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ABSTRACT 

The cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) involves 
the association of its receptor binding domain (RBD) with human angiotensin converting enzyme 
2 (hACE2) as the first crucial step. Efficient and reliable prediction of RBD-hACE2 binding 
affinity changes upon amino acid substitutions can be valuable for public health surveillance and 
monitoring potential spillover and adaptation into non-human species. Here, we introduce a 
convolutional neural network (CNN) model trained on protein sequence and structural features to 
predict experimental RBD-hACE2 binding affinities of 8,440 variants upon single and multiple 
amino acid substitutions in the RBD or ACE2. The model achieves a classification accuracy of 
83.28% and a Pearson correlation coefficient of 0.85 between predicted and experimentally 
calculated binding affinities in five-fold cross-validation tests and predicts improved binding 
affinity for most circulating variants. We pro-actively used the CNN model to exhaustively 
screen for novel RBD variants with combinations of up to four single amino acid substitutions 
and suggested candidates with the highest improvements in RBD-ACE2 binding affinity for 
human and animal ACE2 receptors. We found that the binding affinity of RBD variants against 
animal ACE2s follows similar trends as those against human ACE2. White-tailed deer ACE2 
binds to RBD almost as tightly as human ACE2 while cattle, pig, and chicken ACE2s bind 
weakly. The model allows testing whether adaptation of the virus for increased binding with 
other animals would cause concomitant increases in binding with hACE2 or decreased fitness 
due to adaptation to other hosts.  

Keywords: SARS-CoV-2, Human ACE2, Animal ACE2, Binding Affinity, Convolutional 
Neural Network, Sequence 

 

1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the 
coronavirus disease 2019 (COVID-19) pandemic and has continued to evolve since the initial 
outbreak.1 Several variants of the wild-type (WT) virus (Wuhan-Hu-1)2 have been identified in 
different countries, including the United Kingdom (Alpha or B.1.1.7, Eta or B.1.525), South 
Africa (Beta or B.1.351, Omicron or B.1.1.529 or BA.1), Brazil (Gamma or P.1, Zeta or P.2), 
United States (Epsilon or B.1.429/B.1.427, Iota or B.1.526), India (Kappa or B.1.617.1, Delta or 
B.1.617.2), Philippines (Theta or P.3), Columbia (Mu or B.1.621), Peru (Lambda or C.37) and 
France (B.1.640.2).3–5 The Omicron variant has quickly overtaken Delta as the globally dominant 
variant thanks in part to 60 mutations which have conferred increased transmissibility and 
increased reinfection risk as well as significant reductions in vaccine effectiveness.6,7 The 
Omicron subvariant BA.2 contains additional amino acid changes, and it has been reported that 
both naive and immunologically trained individuals exhibit even higher susceptibility to BA.2 
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than the original Omicron strain.8 While novel therapeutics and authorized COVID-19 vaccines 
have been deployed to mitigate the public health impacts of SARS-CoV-2 and limit its spread, 
the continuous emergence of SARS-CoV-2 variants is complicating the situation and results in 
periodic surges of new infections.9  

Many domestic and wild animals have been shown to be susceptible to SARS-CoV-2 either by 
natural and/or experimental infections,9,10 revealing an extensive host range of SARS-CoV-2. 
Cats, dogs, lions, tigers in zoos, minks, and ferrets have been reported to be infected via contact 
with COVID-19 patients, while snow leopards, pumas, and gorillas have been found to be 
infected with SARS-CoV-2 by natural means.10 White-tailed deer have also been confirmed to be 
susceptible to SARS-CoV-2 through infection studies11,12 After anti-SARS-CoV-2  antibodies 
were detected in 33% of the 481 white-tailed deer samples in four different states13, multiple 
reports of natural infection of deer in USA14–17 and Canada18,19 have been reported. Moreover, 
recent studies20 showed that Syrian hamsters in Hong Kong and deer in Canada18 were able to 
transmit SARS-CoV-2 to humans, adding to the list of animal to human transmissions after the 
initial documented case in mink21 with evidence for animal-to-human spillover. These findings 
underscore the importance of continual monitoring of potential spillovers of SARS-CoV-2 into 
non-human species, as the virus could gain a toe-hold and evolve in animal reservoirs, which 
could constitute a persistent threat of spillover back to humans. This scenario would complicate 
future mitigation strategies against the SARS-CoV-2 virus.21

 

