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Abstract 

Zinc ions (Zn2+) are vital to most cells, with the intracellular concentrations of Zn2+ being 

tightly regulated by multiple zinc transporters located at the plasma and organelle 

membranes. We herein present the 2.8-2.9 Å-resolution cryo-EM structures of a Golgi-

localized human Zn2+/H+ antiporter ZnT7 (hZnT7) in its outward- and inward-facing forms. 

Cryo-EM analyses showed that hZnT7 exists as a homodimer via tight interactions in both 

the cytosolic and transmembrane (TM) regions of two protomers, each of which contains a 

single Zn2+-binding site in its TM domain. hZnT7 undergoes a TM-helix rearrangement to 

create a negatively charged cytosolic cavity for Zn2+ entry in the inward-facing form and a 

widened luminal cavity for Zn2+ release in the outward-facing form. An exceptionally long 

cytosolic histidine-rich loop characteristic of hZnT7 can bind at least two Zn2+ ions, likely 

facilitating Zn2+ recruitment from the cytosol. Unique mechanisms of hZnT7-mediated Zn2+ 

uptake into the Golgi are proposed.  
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Introduction 

Zinc ions (Zn2+) are an essential trace element that plays an important role in the structure 

and function of a variety of proteins, acting as either a cofactor essential for enzymatic 

reactions or as a structural element stabilizing protein folding. Nearly 10% of the 

mammalian proteome is known to bind Zn2+1. Cellular zinc homeostasis involves the 

opposing actions of two families of zinc transporters, SLC30 (ZnTs) and SLC39 (ZIPs)2. The 

SLC30 family proteins transport Zn2+ from the cytosol to the extracellular space or 

intracellular compartments, thereby reducing cytosolic Zn2+ concentrations. In human cells, 

the SLC30 (ZnTs) family consists of 10 homologues, named ZnT1 to ZnT10, which are 

largely responsible for the dynamics of intracellular and extracellular Zn2+3,4. One of these 

proteins, human ZnT7 (hZnT7), has been reported to localize in the Golgi membrane5-8 and 

transport Zn2+ from the cytosol into the Golgi lumen for incorporation into newly 

synthesized zinc-enzymes3,4. Due to the presence of ZnT7 and other Golgi-resident ZnTs, 

the labile Zn2+ concentration in the Golgi is maintained at around 25 nM or higher9. ZnT7 

functions as a Zn2+/H+ antiporter and uses proton motive force to transport Zn2+ from the 

cytosol to the Golgi lumen. Our latest study showed that ZnT7 localizes on the proximal 

side of the Golgi and contributes to the regulation of the intracellular localization and traffic 

of ERp44, an ER-Golgi cycling chaperone10. 

Physiologically, ZnT7 plays essential roles in dietary zinc absorption and regulation 

of body adiposity11. Decrease of cellular Zn2+ in the epithelium of the prostate was shown 

to be involved in the development of prostate cancer in mice, with apoptosis being 

prevented in TRAMP/ZnT7(-/-) mice12. Therefore, a null mutation in the Znt7 gene 

accelerated prostate tumor formation in mice12. In addition, a deficiency in ZnT7 reduced 

lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose 

uptake13. 

Despite studies of the physiology of ZnT7, its structure and Zn2+ transport 

mechanism remain to be elucidated. Structures have been determined for several zinc 

transporters, including Escherichia coli YiiP (EcYiiP)14,15, Shewanella oneidensis YiiP (soYiiP)16-

18, and human ZnT8 (hZnT8)19, all of which belong to the SLC30 family. Despite being at 

non-atomic resolution, cryo-EM analysis of hZnT8, a Zn2+/H+ antiporter localized to the 

insulin secretory granules of pancreatic β cells, revealed its overall architecture and Zn2+-

binding sites19. Amino acid sequence alignment (Fig. 1) suggests significant differences 
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between hZnT7 and hZnT8, especially in their overall architecture, length of their cytosolic 

histidine-rich loops (His-loop), and numbers of Zn2+-binding sites. Because of its 

physiological importance, hZnT7 is a particular target of structural and mechanistic studies.  

The present study describes the assessment of high-resolution cryogenic electron 

microscopy (cryo-EM) structures of hZnT7 in its Zn2+-bound and -unbound states. A 

monoclonal antibody Fab fragment that specifically and tightly binds to native-state hZnT7 

was prepared, and the structures of the hZnT7-Fab complex were determined by single-

particle cryo-EM analysis. Consequently, the structures of the Zn2+-unbound outward-

facing (OF) and inward-facing (IF) forms, and Zn2+-bound OF form of hZnT7 were 

determined at 2.8, 3.4, and 2.9 Å resolutions, respectively. Determinations of these structures 

provided essential insight into mechanisms of hZnT7-mediated Zn2+ transport into the 

Golgi. Moreover, the roles of the His-loop were characterized by preparing a His-loop 

deletion mutant of hZnT7 and comparing its structure and Zn2+-binding property with 

those of wild-type hZnT7. These findings enable comparisons of the structural and 

mechanistic features of hZnT7 with those of other Zn2+ transporters of known structure, and 

have physiological implications for Zn2+ homeostasis in the Golgi apparatus. 
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Results and Discussion 

Overall structure of hZnT7 in the Zn2+-unbound state 

We employed single-particle cryo-electron microscopy (cryo-EM) analysis to determine the 

structure of the 74-kDa hZnT7 homodimer. After data processing of the repeated 2D- and 

3D-classifications, a density map of the hZnT7 homodimer was obtained at ~12 Å resolution 

(data not shown), which did not allow de novo model building. This problem was overcome 

by preparing monoclonal antibody Fab fragments against recombinant hZnT7 to increase 

the molecular size of the latter and thereby generate higher resolution cryo-EM maps (see 

“Methods” section). After thorough screening by ELISA and size-exclusion 

chromatography (SEC), four candidate monoclonal antibodies were selected, their Fab 

fragments (Fab#1, #3, #4, and #5) were generated, and four types of hZnT7-Fab complexes 

were prepared ( Supplementary Fig. 1). Two of these complexes, hZnT7-Fab#1 and hZnT7-

Fab#3, yielded high quality two-dimensional class averages by negative-stain EM 

measurements, showing that a Fab fragment symmetrically bound to each subunit of the 

hZnT7 homodimer ( Supplementary Fig. 2a). The hZnT7 proteins in complex with Fab#1 

and Fab#3 were analyzed by Talos Arctica cryo-transmission electron microscopy (TEM), 

yielding 5.0 Å- and 7.7 Å-resolution density maps, respectively (Supplementary Fig. 2b). 

These results indicated that Fab#1 was the optimal binder of hZnT7 for cryo-EM analysis. 

The structure of the hZnT7-Fab#1 complex was therefore assessed by high-end Titan Krios 

cryo-TEM with a Gatan K3 BioQuantum direct electron detector. 

A cryo-EM structure of the hZnT7-Fab#1 complex at a nominal resolution of 2.8 Å 

was determined (Fig. 2a, Supplementary Figs. 3-4, and Table 1). Four rounds of 3D 

classification generated a major class of density map (class 2), which revealed a “mushroom”-

shaped dimeric architecture of hZnT7 (Fig. 2b and 2c) and the mode of interaction between 

hZnT7 and the Fab fragment (Supplementary Fig. 6). The Fab fragment specifically bound 

to the 1-1a and 2-2 loops, which are both located at the end of the hZnT7 cytosolic 

domain (CTD). No direct interactions were made between the Fab fragment and the 

transmembrane domain (TMD) or the intermediate regions of the TMD and CTD of hZnT7. 

It seems unlikely that Fab binding considerably affects the overall fold and transmembrane 

(TM) helix arrangement of hZnT7. (Fig. 2b). The TMD of the hZnT7 protomer was found to 

contain six transmembrane helices (S1 to S6), with both the amino and carboxyl termini 
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exposed to the cytosol. This protomer could be divided into two subdomains, a “scaffold” 

domain composed of S1 to S3 and S6, and a “helix-pair” domain composed of S4 and S5. 

These two subdomains formed a Zn2+ transport cavity (Fig. 2b), in which S2 and S5 formed 

a Zn2+-binding HDHD motif composed of His70 (S2), Asp74 (S2), His240 (S5), and Asp244 (S5) 

at their midway points. Careful examination of the density map, however, indicated that no 

Zn2+ was bound to hZnT7 (Fig. 2d), suggesting that Zn2+ had been released from hZnT7 

during purification procedures using a Zn2+-free buffer. 

The cavity formed by S2, S3, and S5 was significantly wider at the Golgi luminal side 

than at the cytosolic side (Fig. 2b and 2g), suggesting that this major-class structure 

represents the OF form of hZnT7. In addition to binding Zn2+, the TMD plays an essential 

role for dimerization, in that S2 from one protomer makes hydrophobic contact with S3 from 

another protomer, forming a tight dimer interface (Fig. 2b, Supplementary Fig. 7a, and 

Supplementary Fig. 8). Additionally, S3 from one protomer interacts with S3 from another 

promoter near the cytosolic side. S2 and S3 contain many aromatic residues, which face each 

other to interdigitate the dimer interface at the TMD (Supplementary Fig. 7a). Notably, a 

membrane-parallel short -helix (S1a) was juxtaposed to the N-terminus of S1b, which may 

also contribute to maintaining the TM-helix arrangement from the outside (Fig. 2b). These 

modes of TM-helix interactions are unique to hZnT7 and have not been observed for other 

Zn2+ transporters of known structure (Supplementary Fig. 8). 

The cytosolic domain (CTD) of hZnT7 is composed of residues 302-376 and follows 

the C-terminus of S6 via a short linker composed of residues Met294 to Leu301. Cryo-EM 

analysis revealed that the CTD comprises two  helices (1 and 2) and four -strands (1a, 

1b, 2, and 3) (Fig. 1 and Fig. 2b), with the latter also providing a contact surface for 

dimerization (Fig. 2e). An EQ linker (Glu323 and Gln324) flanked by 1a and 1b is conserved 

among hZnT7 orthologues, and participates in the hydrogen bond network, along with 

neighboring residues of another protomer; mainchain of Glu323 and His325 from hydrogen 

bond to Tyr368 of another protomer (Fig. 2e). Tyr98 is hydrogen bonded to Gln366 (2-3 loop) 

and forms a - stack with Trp327 (1b) at the TMD-CTD interface (Fig. 2e and 2f). In addition, 

the N-terminus of S3, the C-terminus of S6, and the CTD form a hydrophobic cluster that 

includes Leu106 (S3), Leu293 (S6), and Trp327 (1b), with hydrogen bonds between Arg102 and 

Gln295 further stabilizing the CTD dimer interface (Fig. 2f). 
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Structural comparison between outward- and inward-facing forms of hZnT7 

The repeated 3D classification based on cryo-EM data generated a minor class of density 

map at a resolution of 3.4 Å (class 2, 22%, 29,774 particles), suggesting a different 

conformation of hZnT7 (Fig. 2a and Supplementary Fig. 3). The cryo-EM map of this class 

displayed significant density for both the TMD and CTD, allowing model building for 

almost the entire region, including residues 22-376 (Fig. 2b and Supplementary Figs. 3 and 

5). Importantly, the position and orientation of the transmembrane helices in this minor 

class differed significantly from those in the major class (Fig. 2b and 2g). S4 and S5 are 

located so that the Zn2+ transport cavity formed by S2, S3, and S5 in the minor class is wider 

on the cytosolic side and narrower at the luminal side than in the major class (Fig. 2b and 

2g). These findings suggested that this minor class represents the inward-facing (IF) form of 

hZnT7 whereas the major class corresponds to its OF form. Again, the density map of the IF 

form showed no Zn2+ bound at the Zn2+-binding site (Fig. 2d). 

