed from particularly the UGT datasets as was shown earlier (Figures
3B and 3C).

Four putative UGT sequences were removed by CGSR. When aligned to the
accepted SwissProt sequences, all appear to lack N-terminal sequence. This was
further  verified for  three  of  the  four  sequences  by  BLASTP  analysis  against  the
Reference Protein database. The fourth sequence, Q9LNE6, appears  to have a
number of homologues that align well as of from the first residues, which suggests it
concerns another possible false positive that may correspond to an FH. Indeed, this
sequence was supported by evidence at the protein level. 

Resumed,  the  analyses  of  both  the  SwissProt  sequence sets  and the  16-
proteome  datasets  (See  Supplemental  document  2)  show  that  Seqrutinator
detects  mostly  real  NFH  but  also  that  in  certain  occasions  some  FHs  may  be
removed. Perhaps  more  importantly,  the  recovery  analysis  shows  that,  since
Seqrutinator generates a dataset with a high quality MSA, it allows to perform a
fast  recovery  analysis  and  therewith  correct  eventual  overzealous  sequence
removal. Alignment to an existing MSA is straightforward using MAFFT add. Other
recommended analyses are CD Hit cluster analysis and Pfam scan (See examples
of their use in Supplemental Document 2).

The Effect of the Data on the Performance
Next we analysed if the size of the offered dataset affects performance. Outlier
detection, here performed with the 3σ rule, is mostly applied for datasets that show
a normal distribution, which is severely affected by the dataset size. The analysis
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was also instigated by differences in the behaviour of certain sequences present in
both the SwissProt and complete proteome datasets. In all three studied cases, the
SwissProt  sequence  sets  were  somewhat  smaller  in  size  than  the  complete
proteome-derived  datasets.  However,  the  SwissProt  datasets  do  show  different
variations of subfamily homologues, which may explain a number of the obtained
results.  As  such,  we  tested  Seqrutinator’s  performance  with  differently-sized,
randomly-generated datasets.

We used the BAHD dataset to create randomized sequence sets, using four
different size conditions: V(ariable) (datasets emulating the sizes of the datasets
generated by different proteomes, ranging from 4 to 368 sequences), S(mall) (40 x
~50 sequences, each subset representing ~2.5% of the total sequences), M(edium)
(20  x  ~99  sequences  representing  ~5%  of  the  total  sequences)  and  L(arge)
(10x~199  sequences,  representing  ~10%  of  the  total  sequences).  Ten  random
datasets were generated for each condition. Additionally, we combined all  the
sequences  in  a  single  dataset.  All  of  these  datasets  were  scrutinized  with  the
default pipeline (12345) and a pipeline lacking the outlier removers (134). Due to
the dataset size of the single combined dataset, this dataset was scrutinized using
FAMSA rather than MAFFT G-INS-i as alignment method. The datasets as originally
prepared were scrutinised using both pipelines using either FAMSA or MAFFT G-INS-
i). The design is sketched in Figure 6A.

Figure  6:  The Effect  of  Size  on Seqrutinator  Performance.  A:  Design of  Analysis.
Randomized  datasets  were  compared  with  the  original  and  the  combined
dataset.  Four  types  of  randomized  datasets  were  made,  each  representing
different  subset  sizes  as  indicated by the number  of  subsets  (in  bold)  with  the
number of sequences per subset in brackets. Ten randomized sets were generated
for each type and analysed using different scrutiny strategies as indicated. FAMSA
was used in order to allow the analysis of the combined (C) dataset and used also
for  the  original  dataset  (OM  and  OF;  Original  MAFFT  and  Original  FAMSA).  B:
Sequence  Fate  in  Default  scrutiny.  The  tag  score  is  the  number  of  times  a
sequence  was  either  removed  by  each  module  or  finally  accepted.  The
histograms show the incidence of the tag scores. C: Final Sequence Fate. Numbers
of always rejected and always accepted for the 12345 and the 134 pipelines.
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We first quantified the number of sequences tagged by each module for each
dataset (Supplemental Figure 1). SSR showed no differences since it simply removes
all sequences below a certain length determined by the reference sequence. The
PR module removes more sequences from the large datasets. All other modules
did show differences but  no trend indicates that the size of the set  affects  the
modules’ performance. The fact that NHHR does not show the same trend as PR is
explained by the higher complexity of the MSAs made of sets with many more
NFHs.  Either  way,  NHHR  and  PR  remove  only  a  few  homologues  and  present
coefficients  of  variation  (CV)  of  over  10%  in  all  the  randomized  datasets.  GIR
removes at least 43 sequences with an average of 74 ± 4.05 per complete dataset.
It has a CV of over 5% for both the 12345 and the 134 pipelines applied to variable
and medium-size randomized sets. CGSR removes more sequences, ranging from
194  to  215  but  shows  low  CVs,  which  suggests  it  is  more  reliable.  Hence,  size
appears  to  affect  only  the PR module and the remaining differences  are likely
better explained by random variation.