SARS-CoV-2 is an enveloped single-stranded RNA virus that expresses the spike protein on 
its surface, which mediates the binding to host cells.22 The association of the receptor binding 
domain (RBD) of the spike protein with the human angiotensin converting enzyme-2 (hACE2) 
receptor represents the first crucial step of viral infection.2,23 SARS-CoV-2 variants contain 
single or multiple amino acid substitution as well as indels in the spike protein, and some of 
these changes have been shown to alter the RBD-hACE2 binding strength.3,4 Several amino acid 
changes in the RBD of spike protein have considerably impacted the transmissibility and 
antigenicity in circulating variants, and the increased frequency of these amino acid changes may 
indicate a positive association with RBD-hACE2 binding affinity enhancement.3,24 The amino 
acid change D614G showed increased prevalence which emerged multiple times in the global 
SARS-CoV-2 population, and the advantages for infectivity and transmissibility of this mutation 
have been indicated in several studies.25–28 The N439K mutation was observed with increased 
frequency when circulating widely in Europe,29 and Y453F was detected in Denmark among 
farmed mink and humans,21 where both mutations showed enhanced RBD binding affinity to 
hACE2. Being present in five circulating variants, N501Y can significantly increase the binding 
affinity by introducing new aromatic stacking interactions and hydrogen bonds.30,31 E484K is 
even more widely prevalent and is present in seven circulating variants. It destabilizes the RBD-
down state to favor the RBD-up state which is a required conformation for effective binding to 
hACE2.32,33 In addition to affinity enhancement, E484K also affords escape from neutralizing 
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antibodies,33–36 and the presence of the alternative change E484Q in the Kappa variant further 
suggests the importance of monitoring amino acid changes at this position. In the Omicron 
variant, as many as 60 amino acid changes are encoded including 37 in the spike protein (with 15 
in the RBD),6 among which N501Y, T478K and K417N were also identified in earlier variants 
Alpha, Beta, Gamma, Delta, Theta, and Mu.3 The immune escape capabilities are possibly 
conferred by K417N,37 S477N,38 E484A38 and other novel mutations, while the binding affinity 
between RBD and hACE2 is retained due to strongly binding-improving mutations such as 
N501Y,30,31 both contributing to the increased viral transmissibility of Omicron compared to 
earlier variants.39–41 Early on during the pandemic, to gain a more complete view of the effect of 
RBD mutation, Starr et al.30 exhaustively assessed the impact of single amino acid changes on 
RBD expression and hACE2 binding. They found that 84.5% of the amino acid changes are 
detrimental, 7.5% are neutral and the rest 8.0% can lead to enhanced binding of the RBD with 
hACE2. Chan et al.42 used deep mutagenesis to systematically evaluate the binding affinity of 
WT RBD for hACE2 mutants, and the engineered decoy receptor for SARS-CoV-2 showed 
comparably high affinity to neutralizing antibodies. These findings highlight the importance of 
monitoring single amino acid changes and their potential for binding affinity improvement and 
call for prospective methods that can rapidly scan and identify amino acid change combinations 
that are likely to further boost affinity with ACE2.  

    By pre-screening mutations in search of potentially contagious variants, computational 
methods can contribute to understanding alterations in the characteristics of the circulating 
variants and identify particularly problematic ones. The binding free energy can be reasonably 
approximated using molecular-mechanics-based empirical force fields such as Rosetta.43–45 It can 
also be calculated by performing molecular mechanics-generalized Born surface area (MM-
GBSA)46–49 analysis on configurations generated by molecular dynamics (MD) simulations.50 
The hybrid quantum mechanics/molecular mechanics (QM/MM) approaches51 can also be used 
when critical chemical reactions are involved in binding activities, but the significant 
computational cost restricts QM treatment for large protein-protein complexes.52 Reweighting of 
energy terms can be used to reach better prediction accuracy, where the weights are trained to 

accurately reproduce experimentally determined binding free energies (ΔΔGbind).
53,54 As a 

powerful complement, machine learning algorithms can effectively “learn” highly complex 
relationships among energy components and the target binding affinity from training 
samples.55,56 Using a data-driven approach, higher-level correlations can be captured and later be 
used to improve the accuracy of predictions.57 

Recently, we developed a two-step framework to quantitatively predict binding affinity change 
upon amino acid substitutions.58 The first step consists of 48 parallel 4-ns MD simulations of 
each RBD variant complexed with hACE2, followed by MM-GBSA analysis to extract 
decomposed binding energy terms. The second step involves implementing a neural network 
(NN) to predict the apparent dissociation constant (KD,app) ratios between the variants and the 
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WT using the obtained decomposed energy terms as descriptors. Agreement between 
experimental values and the NN_MM-GBSA model predictions was significantly better than 
predictions made directly using raw energies, reaching a correlation coefficient of 0.73 and an 
accuracy of 82.8% for the classification of improving or worsening the binding affinity.58 Albeit 
encouraging, the computational demand in dataset preparation involving expensive MD 
simulations prevents the NN_MM-GBSA model from being expanded to a much larger training 
set and/or from being extensively used for large-scale genomic screening. Therefore, developing 
a tool with comparable accuracy yet better computational efficiency remains relevant. Readily 
accessible descriptors are crucial for machine learning processes, and the protein sequence is a 
promising candidate. Recent breakthroughs by AlphaFold259 and RoseTTAFold60 demonstrated 
that the amino acid sequence contains a wealth of information for protein structure prediction, 
which can serve as the basis for protein-protein binding affinity prediction.61–65 

Herein, we introduce a convolutional neural network (CNN) regression model (CNN_seq) 
based on protein sequence and WT complex structural features. Various features for (i) 
individual residue identities including hydropathy index,66 volume,67 zScales,57 and VHSE68 
(principal components score Vectors of Hydrophobic, Steric, and Electronic properties), (ii)  
residue-pair interactions in AAIndex69, and (iii) residue properties such as normalized vdW 
volume, polarity, charge, polarizability, secondary structure, and solvent accessibility69 were 
used in the feature encoding procedure. The training was performed against all 8,440 variants 
with single and multiple amino acid changes in the RBD and hACE2. The predictive capability 
of this CNN_seq model was assessed by comparing it with the experimental KD,app ratios, 
achieving a classification accuracy of 83.28% and a correlation coefficient r of 0.85 in five-fold 
cross-validation tests. The model was further tested against many circulating variants that were 
blind to the model during training, and most were predicted to show improved binding affinity, 
as demonstrated by other experimental studies.23–25,29,30,32,37,70–91 Furthermore, we randomly 
chose 1,667 of the 8,440 variants to serve as the blind test set and used the rest to perform a five-
fold cross-validation test. Similar performance (%VC = 83.47%, r = 0.84) was observed for the 
blind test set, reconfirming the robustness of the CNN model predictions. 