Notably, the electrostatic potential surface at pH 7.5 revealed that the cytosolic gate 

of the Zn2+ transport pore near the TMD-CTD interface is negatively charged in the IF form 

(Fig. 2c), suggesting that this form can recruit Zn2+ from the cytosol into the cavity. By 

contrast, the corresponding site is positively charged in the OF form (Fig. 2c), consistent 

with this form having a closed cytosolic gate (Fig. 2b). S2, S3, and S5 were found to be tightly 

bundled at the cytosolic half of the TMD, occluding the space between the putative Zn2+-

binding site and the cytosolic gate. By contrast, the cytosolic halves of S2, S3, and S5 in the 

IF form are wide open to act as a Zn2+-recruiting gate. 

 During conversion between its OF and IF forms, hZnT7 appears to undergo opposing 

movements of S4 and S5 at the luminal and cytosolic sides, with three leucine residues 

(Leu239, Leu242, and Leu246) in S5 apparently playing critical roles. The Leu242 residue in S5 

seems to serve as a pivot for S5 rotation during the transition from the OF to IF forms (Fig. 

2g). The movements of S3 and S6 are smaller on the cytosolic than on the luminal side, likely 

because of the tight hydrophobic interactions involving Leu106 (S3), Leu293 (S6), Tyr98 (S2-S3 

loop) and Trp327 (1b) (Fig. 2f), and the polar interaction between Arg102 at the C-terminus 

of S3 and Gln295 in the short S6-CTD loop (Fig. 2f). The CTDs of the OF and IF forms were 

almost superimposable, with a root mean square deviation (RMSD) for all C atoms of 0.569 
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Å (Supplementary Fig. 9a), suggesting that a conformational change in the CTD is not 

required for conversion between the OF and IF forms. 

 

Overall structure of hZnT7 in the Zn2+-bound state 

To prepare Zn2+-bound hZnT7 and determine its structure, hZnT7 purified in the absence 

of Zn2+ (Zn2+-free buffer) was incubated with 10 M ZnSO4 for 10 minutes before mixing 

with Fab#1. Subsequently, the hZnT7-Fab#1 complex was subjected to SEC with buffer 

containing 10 M ZnSO4. This sample was used successfully to assess the cryo-EM structure 

of Zn2+-bound hZnT7 complexed with Fab#1 at a nominal resolution of 2.9 Å as a major 

class (Fig. 3a, Supplementary Figs. 10 and 11, and Table 1). Another minor class (class 2, 

25.4%, 48,046 particles) was generated, yielding a 3.9 Å resolution density map. Detailed 

comparison showed that the conformation of the minor class was highly similar to that of 

the major class (Supplementary Fig. 10). The density map of the major class displayed 

significant extra density near the HDHD motif comprising His70 (S2), Asp74 (S2), His240 (S5), 

and Asp244 (S5), indicating that Zn2+ binds to the TMD of hZnT7 (Fig. 3b). Importantly, 

repeated rounds of 3D classification showed that Zn2+-bound hZnT7 formed only an OF 

form, suggesting that the OF form is energetically favored in the Zn2+-bound state. 

The overall structure of Zn2+-bound hZnT7 again demonstrated a “mushroom”-

shaped dimeric architecture with tight interactions between TMDs and CTDs from two 

protomers (Fig. 3a). Calculations of electrostatic potential surface at pH 7.5 showed that the 

cytosolic Zn2+ entry site was positively charged in Zn2+-bound hZnT7 (Fig. 3c), consistent 

with the closed cytosolic gate observed in the OF form. Structural comparison between the 

Zn2+-bound and -unbound OF forms revealed that, upon Zn2+ bonding, the luminal ends of 

S3 and S5 slightly but significantly moved to narrow the Zn2+ exit gate (Fig. 3d). By contrast, 

the cytosolic ends of all TM helices barely moved due to interactions among the three 

bundled helices (S2, S3, and S5) on the cytosolic side (Fig. 3d). Zn2+-dependent 

conformational changes were negligible also for the CTD, with a RMSD for all C atoms in 

this domain of 0.212 Å (Supplementary Fig. 9b). 

Bacterial Zn2+ transporters have been reported to possess a hydrophobic gate in the 

TMD, composed of Leu152 and Met197 for EcYiiP and of Leu154 and Leu199 for SoYiiP, to 

regulate Zn2+ entry (Fig. 1)18,20. The present study revealed that a similar leucine pair is 
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present near the cytosolic Zn2+ entry gate in hZnT7. The cryo-EM structures of the OF form 

of hZnT7 showed that the side chains of Leu239 (S5) and Leu285 (S6) are located in close 

proximity (Fig. 3e middle and right, Supplementary Fig. 9c, and Supplementary Fig. 12a 

middle and right) and are engaged in tight interactions between S5 and S6 (Fig. 2g, and Fig. 

3d). These findings suggest the generation of a Zn2+-occluded state in the OF form before 

transition to the Zn2+-releasing step. In the IF form, however, Leu239 (S5) is largely separated 

from Leu285 (S6) due to the movement of S5, leading to the full opening of the cytosol-facing 

cavity for Zn2+ entry (Fig. 3e left, Supplementary Fig. 9c, and Supplementary Fig. 12a left). 

Thus, the Leu239 (S5)-Leu285 (S6) pair likely acts as a switching gate that regulates Zn2+ entry 

from the cytosol depending on the OF or IF form. 

 

Zn2+ transport pathway of hZnT7 

The cryo-EM structures of hZnT7 in the Zn2+-unbound OF and IF forms showed that a 

Zn2+/H+ transport pore is present in each promoter (Fig. 4a). Overall, this pore can be 

separated into two regions, the luminal and cytosolic cavities, around its halfway point, 

where a Zn2+-binding site is located (Fig. 4a). In the OF form, the cytosolic cavity is fully 

closed with a pore radius of less than 1 Å, blocking entry of the molecule/ion from the 

cytosolic side (Fig. 4b). By contrast, the luminal cavity is significantly wider, with a pore 

radius of 2-4 Å, allowing the access or release of molecules/ions on the Golgi luminal side. 

A Zn2+ transport pore with similar overall shape is formed in the Zn2+-bound state (Fig. 4a), 

but the pore radius on the luminal side is smaller than that in the Zn2+-unbound state of the 

OF form (Fig. 4b). Thus, Zn2+ binding made the luminal cavity narrower. As expected, the 

IF form has a wider Zn2+ transport pore on the cytosolic side due to the outward movement 

of S5 (Fig. 4a, Fig. 2b and 2g), likely allowing Zn2+ to enter from the cytosol. 

The electrostatic potential around the luminal gate of hZnT7 in the OF form, which 

runs downward from the luminal gate to the pore center, was found to be negative (Fig. 4c 

left and middle). Although the negatively charged luminal gate was conserved in the IF 

form (Fig. 4c right), the charge distribution in the IF and OF forms differed markedly. In the 

IF form, the negatively charged surface on the cytosolic cavity is exposed due to the wide 

opening of the cytosolic gate, consistent with the presence of multiple acidic residues near 

the cytosolic ends of S3 (Glu104) and S5 (Glu288). These negatively charged residues are 
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buried inside the molecule in the Zn2+-bound and -unbound OF forms (Fig. 4a), further 

indicating that this region acts as a switchable Zn2+ recruiting gate. 

 

Zinc-binding site of hZnT7 

The cryo-EM map of hZnT7 in the presence of Zn2+ demonstrated that the TMD contains a 

Zn2+-binding site (named STM) at around the halfway point of the TMD (Fig. 3a,b and Fig. 

5a). The STM is surrounded by the carboxyl groups of Asp74 (S2) and Asp244 (S5), and the 

imidazole rings of His70 (S2) and His240 (S5) (Fig. 5b). In the Zn2+-bound OF form, the Nε 

atom of His70 is distant (~5.0 Å) from Zn2+ and does not directly coordinate with Zn2+ (Fig. 

5b). In the Zn2+-unbound OF form, the side chain of Asp74 is turned away, further separating 

it from His70 (Fig. 2d) and likely leading to the facilitated Zn2+ release from STM. In this 

situation, His240 seems to be protonated to form a hydrogen bond with the carboxyl group 

of Asp74 and stabilize the Zn2+ unbound conformation. By contrast, the cryo-EM structure 

of the Zn2+-unbound IF form demonstrated that, although the side chain of His70 is more 

isolated from STM (Fig. 2d), the other three residues, Asp74, His240, and Asp244, are more 

closely clustered, seemingly ready to accommodate Zn2+ entering from the cytosolic cavity. 

