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Abstract 1 

Many social species are embedded on social networks, including our own. The structure of 2 

social networks shapes our decisions by constraining what information we learn and from 3 

whom. But how does the brain incorporate social network structures into learning and decision-4 

making processes, and how does learning in networked environments differ from learning from 5 

isolated partners? Combining a real-time distributed learning task with computational 6 

modeling, fMRI, and social network analysis, we investigated the process by which humans 7 

learn from observing others’ decisions on 7-node networks with varying topological structures. 8 

We show that learning on social networks can be realized by means similar to the well-9 

established reinforcement learning algorithm, supported by an action prediction error encoded 10 

in the lateral prefrontal cortex. Importantly, learning is flexibly weighted toward well-11 

connected neighbors, according to activity in the dorsal anterior cingulate cortex, but only 12 

insofar as neighbors’ actions vary in their informativeness. These data suggest a 13 

neurocomputational mechanism of network-dependent filtering on the sources of information, 14 

which may give rise to biased learning and the spread of misinformation in an interconnected 15 

society.16 
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Social networks channel communication and route information transmission in human society1,2. By 17 
constraining what information we receive and from whom, the structure of social networks has 18 
substantial impacts on how we form beliefs and make decisions, and how collective opinion and 19 
behavior are shaped and propagated3-5. Although many studies have demonstrated the influence of 20 
social networks on political6, economic7, and social activities8 at the population level, the underlying 21 
neural and cognitive processes by which individuals incorporate information from connected peers 22 
remain to be explored. Answers to this question would shed light on the mechanisms of social learning 23 
and decision-making in a wider and more ecologically-relevant context, and help understand collective 24 
maladaptation––such as herding9 and misinformation propagation10––in terms of the computational 25 
challenges faced by individuals trying to process entangled information in an interconnected society. 26 
 27 
A natural candidate for investigating learning on social networks from a neurocognitive perspective is 28 
the computational framework of reinforcement learning (RL)11. RL theories have been highly successful 29 
in connecting the cognitive and neurobiological bases with a broad range of behaviors12-14, including 30 
learning from social partners15-20. Despite its successes, the standard RL framework provides an 31 
incomplete account of learning in complex, interconnected environments. Consider, for example, the 32 
classic observational learning task20-23, where an individual learns from the decisions of multiple 33 
observees performing the same task as the observer. Prior RL-based research has typically assumed that 34 
the actions of different observees constitute independent learning signals, which can be statistically 35 
aggregated as an unbiased estimator for the common, unknown state of the environment for the 36 
observer20,23,24. Contrary to this assumption, however, substantial evidence in the social network 37 
literature suggests that choices selected by connected peers are often interrelated and vary in their 38 
informativeness25,26. Blindly relying on the conventional RL strategy without considering the 39 
underlying connections that spread social influences is essentially ignoring the potential variations and 40 
repetitions in social signals and can be detrimental to adaptive behavior in an interconnected 41 
environment27. Nevertheless, extant data suggest that social animals embedded in complex interaction 42 
webs demonstrate some level of sensitivity to the topological features of their immediate social 43 
environments28,29, leaving open whether and how relevant structural information is incorporated into 44 
the learning processes. 45 
 46 
Theoretically, the social learning literature has proposed two classes of models to address the network 47 
effect. Normative strategies, such as Bayesian learning, assume that individuals rationally use the 48 
knowledge of the network structure to optimally distinguish between learning signals, filter out 49 
potential correlations in those signals, and integrate only the new piece of information into belief with 50 
the Bayes’ rule7,30. Despite its theoretical appeal, converging evidence suggests that Bayesian learning 51 
is cognitively unrealistic due to its excessive computational demand even on networks with relatively 52 
simple structures30. Naïve strategies, such as DeGroot learning, take an opposite, heuristic approach31. 53 
Although these models do not optimally adjust for signal heterogeneity and interdependency and 54 
sometimes lead to incorrect consensus among network members7,30, they provide simple quantitative 55 
accounts for how network geometry may affect learning. For instance, the now canonical DeGroot 56 
learning theory posits that learning on a network can be approximated by a Markov process driven by 57 
a weighted average of signals received from network neighbors. The weight used for signal aggregation 58 
reflects how strongly a particular individual is influenced by a neighbor, and has been linked 59 
theoretically to the network structure based on the limiting property of Markov processes32. However, 60 
no direct evidence is available for the bounded rational assumption at the heart of the naïve learning 61 
theories or for whether and how the underlying neurocognitive operations related to social influence 62 
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are affected by network structures in ways that translate to trial-by-trial (rather than asymptotic) 63 
behavior30,33.  64 
 65 
We hypothesized that the process by which the brain learns from networked environments could be 66 
characterized by incorporating the DeGroot heuristics into the RL framework. In the context of learning 67 
observationally from others’ decisions, the proposed DeGroot-RL model stands on the following three 68 
hypotheses that together enable us to delineate the rich network interactions in a quantitative yet 69 
neurobiologically-plausible manner. First, similar to the previous temporal difference algorithms of RL 70 
widely used in nonnetworked settings11, the DeGroot-RL model assumes that the brain integrates 71 
information across social observations by maintaining and updating an internal expectation signal. 72 
Learning from an action of a particular neighbor is driven by an action prediction error (aPE) between 73 
the observed and expected choice of this neighbor, weighted by a learning rate.  74 
 75 
Second, the networked environment affects learning by differentially modulating the learning rate. 76 
Motivated by prior data on social influence that a well-connected individual has greater influence on 77 
her peers and is less susceptible to others’ opinion34, the DeGroot-RL model posits that the extent to 78 
which one learns from an observed action scales with the observee’s network connectedness, relative 79 
to that of the observer. Under this assumption, the brain needs to flexibly adjust the learning rate based 80 
on network locations, possibly according to signals related to the observee’s and observer’s degree 81 
centralities (i.e., the number of individuals to whom one is directly connected on a network), one of the 82 
most fundamental metrics for local prominence and immediate influence in social network analysis2.  83 
 84 
The third hypothesis, derived from the DeGroot heuristics, postulates that the degree-modulation effect 85 
on learning may vary systematically over the course of information circulation, contingent on whether 86 
social observations differ in their informativeness30. For example, when individuals learn from others' 87 
firsthand, isolated information, the DeGroot-RL model will reduce to the standard RL-like algorithm 88 
for observational learning21,22, whereby an observer is equally influenced by the received information 89 
regardless of the differences in observees’ network locations or properties. In contrast, when learning 90 
from others’ secondhand, possibly heterogeneous and intertwining information, the strength of learning 91 
will be modulated by the relative degree centrality between the observee and the observer on the 92 
network. Under this hypothesis, the brain needs to process network-related information flexibly, 93 
according to its relevance to learning.  94 
 95 
To assess these hypotheses and elucidate the neural and cognitive process related to the proposed 96 
DeGroot-RL algorithm, we used functional magnetic resonance imaging (fMRI) in conjunction with a 97 
distributed learning task for observational learning30,35,36 that was adapted from economic studies of 98 
information cascade37 and housed in a variety of exogenously given, 7-node, undirected, and 99 
unweighted networks. This task is simple enough to carry out in a controlled fMRI experiment with a 100 
reasonably large number of individuals interacting with one another in real time, yet it retains important 101 
features of opinion adaptation under social influence. Moreover, rather than focusing on a handful of 102 
special networks as in prior behavioral experiments3,30, we investigated the proposed model on a 103 
relatively large variety of network structures that were preselected based on the separability of choice 104 
behavior simulated by different learning models (Methods).  105 
 106 
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 107 
Fig. 1 | Distributed learning game and the DeGroot-RL model. (A) Task schematic. Each distributed learning game is 108 
initialized by randomly assigning subjects to different nodes on a new network and selecting one of two bags that contain 109 
yellow and blue balls with opposing ratios (5:2 vs. 2:5). Each subject, who does not know which bag was selected, privately 110 
draws a ball from the same selected bag with replacement, and needs to infer whether the underlying bag contains more blue 111 
or yellow balls in a series of decisions. All subjects are instructed that the chance of drawing a blue/yellow ball is either !