As a next question, we wondered if the same sequences are removed and
to what extent.  Hence, for both the default and the 134 pipelines we determined
how often each sequence was removed by each module, thereby generating a
tag score for each sequence. Figure 6B shows the incidence per tag score for
each  module  as  part  of  the  default  pipeline,  where  6C  summarizes  the  total
numbers for both pipelines. Clearly, by far the largest part of the sequences was
either  always  (tag  score  Accepted  =  0)  or  never  (tag  score  Accepted  =  43)
removed, leaving only a few so-called twilight zone sequences with a fate that
depends on the dataset. Only the CGSR module shows more than 5% of twilight
zone sequences. Both the NHHR and the PR module data show a skew towards
never removed.

We also wondered to which extent the same sequences are removed by
different modules from different datasets. Here it concerns a total of 227 sequences
with tag scores ranging from 1 to 42, removed by NHHR, GIR, CGSR or PR. These 227
remaining  sequences  were  analysed  for  cross-module,  cross-pipeline  fate.  It
appears that a substantial part of these sequences can be removed by more than
a single module, depending on the dataset (Supplemental Figure 2). About two-
thirds of the sequences, 174 and 160 for pipes 12345 and 134, respectively, are
sometimes accepted and sometimes rejected. Hence, overall, the performance of
Seqrutinator depends only to a small amount on the exact dataset. 

The above analyses also allow for additional analysis of the performance in
terms  of  precision.  We  made  the  assumption  that  sequences  that  are  always
removed are real NFHs (RNFHs) whereas sequences that are never removed are
real FHs (RFHs), as such creating what may be referred to as a silver standard. The
remaining  twilight  zone  sequences  are,  for  this  analysis,  considered  Putative
Functional Homologues (PFH). We aligned the RFH sequences and then aligned, in
two separate analyses the PFH and RNFH sequences to the obtained MSA. The two
resulting  MSAs  were  used  to  reconstruct  phylogenies  which  were  subjected  to
HMMERCTTER clustering with orphan and outlier removal (HMMERCTTER-OOR). This
optional module detects and removes orphans (here defined as sequences that
do not cluster due to the minimal cluster size-setting of N = 4) and putative outliers
with the main goal of increasing cluster size. We then determined which of these
orphans and outliers are NFHs or PFHs. Table 3 summarizes the results. The largest
effect  of  including  either  NFHs  or  PFHs  is  that  many  sequences,  irrespective  of
whether  they  represent  a  RFH,  PFH  or  NFH,  are  detected  as  orphan.  This  is
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explained by the deterioration of the MSA and resulting tree. Both PFH and NFH but
not RFH constitute a small number of outliers. Also, they represent proportionally
more orphans than the RFHs. This suggests that at least part of what we considered
NFH and PFH is  indeed an NFH.  This  is  supported by the fact  that  adding the
sequences results in a substantial decrease of the number of reliable columns in
the MSAs.

Table 3: HMMERCTTER-OOR Clustering of Non- and Putative Functional Homologues. Trees
for  the  Real  Functional  Homologues  (RFH)  alone  as  well  as  combined  with  Putative
Functional  Homologues (R+PFH) and Non-Functional  Homologues (R+NFH),  respectively,
were  clustered  with  HMMERCTTER-OOR  in  order  to  identify  the  numbers  of  clustered,
orphaned  and  outlier  sequences.  BMGE  indicates  the  number  of  columns  that  were
accepted as informative by BMGE.