Zn2+-binding sites have been observed at similar positions in the TMDs of other Zn2+ 

transporters, including bacterial YiiPs (EcYiiP and SoYiiP) and human ZnT8 (Fig. 5b top 

panels). EcYiiP and SoYiiP possess a DDHD motif that binds Zn2+, whereas hZnT7 and 

hZnT8 possess an HDHD motif at similar positions (Fig. 5a). Notably, the Zn2+ coordination 

structures of hZnT7 and hZnT8 differ significantly. In hZnT7, Asp74, His240 and Asp244 form 

a compact complex structure that binds Zn2+, while an Nε atom of His70 weakly coordinates 

with Zn2+ at a distance of ~5 Å. In hZnT8, His106, a residue corresponding to His70 of hZnT7, 

forms a complex structure with Asp110 and Asp224 to bind Zn2+, whereas His220 is located ~4 

Å from Zn2+ (Fig. 5b). These structural findings may suggest a sequential Zn2+ shuttle in the 

interior of the STM, in which His240 (His220 in hZnT8), Asp74 (Asp110 in hZnT8), and Asp244 

(Asp224 in hZnT8) of hZnT7 form a triad to accept a Zn2+ ion from the cytosolic cavity, with 

a second Zn2+-binding triad, consisting of His70 (His106 in hZnT8), Asp74, and Asp244 being 

formed before releasing of Zn2+ on the luminal cavity. A regular tetrahedral Zn2+ 

coordination structure may transiently be formed as an intermediate between these two 

states, as seen in the crystal/cryo-EM structures of EcYiiP/SoYiiP (Fig. 5b right top). 
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Evaluation of the crystal structures of the Zn2+-bound OF form of EcYiiP (PDB ID: 

3H90) and the cryo-EM structures of the Zn2+-bound IF form of SoYiiP (PDB ID: 7KZZ) and 

the Zn2+-bound OF form of human ZnT8 (PDB ID: 6XPE) demonstrated the presence of other 

Zn2+-binding sites (Fig. 1 and Fig. 5a). The second Zn2+-binding site of hZnT8 consists of 

His137 (S2-S3 loop) and His345 (2-3 loop) at the TMD-CTD interface (SIF), although this site 

had lower affinity for Zn2+19. Similarly, Zn2+-binding sites of EcYiiP and SoYiiP have been 

observed near the TMD-CTD interface (S2-S3 loop). By contrast, hZnT7 lacks a second Zn2+-

binding site around the TMD-CTD interface, consistent with the absence of histidine 

residues in this region (Fig. 5b and Supplementary Fig. 12b). 

Unlike hZnT7, hZnT8 and YiiP have two additional Zn2+ binding sites in the CTD. 

hZnT8 contains two cysteines near the C-terminus, and a unique HCH (His52-Cys53-His54) 

motif in a non-conserved N-terminal extension of the neighboring protomer, whereas YiiP 

binds two Zn2+ ions, SCD1 and SCD2, in a classical trigeometry containing the (HHD)2 motif at 

the CTD dimer interface (Fig. 5b, bottom). The Zn2+-binding residues in the CTDs of YiiP 

and hZnT8 are replaced by other residues in hZnT7 (Fig. 1, Fig. 5b, Supplementary Fig. 12c, 

and Supplementary Fig. 13). Despite the absence of Zn2+ binding sites in its CTD, hZnT7 

forms a stable homodimer in either the OF or IF form (Supplementary Fig. 9). Thus, Zn2+ 

ions bound to the TMD-CTD interface and the CTD seem unnecessary for the formation of 

functional ZnT dimers. 

 

Structural and functional roles of the histidine-rich loop of hZnT7 

The histidine-rich loop (His-loop) of hZnT7, which is flanked by S4 and S5 on the cytosolic 

side, is exceptionally long (Fig. 1). The cryo-EM density map at 2.8 Å resolution allowed 

resolution of only the N-terminal and C-terminal segments of the His-loop near the ends of 

S4 and S5, respectively (Fig. 2a,b and Fig. 3a). Thus, the major portion of the His-loop was 

invisible on the cryo-EM map, suggesting that this loop is highly flexible. To understand the 

structural and functional roles of the His-loop, a major portion of this loop (residues His176 

to Pro221) was deleted, and the resultant mutant protein (hZnT7ΔHis-loop) was 

overproduced in HEK293T cells and purified, as described for wild-type hZnT7, to 

determine its structure and perform biochemical assays (Supplementary Fig. 14). The cryo-

EM structures of the hZnT7ΔHis-loop-Fab#1 complex in Zn2+-bound and -unbound states 
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were determined at nominal resolutions of 3.4 Å (Supplementary Figs. 15-18 and Table 1). 

Class 4 was the major class (67.4%, 127,941 particles), but displayed unusually bent TM 

helices and a poor density map (Supplementary Fig. 15). Therefore, the second major-class 

density map (32.6 %, 69,877 particles) was used for model building of the hZnT7ΔHis-loop. 

Both Zn2+-bound and -unbound forms of the hZnT7ΔHis-loop were outward-facing, 

with similar location and orientation of the TM helices (Fig. 6a), indicating that removal of 

the His-loop had little effect on the TMD structure of hZnT7 (Fig. 6b-d). The CTDs of the 

Zn2+-unbound and -bound forms were also almost completely superimposable, with an 

RMSD for all C atoms in this domain of 0.204 Å (Supplementary Fig. 19). Collectively, 

although the His-loop was suggested to contribute to the adoption of the IF form of full-

length hZnT7 (Fig. 2a), its deletion did not appreciably affect the overall structure of hZnT7. 

To predict the location and structure of the His-loop that was invisible in cryo-EM 

map, a model of the entire part of the hZnT7 homodimer was generated using AlphaFold239. 

Only an OF form structure was generated by this program, which showed the similar TM 

helix arrangement and CTD fold to those in the cryo-EM structure of Zn2+-unbound hZnT7 

(Supplementary Fig. 20). Histidine residues were predicted to localize near the C-terminus 

of S4 and to be distributed throughout the His-loop (Supplementary Fig. 20a). Importantly, 

the histidine residues near the C-terminus of S4 were likely located near the cytosolic Zn2+-

entry gate. We surmise that the His-loop with such a histidine distribution pattern is likely 

essential for efficient Zn2+ binding and transport by hZnT7. 

To test this possibility, the Zn2+-binding abilities of hZnT7ΔHis-loop and wild-type 

hZnT7 (hZnT7 WT) were compared. The Zn2+-binding stoichiometry of hZnT7ΔHis-loop, 

hZnT7 WT, and ERp44 as a control were measured by quantifying bound Zn2+ with the zinc 

probe Zincon. ERp44 bound 1.7 ± 0.1 molar equivalents of Zn2+ (Fig. 6e), in agreement with 

our previous observation that ERp44 forms a homodimer with three high-affinity Zn2+-

binding sites40. Similarly, the Zn2+-to-protein molar ratios were determined to be 2.8 ± 0.5 

for hZnT WT and 1.0 ± 0.0 for the hZnT7ΔHis-loop (Fig. 6e). These findings indicate that 

hZnT7 binds two extra Zn2+ ions via its His-loop in addition to the one in the TMD (Fig. 3a 

and Fig. 6a). The role of the His-loop in Zn2+ transport was assessed by performing a Zn2+ 

transport assay using proteoliposomes containing a Fluozin-3 probe inside. Deletion of the 

His-loop was found to significantly impair the Zn2+ transport activity of ZnT7 (Fig. 6f). 
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These results suggest that the His-loop of hZnT7 is essential for recruiting Zn2+ ions from 

the cytosol and transporting them to the Golgi lumen. 

 

Structure comparisons of hZnT7 with other Zn2+/H+ transporters 

Comparisons of hZnT7, hZnT8, SoYiiP, and EcYiiP revealed marked differences in their 

overall structures. hZnT7 dimers in the OF form formed a “mushroom”-shaped dimeric 

structure with tight interactions between S2 and S3 from two different protomers 

(Supplementary Figs. 7 and 8). By contrast, hZnT8 and EcYiiP dimers formed a “V” shaped 

dimeric structure with much less tight interactions between the TMDs from the two 

protomers (Fig. 5a)14,19. In this context, although hZnT7 formed homogeneous dimers only 

with both protomers in the IF or OF form14-18, hZnT8 could form a heterogeneous structure, 

with one protomer in the IF form and another in the OF form19. 

Superimposition of the cytosolic domains of the OF and IF forms showed that S4 and 

S5 of hZnT7, hZnT8, and EcYiiP move differently during the conversion between these two 

forms. S4 and S5 of hZnT7 rotate around their middle regions, whereas S4 and S5 of hZnT8 

swing using their luminal ends as pivot points (Fig. 7). Consequently, the cytosolic ends of 

S4 and S5 move to a greater extent in hZnT8 than in hZnT7, generating a wider cytosolic 

cavity in the IF form of hZnT8. Although only the structures of the OF form of EcYiiP and 

the IF form of SoYiiP have been solved, superimposition of their TMDs suggests that S4 and 

S5 of the bacterial YiiP rotate to an even greater extent than hZnT7, thereby generating a 

larger cytosolic cavity (Fig. 7). In conclusion, hZnT7 undergoes smaller TM-helix 

movements during the transition between the OF and IF forms than do other zinc 

transporters of known structures. 

In this context, a short membrane-parallel α-helix at the N-terminus of S1 (S1a) of 

hZnT7 was found to be located on the cytosolic side, with small movement between the OF 

and IF forms (Fig. 2g, left). Neither hZnT8 nor YiiP possesses such a membrane-parallel α-

helix element on the cytosolic side (Supplementary Fig. 8). The S1a segment characteristic 

of hZnT7 may limit the movement of the cytosolic regions of the TM helices during the 

transition from the IF to OF form. 
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Mechanism of hZnT7-mediated Zn2+ transport into the Golgi lumen 

Altogether, the cryo-EM and biochemical analyses in the present study provide a likely 

scenario for hZnT7-mediated Zn2+ transport from the cytosol to the Golgi lumen (Fig. 8). 

The Zn2+-unbound IF form of hZnT7 possesses a negatively charged cytosolic cavity at the 

TMD-CTD interface, where the exceptionally long and flexible His-loop is predicted to 

localize. These structural features seem advantageous for the efficient recruitment and 

shuttling of Zn2+ to the negatively charged cytosolic Zn2+ entry gate. The hydrophobic gates 

in EcYiiP (Leu152 and Met197) and SoYiiP (Leu154 and Leu199) had been found to regulate Zn2+ 

entry18,20. Similarly, the present study revealed that a leucine-pair gate (Leu239 and Leu285) is 

present near the cytosolic Zn2+ entry gate in hZnT7. The hydrophobic gate was fully open 

in the Zn2+-unbound IF form, with Zn2+ binding triggering the closure of the leucine-pair 

gate to generate a Zn2+-occluded state before transition to the Zn2+-releasing state (i.e. Zn2+-

bound OF form) via TM-helix rearrangements. 

The Zn2+-bound OF form has structural features suitable for Zn2+-release to the Golgi 

lumen. The luminal cavity of the Zn2+ transport pore is open, whereas the cytosolic cavity 

is fully closed to prevent further Zn2+ entry from the cytosol. Presumably, H+ from the 

weakly acidic Golgi lumen protonates residues of the HDHD motif, triggering the release 

of bound Zn2+. The negatively charged surface of the luminal cavity likely facilitates Zn2+ 

transfer to the luminal gate. Protonations at the HDHD motif may also induce the 

subsequent conversion from the OF to the IF form, releasing H+ into the cytosol. This 

mechanism of action nicely explains the physiological function of hZnT7 as a Zn2+/H+ 

antiporter in the Golgi membrane. ZnT7 is likely to collaborate with other ZnT and ZiP 

family members for the maintenance of Zn2+ homeostasis in the early secretory pathway. 