Given the accuracy and efficiency of this CNN_seq model, we were able to exhaustively 
screen over 220,000 RBD variants for each host with combinations of up to four amino acid 
substitutions and suggest candidates with the highest improvement in RBD-ACE2 binding 
affinity for monitoring. The predicted binding affinity of RBD variants for deer ACE2 was found 
to be similar to humans, which was lower for cattle and pigs and lowest for chickens. The 
computational model can be accessed from the GitHub repository 
(https://github.com/maranasgroup/CNN_seq_CoV2). 
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2. Results 

Dataset preparation. We curated the training dataset by combining experimental results of deep 
mutational scanning of RBD (Starr et al.30) and random mutational scanning of hACE2 (Chan et 
al.42). The curated dataset consisted of 8,440 variants (see Methods for details of variants 
selection and distribution). To quantify the change in RBD binding affinity for hACE2, Starr et 
al.30 reported the apparent dissociation constant KD,app ratio which was defined as 
KD,app,variant/KD,app,WT. For each variant, as compared to the WT RBD, a KD,app ratio greater than 1 
indicates stronger (or improving) binding to hACE2 whereas a value less than 1 implies weaker 
(or worsening) binding. Note that, the KD,app,WT in present work always refers to the KD,app for the 
complex formed by WT hACE2 and WT SARS-CoV-2 RBD proteins, and such designation 
allows for the direct comparison across human and animal hosts.  
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Figure 1. Schematic representation of the CNN_seq workflow. (A) Identification of interfacial residues,
hydrogen bonds, salt bridges and disulfide bonds from the structure of receptor binding domain (RBD)
complexed with angiotensin converting enzyme-2 (ACE2). Interfacial residues are colored pink on
protein surfaces, and some key non-interfacial residues are highlighted. (B) Generation of the distance
map recording the distances between all residue pairs in the complex structure. (C) The structure of
CNN_seq model which takes RBD-ACE2 complex sequence as the input and apparent dissociation
constant (KD,app) ratio as the output. 

Feature encoding. The CNN_seq model uses both sequence-based and structure-based features
in model construction to maximize the utilization of available data. For the human case, the
sequences and three-dimensional (3D) structure of SARS-CoV-2 spike RBD in complex with
hACE2 were obtained from the Protein Data Bank92 (PDB ID: 6LZG), for the animal cases, the
sequences of ACE2 proteins were collected from UniProt93 for  four species: deer (Odocoileus
virginianus, ID: A0A6J0Z472), cattle (Bos indicus × Bos taurus, ID: A0A4W2H6E0), pig (Sus
scrofa, ID: A0A220QT48), and chicken (Gallus gallus, ID: F1NHR4).  Due to the lack of
experimentally determined structures for these animals, we used SWISS-Model94 to perform
homology modeling and generated 3D structures for the complexes. Subsequent structural
refinement for each complex was performed through an MD simulation with explicit water, and
the interface equilibration was demonstrated by reaching a standard deviation (SD) in the root
mean square deviation (RMSD) of less than 1 Å in the final 100-ns (see Methods for details). 
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The structure of the RBD-ACE2 complex encodes information as to the local environment that
is accessible by each residue, and the interactions between residues in ACE2 and RBD underpin
the overall binding strength of the complex. We used the PISA (Proteins, Interfaces, Structures
and Assemblies) tool95 provided by Protein Data Bank in Europe (PDBe)96 to help identify the
interfacial residues as well as key interactions such as hydrogen bonds, salt bridges, and disulfide
bonds formed by compatible residue pairs (Figure 1A). In addition, the Protein Contact Maps
tool developed by Benjamin et al.97 was employed to generate the contact map (Figure 1B),
which is a two-dimensional (2D) matrix recording the distances between all possible amino acid
residue pairs in the complex. For each complex, the structure, contact map and the interfacial
residue information are not changed significantly when mutations are subsequently introduced.   

 

Figure 2. Comparison of KD,app ratio between experiments and CNN_seq models predictions from five-
fold cross-validation tests on 8,440 variants. Correctly classified variants are colored in blue, incorrectly
classified variants are colored in red, and variants with unchanged binding affinities are colored in green.
Horizontal and vertical dashed lines are drawn to indicate the dividing line where KD,app ratio equals to 1,
and  a diagonal solid line is drawn to indicate perfect correlation. 

CNN model trained on experimental KD,app ratio. A CNN regression model was constructed
by taking the RBD-ACE2 sequence for variants as the input. As illustrated in Figure 1C, the
CNN_seq model contains one input layer, two 1D convolutional (Conv) layers, two 1D average
pooling (AP) layers, one dense layer, two fully-connected (FC) layers, and an output layer. There
is a rectified linear unit (ReLU) activation function following each Conv and FC layer, and
dropout regularization method98 is applied to each FC layer to reduce overfitting (see Methods
for details of the CNN structure). The matrix of input features pass through a series of layers and
functions continuously, and the final output is the apparent dissociation constant KD,app ratio.
Such architecture takes into account the interactions between individual residues and their local
environment, and allows higher level correlations between domains to be captured. 

at 
in 

res 
he 
de 
ps 

, 
id 
ial 

 

-
tly 
n. 

 1, 

ed 
he 
ge 
re 
nd 
ds 
nd 

. 
cal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.22.485413doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.22.485413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

For model evaluation, we followed the five-fold cross-validation procedure, where the entire 
dataset was split into five subsets, with each subset considered as the test set once, and the rest of 
the four subsets are used together to form the training set. A complete cycle of five-fold cross-
validation produced five individual models, and each model made predictions on the subset of 
variants that the model itself did not see. Combining predictions of the five subsets, all the 
variants in the original dataset were predicted once, and the performance of the model can be 
fairly evaluated. Two metrics were used to evaluate the performance of the CNN_seq model, the 
percent recovery of correct variant classification (%VC) and the Pearson correlation coefficient 
(r). The %VC calculates in percentage the accuracy of classifying the direction of change in the 
binding affinity compared to WT, while r measures the strength of the linear correlation between 
the predicted and experimental KD,app ratio values (see Methods for details).  