"
 or 112 

#
"
, independently and identically distributed across all members embedded on the same network. After initialization, subjects 113 

are presented with the structure of the network (common for all network members; Display), one’s own network location (red 114 
circle in Display), and the ball privately drawn from the bag (top left corner in Display). Subjects are then simultaneously 115 
asked to decide between two candidate bags (Initial guess), followed by three stages of observational learning (S1–S3). At 116 
each stage, a participant is presented with the most recent decisions by her immediate neighbors (Observations) and then 117 
provided with an opportunity to reassess her previous decision (Revision). To facilitate the visual tracking of neighbors’ choices 118 
on a network display while counterbalancing the influence of observation order, neighbors’ choices are revealed sequentially, 119 
in a clockwise order, starting from a randomly-selected neighbor that varies across stages and between subjects. All 7 120 
participants played the same game in real time from their respective network locations, with no feedback on the choice 121 
accuracy during the experiment (Methods and Supplementary Video 1). (B) Learning dynamics on an example network, which 122 
also serves to illustrate possible misinformation propagation on the network. Left: the underlying bag selected by the computer 123 
and the private signals given the selected bag. Right: Simulated and actual choices on the network. Color in each node 124 
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represents a simulated choice (model prediction) or the frequency of actual choices (data) over bags containing more blue or 125 
yellow balls. While the Bayesian learning, baseline-RL, and DeGroot-RL models make similar predictions in the initial guess 126 
and S1 estimation, they differ sharply in S2 and S3 predictions, with the DeGroot-RL predictions best aligned with the actual 127 
choice frequencies of all participants on this network. Notably, this example also demonstrates a scenario in which network 128 
members reach an incorrect consensus under the DeGroot-RL strategy. Unlike rational Bayesian learners, who gradually form 129 
a consensus on the correct underlying state, both the simulated DeGroot-RL agents and actual participants converged toward 130 
the wrong estimation, biased by the inaccurate information from the central, most-connected individual on the network (see 131 
also Extended Data Fig. 4 for model simulation on all networks in the study). (C) DeGroot-RL model illustration. Left: An 132 
example illustrating the stage-varying information in an observed action. While an S1 observation reflects the neighbor’s 133 
private signal, an observation in S2 or S3 additionally signals what the neighbor has previously learnt from her neighbors. 134 
Right: Stage-dependent, degree-modulated learning. Upon observing an action from a neighbor, the belief expectation about 135 
the unknown state (𝐸%&') is updated through an action prediction error (aPE), defined as the discrepancy between the observed 136 
and expected action. Learning in S1 follows the typical RL setup where the aPE signal is scaled by a baseline learning rate 137 
(𝛼). In S2 and S3, however, aPE signals are weighted by the learning rate (𝛽) and relative degree (RD), with the latter being 138 
defined as the degree centrality of the observee relative to the total degree of the observer and all her direct neighbors on the 139 
network (Methods). Variants of DeGroot-RL formulations such as alternative learning rate specifications and RD definitions 140 
were evaluated against the proposed model in Methods. 141 
 142 