Detailed mechanisms of Zn2+ homeostasis resulting from the cooperation of multiple Zn2+ 

transporters remain to be elucidated, in light of the physiological roles of Zn2+ in the folding 

and maturation of Zn2+-binding proteins, cell signaling and regulation, and many other life 

activities. 
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Methods 

Cloning and protein expression 

A cDNA encoding human ZnT7 (hZnT7) was synthesized with codon-optimization for 

expression in human cells. The hZnT7 gene with an N-terminal PA-tag sequence 

(GVAMPGAEDDVV) was cloned into a PiggyBac Cumate Switch Inducible Vector (SBI). 

For large-scale expression of hZnT7, stable PiggyBac/hZnT7-expressing HEK293T cells 

were cultured in DMEM (High glucose; 4.5 g/L D-(+)-glucose with L-glutamine, phenol red, 

and sodium pyruvate; Nacalai Tesque), supplemented with 4% fetal bovine serum (FBS; 

Biosera), 1% penicillin-streptomycin mixed solution (PS; Nacalai Tesque), and 4 g ml-1 

puromycin (InvivoGen), and grown at 37 oC in an atmosphere containing 5% CO2. After 3 

days, the cells were passaged into fresh DMEM (high glucose) supplemented with 4% FBS, 

and 1% PS. After growth for 24 h, expression was induced by addition of Cumate (Wako) 

and phorbol 12-myristate 13-acetate (Wako) to final concentrations of 10X (300 g ml-1) and 

1X (50 nM), respectively. Cells were continuously cultured at 37 oC for 3 h in 5% CO2 before 

being incubated at 30 oC in 5% CO2. After 48 h, the cells were harvested, washed with cold-

1X phosphate buffered saline (PBS), and stored at -80oC. 

 

Protein purification 

Proteins were purified and treated at 4oC. Cells were washed with ice-cold-1X PBS buffer 

and collected by centrifugation. Cells from 2 liters of medium (wet-weight, ~8 grams) were 

lysed by resuspension in buffer A containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 

10% glycerol, supplemented with 2 mM DTT (Nacalai Tesque), 0.05 mg ml-1 DNase I (Wako), 

5 mM MgCl2 (Wako), and 1/100 protease inhibitor cocktail (Nacalai Tesque). The cells were 

sonicated for 3 min in an ice-water cup, and the cell membrane fraction was collected by 

ultracentrifugation at 200,000 ×g (micro Ultracentrifuge CS100FNX, Hitachi) for 1 h at 4 oC. 

The pellet was dissolved in a solution containing 1% (v/v) n-dodecyl-β-D-maltoside (DDM; 

Nacalai Tesque), 0.5% (v/v) cholesteryl hemisuccinate (CHS; Sigma), 20 mM Tris-HCl, pH 

7.5, 150 mM NaCl, 10% glycerol, and 2 mM DTT, and incubated for 2 h at 4 oC with constant 

stirring. The supernatant containing PA-tagged hZnT7 was collected by centrifugation at 

15,000 ×g for 30 min at 4 oC and incubated with 12 ml (net weight, 6 ml) Anti-PA-tag 

Antibody Beads (Wako) overnight at 4 oC with gentle rotation. The resin was collected in a 
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glass column (BioRad) and washed with 15 CV of Buffer B [buffer A supplemented with 

0.02% GDN (w/v) (Anatrace), and 2 mM DTT (w/v)]. PA-tagged hZnT7 was eluted with 

Buffer C [Buffer B supplemented with 0.2 mg ml-1 PA peptide (PH Japan Co., Ltd)]. The 

protein was concentrated using a 50-kDa cutoff Amicon filter (Sigma-Aldrich) and purified 

on a Superose 6 Increase 10/30 gel filtration column (GE Healthcare), pre-equilibrated with 

buffer A supplemented with 2 mM DTT (v/v), and 0.02% GDN (w/v). The eluted fractions 

were concentrated using a 100-kDa cutoff Amicon filter to ~10 mg ml-1 for negative staining 

EM and cryo-EM measurements. 

 

Preparation and screening of monoclonal antibody Fab fragments to hZnT7 

All animal experiments conformed to the guidelines of the Guide for the Care and Use of 

Laboratory Animals of Japan and were approved by the Kyoto University Animal 

Experimentation Committee. Mouse monoclonal antibodies against hZnT7 were generated 

essentially as described21. Briefly, a proteoliposome antigen was prepared by reconstituting 

purified hZnT7 at high density into phospholipid vesicles consisting of a 10:1 mixture of 

chicken egg yolk phosphatidylcholine (egg PC; Avanti Polar Lipids) and adjuvant lipid A 

(Sigma-Aldrich) to facilitate the immune response. MRL/lpr mice were injected three times 

at 2-week intervals with the proteoliposome antigen. Antibody-producing hybridoma cell 

lines were generated using a conventional fusion protocol. Biotinylated proteoliposomes 

were prepared by reconstituting hZnT7 with a mixture of egg PC and 1,2-dipal-mitoyl-sn-

glycero-3-phosphoethanolamine-N-(cap biotinyl) (16:0 biotinyl Cap-PE; Avanti), and used 

as binding targets for conformation-specific antibody selection. The targets were 

immobilized onto streptavidin-coated microplates (Nunc). Hybridoma clones producing 

antibodies recognizing conformational epitopes of hZnT7 were selected by enzyme-linked 

immunosorbent assay on immobilized biotinylated proteoliposomes (liposome ELISA), 

allowing positive selection of the antibodies that recognized the native conformation of 

hZnT7. Clones were additionally screened for reduced antibody binding to SDS-denatured 

hZnT7, resulting in negative selection of linear epitope-recognizing antibodies. The 

formation of stable complexes between hZnT7 and each antibody clone was determined by 

fluorescence-detection SEC. Five monoclonal antibodies were found to specifically bind to 

and stabilize conformational epitopes of hZnT7. The sequences of the Fabs were determined 

by standard 5’-RACE using total RNA isolated from hybridoma cells. 
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Preparation of hZnT7-Fab complexes 

Purified hZnT7 was mixed at a molar ratio of 1:3 with each of the five selected Fab fragments 

(Fab#1, YN7114-08; Fab#2, YN7117-01; Fab#3, YN7114-03; Fab#4, YN-7148-12; and Fab#5, 

YN7179-03). Following incubation for 30 min at 4 oC with gentle rotation, the mixtures were 

centrifuged at 15,000 r.p.m. for 10 min at 4 oC and injected into Superdex 200 Increase 10/300 

GL size-exclusion columns (GE Healthcare). Fractions containing both hZnT7 and Fab were 

collected and concentrated with a 100-kDa cutoff Amicon filter to around 10 mg ml-1 for 

cryo-EM measurements. 

 To prepare Zn2+-bound hZnT7, hZnT7 purified in Zn2+-free buffer was mixed with 

10 μM Zn2+ and incubated on ice for 10 min. This mixture was incubated with a 3-molar 

excess of Fab#1 for 0.5 h at 4oC with gentle rotation, centrifuged at high speed to remove 

precipitates, and injected onto an SEC column, as described above, with the SEC buffer 

containing 10 μM Zn2+. Fractions containing both hZnT7 and Fab#1 were pooled and 

concentrated using a 100-kDa cutoff Amicon filter to ~8 mg ml-1 for cryo-EM measurements. 

 

Preparation of hZnT7ΔHis-loop sample 

To prepare the hZnT7ΔHis-loop, the DNA segment encoding residues His176 to Pro221 of 

hZnT7 was deleted by QuickMutagensis using the primers 5’-

CCACAGCAGCCTGAAAGAGACAACC-3’ (forward) and 5’-

TTCAGGCTGCTGTGGCCGTGTCCAGA-3’ (reverse), both synthesized by Eurofins. The 

medium was changed to fresh serum-free DMEM containing 1% PS, and HEK293T cells 

were transfected with pcDNA3.1/PA-hZnT7ΔHis-loop plasmids using PEI reagent (Sigma-

Aldrich) at a ratio of 50 μg DNA to 1.5 ml PEI reagent (1 mg ml-1). Cells were continuously 

cultured for 24 h before 10 mM sodium butyrate (Wako) was added. After 54 h of culturing 

at 30 oC and 5% CO2, the cells were harvested. hZnT7ΔHis-loop protein was purified as 

described for wild-type hZnT7. 

 

Negative stain EM 
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The hZNT7-Fab complexes were assessed by negative-stain EM, which provided 2D 

reconstruction images useful for Fab selection. Grids for negative-stain EM were prepared 

according to the standard protocol. Specifically, 5 μl of purified hZnT7-Fab complex was 

applied to glow-discharged carbon-coated grids (ELC-C10), with the excess solution 

removed with filter paper. The grid was immediately stained with 1 % (w/v) uranyl acetate 

solution. The negatively stained EM grids were imaged on a JEOL JEM-2010F electron 

microscope (JEOL) operated at 200 kV. Particles were extracted by phase-flipping, followed 

by reference-free 2D class averaging using RELION-3.1 version22. 

 

EM data acquisition  

To prepare cryo-EM grids, 3 μl of hZnT7-fab complex samples were applied to glow-

discharged QuantiFoil R1.2/1.3 Cu/Rh 300 mesh grids (for hZnT7) or Cu 300 mesh grids 

(for hZnT7∆His-loop). The grids were blotted and immersed in liquid ethane using Vitrobot 

Mark IV systems (FEI/Thermo fisher) operated at 4 ˚C and 100% humidity. The blotting 

parameters for complexes of hZnT7 with Fab#1 or Fab#3 and for Zn bound hZnt7 were set 

at a wait time of 3 sec, a blot time of 3.5-4 sec, and a blot force of 10; and the blotting 

parameters for hZnT7-∆His-loop with or without Zn were set at a wait time of 3 sec, a blot 

time of 3 sec, and a blotting force of -5. 

 The grids were initially imaged using a Talos Arctica TEM (Thermo Fisher 

Scientific) equipped with a Gatan K2 summit. Subsequently, movies of the hZnT7 with 

Fab#1 were collected on a Titan Krios G3i TEM (Thermo Fisher Scientific) operated at 300 

kV, equipped with a Gatan Quantum-LS Energy Filter (GIF) and a Gatan K3 BioQuantum 

direct electron detector. Movies of the hZnT7∆His-loop-Fab complex were collected on a 

CRYO ARM™ 300II (JEOL) operated at 300 kV and equipped with a JEOL in-column Omega 

energy filter and a Gatan K3 BioQuantum detector. Data were automatically collected using 

SerialEM software23. The data collection parameters are summarized in Table 1. 

