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Abstract  

Human agents build models of their environment, which enable them to anticipate and plan 

upcoming events. However, little is known about the properties of such predictive models. 

Recently, it has been proposed that hippocampal representations take the form of a predictive 

map-like structure, the so-called successor representation. Here we used human fMRI to probe 

whether activity in the early visual cortex (V1) and hippocampus adhere to the postulated 
properties of the successor representation after visual sequence learning. Participants were 

exposed to an arbitrary spatiotemporal sequence consisting of four items (A-B-C-D). We found 

that after repeated exposure to the sequence, merely presenting single sequence items (e.g., 

- B - -) resulted in V1 activation at the successor locations of the full sequence (e.g., C-D), but 

not at the predecessor locations (e.g., A). This highlights that visual representations are skewed 

toward future states, in line with the successor representation. Similar results were also found 

in the hippocampus. Moreover, the hippocampus developed a tuning profile that showed 

sensitivity to the temporal distance in sequence-space, with fading representations for 
sequence events in the more distant past and future. V1, in contrast, showed a tuning profile 

that was only sensitive to spatial distance in stimulus-space. Together, these results provide 

empirical evidence for the proposition that both visual and hippocampal cortex represent a 

predictive map of the visual world akin to the successor representation. 

 

 

Introduction 

Anticipation and planning of future visual input require knowledge of the relational structure 

between events. The relational structure, for instance that stimulus B usually follows stimulus 

A, is learned through exposure during past experiences (Behrens et al., 2018; Finnie et al., 

2021; Gavornik & Bear, 2014) and can be used to build a model or cognitive map (Tolman, 

1948) that enables us to generate inferences in situation with noisy or partial input (Ekman et 

al., 2017; Momennejad, 2020; Schwartenbeck et al., 2021). 

In the visual domain, with rapidly changing input, it remains unknown what the inherent 

properties of the model underlying our predictions are. On the one hand such a model needs 

to be efficient enough to generate predictions from a constant stream of visual input, while on 

the other hand also allowing for flexible updating in an ever-changing environment. In the 

context of hippocampal representations, the successor representation (SR) has been recently 
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proposed (Dayan, 1993; Stachenfeld et al., 2017) to combine the trade-off between both flexible 

and efficient model properties. The SR postulates a predictive representation in which the 

current state is represented in terms of its future (successor) states, in a temporally discounted 

fashion. This hypothesis captures many aspects of empirical hippocampal place cell firing 
pattern, like the exponential decay toward distant future locations (Alvernhe et al., 2011; Mehta 

et al., 2000). 

It remains, however, unknown if SR-like representations are present outside the 

hippocampus in areas like the early visual cortex (V1) that have a strong retinotopic 

organization. Theoretically it is possible that V1 receptive fields, analogous to hippocampal 
place fields, become tuned to respond not only to the current input, but also to expected future 

inputs. Here we propose that the computationally efficient and flexible properties of the SR 

could in theory also underlie the anticipation of future events in V1. 

To directly test this hypothesis, we conducted a functional magnetic resonance imaging 

(fMRI) study in which participants were presented with an arbitrary visual dot sequence (A-B-
C-D). After initial sequence exposure, we introduced occasional omission trials, where only one 

element of the sequence was presented (e.g. B), while the rest of the sequence (e.g. A, C and 

D) was omitted. These partial sequence trials allowed us to study expectations of future 

stimulus sequences in the absence of physical stimulation. This design allowed us to test the 

specific assumptions of the SR and also assess whether V1 predictions were better described 

by an alternative mechanism called pattern completion. Pattern completion describes a 

framework in which autoassociative connections within the hippocampal CA3 regions reactivate 

related sequence items from partial input (Deuker et al., 2014; Leutgeb & Leutgeb, 2007; Rolls, 
2013) that is then propagated to sensory regions such as V1 (Hindy et al., 2016) . In contrast 

to the successor representation, pattern completion predicts reactivations of all associated 

items, without any skewing toward future locations or temporal discounting of events that are 

farther in the future.  

Using fMRI, we found reactivations of future sequence locations (e.g. C-D), but not of 
past locations (e.g. A) in both V1 and hippocampus. In line with the successor representation, 

a model comparison confirmed that predictive representations constitute a map-like structure, 

with exponential decay toward distant future states. Further, more detailed analysis of predictive 

codes revealed that hippocampus represented visual locations based on their temporal 

proximity within the sequence, rather than spatial distance. 

Together, these data suggest that humans predict upcoming visual input by using a 

generative model whose properties resemble the successor representation. Importantly, the 

presence of SR-like representations in V1 indicates that SR might be a more ubiquitous coding 

schema that is present beyond hippocampal place cells. Finally, while SR-like representations 

were found to be present in both V1 and hippocampus, the predictive codes between these 

areas revealed complementary tuning properties, with hippocampus being sensitive to temporal 

distance and V1 being more sensitive to retinotopic spatial distance. 
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Results 

Human observers (N=35) were exposed to four dots presented in rapid succession that formed 

an arbitrary visual sequence A-B-C-D (Figure 1A). Dot locations were sampled from eight 

locations (Figure 1B) and the resulting possible sequences were randomly assigned across 

subjects. After an initial exposure period with the full sequence (352 trials outside scanner, 160  