Results 143 

A distributed learning game. A total of 217 unique subjects (31 fMRI participants) participated in the 144 
experiment in groups of 7 (1 inside the fMRI scanner; 209 included in data analyses with 25 fMRI 145 
participants; see Methods for subject exclusion). The experiment consisted of 40 separate games on 146 
varying networks (Extended Data Figs. 2-3; Methods). In each game, a participant’s goal was to infer 147 
an unknown state of the environment, which was common to all 7 participants in the game. At the 148 
beginning of a game, 7 subjects were randomly assigned to different nodes on a new network, and a 149 
computer selected one of two underlying states at random. Each subject received a private signal that 150 
was independently and identically distributed conditional on the same selected state, and needed to 151 
make an initial guess about the underlying state (Fig. 1A and Extended Data Fig. 1; Methods). We 152 
hypothesized that a subject should rationally base her estimation on the private signal in this decision. 153 
The prediction was confirmed by our data, in which 98.34 ± 5.12% (mean ± intersubject SD) initial 154 
estimations matched subjects’ private signals. 155 
 156 
Critical for the purpose of this study, the participants were then allowed to revise their estimations in 157 
response to the choices previously selected by the neighbors to whom each was directly connected on 158 
the network. To allow for meaningful fMRI analyses, a subject was presented with her direct neighbors’ 159 
prior decisions sequentially, one at a time, such that her neural responses could be directly linked to the 160 
action and network location of a particular observee (Fig. 1A and Extended Data Fig. 1; Methods). To 161 
allow for examining learning effects, the process of observing neighbors’ actions and reassessing one’s 162 
estimation was carried out 3 times consecutively within each game (henceforth Stages 1-3, or S1, S2, 163 
and S3; Fig. 1A).  164 
 165 
Of note, 7 participants played the same game simultaneously, from their respective network locations 166 
via an intranet. That is, the participants were facing the same underlying state, the same network 167 
structure and display, and were making decisions at the same time in each game. Crucially, when a 168 
participant was witnessing her neighbors’ choices, her neighbors were also presented with the choice 169 
information from their respective neighborhoods (see illustration in Supplementary Video 1). Under 170 
such a real-time distributed learning setup, information received by an observer is incorporated into the 171 
observer’s subsequent decision and propagated gradually from the observer to her direct and indirect 172 
contacts along network connections in the later stages of the game. Throughout the experiment, all 173 
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subjects were financially incentivized to guess as accurately as possible in all 4 decisions in each game 174 
(i.e., initial guess and 3 reassessments) and had no incentive to mislead or collude with others. No 175 
feedback was provided on the accuracy of estimations during the experiment, so that the only 176 
information a subject could rely on in a game was her private signal and the actions by her direct 177 
neighbors on the network (Methods). 178 
 179 
This real-time, distributed learning game has two properties important for evaluating the DeGroot-RL 180 
model at the neurocomputational level. First, the three learning stages (S1–S3) were set up identically 181 
in each game (but with randomized observation order to control for potential order effects; Methods). 182 
This feature allowed us to evaluate the first DeGroot-RL hypothesis that subjects learned from 183 
neighbors’ actions in an error-driven manner and did so consistently across S1, S2, and S3. Second, 184 
despite their identical experimental setups, three learning stages differed in the type of information 185 
contained in neighbors’ actions. Unlike S1 observations, which reflect observees’ independent private 186 
signals, an S2 or S3 observation would additionally signal what the observee has learned from her 187 
neighbors (Fig. 1C, left), thereby becoming relatively more informative to the specific observer when 188 
the observee is better-connected and the observer is less-connected. Given this feature, the last two 189 
DeGroot-RL hypotheses led to a precise and testable prediction for the experiment––that is, learning 190 
from network neighbors might be modulated by the degree centrality of the observee relative to the 191 
observer in S2 and S3, but not in S1.  192 
 193 
According to these predictions, we should expect not only the stage-dependent degree-modulation 194 
effect at the behavioral level, but also the differential involvement of neural signals of aPE and relative 195 
degree centrality––two core computational components in the DeGroot-RL model (Fig. 1C, right)––in 196 
the learning process. We predicted that there should be brain regions that track the aPE-related signals 197 
nonselectively in S1, S2, and S3, as well as brain regions that respond to signals associated with the 198 
relative degree centrality in S2 and S3, but not in S1. 199 
 200 
Learning behavior was modulated by degree centralities in S2 and S3, but not in S1. Behaviorally, 201 
participants in the experiment adapted their decisions in response to neighbors’ choices, such that the 202 
level of consensus within a network grew from 61.21 ± 1.29% (mean ± intergroup SD) in the initial 203 
guess to 88.10 ± 3.03% in the last (S3) decision, with no significant difference in the level of consensus 204 
changes across games between the early and late parts of the experiment (Pearson’s correlation between 205 
consensus change and game order: r = -0.05, P = 0.093; see also Extended Data Fig. 6 for behavioral 206 
dynamics in choice accuracy and more). To characterize the overall learning effect and evaluate 207 
DeGroot-RL predictions, we first performed model-free logistic regression analyses in each separate 208 
stage, to examine the extent to which the likelihood of participants altering their choices was influenced 209 
by social observations, and whether the strength of influence was modulated by the degree centralities 210 
of the observees and observers. We hypothesized that the likelihood that a participant aligned her 211 
estimation to an observation would be positively associated with the neighbor’s degree centrality (ND) 212 
but negatively associated with the observer’s own degree (OD) in S2 and S3, but not in S1.  213 
 214 
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 215 
Fig. 2 | Behavioral evidence supporting the DeGroot-RL model. (A) Neighbor’s degree centrality (ND) modulates learning 216 
in S2 and S3, but not in S1. Logistic regression tests the probability of an observer modifying her previous estimation against 217 
the (unweighted) sum of observations (left) and the weighted sum of observations, with each respective neighbor’s degree 218 
serving as the weight (right). The ND-weighted regressor was orthogonalized against the unweighted regressor to remove 219 
shared variances. Top: the probability of changing a decision as predicted by the logistic regression estimates at each stage. 220 
Bottom: fixed-effects regression coefficients and SEM for the unweighted and ND-weighted sum of observations (depicted by 221 
error bars), overlaid by the random-effect coefficient associated with each observer (depicted by dots). Each dark/light dot 222 
represents an fMRI/behavioral participant. (B) Observer’s own degree centrality (OD) is negatively associated with the 223 
susceptibility to social observations in S2 and S3, but not in S1. The top and bottom panels show results from logistic regression 224 
testing the likelihood of changing one’s estimation in response to social observations, when an observer is highly vs. poorly 225 
connected. For the illustration purpose, large and small ODs were defined by median splits on OD across networks for each 226 
participant. (C) Comparisons of in-sample model fits using the Bayesian Information Criterion (BIC) of each participant show 227 
that DeGroot-RL explains behavioral choices better than Bayesian and baseline-RL (paired t-test, DeGroot-RL vs. baseline-228 
RL, mean ± SEM = -11.58 ± 0.68, t208 = -17.07, P < 10-15; DeGroot-RL vs. Bayesian, -16.02 ± 1.14, t208 = -14.05, P < 10-15; 229 
see also Extended Data Fig. 5 for Bayesian model selection). Participants are sorted by the BIC score of the model that best 230 
explains choices. Inset: Out-of-sample prediction accuracy is superior for the DeGroot-RL model compared with Bayesian 231 
and baseline-RL models in S2 and S3. The observed difference in the prediction accuracy in S1 between DeGroot-RL and 232 
baseline-RL likely reflects the fact that the model parameters governing S1 predictions (e.g., 𝛼	and inverse temperature) were 233 
set to maximize the likelihood of choices across all stages (rather than S1 only) and thus were affected by model configuration 234 
and estimation in other stages. (D) Across-subject correlation between model-free and model-based results. Individual BIC 235 
differences between DeGroot-RL and baseline-RL (x-axis) are plotted against the individual model-free estimates for ND (left) 236 
and OD (right) effects, respectively, exploiting the fact that the DeGroot-RL model differs from the baseline-RL model only 237 
in the assumption regarding the degree-modulation effect in S2 and S3 (see model setup in Fig. 1C and Methods). The model-238 
free ND effect (y-axis, left) is captured by the coefficient of individual random effects with respect to the ND-weighted sum 239 
of observations (as shown by the dot in the bottom-right panel in Fig. 2A), averaged across S2 and S3 within each subject. 240 
The OD effect (y-axis, right) reflects the coefficient of individual random effects for OD ´ ND-weighted sum observations (as 241 