 

EM data processing 

All movie stacks were subjected to motion correction using the motion correction program 

implemented in RELION 3.122, with the contrast transfer function (CTF) parameters 

estimated with CTFFIND424. For the dataset of hZnT7 in Zn2+-free buffer (Dataset 1), 
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particles were initially picked from 1,016 movies using Laplacian-of-Gaussian-(LoG) based 

auto-picking in RELION3.1 and selected from 2D classification as 2D references, which were 

used for template-based auto-picking from 4,275 movies. 2D class averages representing 

hZnT7-Fab#1 complexes were separately selected from top views (i.e. from Fabs or 

detergent micelles) and side views, with further 2D classification performed for each view. 

The representative 2D classifications of hZnT7-Fab in side (295,855 particles) and top 

(303,643 particles) views were combined and subjected to two rounds of 3D classifications 

in C1 symmetry (4 to 6 classes) using the initial model generated by RELION 3.1. The best 

particles (145,096 particles) were re-extracted at a pixel size of 1.19889 Å and subjected to 

3D refinement in C2 symmetry, CTF refinement, and Bayesian polishing. After one round 

of 3D classification without alignment using an overall mask, selected particles (139,367 

particles) were processed with additional CTF refinement and 3D refinement, which yielded 

an EM map with a resolution of 2.7 Å. To improve the density for S4 and S5, focused 3D 

classification without alignment was performed using a mask covering the TM domain 

(fourth 3D classification). After removal of duplicates, particles belonging to the major class 

(class 2, outward form) were subjected to 3D refinement followed by non-uniform 

refinement in cryoSPARC. Although the resulting 3D reconstruction generated an EM map 

at 2.7 Å resolution, the EM densities of S1 and S4 were not clear. Subsequently, 25,077 

particles were further selected from another focused 3D classification using a mask covering 

the S1 and S4 regions and processed with non-uniform refinement, which generated an EM 

map at 2.8 Å resolution. In addition, particles corresponding to a minor class in the fourth 

classification, which represented different conformations (class 1, inward form), were 

refined at 3.4 Å resolution with 3D refinement in RELION 3.1 (Supplementary Fig. 3). 

 For the dataset of hZnT7 in Zn2+-containing buffer (Dataset 2), particles were 

picked from 4,419 movies by auto-picking in RELION 3.1 using the 2D references from 

dataset 1. A total of 595,890 particles were selected from two rounds of 2D classification and 

were applied to the two rounds of 3D classification in C1 symmetry using the initial model 

generated by RELION as reference. The best particles (112,859 particles) were re-extracted 

at a pixel size of 1.08937 Å, and subjected to 3D refinement, CTF refinement, and Bayesian 

polishing, followed by non-uniform refinement in cryoSPARC. To improve the resolution 

of S1 and S4, particles were further selected from focused 3D classifications with a mask 

focusing only on S1 and S4, which yielded an EM map at 2.9 Å resolution. An EM map 
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reconstructed from particles classified into a minor class (48,046 particles) at 3.9 Å resolution 

was similar to that of the major class (Supplementary Fig. 10). 

 For the dataset of hZnT7∆His-loop in Zn2+-free buffer (Dataset 3), particles were 

picked from 1,213 movies using LoG-based auto-picking in RELION 3.1 to create 2D 

references for template-based picking from the full dataset of 4,850 movies. After two 

rounds of 2D classification, 325,036 particles were selected and subjected to two rounds of 

3D classification using the 3D initial model generated by RELION 3.1. Particles classified 

into the best class (188,918 particles) were re-extracted at a pixel size of 1.182 Å and subjected 

to 3D refinement in C2 symmetry, CTF refinement, and Bayesian polishing. Subsequent 

focused non-aligned 3D classification in C2 symmetry using an encompassing mask of the 

TM domain improved the local resolution of the latter. The best particles with clear density 

for the TM domain (Class 2, 60,977 particles) were refined at 3.4 Å resolution with non-

uniform-refinement in cryoSPARC (Supplementary Fig. 15). 

 For the dataset of the hZnT7∆His-loop in Zn2+-containing buffer (Dataset 4), 

particles were picked from 500 movies by using LoG-based auto-picking in RELION3.1 to 

create 2D references for template-based picking from the full dataset of 6,150 movies. After 

two rounds of 2D classification, a total of 424,349 particles were selected and subjected to 

two rounds of 3D classification. Particles classified into the best class (142,746 particles) were 

re-extracted at a pixel size of 1.182 Å and subjected to 3D refinement in C2 symmetry, CTF 

refinement, and Bayesian polishing. Subsequent focused non-aligned 3D classification in C2 

symmetry using an encompassing mask of the TM domain improved the local resolution of 

the latter. The best particles (142,624 particles) were refined at 3.4 Å resolution with non-

uniform refinement in cryoSPARC (Supplementary Fig. 16). 

 Global resolution was estimated in RELION and cryoSPARC with a Fourier shell 

correlation (FCS) of 0.143. The EM maps were sharpened and locally filtered based on local 

resolution with cryoSPARC25 or sharpened with Auto-sharpen in PHENIX26. 

 

Model building, refinement, and validation 

An initial model of the Zn2+-free hZnT7-Fab#1 complex was automatically built with 

Buccaneer in CCP-EM27. Further manual model building was performed with Coot28,29. TM 

helices at low-resolution were modeled based on a homology model created using the 
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SWISS model webserver. The model was refined against the locally filtered map using 

phenix.real_space_refine in Phenix30. The final model included hZnT7 residues 22-376, Fab 

light chain residues 1-218, and Fab heavy chain residues 1-234. The histidine-rich loop 

(residues 163 to 224) was missing from the EM map. hZnT7 residues 135-140 and 258-264 

were removed from the model because of poor density maps. The structures of the IF form 

of hZnT7 and the OF form of hZnT7∆His-loop were initially modeled using the Zn2+-

unbound OF structure, followed by further manual model building with Coot. The models 

were refined against the locally filtered maps or against phenix-auto-sharpened maps (for 

IF structure) using phenix.real_space_refine. 

 The final models were validated using MolProbity31. All the figures were prepared 

in Pymol32, UCSF Chimera33, and UCSF ChimeraX34. Pore radii were calculated using the 

HOLE program35 and analyzed in Pymol32 and VMD36. Amino acid sequence alignments 

were analyzed by the MAFFT version 7 online service with defaults37. Electrostatic potential 

maps were calculated with APBS-PDB2PQR38. An entire hZnT7 structure with the His-loop 

was predicted by AlphaFold239. 

 

Zn2+-binding assay 

hZnT7 and hZnT7∆His-loop were purified in Zn2+-free buffer as described above, and 

ERp44 was purified as described previously40. For Zn2+-binding assay, 10-20 M protein 

samples were mixed with 100 M ZnCl2 in Buffer A (50 mM HEPES, pH 8.0, 300 mM NaCl, 

100 mM sucrose) for 10 min on ice. The hZnT7 and hZnT7∆His-loop samples were 

maintained in 0.02% GDN. Samples were applied to PD-10 columns (GE Healthcare) to 

remove residual Zn2+. Eluted fractions were collected and concentrated using 10-kDa cutoff 

Amicon filters. Protein concentrations were measured using BCA assay kits (Wako). A 50 l 

aliquot of each sample was mixed with 80 l denaturation buffer (50 mM HEPES, pH 8.0, 6 

M guanidine hydrochloride, 10% SDS) at room temperature for 1 h, followed by incubation 

with 30 M Zincon for 10 min at room temperature41. The absorbance of the Zn2+-Zincon 

complex in the visible region was measured using a Spectrophotometer U-3900 (Hitachi). 

Data were collected from three independent experiments. Purified ERp44 was used as a 

positive control. Zincon monosodium salt (Sigma-Aldrich) was prepared immediately 

before each assay. A stock solution of Zincon was prepared in MilliQ-filtered water, diluted, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.23.485435doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.23.485435


22 
 

and the concentration was determined based on the absorbance at 488 nm using ε488 = 26 

900 M−1·cm−141. 

 

Zn2+ transport assay with proteoliposomes 

The Zn2+ transport activity of hZnT7 was measured using FluoZin-3 (Invitrogen), a Zn2+-

sensitive fluorophore. To avoid bleaching of the fluorophore, the sample was shielded from 

direct light throughout the experiments. Briefly, 1 mg of purified hZnT7 or hZnT7∆His-loop 

was added to 5 mg egg yolk phosphatidylcholine (egg PC, Avanti Polar Lipids) in 1 mL of 

PBS containing 0.8% sodium cholate (Sigma). The solution was incubated with 100 mg of 

wet fresh Bio-Beads SM-2 (Sigma) overnight at 4 °C, with gentle rotation. The beads were 

removed, and the supernatant was centrifuged at 200,000 xg for 20 min at 4 oC. Each pellet 

was resuspended in 100 l Buffer IN (20 mM HEPES, pH 6.5, 150 mM KCl), and mixed with 

50 M Fluozin-3 (Sigma). The mixtures were sonicated for 30 sec, frozen in liquid nitrogen, 

and thawed on ice. This procedure was repeated twice. The mixtures were again sonicated 

for 30 sec and applied to a PD-10 column. The eluted fractions were centrifuged at 200,000 

xg for 20 min at 4 oC. The pellets were resuspended in 100 l Buffer IN and kept on ice prior 

to the assay. As a negative control, empty liposomes were prepared using the same protocol. 

The proteoliposomes and liposomes thus prepared were mixed with 100 M ZnSO4 in a 

cuvette containing 500 l buffer OUT (20 mM HEPES, pH 7.5, 150 mM KCl). Fluorescence 

spectra were recorded at an excitation wavelength of 490 nm using a Fluorescence 

Spectrophotometer F-7000 (Hitachi). To normalize the time-dependent fluorescence, a 

solution of 1% OG detergent in 500 l buffer OUT was added to each proteoliposome or 

liposome preparation for 1 h on ice in the dark to determine the maximal fluorescence of 

each individual preparation (FPmax). Background signals from empty liposomes were used 

to normalize the FLmax. Zn2+ transport activity was calculated as FP/FPmax - FL/FLmax over 

time, with initial transport rates (ΔF  s−1) calculated by linear regression of the transport 

data42. 
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Figure legends 

Main Figures 

Fig. 1 | Sequence alignment of representative ZnT-family members of known structure. 