The averaged results from the five-fold cross-validation tests of the CNN_seq model achieved 
a %VC of 83.28% and a correlation coefficient r of 0.85 for a complete dataset of 8,440 variants. 
Compared to the performance of the NN_MM-GBSA model (%VC = 82.8%, r = 0.73),58 
the %VC of the CNN_seq model remained similar whereas there was a slight improvement in 
the correlation coefficient r. It appears that on balance the information content embedded in the 
8,440 variants dataset approximately matches the information contained in the energy terms of 
the GBSA molecular dynamic simulation of the 108 variants used in model NN_MM-GBSA.58 
Figure 2 compares the KD,app ratio values between experiments and CNN_seq predictions, where 
54.94% of the incorrectly classified variants appear to be for variants with experimental KD,app 

ratio values within [0.9-1.1]. The performance of the CNN_seq model was also evaluated 
separately on ACE2 and RBD variants (Figure S1 in SI Appendix). We found that CNN 
performed better for the 6,105 RBD variants (i.e., %VC = 85.2% and r = 0.87) compared to the 
2,335 hACE2 variants (%VC = 72.19% and r = 0.63). The apparent difference in the 
performance of CNN in the two datasets alludes to systematic differences in the way affinities 
were calculated or different error margins. However, since there are nearly three times more 
RBD variants (72.10% of the dataset) than ACE2 variants (27.90% of the dataset), it is not 
surprising to see that the performance bias leans towards RBD variants. Although a model built 
on solely RBD variants could achieve better overall performance, we chose to include both sets 
of data in the training set because this model was ultimately designed to predict the binding 
affinity changes for animal hosts, whose ACE2s differ slightly from the human version.  
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Table 1. Comparison of KD,app ratio from experiments (Expt), CNN_seq (CNN), and NN_MM-GBSA 
(NN) model predictions on circulating RBD variants complexed with human and animal ACE2 proteins. 

WHO 
label99 

Pango 
lineage100 

Amino acid change(s) KD,app ratio 

   Human 
(Expt) 

Human 
(NN58) 

Human 
(CNN) 

Deer 
(CNN) 

Cattle 
(CNN) 

Pig 
(CNN) 

Chicken 
(CNN) 

  WT 1.00 1.00 1.00 1.01 0.91 0.82 0.60 
Alpha B.1.1.7 N501Y 4.36 1.22 1.66 1.30 1.21 1.11 1.09 

  E484K*+N501Y 4.38 1.22 2.06 1.57 1.42 1.34 1.47 
  S494P*+N501Y – 1.25 1.64 1.25 1.23 1.07 1.04 
  E484K*+S494P*+N501Y – 1.22 2.00 1.49 1.42 1.30 1.40 

Beta B.1.351 K417N+E484K+N501Y 2.40 1.22 1.81 1.34 1.20 1.06 1.17 
Gamma B.1.1.28/P.1 K417T+E484K+N501Y 5.51 1.22 1.74 1.40 1.25 1.07 1.25 
Delta B.1.617.2 L452R+T478K 1.32 1.12 1.19 1.16 1.02 1.10 0.77 

  K417N*+L452R+T478K 0.27 1.24 0.96 1.01 0.84 0.80 0.55 
Epsilon B.1.429/B.1.427 L452R 1.05 1.09 1.12 1.16 1.01 0.97 0.81 

Zeta P.2 E484K 1.15 1.21 1.32 1.22 1.04 0.95 0.87 
Eta B.1.525 E484K 1.15 1.21 1.32 1.22 1.04 0.95 0.87 

Theta P.3 E484K+N501Y 4.38 1.25 2.06 1.57 1.42 1.34 1.47 
Iota B.1.526 E484K 1.15 1.21 1.32 1.22 1.04 0.95 0.87 

  L452R*+E484K 2.28 1.22 1.38 1.36 1.11 1.10 1.02 
  S477N*+E484K – 1.10 1.53 1.35 1.12 1.03 0.99 
  L452R*+S477N*+E484K – 1.20 1.59 1.49 1.20 1.18 1.12 

Kappa B.1.617.1 L452R+E484Q 1.67 1.21 1.28 1.26 1.06 1.04 0.92 
Lambda C.37 L452Q+F490S – 1.11 1.18 1.15 1.04 0.93 0.72 

Mu B.1.621 R346K+E484K+N501Y 1.69 1.25 2.14 1.55 1.46 1.40 1.54 
Omicron B.1.1.529/BA.1 G339D+S371L+S373P+ 

S375F+K417N+N440K+ 
G446S+S477N+T478K+ 
E484A+Q493R+G496S+ 
Q498R+N501Y+Y505H 

1.40 1.25 1.23 0.65 0.96 0.73 0.66 

 BA.2 G339D+S371F+S373P+ 
S375F+T376A+D405N+ 
R408S+K417N+N440K+
S477N+T478K+E484A+ 
Q493R+G496S+Q498R+

N501Y+Y505H 

– 1.25 1.18 0.87 0.97 0.91 0.77 

 B.1.1.298 Y453F 1.78 1.21 1.41 1.23 1.05 0.98 0.73 
 B.1.1.519 T478K 1.05 1.11 1.05 1.03 0.93 0.84 0.59 
 B.1.36 N440K 1.17 1.11 1.13 1.11 0.97 0.86 0.65 
 B.1.1.317 S477N+A522S – 1.11 1.15 1.10 0.96 0.84 0.67 
 B.1.1.141 T385I 0.91 1.12 1.02 1.05 0.93 0.76 0.54 
 B.1.640.2 R346S+N394S+Y449N+ 

E484K+F490S+N501Y 
– 1.25 1.73 1.31 1.33 1.06 1.15 

 C.1.2 449H+484K+501Y – 1.21 1.88 1.40 1.37 1.09 1.32 

* Amino acid change detected in some sequences but not all. 