shown by the within-subject difference between the orange and grey dots in the bottom-right panel in Fig. 2B), averaged across 242 
S2 and S3 within each subject. A more negative OD effect (y-axis, right) corresponds to a more prominent reduction in the 243 
susceptibility to social influence as OD increases. These correlations remained significant when analyzing the across-subject 244 
association for S2 and S3 separately (Pearson’s correlation between DBIC and ND effect in S2, r = 0.62, P < 10-15, in S3, r = 245 
0.32, P < 10-5; correlation between DBIC and OD effect in S2, r = -0.62, P < 10-15, in S3: r = -0.14, P = 0.039). Consistent 246 
results were also found after partialing out the variance shared between the model-free OD and ND estimates (partial 247 
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correlation between DBIC and ND effect, 𝜌 = 0.44, P < 10-10; DBIC and OD effect, 𝜌 = -0.25, P < 0.001). Error bars represent 248 
SEM. *** P < 0.001, n.s., not significant, Bonferroni-corrected when appropriate.  249 
 250 
To assess the impact of ND, we summarized the sequence of observations revealed to a subject at each 251 
stage of each game, using two variables: (i) sum of observations across all direct neighbors (1, if an 252 
observed action differs from the observer’s previous choice; otherwise, -1), and (ii) weighted sum of 253 
observations across all direct neighbors, with the respective neighbor’s degree serving as the weight. 254 
The inclusion of the unweighted and ND-weighted regressors helped to isolate the degree-modulation 255 
effect of interest from a baseline tendency of following the majority, a phenomenon widely reported in 256 
studies of group decision-making9,38. To remove any shared variances between the two regressors, we 257 
orthogonalized the ND-weighted regressor against the unweighted regressor, such that choices that were 258 
equally explainable by the two variables were attributed solely to the unweighted regressor. The 259 
regression coefficient for the ND-weighted sum of observations, therefore, served as a more stringent 260 
test on whether ND modulated learning. 261 
 262 
Consistent with our hypothesis, mixed-effects regression conducted separately for each learning stage 263 
showed that the likelihood of a participant modifying her decision was positively correlated with not 264 
only the unweighted sum of observations, but also the ND-weighted sum of observations, in both S2 265 
and S3 (Fig. 2A; sum of obs. in S2: 𝛽 ± SEM = 3.26 ± 0.14, z = 23.40, P < 10-15; sum of obs. in S3, 𝛽 266 
= 2.58 ± 0.15, z = 16.91, P < 10-15; ND-weighted sum in S2: 𝛽 = 1.51 ± 0.10, z = 15.68, P < 10-15; ND-267 
weighted sum in S3: 𝛽 = 1.22 ± 0.09, z = 14.10, P < 10-15). The positive effects suggested that, in 268 
addition to following the majority, subjects were more likely to be swayed toward the decisions of 269 
highly connected neighbors, relative to those of poorly connected neighbors embedded on the same 270 
network. In stark contrast, in S1, the ND-weighted regressor showed no extra explanatory power above 271 
and beyond the unweighted regressor in predicting participants’ subsequent choices (Fig. 2A; sum of 272 
obs. in S1, β = 3.26 ± 0.19, z = 16.81, P < 10-15; ND-weighted sum in S1, β = 0.04 ± 0.06, z = 0.63, P = 273 
0.528; see also Supplementary Table 2A for full regression results). 274 
 275 
To assess how learning was biased by a participant’s OD, we further compared the influence of the ND-276 
weighted sum of observations on the observer’s subsequent decision when the observer was endowed 277 
with high vs. low degree centrality. Specifically, we carried out separate mixed-effects logistic 278 
regression for S2 and S3, testing the probability of an observer modifying her decision against the 279 
following variables: OD, ND-weighted sum of observations, and the interaction between these two 280 
variables. These analyses showed positive main effects for both the OD and ND-weighted regressors 281 
(Supplementary Table 2C). More importantly, and consistent with the DeGroot-RL prediction, a 282 
negative interaction was seen between these variables in both S2 and S3 (Fig. 2B; interaction in S2: β 283 
= -1.10 ± 0.11, z = -9.69, P < 10-15; S3: β = -1.00 ± 0.09, z = -11.43, P < 10-15), suggesting a decreased 284 
susceptibility to social observations when a participant was highly relative to poorly connected. This 285 
result was not due to the specific way of summarizing the sequence of observations within each stage 286 
and remained significant when examining the interaction between OD and the unweighted (rather than 287 
ND-weighted) sum of observations (Supplementary Table 2B). In S1, by comparison, no systematic 288 
variation was observed in participants’ susceptibility to neighbors’ actions with their OD, as revealed 289 
by a similar regression analysis for the likelihood of altering one’s decision against variables of OD, 290 
unweighted sum of observations, and the interaction between the two (Fig. 2B; interaction in S1: β = 291 
0.15 ± 0.17, z =0.92, P = 0.357; see also Supplementary Table 2B).  292 
 293 
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The DeGroot-RL model characterized learning behavior better than alternative models. To more 294 
formally test the DeGroot-RL predictions and derive latent variables that might reflect neurocognitive 295 
operations underlying learning on networks, we fit the DeGroot-RL model with each participant’s 296 
choice behavior (Methods). As shown in Fig. 1C, our proposed DeGroot-RL model assumed that the 297 
S2 and S3 learning rate was modulated by a measure of relative degree (RD), defined as the observee’s 298 
degree with respect to the total degree of the observer and all her direct neighbors on the network 299 
(Methods). The normalization term in RD reflected the mathematical requirement that a learning rate 300 
should be no greater than 1, although the alternative specification using the observer’s degree as the 301 
denominator yielded similar results (Methods and Supplementary Table 1).  302 
 303 
We compared the proposed DeGroot-RL model against two benchmark models: a baseline-RL model, 304 
which assumed that the network-related information was completely ignored throughout learning, and 305 
a Bayesian learning model, which assumed that the information regarding the network structure was 306 
rationally used by all participants (Methods). It is worth noting that the DeGroot-RL model differed 307 
from the Bayesian and baseline-RL models in predicting choices mainly in S2 and S3, but was similar 308 
to those models in S1, such that all three models predicted the unweighted, rational integration of S1 309 
observations30 (Methods; see also Fig. 1B for an example).  310 
 311 
We computed both the Bayesian Information Criterion (BIC) based on the in-sample model fit and out-312 
of-sample prediction accuracies using a five-fold cross-validation procedure (Methods; see also 313 
Supplementary Table 3 for model estimation results). Both measures showed that the DeGroot-RL 314 
model outperformed the alternative models. In particular, the DeGroot-RL model had a lower BIC 315 
(better fit) than the alternative models (Fig. 2C; DeGroot-RL = 20407.41; baseline-RL = 22827.97; 316 
Bayesian = 23755.10), with its BIC score being the lowest in more than 78% of participants (164 out 317 
of 209 participants; see also Extended Data Fig. 5 for Bayesian model selection). Based on the 318 
prediction accuracy computed from holdout samples, the DeGroot-RL model predicted subjects’ 319 
behavior with an accuracy of 75.29 ± 0.62% (mean ± intersubject SEM, averaged over all four decisions 320 
within each game), which was significantly higher than that from the baseline-RL model (paired t-test, 321 
t208 = 15.38, P < 10-15) and the Bayesian learning model (t208 = 15.87, P < 10-15; see also Extended Data 322 
Fig. 5). This increase in the prediction accuracy was largely contributed by the improved prediction in 323 
both S2 and S3, rather than an enhancement coming from either S2 or S3 alone (inset, Fig. 2C). 324 
 325 
Importantly, choice simulation based on the DeGroot-RL model estimates could successfully recover 326 
the model-free patterns in each learning stage (Extended Data Fig. 7). In contrast, simulations from the 327 
Bayesian and baseline-RL models––even with the best-fitting parameters calibrated on choice 328 
behavior––failed to capture key behavioral features in S2 and S3, such as the ND and OD effects 329 
revealed by the logistic regression analyses of the actual data (Extended Data Fig. 7). Besides the 330 
aggregate choice patterns, the DeGroot-RL model estimates were also consistent with the model-free 331 
analyses at the across-subject level, such that subjects whose behavior was better characterized by 332 
DeGroot-RL showed a more pronounced behavioral sensitivity to both ND and OD in S2 and S3, as 333 
measured by the respective logistic regression estimates for individual participants (Fig. 2D).  334 
 335 
Besides individual choices, the proposed DeGroot-RL model also captured the variations in other 336 
behavioral measures, including choice difficulty as reflected by participants’ reaction time, the 337 
dynamics of choice consensus, and the trajectory of estimation accuracy (Extended Data Fig. 6). In 338 
addition to the Bayesian and baseline-RL models, the proposed model also outperformed a range of 339 
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alternative models that could account for participants’ choices based on assumptions differing in either 340 
which network measure (rather than RD) might modulate learning or how RL parameters were specified 341 
in the model (Methods and Supplementary Table 1). Finally, to address the potential concern regarding 342 
the between-network variations in learning behavior, we conducted model estimation for each network 343 
(pooling over subjects), and observed similar results using both the in-sample and out-of-sample 344 
measures for goodness-of-fit at the across-network level (Methods and Extended Data Fig. 5). 345 
 346 