Amino acid sequences of human ZnT7 (hZnT7) (UniProtKB - Q8NEW0) and ZnT8 (hZnT8) 

(UniProtKB - Q8IWU4), Escherichia coli YiiP (EcYiiP) (UniProtKB - P69380), and Shewanella 

oneidensis YiiP (SoYiiP) (UniProtKB - Q8E919) were aligned. Highly conserved, similar, and 

weakly conserved residues are colored black, light-blue, and rose, respectively. The -helix 

and -strand elements of hZnT7 are indicated by solid and broken green lines above the 

amino acid sequence, respectively. The histidine-rich loop is indicated by a broken pink line 

above the sequence. HDHD-motif residues present in the transmembrane domain are 

indicated by light green boxes; Zn2+-binding residues present in the cytosolic domain of 

hZnT8 and Ec/SoYiiP are indicated by red and violet boxes, respectively; and histidine 

residues in the His-loop of ZnT7 are indicated by blue boxes. Green stars indicate residues 

involved in Zn2+ binding. S, transmembrane helix; α and β, alpha-helix and beta-strand in 

the cytosolic domain, respectively. 

 

Fig. 2 | Cryo-EM structures of Zn2+-unbound outward-facing (OF) and inward-facing (IF) 

forms of hZnT7. (a) Side views of outward-facing (left) and inward-facing (right) forms of 

hZnT7 in complex with -Fab#1, with density maps shown in surface representations at a 

contour level of 0.5. The density of detergent micelles is shown in the surface 

representation as a transparent envelope at a contour level of 0.25. (b) Cylinder 

representation of the hZnT7 dimer in the same orientation as in (a) (top), and cytosolic 

(middle) and luminal (bottom) views of the transmembrane domain of hZnT7, with the 

cytosolic domain and TM loops removed for clarity. The membrane boundaries were 

determined using the OPM server (http://opm.phar.umich.edu/server.php) and are 

shown with gray lines (top). S1 to S3 and S6 (shown in green or violet) form the scaffold 

domain, while S4 and S5 (shown in yellow) form the helix-pair domain. TMD, 

transmembrane domain; CTD, cytosolic domain. (c) Electrostatic potential surface map of 

outward-facing and inward-facing forms of hZnT7 at pH 7.5. Black dashed lines indicate 

the cytosolic-facing cavity present at the TMD-CTD interface. Gray lines indicate 

boundaries of the membrane. Surface colors represent Coulombic potential (red, negative; 
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white, neutral; blue, positive). T, temperature; k, Boltzmann constant; e, charge of an 

electron. (d) Zn2+-binding sites in the transmembrane domain of outward-facing (left) and 

inward-facing (right) forms of hZnT7. Residues forming the HDHD motif are represented 

by sticks, while the density of these residues is shown by green mesh at contour levels of 

0.4 for outward-facing and 7 for inward-facing forms. (e) CTD interactions at the dimer 

interface in outward-facing (left) and inward-facing (right) forms of hZnT7. Yellow dotted 

lines indicate contacts between polar residues. (f) The TMD-CTD interface in outward-

facing (left) and inward-facing (right) forms of hZnT7. (g) Superposition of the TMDs of 

outward-facing (purple) and inward-facing (green) forms of hZnT7. Black arrows indicate 

the movement of TM helices during the conversion from the outward-facing to the inward-

facing form. 

 

Fig. 3 | Cryo-EM structures of the Zn2+-bound outward-facing form of hZnT7. (a) Ribbon 

diagram showing the overall structure of the outward-facing form of Zn2+-bound hZnT7. 

Bound Zn2+ ions are represented by green spheres. (b) The Zn2+-binding site viewed from 

the cytosolic side. Residues forming the HDHD motif are represented by ball-and-sticks, 

while the density of these residues is shown by green mesh at a contour level of 0.4. (c) 

Electrostatic potential surface map of the outward-facing form of Zn2+-bound hZnT7 at pH 

7.5. The orientation is the same as in (a). Black dashed lines indicate the cytosolic-facing 

cavity present at the TMD-CTD interface. Gray lines indicate boundaries of the membrane. 

Surface colors represent Coulombic potential (red, negative; white, neutral; blue, positive). 

T, temperature; k, Boltzmann constant; e, charge of an electron. (d) Superposition of the TM 

helices of the outward-facing forms of Zn2+-bound (light green) and -unbound (violet) 

hZnT7. Bound Zn2+ is represented by a green sphere. Black arrows indicate the movement 

of TM helices induced by Zn2+ binding. (e) The Leu239 (S5)-Leu285 (S6) gate that likely 

controls the opening/closure of the cytosolic-facing cavity viewed from the cytosolic side. 

Leu293 (S5) and Leu285 (S6) are represented by yellow sticks. The cytosolic domain is omitted 

for clarity.  

 

Fig. 4 | Zinc ion permeation pore of hZnT7. (a) Pore profile of a hZnT7 protomer in 

outward-facing forms of the Zn2+-bound (left) and -unbound (middle) states, and in the 
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inward-facing form of the Zn2+-unbound state (right). For clarity, only the TMD is 

highlighted. Red, green, and purple mesh colors correspond to pore radii of <1.0 Å, 1.0-2.3 

Å, and >2.3Å, respectively. The protein backbones are represented by ribbons, and the zinc 

ion is represented by a green sphere. Black lines indicate boundaries of the membrane. (b) 

Pore radius of the hZnT7 protomer calculated using a HOLE program. Colors correspond 

to the outward-facing forms of Zn2+-bound (OFZ, green) and -unbound (OF, red) states, and 

the inward-facing form of the Zn2+-unbound state (IF, violet). The vertical broken line 

indicates the radius of a water molecule, 1.4 Å. (c) Coronal section of the electrostatic 

potential surface map of the hZnT7 protomer. Surface colors indicate Coulombic potentials 

(red, negative; white, neutral; blue, positive). T, temperature; k, Boltzmann constant; e, 

charge of an electron. 

 

Fig. 5 | Comparison of Zn2+-binding sites in hZnT7 (cryo-EM structure at 2.8 Å 

resolution), hZnT8 (cryo-EM structure at 4.1 Å resolution), EcYiiP (crystal structure at 2.9 

Å resolution), and SoYiiP (cryo-EM structure at 3.4 Å resolution). (a) Distribution of Zn2+-

binding sites in the overall structures of hZnT7, hZnT8, EcYiiP, and SoYiiP. (b) Zinc 

coordination structures at sites 1, 2, and 3. Yellow dashed lines indicate Zn2+ coordination 

of the neighboring His/Asp residues in the HDHD and HDDD motifs. 

 

Fig. 6 | Structures and functional properties of hZnT7∆His-loop. (a) Cryo-EM structures 

of an outward-facing form of hZnT7∆His-loop in the Zn2+-bound and -unbound states. 

Transmembrane helices 4 (S4) and 5 (S5) that flank the His-loop are colored yellow. Zinc 

ions are indicated by green spheres. (b) Comparison of TMD structures in Zn2+-bound 

(purple) and -unbound (green) hZnT7∆His-loop. Zn2+ is shown as a green sphere. (c) 

Comparison of TMD structures of the outward-facing forms of Zn2+-bound hZnT7∆His-

loop (green) and hZnT7 WT (blue). (d) Comparison of TMD structures of the outward-

facing forms of Zn2+-unbound hZnT7∆His-loop (lime) and full-length hZnT7 (purple). (e) 

Zinc-binding stoichiometry of purified hZnT7, hZnT7∆His-loop, and ERp44 (control) 

determined by a spectroscopic assay using Zincon. Data are from three independent 

experiments. Error-bars indicate mean ± SEM. (f) Zinc uptake rate of hZnT7 WT and 

hZnT7∆His-loop determined by incubating ZnT7-embedded proteoliposomes containing 
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Fluozin3 in buffer containing 100 M ZnSO4. Data are from three experiments. Error-bars 

indicate mean ± SEM. 

 

Fig. 7 | Comparison of TMD structures of hZnT7, hZnT8, and bacterial YiiP. Comparisons 

of TMD structures of the OF and IF forms of hZnT7 (left), the OF (PDB ID: 6XPE) and IF 

(PDB ID: 6XPF) forms of hZnT8 (middle), and the OF form of EcYiiP (PDB ID: 3H90) with 

the IF form of SoYiiP (PDB ID: 7KZZ) (right). S4 and S5 were found to move to different 

degrees during the conversion of hZnT7 (left), hZnT8 (middle), and YiiP8 (right) from the 

OF to the IF form. For clarity, S4 and S5 are represented by cylinders. 

 

Fig. 8 | Proposed model of Zn2+ transport mediated by a Golgi-resident human Zn2+/H+ 

antiporter hZnT7. During its Zn2+ transport cycle, hZnT7 undergoes TM-helix 

rearrangement, resulting in a negatively charged cytosolic cavity for Zn2+ entry in the IF 

form and a negatively charged luminal cavity for H+ incorporation and Zn2+ release in the 

OF form. The exceptionally long His-loop may facilitate Zn2+ recruitment from the cytosol 

and subsequent Zn2+ shuttling to the cytosolic cavity. 
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S1a S1b

————————— — —————————————————

hZnT7 1   M------------------LPLSIKDDEYKP--------------PKFNLFGKISGWFRSILSDK-------TSRNLFFFLCLNLSFAF

hZnT8 1   MEFLERTYLVNDKAAKMYAFTLESVELQQKPVNKDQCPRERPEELESGGMYHCHSG---SKPTEKGANEYAYAKWKLCSASAICFIFMI

EcYiiP 1   M----------------------------------------------NQSYG------------------RLVSRAAIAATAMASLLLL

SoYiiP 1   M--------------------------------------------TQTSQYD------------------FWVKLASRASVATALTLIT

***

S1b S2 S3

—————— ——————————————————————————— ——————————————————————————————

hZnT7 51  VELLYGIWSNCLGLISDSF MFF STAILAGLAASVISKWRDNDAFSYGYVRAEVLAGFVNGLFLIFTAFFIFSEGVERALAP-PDVHH

hZnT8 87  AEVVGGHIAGSLAVVTDAA LLI LTSFLLSLFSLWLSSKPPSKRLTFGWHRAEILGALLSILCIWVVTGVLVYLACERLLYPDYQIQA

EcYiiP 26  IKIFAWWYTGSVSILAALV SLV IGASLTNLLVVRYSLQPADDNHSFGHGKAESLAALAQSMFISGSALFLFLTGIQHLISPTPMTDP

SoYiiP 28 IKLLAWLYSGSASMLASLT SFA TLASIINFIAIRYAIVPADHDHRYGHGKAEPLAALAQSAFIMGSAFLLLFYGGERLLNPSPVENA

*  *   **

S4 Histidine-rich loop

———————————————---------------------------------------------------------------------