CNN_seq model prediction of KD,app of circulating SARS-CoV-2 variants. The circulating 
variants include amino acid substitutions and/or indels in the SARS-CoV-2 spike protein such as 
the amino-terminal domain, the RBD, and the furin cleavage sequence.24 In total, spike variants 
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for 21 circulating variants were chosen to be examined by the CNN_seq model, including 13 that 
are assigned WHO labels99 and eight that only have Pango100 classifications. We also assessed 
different instances of variants containing amino acid changes only present in some sequences. 
The experimental values were collected from available experimental results obtained 
through surface plasmon resonance,29,32,70,71,89–91 bio-layer interferometry,23,25,29,30,37,72–85,90 
enzyme-linked immunosorbent assay,74,82,86,87,90 or microscale thermophoresis.88 For all variants 
with single amino acid changes, in the spike protein, we defaulted to the KD,app,variant/KD,app,WT 
value from the work of Starr et al.30 For experimentally tested variants with multiple amino acid 
changes we used the reported KD,variant/KD,WT to make comparisons. Given the often-large 
differences in the reported values, the median calculated from the available experiment results 
was used.  

As shown in Table 1, both the CNN_seq and NN_MM-GBSA models predicted improved 
binding affinity for most circulating variants relative to the WT, consistent with experimental 
observations. To further assess the performance of CNN_seq and NN_MM-GBSA models on 
blinded datasets, we also prepared a list of 15 variants containing multiple amino acid changes 
(Table S1 in SI Appendix). For this small blinded test set, the CNN_seq model achieved a %VC 
of 92.9% and r of 0.60 whereas NN_MM-GBSA model performance was somewhat worse 
with %VC of 75.7% and r of 0.28. This performance gap could be because NN_MM-GBSA 
model was trained using only 108 single amino acid change variants, whereas the blinded dataset 
involved single amino acid changes with 66.67% not present in the dataset used for training 
NN_MM-GBSA.  Roughly, all circulating variants can be separated into two families, ones with 
KD,app ratios above 1.5 including Alpha, Beta, Gamma, Theta, Mu, B.1.640.2, C.1.2 variants, and 
the others with KD,app ratios between 1 and 1.5 including Delta, Epsilon, Zeta, Eta, Iota, Kappa, 
Lambda, Omicron, B.1.1.298, B.1.1.519, B.1.1.36, B.1.1.317, B.1.1.141, BA.2. This 
classification of the variants agrees well with the antigenic map,1 alluding to the partial 
correlation between RBD-ACE2 binding affinity and evolution trajectories.  

Specifically for the Omicron variant, both CNN_seq and NN_MM-GBSA models predict 
improved binding affinity with the KD,app ratio values of 1.23 ± 0.58 and 1.25 ± 0.09, respectively. 
Notably, only 13 out of a total of 25 amino acid change predictions from individual CNN_seq 
models were improving while the rest were worsening. This alludes to the hypothesis that highly 
improving towards binding amino acid changes enables neighboring positions to assume binding 
worsening amino acid changes to evade dominant immune recognition sites.39,71,87,101–104 We also 
calculated the binding free energy ΔG of the RBD-hACE2 complex using the Rosetta force-field 
(see Methods for details). The resulting averaged ΔG of the Omicron- and WT-RBD-hACE2 
complexes were -36.2 ± 2.4 and -44.3 ± 1.0 kcal/mol, respectively. Experimentally, there does 
not seem to be a consensus on the relative binding strength between the Omicron 
variants.71,87,101 Surface plasmon resonance analysis by Cameroni et al.71 showed that Omicron 
and Delta bind 2.4- and 1.2-fold stronger than WT, whereas Mannar et al.101 suggest  1.5- and 
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1.4-fold improvement over WT for Omicron and Delta, respectively. Moreover, a combined 
experimental and simulation study by Wu et al.87 concluded that Omicron has a lower binding 
affinity than Delta and WT. Nevertheless, with as many as 15 amino acid changes in the RBD of 
the Omicron variant, there could be formation/interruption of multiple residue-residue pairs and 
substantial structural rearrangement that might be responsible for the inconsistent predictions 
from different methods.71,87,101 

As the subvariant of Omicron, BA.2 variant carries one less (G446S), one altered (S371L vs. 
S371F), and three additional amino acid changes (T376A, D405N, R408S). Notably, these five 
different mutations were all known to decrease the binding affinity for ACE2.30 The CNN_seq 
model predicts just slightly lower KD,app ratio of 1.18 for BA.2 than 1.23 for the original Omicron. 
In contrast, the B.1.640.2 variant adds six amino acid changes comprised of four binding-
improving (R346S, N394S, E484K, N501Y), one neutral (F490S), and one binding-decreasing 
(Y449N) mutation,30 consistent with the predicted high KD,app ratio of 1.73 by the model. 