 347 
Fig. 3 | Right lateral prefrontal cortex (rLPFC) tracks the value estimate of action prediction error (aPE) in S1, S2, and 348 
S3. (A) Statistical parametric map with respect to aPE estimates at observation onsets, computed by averaging the GLM1 349 
coefficients for aPE estimates across S1, S2, and S3 for each subject and then taking them into the standard random-effects 350 
group analysis (peak voxel Montreal Neurological Institute (MNI) coordinates: x, y, z = 60, 11, 23; cluster-wise family-wise-351 
error(FWE)-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001). (B) rLPFC cluster demonstrates similar effect 352 
sizes for individual aPE estimates across stages. Left: Violin plots for the distribution of individual rLPFC beta values for aPE 353 
estimates, separately extracted for each stage from the significant rLPFC cluster as identified in Fig. 3A. Each dot represents 354 
a subject. Each circle represents a group mean. Right: Mean fMRI activity extracted from the same rLPFC cluster and binned 355 
by aPE estimates in each separate stage. Similar results were obtained by a whole-brain paired comparison, showing that no 356 
significant cluster differentially responded to aPE estimates across stages at cluster-wise FWE-corrected P < 0.05. N.s., not 357 
significant. Error bars represent intersubject SEM. 358 
 359 
Right lateral prefrontal cortex (rLPFC) tracked aPE estimates in S1, S2, and S3. Having 360 
established the DeGroot-RL model at the behavioral level, we then investigated whether fMRI activity 361 
reflected key computational components of the model, including aPE and RD, on an observation-by-362 
observation basis, at the time when participants were presented with a neighbor’s action. We also tested 363 
whether the neural responses to the aPE and RD signals would demonstrate differential stage-related 364 
patterns, as predicted by the DeGroot-RL model. We conducted a standard general linear model (GLM) 365 
analysis on fMRI data, entering the value estimate of aPE associated with each observed action derived 366 
from the best-fitting DeGroot-RL model for each individual, together with the RD value associated with 367 
the respective observee and observer, at the observation onsets of the corresponding learning stage 368 
(GLM1, Methods). Parametric regressors were orthogonalized against one another in all GLM analyses 369 
in the present study, such that the regression coefficients captured the variations in blood-oxygen-level-370 
dependent (BOLD) signals in the specific brain regions that were uniquely explained by each regressor, 371 
rather than the shared variances. 372 
 373 
As we were particularly interested in evaluating whether there were any brain regions consistently 374 
tracking aPE estimates across three learning stages, we averaged the GLM1 coefficients of the aPE 375 
estimates across stages for each subject before taking them into the group-level analyses. This identified 376 
significant neural responses in the rLPFC (Fig. 3A; see also Supplementary Table 5 for full activation 377 
including the middle temporal gyrus and visual cortex), which has been previously implicated in 378 
representing notions of prediction error signals in action observation learning21,22,24 and as part of the 379 
“mirror” system encoding the executed and observed actions in a range of interpersonal scenarios39. 380 
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Rather than being driven by a simple effect such as the correlation with the observed action, activity in 381 
the identified rLPFC cluster reflected both computational components in an aPE signal: It scaled 382 
positively with the observed action (1 if the observation matches the observer’s previous decision; 𝛽 = 383 
0.23 ± 0.04, t24 = 5.29, P < 0.0001; Extended Data Fig. 8), but negatively with the observer’s expectation 384 
about the underlying state (𝛽 = -0.12 ± 0.06, t24 = -2.23, P = 0.036; Extended Data Fig. 8). As a 385 
robustness check, we tested additional decision variables that might be related to the processing of 386 
social observations, including color selected by the observee (yellow/blue), order in which the 387 
neighbor’s action was presented in the particular stage of the game, and the consensus level among 388 
network members at the beginning of the stage (GLM2, Methods). The observed rLPFC encoding could 389 
not be attributed to any of these variables and remained significant with the inclusion of these variables 390 
as regressors of no interest in one regression model (cluster-wise family-wise-error(FWE)-corrected P 391 
< 0.05, with cluster-forming threshold uncorrected P (Punc.) < 0.001).  392 
 393 
Moreover, the rLPFC cluster stably tracked aPE estimates across S1, S2, and S3, demonstrating similar 394 
effect sizes across stages in the regression estimates (beta values) that were extracted from the 395 
significant rLPFC cluster for each separate stage (Fig. 3B, left; one-way repeated-measures ANOVA, 396 
F(2,48) = 0.55, P = 0.582). To illustrate this result, we also plotted the mean activity obtained from the 397 
rLPFC cluster as a function of four bins of ascending aPE estimates in separate learning stages and 398 
observed similar correlation patterns (Fig. 3B, right). This result was further confirmed by a whole-399 
brain within-subject comparison of the aPE correlates, in which we identified no significant cluster that 400 
responded differentially to aPE estimates across stages at cluster-wise FWE-corrected P < 0.05.  401 
 402 
In addition to aPE signals at observation onsets, we also tested for brain regions responding to other 403 
classic learning signals at the time of decision submission in each learning stage. Consistent with prior 404 
neuroimaging evidence, we observed activity in the orbitofrontal cortex (OFC) signaling the reward 405 
expectation estimate associated with the chosen option13,14, as well as activity in the anterior cingulate 406 
cortex (ACC) and the neighboring medial prefrontal cortex reflecting the model-derived probability of 407 
switching away from one’s prior estimation40 (Extended Data Fig. 9). Findings at the choice time, 408 
together with the aPE signals at the observation time, indicated an error-driven process similar to the 409 
temporal difference form of RL during action observation learning channeled by social networks. 410 
 411 
Dorsal anterior cingulate cortex (dACC) represented RD-related signals in S2 and S3. Next, we 412 
tested whether activity in any brain regions would reflect the observation-by-observation changes in the 413 
relative degree centrality between the observee and the observer (i.e., RD) at observation onsets, and 414 
did so stably across S2 and S3. Similar to the analysis of aPE signals, we first looked for the RD 415 
correlates by averaging the GLM1 coefficients for RD over S2 and S3 for each fMRI participant 416 
(Methods). This revealed a strong correlation in a network of brain regions, including the dorsal anterior 417 
cingulate cortex (dACC) extending to the adjacent presupplementary motor area (preSMA), precuneus, 418 
bilateral anterior insula, visual cortex, and other areas (Fig. 4A; see also Supplementary Table 5 for full 419 
activation list). The loci of activation in the dACC/preSMA were similar to those seen in the past 420 
experiments where subjects adjusted behavioral strategies, such as learning rate, in response to 421 
environmental changes41-45. Moreover, dACC activity demonstrated features consistent with the 422 
assumption that the relative rather than absolute value of degree centrality was involved in learning. 423 
Activity in the dACC simultaneously correlated with the neighbor’s degree (numerator in RD) and total 424 
local degree (denominator in RD), with opposing signs, at observation onsets in both S2 and S3. 425 
Specifically, this opposing correlation pattern was observed not only within a region of interest (ROI) 426 
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in the dACC independently defined using an automated online meta-analysis46 (Fig. 4B, right), but also 427 
in a whole-brain conjunction analysis across positive activation for neighbor’s degree and negative 428 
activation for the total local degree in S2 and S3 (Fig. 4A).  429 
 430 