hZnT7 139 ERLLLVSILGFVVNLIGIFVFKHGGHGHSHGSGHGHSHSLFNGALDQAHGHVDHCHSHEVKHGAAHSHDHAHGHGHFHSHDGPSLKETT

hZnT8 176 TVMIIVSSCAVAANIVLTVVLHQRCLGHNHK---------------------------EVQ----------------------------

EcYiiP 115 GVGVIVTIVALICTIILV-SFQRWVVRRTQ-----------------------------------------------------------

SoYiiP 117 TLGVVVSVVAIVLTLALV-LLQKRALAATN-----------------------------------------------------------

S5 S6 α1
---———————————————————————————— ——————————————————————————— —————————————

hZnT7 228 GPSRQILQGVFL ILA TLGSIGVIASAIMMQNFG--LMIADPICSILIAILIVVSVIPLLRESVGILMQRTPPLLENSLPQCYQRVQQ

hZnT8 210 --ANASVRAAFV ALG LFQSISVLISALIIY-FKPEYKIADPICTFIFSILVLASTITILKDFSILLMEGVPKSLNYS--GVKELILA

EcYiiP 144 ---SQAVRADML YQS VMMNGAILLALGLSW-YG--WHRADALFALGIGIYILYSALRMGYEAVQSLLDRALPDEERQ--EIIDIVTS

SoYiiP 146 ---STVVEADSL YKS LFLNAAVLLALVLSQ-YG--WWWADGLFAVLIACYIGQQAFDLGYRSIQALLDRELDEDTRQ--RIKLIAKE

▲ ▲

β1a β1b β2 α2 β3
------⇝ ---⇝ --------⇝ —————————————— -------⇝

hZnT7 315 LQGVYSLQEQHFWTLCSDVYVGTLKLIVAPDADARWILSQTHNIFTQAG-VRQLYVQIDFA-------------------------AM

hZnT8 294 VDGVLSVHSLHIWSLTMNQVILSAHVATAASRDSQVVRREIAKALSKSFTMHSLTIQMESPVDQDPDCLFCEDPCD------------

EcYiiP 225 WPGVSGAHDLRTRQSGPTRFI-QIHL----EMEDSLPLVQAHMVADQVE----QAILRRFP---GSDVIIHQDPCSVVPREGKRSMLS

SoYiiP 227 DPRVLGLHDLRTRQAGKTVFI-QFHL----ELDGNLSLNEAHSITDTTG----LRVKAAFE---DAEVIIHQDPVQVEP------TTQ

*                *                *         *      *        *  * *

Fig. 1
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Table 1 | Cryo-EM data collection, refinement, and validation statistics. 

 
Apo-hZnT7 
(OF form), 

EMD-32937, 
PDB 7X1D 

Apo-hZnT7 
(IF form), 

EMD-32945, 
PDB 7X1P 

Zn2+-hZnT7 
(OF form), 

EMD-32948, 
PDB 7X1S 

Apo-
hZnT7∆His-

loop (OF 
form), EMD-

32938, PDB 
7X1E 

Zn2+-
hZnT7∆His-

loop (OF 
form), EMD-

32939, PDB 
7X1F 

Data collection and processing 

Magnification  105,000 105,000 105,000 60,000 60,000 

Voltage (kV) 300 300 300 300 300 

Electron exposure (e-/Å2) 50 50 50 60 60 

Defocus range (μm) -0.8 to -1.8 -0.8 to -1.8 -0.8 to -1.8 -0.6 to -1.6 -0.6 to -1.6 

Pixel size (Å) 0.830 0.830 0.830 0.788 0.788 

Symmetry imposed C2 C2 C2 C2 C2 

Initial particle images (no.) 954,908 954,908 1,867,903 565,468 678,799 

Final particle images (no.) 25,077 29,774 47,348 60,977 142,624 

Map resolution (Å) 2.83 3.40 2.94 3.37 3.40 

FSC threshold 0.143 0.143 0.143 0.143 0.143 

Map resolution range (Å) 2.50-6.30 - 2.50-6.50 2.89-5.50 2.93-5.90 

Refinement 

Initial model used (PDB code) - - - - - 

Model resolution (Å) 2.9 3.3 2.9 3.4 3.4 

FSC threshold 0.5 0.5 0.5 0.5 0.5 

Model resolution range (Å) - - - - - 

Map sharpening B factor (Å2) -65.1 -95.2 -74.4 -95.0 -95.0 

Model composition  

  Non-hydrogen atoms 11,044 11,040 11,010 11,136 11,008 

  Protein residues 1,430 1,426 1,454 1,424 1,426 

  Ligands 0 0 2 0 2 

B factors (Å2)  

  Protein 54.5 93.4 61.5 40.5 87.8 

  Ligand - - 155.9 - 180.3 

R.m.s. deviations  

  Bond lengths (Å) 0.002 0.002 0.004 0.002 0.002 

  Bond angles (°) 0.558 0.566 0.615 0.483 0.523 

Validation 

MolProbity score 1.35 1.68 1.62 1.36 1.58 

Clash score 4.88 10.63 6.59 4.79 7.04 

Poor rotamers (%) 0.00 0.00 0.81 0.16 0.16 

Ramachandran plot 

  Favored (%) 97.51 97.44 96.65 97.46 96.86 

  Allowed (%) 2.13 2.42 3.21 2.40 3.14 

  Disallowed (%) 0.14 0.14 0.14 0.14 0 
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Supplementary Figures 

Supplementary Fig. 1 | hZnT7 purification and hZnT7-Fab complex sample preparation 

for Cryo-EM analysis. a, Representative chromatogram from Superose 6 Increase gel 

filtration of hZnT7 (left) and a Coomassie-stained SDS gel of the final hZnT7 sample (right). 

The final sample consisted of gel filtration chromatography fractions at elution volumes of 

13.5 to 16.5 ml. b, Representative chromatogram from Superdex 200 gel filtration of hZnT7 

in complex with Fab fragments (#1 to #5) made from selected monoclonal antibodies. c, 

Coomassie-stained SDS gels of the hZnT7 (green triangle)-Fab (black triangle) complex 

separated by gel filtration chromatography shown in panel b. d, Representative negative 

stained micrographs of the hZnT7-Fab complexes. Only the complexes with Fab#1, 3, 4, and 

5 were analyzed. 

 

Supplementary Fig. 2 | Cryo-EM density maps of hZnT7-Fab#1 and -Fab#3 complexes 

measured by Talos Arctica TEM. a, Average 2D classification of the hZnT7-Fab#1 (top) and 

hZnT7-Fab#3 (bottom) complexes. b, Cryo-EM density maps of the hZnT7-Fab#1 complex 

(left) at 5.0 Å-resolution and of the hZnT7-Fab#3 complex (right) at 7.7 Å-resolution, both 

shown at contour levels of 0.025 in ChimeraX. TMD, transmembrane domain; CTD, 

cytosolic domain. 

 

Supplementary Fig. 3 | Cryo-EM analysis of the hZnT7-Fab#1 complex in the absence of 

zinc ions. a, Workflow of cryo-EM data processing and map refinement for the hZnT7-

Fab#1 complex. Details are provided in the Methods section. b, Local-resolution map of the 

hZnT7-Fab#1 complex in Class 2 calculated by cryoSPARC. Bars on the right indicate local 

resolution in Å. c, Euler angle distribution of the refined particle subset used in final cryo-

EM reconstruction of the hZnT7-Fab#1 complex in Class 2 by non-uniform refinement. d, 

Fourier shell correlation (FCS) plots of the hZnT7-Fab#1 complex in Class 2 calculated by 

cryoSPARC. e, Fourier shell correlation (FCS) plots of the hZnT7-Fab#1 complex in Class 1 

calculated by RELION. 
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Supplementary Fig. 4 | Cryo-EM density maps of primary and secondary structural 

elements of the OF form of Zn2+-unbound hZnT7. Density maps of the six transmembrane 

helices (S1a-S6) and cytosolic-domain elements (α1 and α2, 1a-β4) of hZnT7, with atomic 

models shown as sticks. All density maps are shown at a contour level of 0.5. 

 

Supplementary Fig. 5 | Cryo-EM density maps of primary and secondary structural 

elements of the IF form of Zn2+-unbound hZnT7. Density maps of the six transmembrane 

helices (S1a-S6) and cytosolic-domain elements (α1 and α2, 1a-β3) of hZnT7, with atomic 

models shown as sticks. All density maps are shown at a contour level of 7. 

 

Supplementary Fig. 6 | Mode of interactions between the cytosolic domain (CTD) and 

Fab. a, Cartoon representation of the Zn2+-unbound OF-form of hZnT7 complexed with Fab. 

hZnT7, Fab heavy and light chains are colored blue, yellow and beige, respectively. The 

interface between the CTD and Fab is marked by a red square, which is highlighted in b. b, 

The CTD-Fab interface. Residues involved in the CTD-Fab interactions are represented by 

sticks. 

 

Supplementary Fig. 7 | Mode of interactions between the TMDs in the OF (a) and IF (b) 

forms of hZnT7 homodimers. Residues involved in the interactions between S2 and S3 in 

the OF (a) and IF (b) forms of hZnT7 are represented by spheres. The lower figure in each 

panel shows a spread image of the dimer interface. S2 and S3 are shown as cylinders, while 

the other TM helices are shown as gray surfaces. The CTD and extra-membrane loops have 

been omitted for clarity. 

 

Supplementary Fig. 8 | Comparison of the structures of the dimeric interfaces and 

transmembrane helix locations of hZnT7 (a), hZnT8 (b, PDB ID: 6XPD), and EcYiiP (c, 

PDB ID: 3H90). The CTD and extra-membrane loops have been omitted for clarity. 

Numbers indicate transmembrane helices involved in dimerization. 
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Supplementary Fig. 9 | Comparison of the structures of the CTD in three different forms 

of hZnT7. a, Superimposition of CTDs of the Zn2+-unbound OF (purple) and IF (green) 

forms of hZnT7. b, Superimposition of CTDs of the OF forms of Zn2+-unbound (green) and 

-bound (pink) hZnT7. c. Comparison of the structures of the TMD in three different forms 

of hZnT7 by superimposition of their CTDs. Leucine and valine residues are shown as sticks. 

Black arrows indicate the movement of the TM helices, and red arrows indicate the 

movement of amino acid residues. 