BMGESequences Total Clustered Outlier Orphan % Outlier % Orphan
RFH Tree 133 RFH 1038 1033 0 5 0,00 0.48

R+PFH Tree 85 RFH 1038 1002 0 36 0,00 3.47
PFH 174 161 6 7 3.45 4.02

R+NFH Tree 77 RFH 1038 689 0 349 0,00 33.62
NFH 196 91 9 96 4.59 48.98

Conclusion
We have made a flexible pipeline for the stepwise scrutiny of superfamily protein
sequence sets with the objective of obtaining comprehensive sets that lack NFH
sequences. Large, high quality MSAs of over 2000 FH sequences were obtained for
three complex superfamilies. The MSAs have high quality, especially as compared
with MSAs prior sequence scrutiny. Clustering analysis confirmed that the datasets
improved significantly,  yielding phylogenetic trees with cluster  scores of  over 50
and  only  very  few  orphans.  Most  clades,  whether  with  or  without  SwissProt
representative that may indicate function, have rather complete or at least broad
taxonomic  contributions.  Although  there  is  no  benchmark  set  for  sequence
scrutiny,  we  show  Seqrutinator  has  high  precision  and  recall.  Analysis  of  the
SwissProt  sequences  showed  that  only  a  few  sequences  yield  false  positives,
suggesting  Seqrutinator  has  a  high  precision.  In  the  scrutiny  of  the  UGTomes,
Seqrutinator  correctly  detected all  GT28 sequences,  which form a homologous
superfamily,  suggesting  Seqrutinator  has  a  high  sensitivity  or  recall.  Additional
analysis in which we compared Seqrutinator to Pfam scan with different cut-offs,
corroborated Seqrutinator has high precision and recall. The tool is flexible with five
different scrutiny modules that also contribute to its robustness. The performance
depends slightly on the size and complexity of the initial dataset. The method was
designed  for  complex  eukaryotic  superfamilies  but  can  be  applied  to
intermediately complex and even simple superfamilies without any problem. The
major  exception is  that  it  cannot  deal  with  superfamilies  with  different  domain
architectures.  Sequences  from  distant  or  taxon  specific  subfamilies  may  be
removed inadvertently but the binary character of Seqrutinator allows for a simple
recovery analysis. 
 
Materials and Methods
Initial Datamining
The  initial  sequence  mining  was  performed  by  MUFASA  (See  Supplemental
Document  1)  that  applies  hmmsearch  from  HMMER  [40] using  Pfam  profiles
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PF02458  for  BAHD  [41],  PF00067  for  CYP  [42];  and  PF00201  for  UGT  [43] using
HMMERs inclusion threshold as inclusion cut-off. Searches were performed in batch
using the MUFASA script (See supplemental document 1) and the 16 plant species
sequence sets  obtained from Phytozome v12.1.6  [44], TAIR v6 that was obtained
from  TAIR  [45],  and  the  SwissProt  datasets  that  were  from  Uniprot  [46,  47].
Sequences for structures,  PDB identifiers  4G0B (BAHD  [48]),  5YLW (CYP  [49]) and
3HBF  (UGT  [50]), were  identified  as  top  scoring  sequence  with  the  respective
superfamily Pfam profiles.
Sequence Alignment and other biocomputational analyses
All  MSAs were performed using MAFFT-G-INS-i  [51],  except when indicated that
FAMSA  [25] was  used.  MSAs  were  analysed  and  shown  using  Aliview  [52] or
MSAviewer [53] at NCBI  [54]. Trimming in Seqrutinator was performed using BMGE
[32] using standard gap settings, BLOSUM62 and an entropy cut-off h of 0.8. Due to
the  poor  quality  of  some  datasets  (e.g.,  dataset  before  Seqrutinator),  which
resulted in low or none reliable columns with BMGE, all datasets for phylogeny were
first  trimmed  with  trimAl  with  -gappyout  settings  followed  by  BMGE.  CD  Hit
clustering [55] was performed at the CD Hit suite [56] at an identity cut-off of 0.3.
BLAST  [57,  58] analysis  was  performed  at  NCBI  [59] against  the  database  as
indicated. Pfam scans were performed at EBI [60] using Pfam’s gathering threshld
for  cut-off or  locally  if  and  with  Expect  values  indicated.  Dotplots  [61]were
performed at the SIB [62]. Pyhylogenies were reconstructed by FastTree [19], using
the WAG model and optimized Gamma20 likelihood, and drawn by Dendroscope
[63]. Local alignments were performed with LALIGN/PLALIGN [64] at the UVA [65].
Alluvial diagrams were generated using RAWGraphs [66]. Boxplots and histograms
were prepared with  Plotly  (Plotly  Technologies  Inc.  Collaborative  data  science.
Montréal, QC, 2015 [67]).
Seqrutinator
A full description of Seqrutinator can be found in Supplemental document 1.
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