 431 
Fig. 4 | Activity in the dorsal anterior cingulate cortex (dACC) correlates with the value of relative degree (RD) in S2 432 
and S3, but not in S1. (A) dACC shows RD-related signals on an observation-by-observation basis in S2 and S3. Regions 433 
shaded in yellow indicate clusters where activity significantly correlates with RD values at observation onsets in S2 and S3, 434 
calculated by averaging the GLM1 coefficients for RD across S2 and S3 for each participant and then taking them into the 435 
standard group-level analysis (cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001; see also 436 
Extended Data Fig. 10A for the extent of RD encoding). Regions shaded in red indicate clusters scaling both positively with 437 
neighbor’s degree (numerator in RD) and negatively with total local degree (denominator in RD) at observation onsets in S2 438 
and S3, as revealed by a whole-brain conjunction analysis for overlapping activation between the neighbor’s degree and total 439 
local degree (cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001; Methods). The conjunction 440 
result was computed by first averaging the individual GLM coefficients for neighbor’s degree (or total local degree; GLM4, 441 
Methods) across S2 and S3 in the same way we looked for the RD correlates, and then using the resulting statistical maps to 442 
test for overlapping activation between either (i) the positive encoding of neighbors’ degree and negative encoding of total 443 
local degree (shown in Fig. 4A), or (ii) the negative encoding of neighbors’ degree and positive encoding of total local degree 444 
(no significant overlap at cluster-wise FWE-corrected P < 0.05; Methods). (B) dACC region of interest (ROI), independently 445 
defined by Neurosynth46. Top-left: beta values with respect to RD extracted from the same independent ROI at observation 446 
onsets in separate learning stages (S1: 𝛽 = -0.43 ± 0.44, t24 = -0.99, P = 0.332; S2: 𝛽 = 2.41 ± 0.50, t24 = 4.85, P < 10-4; S3: 𝛽 447 
= 1.64 ± 0.56, t24 = 2.91, P = 0.008; one-way repeated-measures ANOVA, F(2,48) = 10.65, P < 0.001). Bottom-left: mean 448 
dACC activity binned by RD values in each stage. Error bars represent intersubject SEM. Right: Time-course analyses with 449 
respect to the neighbor’s degree and total local degree for each stage within the same independent dACC ROI. Vertical dashed 450 
lines indicate the observation onset. (C) Neural correlates of RD values at observation onsets in S1 (cluster-wise FWE-451 
corrected P < 0.05, with cluster-forming threshold Punc. < 0.001; see also Extended Data Fig. 12 for ROI analyses in S1). (D) 452 
Paired comparisons with respect to RD correlates across learning stages. Left: Clusters shaded in red show results of whole-453 
brain ANOVA analysis comparing RD correlates across S1, S2, and S3 within subjects. Clusters in yellow and black show 454 
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post hoc ANOVA analyses testing the stage effect by comparing the RD correlates in S2 vs. S1 (yellow) and S3 vs. S1 (black) 455 
(all cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001). Right: Post hoc paired comparison of 456 
RD correlates between S2 and S3. The only significant cluster locates in the middle frontal gyrus (MNI: x, y, z = 30, 5, 47; 457 
cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001). (E) Across fMRI subjects, the dACC beta 458 
values with respect to RD in S2 and S3, relative to that in S1, is positively correlated with the individually-estimated learning 459 
rate in S2 and S3, relative to that in S1. This effect was significant not only when we averaged the individual’s dACC beta 460 
over S2 and S3 (Pearson’s r = 0.62, P = 0.001), but also when we tested the effect in S2 and S3 separately, with no significant 461 
difference between these stages (S2: r = 0.52, P = 0.007; S3: r = 0.53, P = 0.006; S2 vs. S3: 𝛽 = -0.11 ± 0.25, t24 = 0.43, P = 462 
0.673). Each dot represents a subject. * P < 0.05, ** P < 0.01, *** P < 0.001, n.s.: not significant, Bonferroni-corrected when 463 
appropriate. 464 
 465 
Analyses further showed that the RD values explained dACC activity at observation onsets above and 466 
beyond a range of decision-related variables, including visual properties associated with the network 467 
display, nuisance effects arising from action observation, and cognitive components that might be 468 
related to learning or to other dACC functions implicated by previous studies. In particular, we 469 
performed another GLM analysis (GLM3, Methods), which additionally included the observee’s visual 470 
centrality in the network display (i.e., the Euclidean distance between the observee’s location and the 471 
visual center of the layout), the visual distance between the observee’s and observer’s location in the 472 
network display, order of observation display, color selected by the observee (yellow/blue), magnitude 473 
of aPE estimates, variance in attained observations within the current stage, level of conflict between 474 
social observations and the observer’s decision (i.e., the proportion of attained observations within the 475 
current stage that were different from the observer’s prior decision), updated belief expectation 476 
associated with the observer’s prior decision, and choice difficulty reflected by the distance in the belief 477 
expectation estimates between two choice options. None of these variables could explain the same 478 
portion of dACC activation as RD values and the observed parametric encoding of RD remained 479 
significant in the dACC, even after regressing out the influence of all these variables as regressors of 480 
no interest in the same GLM model (cluster-wise FWE-corrected P < 0.05, with cluster-forming 481 
threshold Punc. < 0.001; Extended Data Figs. 10-11).  482 
 483 
Moreover, activity in the dACC demonstrated similar response patterns to the RD values in S2 and S3. 484 
Neural betas separately extracted for S2 and S3 from the same independent dACC ROI were both highly 485 
significant and showed no systematic difference in their effect sizes (Fig. 4B; S2: 𝛽 = 2.41 ± 0.50, t24 = 486 
4.85, P < 10-4; S3: 𝛽 = 1.64 ± 0.56, t24 = 2.91, P = 0.008; S2 vs. S3: 𝛽 = 0.77 ± 0.72, t24 = 1.07, P = 487 
0.294). This result was further confirmed by a whole-brain within-subject comparison of RD correlates. 488 
Except for a cluster confined to the middle frontal gyrus (MNI: x, y, z = 30, 5, 47; Fig. 4D, right), we 489 
found no other cluster that responded differently to RD values in S2 vs. S3 at cluster-wise FWE-490 
corrected P < 0.05 (Fig. 4D, right).  491 
 492 
Activity in the dACC did not correlate with RD values in S1. By contrast, in S1, the same GLM1 493 
analysis revealed no significant correlation with RD values at observation onsets in the dACC or other 494 
frontal regions, in either positive or negative direction (Fig. 4C; cluster-wise FWE-corrected P < 0.05, 495 
with cluster-forming threshold Punc. < 0.001). Instead, we observed positive correlations with RD values 496 
in a circumscribed cluster in the posterior cingulate cortex (PCC), and negative correlations restricted 497 
to the precuneus and visual cortex (Fig. 4C and Extended Data Fig. 12). The identified regions in the 498 
PCC and precuneus have been recently implicated in encoding features of real-world social networks, 499 
even when such network features were task-irrelevant29,47,48.  500 
 501 
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To more formally examine the spatial expression of the RD correlates and test the stage-varying 502 
involvement of the dACC, we searched the whole brain for voxels that responded similarly (conjunction 503 
analyses) or differently (ANOVA analyses) to RD values across stages. A three-way conjunction among 504 
S1, S2, and S3 showed no significant cluster for either positive or negative activation to RD values 505 
(cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001; Extended Data Fig. 506 
10). Importantly, this lack of overlapping activation could not be attributed to the lack of overlaps 507 
between S2 and S3, as an additional conjunction analysis between S2 and S3 identified substantial 508 
activation to RD, including a large cluster in the dACC, that considerably overlapped with the activation 509 
areas identified in Fig. 4A (Extended Data Fig. 10). Moreover, using a whole-brain ANOVA analysis, 510 
we directly compared RD correlates across stages within subjects, and identified a significant stage 511 
effect in several brain regions including the dACC (Fig. 4D, left; cluster-wise FWE-corrected P < 0.05, 512 
with cluster-forming threshold Punc. < 0.001). As shown by post hoc paired comparisons, this stage 513 
difference was attributable to the increased correlation between dACC activation and RD values in S2 514 
vs. S1, and S3 vs. S1 (Fig. 4D, left), but not by S2 vs. S3, in either positive or negative direction (Fig. 515 
4D, right; see also Fig. 4B for ROI analyses). Together, these data provided consistent evidence 516 
suggesting that the neural correlates of RD in S1 were spatially segregated from those in S2 and S3 in 517 
a manner consistent with the DeGroot-RL prediction.  518 
 519 