 

Supplementary Fig. 10 | Cryo-EM analysis of Zn2+-bound hZnT7 complexed with Fab#1. 

a, Workflow of cryo-EM data processing and map refinement for the hZnT7 (Zn2+-bound)-

Fab#1 complex. Details are provided in the Methods section. b, Local-resolution map of the 

hZnT7-Fab#1 complex in Class 3 calculated by cryoSPARC. Bars on the right indicate local 

resolution in Å. c, Euler angle distribution of the refined particle subset used in final cryo-

EM reconstruction of the hZnT7-Fab#1 complex in Class 3 by non-uniform refinement. d, 

Fourier shell correlation (FCS) plots of the hZnT7-Fab#1 complex in Class 3 calculated by 

cryoSPARC. 

 

Supplementary Fig. 11 | Cryo-EM density maps of primary and secondary structural 

elements of the OF form of Zn2+-bound hZnT7. Density maps of the six transmembrane 

helices (S1a-S6) and cytosolic-domain elements (α1 and α2, 1a-β3) of hZnT7 with atomic 

models shown as sticks. All density maps are shown at a contour level of 0.5. 

 

Supplementary Fig. 12 | Cryo-EM maps of the leucine-pair gate in hZnT7. (a), the S2-S3 

loop at the TMD-CTS interface (b), and the dimer interface in the CTD (c) of hZnT7. a, 

Cryo-EM density maps of the Leu239 (S5)- and Leu285 (S6)-neighboring regions in the 

indicated states are displayed as green mesh. Leu239, Leu242, and Leu285 are colored violet. 

Cryo-EM density maps are shown at contour levels of 7.0 (inward-facing) and 0.4 

(outward-facing and outward-facing Zn2+-bound). b, Cryo-EM density maps of the S2-S3 

loop at the TMD-CTD interface in the indicated states are displayed as green mesh. c, Cryo-

EM density maps of the dimer interface in the CTD in the indicated states are represented 

by green (protomer 1) and violet (protomer 2) meshes. Cryo-EM density maps are shown at 
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contour levels of 0.5 (outward-facing and outward-facing Zn2+-bound) and 7.5 (inward-

facing). Protein models are shown as sticks. 

 

Supplementary Fig. 13 | Comparison of Zn2+-binding residues in hZnT7 and other zinc 

transporters. Amino acid sequence alignment of the C-terminal regions of hZnT7 and 

bacterial Zn2+ transporters. The C-terminal segment sequences were downloaded from the 

UniProt site for human ZnT7 (hZnT7) (UniProtKB: Q8NEW0), Escherichia coli YiiP (EcYiiP) 

(UniProtKB: P69380), Shewanella oneidensis YiiP (SoYiiP) (UniProtKB: Q8E919), Thermus 

thermophilus CzrB (TtCzrB) (UniProtKB: Q8VLX7), Thermotoga maritima CzcD (TmCzcD) 

(UniProtKB: Q9WZX9), Cupriavidus metallidurans CzcD (CmCzcD) (UniProtKB: P13512), 

and Pseudomonas aeruginosa CzcD (PaCzcD) (UniProtKB: Q9I6A3). Residues involved in 

Zn2+ binding are indicated by black arrowheads and marked by green boxes. The 

corresponding residues in hZnT7 are colored pink. 

 

Supplementary Fig. 14 | Purification and preparation of the hZnT7∆His-loop-Fab#1 

complex for cryo-EM analysis. Representative chromatograms from a, Superose 6 Increase 

gel filtration of hZnT7∆His-loop protein and b, Superdex 200 gel filtration of the 

hZnT7∆His-loop-Fab#1 complex without (green) and with (purple) 10 M ZnSO4. 

 

Supplementary Fig. 15 | Cryo-EM analysis of Zn2+-unbound hZnT7∆His-loop in complex 

with Fab#1. a, Workflow of cryo-EM data processing and map refinement of the 

hZnT7∆His-loop (Zn2+-unbound)-Fab#1 complex. b and e, Local-resolution map of the 

hZnT7∆His-loop-Fab#1 complex in Class 2 (b) and Class 4 (e) calculated by cryoSPARC. 

Bars on the right indicate local resolution in Å. c, Euler angle distribution of the refined 

particle subset used in final cryo-EM reconstruction of the hZnT7∆His-loop (Zn2+-

unbound)-Fab#1 complex by non-uniform refinement. d, Fourier shell correlation (FCS) 

plots of the hZnT7∆His-loop-Fab#1 complex in Class 2. 

 

Supplementary Fig. 16 | Cryo-EM analysis of Zn2+-bound hZnT7∆His-loop in complex 

with Fab#1. a, Workflow of cryo-EM data processing and map refinement of the 

hZnT7∆His-loop (Zn2+-bound)-Fab#1 complex. b, Local-resolution map of the hZnT7∆His-
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loop-Fab#1 complex in Class 4 calculated by cryoSPARC. Bars on the right indicate local 

resolution in Å. c, Euler angle distribution of refined particle subset used in final cryo-EM 

reconstruction of the hZnT7∆His-loop(Zn2+-bound)-Fab#1 complex by non-uniform 

refinement. d, Fourier shell correlation (FCS) plot of the hZnT7∆His-loop (Zn2+-bound)-

Fab#1 complex in Class 4. 

 

Supplementary Fig. 17 | Cryo-EM density maps of primary and secondary structural 

elements of the OF form of Zn2+-unbound hZnT7∆His-loop. Density maps of the six 

transmembrane helices (S1a-S6) and cytosolic-domain elements (α1 and α2, β1a-β4) of Zn2+-

unbound hZnT7∆His-loop with their atomic models indicated with sticks. All density maps 

are shown at contour levels of 0.5. 

 

Supplementary Fig. 18 | Cryo-EM density maps of primary and secondary structural 

elements of the OF form of Zn2+-bound hZnT7∆His-loop. Density maps of the six 

transmembrane helices (S1a-S6) and cytosolic-domain elements (α1 and α2, β1a-β4) of Zn2+-

bound hZnT7∆His-loop with their atomic models indicated with sticks. All density maps 

are shown at contour levels of 0.5. 

 

Supplementary Fig. 19 | Structural comparison of the CTDs of Zn2+-unbound and -bound 

forms of hZnT7∆His-loop. 

 

Supplementary Fig. 20 | Predicted structural model of hZnT7. a, Entire structure of hZnT7 

predicted by AlphaFold2. S4 and S5 are highlighted in yellow. Histidine residues on the 

putative His-loop model are indicated by green sticks. All transmembrane helices are 

represented by cylinders. b, Superimposition of the CTD of the cryo-EM structures of Zn2+-

unbound hZnT7 (green) and the hZnT7 (pink) model predicted by AlphaFold2. 
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Supplementary 

Amino acid sequence of Fab#1 (YN7114-08) 

Light chain: 

>YN7114-08 Fab light chain_aa seq 

DIVLTQSPASLAVSLRRRATISCRASESVDGYGHSFMHWYQQKSGQPPKLLIYRASNLES

GVPARFSGSGSRTDFTLTIDPVEADDAATYYCQQSNEDPYTFGSGTKLEIKRADAAPTVS

IFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSM

SSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC 

 

CDR-L1: RASESVDGYGHSFMH 

CDR-L2: ASNLESG 

CDR-L3: QQSNEDPYT 

VL region: DIVLTQ………TKLEIK 

CL region: RADAAPT………SFNRNEC 

 

Heavy chain: 

>YN7114-08 Fab heavy chain_aa seq 

EVQLQESGPGLVAPSQSLSITCTVSGFSLTNYAVHWVRQSPGKGLEWLGVIWSNGRTDY

NAAFISRLSISKDNSKSQVFFKMNSLQADDTAIYYCARKLAYEGAMDYWGQGTSVTVSS

AKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQS

DLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIVPRDCGCKPCICTVPEVSS 

 

CDR-H1: NYAVH 

CDR-H2: VIWSNGRTDYNAAFIS 

CDR-H3: KLAYEGAMDY 

VH region: EVQ………TSVTVSS 

CH region: AKTTPPS………CICTVPEVSS 
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Supplementary Fig. 7
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Supplementary Fig. 8
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Supplementary Fig. 9
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Supplementary Fig. 12
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Supplementary Fig. 13

▼▼ ▼ ▼ ▼ ▼

hZnT7 294   -----MQRTPPLLENSLPQCYQRVQQ--LQGVYSLQEQHFWTL-CSDVYVGTLKLIVAPD

EcYiiP   207   ---D--RALPD--E-ERQEIIDIVTS--WPGVSGAHDLRTRQSGPTRFIQIHLEM-----

SoYiiP   206   ALLD--RELDE--D-TRQRIKLIAKE--DPRVLGLHDLRTRQAGKTVFIQFHLEL-----

TtCrzB   198   GLMD--EGLPP--E-EVERIRAFLQERIRGRALEVHDLKTRRAGPRSFLEFHLVV-----

TmCzcD   206   --MDGMKRTEL--D-MYDDIFAVLER--FPNVHNPHRVRIRRVGTKYFIEMDIEV-----

CmCzcD   213   ----------D--DVDLAEVEKQILA--TPGVKSFHDLHIWAL-TSGKASLTVHV-----

PaCzcD   210   -------GVPK--EIQLAELREALLG--IPGVTGLHDLHVWSI-TSGKISLTSHL-----

▼ ▼ ▼ ▼

hZnT7 326   ADARWILSQTHNIFTQAGVRQ---------LYVQIDFAAM-------------- 376

EcYiiP   252   -EDSLPLVQAHMVADQVEQAILRRFPGSD-VIIHQDPCSVV------------- 290

SoYiiP   254   -DGNLSLNEAHSITDTTGLRVKAAFEDAE-VIIHQDPVQVEPTTQ--------- 291

TtCrzB   248   -RGDTPVEEAHRLCDELERALAQAFPGLQ-ATIHVEPEGERKRTNP-------- 291

TmCzcD   254   -DGKMSVKDAHELTVKIRKEMLKRRDDIEDVTIHVEPLGNVEEEGFGLKKGEKK  306

CmCzcD   253   -VNDTAVNPEMEVLPELKQMLADKFDITH-VTIQFEL----------------- 285

PaCzcD   253   -VYDPALVDAEALLGTVKALLHDRYEIEH-STLQLETSACA------------- 291
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Supplementary Fig. 14
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Supplementary Fig. 16
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Supplementary Fig. 17
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Supplementary Fig. 18
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▶︎Zn2+-unbound outward-facing form of hZnT7∆His-loop

▶︎Zn2+-bound outward-facing form of hZnT7∆His-loop 

Supplementary Fig. 19
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Supplementary Fig. 20

180o

b

Luminal view Cytosolic view

α1

α2

α1

α2α1

α2

α1

α2

▶︎cryo-EM structure of hZnT7 in Zn2+-unbound outward-facing form

▶︎hZnT7 model predicted by AlphaFold2
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