Using the CNN_seq model built on human data to predict binding with animal ACE2. The 
inclusion of ACE2 mutations in the training set allows the CNN_seq model to learn how amino 
acid changes on ACE2 in addition to the RBD could affect the binding affinity change. The 
model predicted KD,app,WT,animal/KD,app,WT values are summarized in Table 1, where KD,app ratio 
values for cattle, pig, and chicken were smaller than one, indicating weaker binding affinity of 
SARS-CoV-2 RBD for these animals than human, consistent with the experimental 
observations.9,10 For deer, the WT RBD showed slightly higher binding affinity than human, 
which seems to agree with the high susceptibility as recently reported.11–15 As shown in Table 1, 
circulating variants generally show enhanced binding affinity for animal ACE2 in all cases in 
line with corresponding improvements for human. However, the quantitative improvement 
generally lags behind the one achieved for human ACE2 alluding that adaptation to human 
ACE2 remains the main driving force of diversity generation. Delta and Kappa variants exhibit 
slightly higher binding affinity for deer ACE2 than human. Theta, Mu and Alpha+E484K 
variants show consistently high binding affinity (KD,app ratio > 1.3) whereas Gamma, 
Alpha+E484K+S494P, Iota+L452R, and Iota+L452R+S477N show slightly elevated binding 
affinity (KD,app ratio > 1.0). These CNN_seq model predictions suggest that just as variants 
achieve tighter binding with hACE2 which may explain gains in infectivity, affinity gains are 
also predicted against animal ACE2s. The gains in affinity for animal ACE2s appear to track the 
infection susceptibility of the four assessed animals with deer being very near to human, cattle 
and horse being significantly less, and chicken only moderately increased from the originally low 
affinity values. 
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Figure 3. Comparison of KD,app ratio between experiments and CNN_seq models predictions from
scanning on 3900 variants with one amino acid change. Scanning results are colored in blue, and
circulating variants are labeled in red or indicated in the inset table. A diagonal dashed line is drawn to
indicate the perfect positive correlation.  

Computational scanning for novel variants with up to four amino acid changes using
CNN_seq model for human and animals ACE2.  On average, it takes approximately 250 ms to
predict the KD,app ratio for a single variant on an NVIDIA Tesla P100 GPU card. This permits the
exhaustive exploration of multiple amino acid changes for possibly further increases in binding
affinity with ACE2. Based on the sequence range of the experimentally determined structure of
RBD-hACE2 complex,105 we focused on RBD variants in the range of residues from 333 to 527.
We adopted a hierarchical approach by first exhaustively assessing all single amino acid changes
and then selecting the top 20 variants with the highest KD,app ratio to exhaustively assess the
addition of a second amino acid change. This procedure is repeated until variants with up to four
amino acid changes are assessed. This procedure relies on the observation that affinity gains seen
so far have been largely, though not exclusively, additive in the contribution of individual amino
acid changes in the spike.106   

Figure 3 compares the CNN_seq predicted and experimental KD,app ratio values for variants
formed by hACE2 and RBD with single amino acid changes. In total, 195 × 20 = 3,900 RBD
variants were scanned, where 3,883 of them have experimental referenced data. Among these
variants, 1,344 (34.6%) are in the training set, and the rest 2,539 (65.4%) are unknown to the
model. These 2,539 variants are all worsening examples and forms a blind test set, for which the
prediction shows a VC% of 94.62% and r of 0.90, even higher than the results from
training/validation process, further implying the robustness of the model. The binding affinity of
circulating variants are reasonably well predicted by the model, showing general agreement with
experiments.  
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Figure 4. Binding affinity change heatmaps of RBD variants for ACE2 proteins from human and animal
hosts. Experimental values and CNN_seq predictions for human are shown in (A) and (B), and CNN_seq
predictions for animals are depicted in (C) deer, (D) cattle, (E) pig, (F) chicken. Squares are colored
according to the KD,app ratio values.  

To illustrate the variant distribution across the RBD sites under investigation, in Figure 4 we
constructed the binding affinity change heatmaps for all 3,900 variants with one amino acid
changes followed the pictorial style introduced in Starr et al.30 Each one of the stripes represents
the complete scanning results for one of the species, where the horizontal and vertical axes
indicate the RBD sites and amino acid, respectively. The small squares are colored according to
the CNN_seq predicted KD,app ratio values, with red for lower affinity, blue for higher affinity,
and white for neutral or similar affinity. The general patterns of the heatmap for the experimental
data (Figure 4A) are well captured in the CNN_seq predictions (Figure 4B) for the human case,
in line with the VC% and r values obtained from data shown in Figure 3A. 
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Figure 5. Comparison of binding affinities of RBD variants for ACE2 proteins of human and deer. All
the RBD variants with single amino acid changes are colored in blue, circulating variants are labeled in
red. A diagonal line is drawn to indicate the perfect positive correlation.  

To examine the effects of RBD mutations on the change of binding affinity for animal ACE2
proteins, we further scanned the 3,900 RBD variants with one amino acid changes for all four
animal hosts. As illustrated in Figure 4C to Figure 4F, the heat maps largely resemble the ones
for human in proportion to the sequence similarity between their ACE2 proteins. In Figure 5 we
compare the deer vs. human KD,app ratio values for all scanned 3,900 data and circulating variants
Results for other animals are shown in Figure S2 in SI Appendix. Correlations are observed
between human and all animals RBD variants (see Figure 4). 

With the scanning results, we could examine whether adaptation of the virus for increased
binding with animals would cause concomitant increases to binding with human ACE2
(animal/human converging amino acid changes) or decreased fitness. The top deer/human
converging and diverging amino acid changes are tabulated in Table S2 in SI Appendix. Among
the deer/human converging amino acid changes, there are many candidates that show significant
binding affinity enhancement for both deer and human including N501Y, E484K, Y453F, L452R
that are contained in multiple circulating variants.  For deer/human diverging amino acid changes
most candidates show moderated binding affinity increase for deer and mild decrease for human.
Notably, change A522S was identified in B.1.1.317 variant, which circulated in Russia, UK, and
Thailand in late 2020.107 
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Table 2. Scanning results for human with up to 4 amino acid changes on SARS-CoV-2 RBD. 