dACC sensitivity to RD values was predictive of behavioral sensitivity to RD. To relate the encoding 520 
of RD values in the dACC to choice behavior, we tested whether, across subjects, the extent to which 521 
dACC activity reflected RD values was predictive of the behavioral effects of RD on learning. We used 522 
the individual value estimate of learning rate in S2 and S3 (i.e., 𝛽	as in Fig. 1C) as a measure of how 523 
strongly RD affected learning at these stages (zero effects on learning when	𝛽 = 0). To capture the 524 
overall individual neural sensitivity to RD, we averaged the dACC beta of RD from S2 and S3 in each 525 
subject. We then plotted the individual behavioral estimate of 𝛽 against the dACC beta in S2 and S3, 526 
controlling for the respective baseline effects in S1 (Fig. 4E). The data showed that subjects with higher 527 
learning rates in S2 and S3 than in S1 exhibited greater dACC sensitivity to RD values at observation 528 
onsets in S2 and S3 than in S1 (Pearson’s r = 0.62, P = 0.001). This between-subject association not 529 
only held for dACC beta values averaged over S2 and S3, but was also highly significant and denoted 530 
similar effect sizes when tested separately in these stages (S2: r = 0.52, P = 0.007; S3: r = 0.53, P = 531 
0.006; S2 vs. S3: 𝛽 = -0.11 ± 0.25, t24 = 0.43, P = 0.673). Notably, this neural-behavioral association 532 
was not a spurious effect arising from the double dipping of data49, because the dACC beta of RD was 533 
purely determined by the neural responses to the exogenously-given networks, independent of 534 
participants choices, model specification, or data estimation. 535 
 536 
Ventromedial prefrontal cortex (VMPFC) signaled the value estimate of updated belief 537 
expectation at the time of observation in S1, S2, and S3. The above results thus raised the question 538 
of how social observations from disparate neighbors were integrated in the brain to inform the 539 
subsequent decision. Unlike previous learning experiments, where subjects typically make a choice 540 
immediately after an observation, our experiment required participants to cache a sequence of social 541 
information until they were asked to make a decision. Thus, a sensible strategy based on the DeGroot-542 
RL hypotheses would be to maintain an expectation about the unknown state and sequentially update 543 
the expectation using either the unweighted (in S1) or RD-weighted (in S2 and S3) prediction error 544 
signals each time an observation is witnessed. 545 
 546 
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 547 
Fig. 5 | Ventromedial prefrontal cortex (VMPFC) tracks the value estimate of updated belief expectation (𝑬𝒏𝒆𝒘) in S1, 548 
S2, and S3. (A) Statistical parametric map with respect to 𝐸012 estimates at observation onsets, computed by averaging the 549 
GLM5 coefficients for 𝐸012 across S1, S2, and S3 for each subject in the same way we looked for neural correlates of aPE 550 
estimates (MNI: x, y, z, = -9, 44, -10; cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001; 551 
Methods). (B) Similar effect sizes in the parametric encoding of 𝐸012 estimates in the VMPFC across stages, as demonstrated 552 
by violin plots for the distribution of neural betas for 𝐸012 estimates. The neural betas were extracted for each separate stage 553 
from the significant VMPFC cluster as identified in Fig. 5A. (C) Increased functional connectivity between the seed region in 554 
the VMPFC and a cluster in the anterior cingulate cortex (ACC) at observation onsets in S2 and S3, relative to S1 (cluster-555 
wise FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001). Similar to other GLM analyses in the study, this 556 
psychophysiological interaction (PPI) analysis compared the connectivity strength averaged over S2 and S3 against that in S1 557 
(Methods). The seed region was defined as a 6-mm sphere around the peak activation as identified in Fig. 5A. (D) No 558 
systematic difference in the effect sizes of functional coupling between S2 and S3 (paired t-test, t24 = -1.20, P = 0.242), as 559 
revealed by the PPI betas extracted from the significant cluster in the ACC as identified in Fig. 5C.   560 
 561 
This hypothesis immediately led to two neural predictions. First, signals reflecting the value estimate 562 
for updated expectation (𝐸012  as in Fig. 1C) might be represented in brain regions previously 563 
implicated in tracking RL expectations, like the OFC or VMPFC13,14. That is, in addition to the classic 564 
RL signals for belief expectations of the chosen option at choice time (as shown in Extended Data Fig. 565 
9A), we would also expect––at observation times––the neural representation of 𝐸012  estimate 566 
associated with the option previously selected by the observer that has been updated according to the 567 
observed action. Similar to aPE signals, we hypothesized that signals related to 𝐸012 estimates would 568 
be seen on an observation-by-observation basis and across three stages nonselectively. The second 569 
prediction was motivated by the DeGroot-RL hypothesis that, compared to S1, incorporating an aPE 570 
signal into belief expectation in S2 and S3 would involve additional modulatory inputs. Thus, regions 571 
representing 𝐸012  estimates might demonstrate increased functional connectivity in S2 and S3 572 
compared to S1, with regions related to tracking, representing, or implementing modulatory signals in 573 
service of learning.  574 
 575 
We tested the first prediction in a new GLM (GLM5, Methods), which included the value estimate of 576 
𝐸012 as a parametric modulator at the time of observation onset of in the corresponding learning stage. 577 
To control for decision factors that might be related to learning or belief updating, we included the 578 
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following variables as regressors of no interest in the same regression model: aPE estimate associated 579 
with the observed action, RD, and the order of observation display. Similar to the above analyses for 580 
aPE estimates, we averaged each individual’s regression coefficients with respect to 𝐸012 estimates 581 
across three stages and then took them into second-level analyses. We found a strong positive 582 
correlation between 𝐸012 estimates and activity in a number of brain regions including the VMPFC 583 
(Fig. 5A; cluster-wise FWE corrected P < 0.05, with cluster-forming threshold Punc. < 0.001; 584 
Supplementary Table 5). The observed VMPFC responses to 𝐸012 estimates were robust (cluster-wise 585 
FWE-corrected P < 0.05, with cluster-forming threshold Punc. < 0.001) to the inclusion of additional 586 
decision-related variables, such as the product of the RD value and aPE estimate, color selected by the 587 
observee, visual properties related to the network display (visual centrality and distance), and the global 588 
consensus level at the beginning of the learning stage (GLM6, Methods). As predicted, we observed 589 
stable neural representation of 𝐸012  estimates across S1, S2, and S3, such that within-subject 590 
comparisons identified no significant difference in neural responses to 𝐸012 estimates across stages 591 
either within the VMPFC cluster (Fig. 5B; one-way repeated-measures ANOVA, F(2,48) = 2.33, P = 592 
0.108) or at the whole-brain level (cluster-wise FWE-corrected P < 0.05, with cluster-forming threshold 593 
Punc. < 0.001). 594 
 595 
To test the second prediction, we performed an exploratory psychophysiological interaction (PPI) 596 
analysis to look for brain regions that showed differential functional coupling with the VMPFC when 597 
RD was vs. was not needed for scaling aPE signals. Seeded in the VMPFC (6 mm around the peak 598 
activation as identified in Fig. 5A), the PPI analysis compared the connectivity strength averaged over 599 
S2 and S3 against that in S1 (Methods). This showed increased coupling of the VMPFC with several 600 
regions including a cluster in the ACC (Fig. 5C; cluster-wise FWE-corrected P < 0.05, with cluster-601 
forming threshold Punc. < 0.001), with no significant difference in the coupling effect sizes between S2 602 
and S3 (Fig. 5D; paired difference for S2 – S3 = -0.03 ± 0.02, t24= -1.20, P = 0.242). The cluster 603 
identified by the PPI analysis partially overlapped with the area in the dACC signaling RD values in S2 604 
and S3 (Extended Data Fig. 13), yet its peak activation was located in the more ventral and rostral 605 
portion of the ACC (MNI: x, y, z = 3, 20, 23; Fig. 5C). On the one hand, the overlapping dACC 606 
activation points to a possibility that the dACC might be involved in both representing the degree-607 
related information and using this information for modulating the VMPFC representation, when 608 
network features are relevant for learning. On the other hand, as the ACC is a richly intra-connected 609 
system with projections to a broad set of regions, including the VMPFC50, it is also possible that the 610 
dACC cluster identified for encoding RD played an indirect role in influencing the VMPFC, through 611 
its effects on other parts of the ACC, such as its ventral and rostral portions, that have been previously 612 
implicated in monitoring and integrating learning signals19,42.  613 
 614 

Discussion  615 

Information flowing in a large-scale, interconnected society is often entangled, conflated, and 616 
sometimes superfluous1,26. This poses a computational challenge for social learning, during which 617 
agents need to reconcile disparate sources of signals based on their informativeness51. Prior research on 618 
individual learning in non-social contexts has shown that humans can accurately estimate how relevant 619 
a learning signal is in predicting future and use this estimate to adjust RL learning rates42,52,53. On social 620 
networks, however, optimally evaluating the predictive value of each observation is cognitively 621 
demanding, sometimes even prohibitive. Indeed, failure to effectively aggregate information from 622 
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connected peers has long been hypothesized to underlie herding, social influence biases, misinformation 623 
propagation, and other forms of collective maladaptation9,54. 624 
 625 
Combining fMRI, formal theories of RL, and social network analysis, we explored the possibility that 626 
to balance computational costs, the brain approximates the relative informativeness of a social signal 627 
based on the structural properties of the network that routes information transmission. To evaluate this 628 
possibility, we grounded the DeGroot learning heuristics, a classic theory for naïve social learning 629 
imported from social network analysis7,30,31, into the temporal difference form of RL, widely implicated 630 
in the neurobiology of learning and decision-making21,42,52. Using a real-time, distributed learning task 631 
on networks with varying topological structures, this study provided behavioral and neural evidence 632 
that learning in complex, interconnected environments can be realized by means similar to the well-633 
established RL algorithm. Importantly, the RL learning rate fluctuated according to a signal related to 634 
network degree centrality, indexed by dACC activity at the time of witnessing others’ actions, but only 635 
insofar as the social observations varied in their informativeness.  636 
 637 
The observed dACC response to the degree centrality of the observee relative to that of the observer 638 
(i.e., RD) in S2 and S3 is consistent with past evidence showing a key role of this region in facilitating 639 
behavioral flexibility and adjusting learning rates for adapting to the external world41-45. Our data extend 640 
these findings by demonstrating that the regulatory process may also incorporate the topological 641 
properties of social connections that underlie learning. In our case, the dACC encoding was seen on an 642 
observation-by-observation basis, reflected the degree centrality of the observee and observer 643 
simultaneously and independently, existed above and beyond the prediction error and other decision-644 
related variables, and its across-subject variations were predictive of individual differences in the degree 645 
modulation effect on behavior.  646 
 647 
Importantly, our data also emphasized the absence of a dACC response to the same RD signal in S1 648 
when the network structure was irrelevant to learning. This finding argues against the possibility that 649 
the dACC engagement identified in S2 and S3 was due to some low-level visual processing of the 650 
network displays, or due to other more general functions of the dACC––such as detecting errors55 or 651 
monitoring social conflicts56––that would be involved across all learning stages nonselectively. 652 
Alternatively, the stage-dependent dACC encoding is consistent with a broader proposal of this region, 653 
suggested by past neurophysiological and neuroimaging evidence, as representing task-relevant (but 654 
not irrelevant) information that supports behavioral changes and guides appropriate action selection41. 655 
Our data thus suggest the involvement of a high-level, controlled process in evaluating the source of 656 
social information in service of learning, and argue against a model of blind, automatic discrimination 657 
among social contacts in explaining social information aggregation. More broadly, the observed 658 
between-stage differences echo past studies that used data from social media and highlighted the 659 
importance of separating information propagation stages, such as those related to the initial transmission 660 
and retransmission, in developing mechanistic understandings for rumor dissemination and 661 
amplification26,57. 662 
 663 
While our findings highlighted a role of the dACC specific to S2 and S3, we also observed that, in S1, 664 
activity in the PCC, precuneus, and visual cortex correlated with measures of degree centralities. There 665 
are several possibilities for how network-related activity in S1 would contribute to learning. One 666 
possibility is that the S1 activation is associated with the recognition or representation of network 667 
features, which facilitates the flexible usage of those features in the latter stages. Indeed, the loci of the 668 
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S1 activation were similar to those implicated in representing the internal perception of centralities or 669 
other characters of real-life social networks, when subjects were required to view pictures or videos of 670 
their acquaintances29,47,48. Our data are thus consistent with a possibility that, whereas the degree-671 
modulation effect is stage dependent, some network-related information may be automatically 672 
registered in the brain to prepare for the future usage. Alternatively, it is also possible that, S1 activation 673 
may reflect, rather than the perception of interpersonal connections, some low-level processing of the 674 
network stimuli (e.g., visual processing), which typically shows a more pronounced activation when 675 
the stimulus is novel than when the stimulus has been recently processed58. To clarify these possibilities 676 
and explore how network structure is internally perceived, represented, and transformed into the 677 
modulation signal in service of learning, future research is needed to combine the current approach with 678 
sociometric methods used for studying real-world connections59, to investigate how the brain learns 679 
from actual peers without resorting to networks that are artificially structured and displayed. 680 
 681 
Degree centrality has long been hypothesized to have a close relationship with social influence in small 682 
group interaction and communication60. Our finding that the brain modulated learning according to 683 
degree-related signals is consistent with two broad accounts previously proposed for how network 684 
centrality affects learning. The first has its basis in human and non-human studies that emphasize the 685 
role of the structural position in social behavior, suggesting that structurally comparable individuals are 686 
facing similar interacting environments, therefore exhibiting similar behavior toward one another25,28. 687 
In the context of learning, this account proposes that the opportunity to obtain new information through 688 
interpersonal interactions may be constrained by one’s location on the interaction network, and can be 689 
quantified by location features, such as the degree centrality. A second but not mutually exclusive 690 
possibility has its basis in the dynamic nature of network topology: Knowledgeable or successful 691 
individuals tend to become highly connected, thus degree centrality may serve to signal an individual’s 692 
capability or social status to other individuals28,61. Under this possibility, social animals may have 693 
evolved to preferentially follow the more “connected” or “prestigious” cospecies, even in controlled 694 
experiments where the network structure is fixed and locations are randomized. 695 
 696 
Compatible with these diverse lines of proposals, our data additionally highlighted a dual effect of 697 
centrality on learning: Higher degree centrality not only amplified one’s social influence, but also 698 
reduced one’s susceptibility to others’ influence. This finding is consistent with the behavioral evidence 699 
from popular social media, demonstrating that more influential individuals are usually less susceptible 700 
to peers’ influence, compared to their less influential counterparts34. Our results thus point to an exciting 701 
possibility that, while social influence and susceptibility to social influence are often considered as 702 
distinct personal attributes56, they may be jointly affected by an internal learning system, which 703 
approximates the predictive value of others’ information relative to one’s own, in order to cope with the 704 
complexity of social environments.  705 
 706 
It is worth noting that, owing to the fundamental role of degree centrality in network analyses and its 707 
close relationship with a range of network characteristics, we cannot rule out the possibility that 708 
alternative network features may contribute to learning. For example, in addition to the degree centrality, 709 
which parameterizes the immediate effect of social influence, learning may be affected by measures 710 
such as the eigenvector centrality, closeness, clustering coefficient, betweenness, or constraint 711 
coefficient, which have been used to examine information propagation from the perspective of long-712 
term, sequential, circular, globally or locally mediating effect, respectively2. Our focus on degree 713 
centrality reflects the assumption that the brain may be more sensitive to simple, straightforward 714 
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geometric properties, especially for complex decisions. Indeed, across analyses, there was no evidence 715 
that alternative metrics outperformed RD in explaining either the behavioral data or the dACC 716 
responses. Future investigation is needed to more firmly isolate and compare the potential influences 717 
of various network features at the behavioral and neural levels.  718 
 719 
Previous research on the neurocomputational processes of social learning has typically focused on 720 
highly simplified interpersonal settings, leaving open whether and how putative RL mechanisms 721 
identified in simplistic setups can support behavior in more complex, ecologically-relevant 722 
environments. Here, we showed that key features of learning in interconnected contexts were consistent 723 
with an error-driven process, similar to those seen in nonnetworked situations. As the network structures 724 
examined in the present study were but a sample of immense possibilities of real-world social networks, 725 
these results raise questions regarding the scalability and generality of the proposed model. First, the 726 
experiment focused on relatively small, 7-node networks, and did not directly speak to larger, more 727 
naturalistic settings. Nonetheless, we speculate that, by relying merely on local information, the 728 
proposed model may be particularly suitable for scaling up, as individuals in large social groups 729 
typically only have access to the local knowledge but not the global information such as the structure 730 
of the entire network. Alternative RL algorithms for learning in large-scale networked systems have 731 
been developed in control engineering62. These algorithms usually aim at optimizing some global 732 
network performances (e.g., total reward) and their cognitive and neurobiological feasibility is yet to 733 
be evaluated.  734 
 735 
Second, the DeGroot-RL model explained choice behavior and task-related neural activity, 736 
demonstrating no systematic differences in its explanatory power across networks (Extended Data Fig. 737 
14). Yet, it remains possible that the brain may follow other learning algorithms when facing a different 738 
set of networks––for example, deploying Bayesian strategies when making decisions in a line, one of 739 
the simplest forms of directed network37. Hybrid learning is also possible according to a recent 740 
behavioral study suggesting a mixture of Bayesian and DeGroot learning in a relatively more educated 741 
(but not less educated) sample36. The current study constitutes an initial step toward a neural 742 
mechanistic understanding of learning on social networks. Future studies are needed to address whether, 743 
and under what circumstances, our findings can be extended to study the potential involvement of 744 
multiple learning systems, arbitration between those systems, and individual differences in related 745 
processes. Learning on networks offers an excellent opportunity for probing the influence of social 746 
structure on the internal tradeoff between computational complexity and learning effectiveness63,64.  747 
 748 
Social networks have been widely hypothesized to play a key role in many large-scale social phenomena, 749 
including vaccine hesitancy, voting behavior, and fake news proliferation, yet the exact mechanisms by 750 
which interpersonal connections contribute to these phenomena remain unclear. The current study sheds 751 
light on this topic from a neurocognitive perspective, by elucidating how individuals actually 752 
experience and interact with a networked environment. Our data provide neural evidence for a bounded 753 
rational, network-related filtering of social information, which may result in the spread of 754 
misinformation and biased consensus among connected peers. More broadly, this work demonstrates 755 
the possibility of developing computationally-tractable and neurobiologically-plausible tools and 756 
methods for investigating the complex interplay between social behavior and social embedding in the 757 
brain, which may have the potential to translate upward for tackling phenomena in wider society.  758 
 759 
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