1-AA 
change 

KD,app 

ratio 
2-AA  

change 
KD,app 

ratio 
3-AA  

change 
KD,app 

ratio 
4-AA  

change 
KD,app 

ratio 

N501F 1.79 478I+386S 2.45 501F+386S +493M 2.79 365W+390R+369W+498H 3.59 
Q498H 1.70 365W+390R 2.26 365W+390R +369W 2.78 365W+390R+493L+498H 3.51 
T478I 1.67 501F+386S 2.25 365W+390R +453F 2.77 365W+390R+453F+498H 3.49 
N501Y 1.66 501F+358W 2.22 501F+386S+493V 2.77 365W+390R+484K+498H 3.47 
N501T 1.55 498H+386S 2.16 478I+386S+453F 2.76 365W+390R+493M+498H 3.46 
Q498Y 1.44 501Y+358W 2.13 365W+390R+493L 2.73 501F+386S+493M+498H 3.42 
Y453F 1.41 501Y+386S 2.12 501F+386S+493A 2.73 478I+386S+453F+498H 3.41 
Q493M 1.40 501F+358F 2.11 501F+386S+493L 2.72 365W+390R+453K+498H 3.41 
Q493L 1.38 501F+391S 2.11 478I+386S+494K 2.72 501F+386S+493L+498H 3.40 
Q493V 1.34 478I+358F 2.10 365W+390R+493M 2.71 501F+386S+493V+498H 3.40 
E484K 1.32 501F+392W 2.10 501F+358W+493M 2.71 501F+358W+493M+498H 3.38 
Q493Y 1.32 478I+378Q 2.09 365W+390R+453K 2.71 365W+390R+453K+384R 3.36 
Q493A 1.31 498H+358W 2.09 365W+390R+484K 2.71 501F+358W+493V+498H 3.36 
L452K 1.31 501F+518T 2.08 501Y+386S+493M 2.70 501Y+386S+493M+498H 3.36 
Y365W 1.27 478I+386A 2.07 501F+358W+493V 2.69 501Y+386S+493L+498H 3.34 
Y369W 1.27 501F+473F 2.06 501Y+386S+493V 2.69 501Y+358W+493M+498H 3.34 
N501V 1.27 478I+527M 2.06 501Y+386S+493L 2.68 501Y+386S+493V+498H 3.33 
Q498W 1.26 478I+358W 2.06 478I+386S+414A 2.68 365W+390R+369W+498Y 3.31 
S494K 1.25 478I+386T 2.06 501F+358W+493A 2.66 478I+386S+494K+498H 3.31 
Q414A 1.24 478I+339D 2.06 501Y+358W+493M 2.66 365W+390R+453K+384K 3.30 

 

The effect of multiple amino acid changes (see Table 2) is difficult to interpret as they may 
cause significant re-organization of the RBD. It is unclear whether continually improving 
binding affinity would translate to increased infectivity as other biological processes 
underpinning productive cell infection and proliferation may become limiting (e.g., furin 
cleavage, RBD presentation, or internalization efficiency). However, the computationally 
predicted potential to reach even more increased binding affinity may suggest a still untapped 
potential of SARS-CoV-2 to undergo additional immune evasion changes whose potentially 
detrimental effect on binding could be ameliorated by a set of improving amino acid changes. As 
seen in Table 2, the effect of adding amino acids changes is not always additive. There are many 
instances where the best double change variant combines an amino acid change with very high 
affinity and another with mild or even lower affinity. Tables S3, S4, S5 and S6 list corresponding 
results for different animals in SI Appendix. 

3. Discussion 

The introduced CNN_seq model overcomes the computational barriers associated with our 
previous NN_MD-MMGBSA procedure58 and at the same time unlocks the opportunity to 
consider amino acid changes throughout the entire RBD as well as ACE2 receptor during model 
training. The enlarged (by about 80-fold) training set affords the CNN_seq model to learn more 
effectively and potentially capture distal correlations. Meanwhile, the improved efficiency and 
accessibility of feature encoding expand the range of possible variants that can be assessed for 
binding affinity changes with human and animal ACE2s. 
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    Focusing on the Omicron variant as an exemplar application, the CNN_seq model delineated 
the role of mutations as binding improving and/or immune escaping108,109. In addition, given that 
it is intractable to exhaustively assess the binding affinity changes in response to two or more 
amino acid changes experimentally, the CNN_seq model could serve as a computational 
alternative for the a priori assessment of possible epistasis and synergistic effects.104 In addition, 
pre-calculation of very high binding affinity variants involving multiple amino acid changes 
using CNN and continuous surveillance of circulating variant databases could offer an alert 
system whenever an emerging variant is becoming sequence-adjacent to a computationally 
predicted problematic variant. This could become part of a surveillance system to flag variant 
amino acid changes seen in human or animal hosts that upon one or more additional changes 
could become a particularly problematic variant. 

4. Methods 

Homology modeling using Swiss-Model. Homology modelling was performed using SWISS-
Model. For each animal, the sequence of specific ACE2 was concatenated with that of SARS-
CoV-2 spike RBD, and loaded into the server interface. A representative subset of the template 
structures can be automatically extracted from the database through multiway alignment. 

Refinement of homology models using molecular dynamics simulations. The structures of 
homology models were refined through MD simulations. Each RBD-ACE2 complex structure 
was first prepared using protein preparation wizard of Maestro in Schrödinger suite (v2019.4), 
and subsequently solvated in an orthorhombic box with 10 Å buffer in all three dimensions. The 
TIP3P model110 was chosen for water molecules and the whole system was neutralized by adding 
Na+ and Cl− ions to reach a salt concentration of 0.15 M. The Amber99SB-ILDN force field111 
was used to account for the interactions of proteins, while the interactions between protein and 
water molecules were automatically generated by the Desmond force field building tool Viparr. 
The solvated system was minimized and equilibrated following the default relaxation protocol of 
Desmond112, and a 100-ns production run was subsequently conducted to fully relax and 
optimize the structure of the RBD-ACE2 complex. The production run was performed in 
isothermal-isobaric (NPT) ensemble with periodic boundary conditions applied in all three 
dimensions, and a temperature of 300 K and a pressure of 1.0 atm was maintained. A time step 
of 2.0 fs was set to integrate the equations of motion, particle mesh Ewald method was used to 
describe the long-range interactions, and a cutoff distance of 9.0 Å was applied in the calculation 
of non-bonded short-range interactions. The convergence of the system was verified by 
monitoring the RMSD of the simulation run. For all RBD-ACE2 complexes, the RMSD values 
kept below 1 Å in the final 100-ns of the production run, suggesting convergence of the structure 
optimization. 

Generate distance map based on structure using Protein Contact Maps. Since the base 
structure of each RBD-ACE2 complex requires only one optimization, we prepared the protein 
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contact map and used it as the constant input during CNN model construction. The protein 
contact map can be generated by utilizing the Protein Contact Maps tool developed by Benjamin 
et al. Each optimized RBD-ACE2 complex structure was loaded into the online server and the 
outputs were the contact map and the distance map associated with the individual input structure. 
The obtained binary two-dimensional matrix distance map is indexed following the provided 
protein sequence and will be accessed in CNN feature encoding process. 

Identification of protein-protein interfacial contacts using PDBePISA. Protein Data Bank in 
Europe (PDBe) offers a web tool PISA (i.e., Proteins, Interfaces, Structures and Assemblies) to 
help access the interfacial interactions between proteins. By loading the optimized RBD-ACE2 
complex structure into the PISA server, the interfacial contact information can be promptly 
generated. Among the rich output content, we take the interfacial residues, the contact pairs and 
the distances for hydrogen bonds or salt bridges. This information is used in CNN feature 
encoding process to label whether a specific residue is at interface or involved in hydrogen bonds 
and salt bridges, such that the weight of the feature could be adjusted independently.  

Dataset generation. The total number of all available ACE2 and RBD variants sum up to 93,669. 
There are predominantly more worsening (97.02%) than improving (2.38%) or neutral (0.60%) 
variants. Absorbing all of the variants will create imbalanced dataset that may result in models 
with poor performance. To tackle this problem, we chose to include all the improving variants 
with up to six amino acid changes from the RBD and ACE2 variants, and randomly picking three 
times as many worsening or neutral variants accordingly. This process creates a dataset of 8,440 
variants where the number (percentage) of improving, worsening, neutral variants are 2,212 
(26.21%), 5,667 (67.14%), 561 (6.65%), respectively. This dataset contains 6,105 (72.10%) 
variants with RBD mutations, 2335 (27.90%) variants with ACE2 mutations, 1341 (15.89%) 
variants with single amino acid changes, and 7099 (84.11%) variants with multiple amino acid 
changes. 

Hyperparameter optimization. The Bayesian hyperparameter optimization was performed by 
utilizing the Hyperopt package (http://hyperopt.github.io/hyperopt) to achieve optimal 
performance of the CNN_seq model. The loss function for minimization was defined as: 

���� �  �%VC�������� 
 %VC����	���
��/10 � � MSE����	���
� 
 MSE���������/0.05       (1) 

    The loss function numerically evaluates the gap in performance of CNN_seq model on 
training and validation set, and the constants 10 and 0.05 were chosen to match the difference 
in %VC and MSE with a roughly equal contribution. A total of 50 iterations of optimization 
were performed to achieve the final set of hyperparameters that are summarized in Table S7 in SI 

Appendix. 

Model training, evaluation, and prediction. The model was trained with the objective function 
as the MSE between predicted and target KD,app ratio values. The Adam optimizer113 was used to 
perform the backpropagation and the training was performed for 5,000 epochs including the 
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entire training data in each batch. To measure the strength of correlation between experimental 
and predicted KD,app ratios, we calculate the Pearson correlation coefficient r, which is defined as: 

� �
∑�
��
���������

�∑�
��
���∑��������
                                                       (2) 

where xi and yi are the target and predicted value for the ith sample, and �� and �� are the mean 
value for all xi targets and yi predictions. Note that, due to classification ambiguity, variants with 
either target value or predicted value of KD,app ratio equals to 1 were excluded during the 
calculation of %VC, but all variants were included during the calculation of r. 

The final predictions of CNN_seq model in Table 1 are calculated using a single model trained 
on 100% of the variants selected from the full database. The variants in Table 1 were excluded 
from the training data so that a fair evaluation can be made. 

Rosetta calculations for ΔΔGbind prediction. To computationally assess the binding affinity of 
the Omicron-RBD with hACE2, we used rigorous molecular-mechanics based calculations using 
the Rosetta force-field. Assuming that the Omicron-RBD still binds to hACE2 at the same 
binding site as the WT-RBD, we first made the initial complex of Omicron-RBD-hACE2 by 
making all the 15 amino-acid changes.6 To account for structural re-arrangements of the mutated 
RBD in the complex, the initial complex was subject to 100 independent Relax trajectories. 
Harmonic constraints were used to prevent the structure from deviating significantly from the 
crystal structure. At the end of Relax, a gradient minimization is performed using lbfgs_armijo 
algorithm for 2000 steps after which the relevant metrics of binding were calculated using 
InterfaceAnalyzer. The binding energy, ΔG of the Omicron-RBD-hACE2 complex was then 
calculated as the average of dG_separated scores obtained from the 100 Relax simulations.  
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Data Availability. Computational codes were developed in Python using the PyTorch library. 
All data pertaining to the results discussed in the paper are available either in the main text and 
SI Appendix. Relevant simulation codes for generating the models are deposited in the GitHub 
repository (https://github.com/maranasgroup/CNN_seq_CoV2). 
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