 

Figure 1 | Sequence paradigm to probe successor-like representations. (a) Stimulus timing for full sequence trials 

(top) and partial sequence trials (bottom). During full sequence trials four dots were presented in rapid succession in a 

fixed sequence order (A-B-C-D). During partial sequence trials only one of the four dots was presented, omitting the 

remaining sequence dots. Here shown for -B - -, while A- - -, - -C- and - - -D partial trials were also presented. (b) 

Sequences were randomized across subjects such that sequence locations were sampled from a total of eight possible 

locations with the constraint that that every quadrant was stimulated once. Dot locations were evenly spaced around 

central fixation at a radius of 7 degrees visual angle (dva). (c) Independent stimulus localizer trials to map out stimulus 

representations. 

 

trials inside the scanner), occasionally only one item of the sequence was presented, omitting 

the remaining sequence items (e.g., partial sequence trial ‘- B - -‘ where B is shown and A,C,D 

are omitted; Figure 1A). Participants were instructed to maintain fixation throughout the 
experiment, and tasked to detect a slight temporal onset delay (170 ms vs. 17 ms) of the last 

sequence dot that occurred in ~40% of the full sequence trials. The task was designed to be 

demanding (hit rate = 70%, SD = 21%) and to keep participants’ attention on the sequence. 

We hypothesized that presenting only one item of the sequence would elicit anticipatory 

activity at the omitted sequence locations that followed the presented stimulus (i.e., successor 
states), but not at the sequence location that preceded the sequence item (i.e., predecessor 

states). For instance, during partial ‘- B - -‘ trials we expected activity at omitted sequence 

locations C (+1) and D (+2), but not at omitted location A (-1). 
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Figure 2 | V1 stimulus mapping. (a) An independent stimulus localizer was used to identify V1 subpopulations 

that respond to individual dot locations (left). Stimulus response profiles show tuning properties for selected V1 

populations (middle). Visualizing stimulus activity by projecting group averaged BOLD activity into stimulus space 

(right) shows focal activity at the stimulated location with minimal spreading to neighboring locations. (b) Identified 

V1 subpopulations during full sequence trials (left) show heightened BOLD activity compared to non-stimulated 

control locations (middle). Group averaged sequence activity projected into stimulus space shows spatially specific 

activity at the stimulated locations (right). 

Stimulus sequences elicit spatially specific responses in V1 

To test our prediction, we first selected V1 sub regions of interest (ROIs) that responded 

selectively to the eight stimulus locations based on an independent localizer session (Figure 
1C). Stimulus response profiles of these eight (retinotopic) ROIs show little coactivation of 

neighboring locations in the visual field which allows for a precise investigation of location 

specific activity (Figure 2A). Unsurprisingly, during full sequence trials BOLD activity at the 

sequence locations receiving bottom-up visual input was markedly enhanced compared to non-

stimulated control locations (Figure 2B). For all analyses we subtracted the average BOLD 
activity of all control locations from the sequence location activity (Figure 3A), which provides 

an accurate measure of stimulus specific responses independent of global signal fluctuations 

for instance due to attention. 

 
Anticipated stimulus sequences in V1 

Briefly flashing individual dots during partial sequence trials, while omitting the other dots of the 

sequence, allowed us to probe anticipatory activity at the successor and predecessor locations 

(Figure 3B). In line with our predictions, V1 BOLD activity was indeed enhanced at the non-

stimulated successor locations compared to the non-stimulated predecessor locations 
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(averaged across all partial trials and sequence locations; t(34) = 6.45, p = 2.23 ´ 10-7). The 

same pattern of future directed prediction was also evident from the visual inspection of BOLD 
activity for all partial sequence trials separately (Figure 3C).  

 

Figure 3 | Successor-like representation of future sequence events in V1. (a) BOLD activity during full 

sequence trials. (b) Schematic of all partial sequence trials (left) illustrating the omission of different predecessor 

(purple), or successor (orange) sequence locations. Group averaged V1 activity during partial sequence trials (right) 

shows enhanced activation of successor locations compared to predecessor locations. (c) Group averaged V1 

activity for individual partial sequence trials. Error bars denote ± s.e.m.; ***P<0.001; **P<0.01; *P<0.05. 

Successor-like representation in V1 

Next, we sought to formally test how well the observed data fits the prediction of the successor 

representation (SR), namely an exponential decay of states farther into the future.  

For each subject, we fitted partial sequence trials with a SR model (Figure 4A), keeping 

the exponential decay parameter g as a free parameter (see Materials and Methods). In order 

to evaluate how well the SR model resembled the data, we then computed the error between 
the SR prediction and the actual data (lower values indicate a better model fit). For comparison, 

we additionally fitted a traditional pattern-completion co-occurrence model (CO) that predicts 

that events that occur together, will be reactivated together (Figure 4B). In contrast to the SR 

model, predictions of the CO model are non-directional, meaning that it predicts equal 

reactivation of both successor and predecessor locations. Furthermore, while the SR model 

predicts a temporal discounting toward future states, the CO model assumes no differential 

activity of reactivated states. In our implementation of the CO model anticipatory activity was 
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modulated by one multiplicative parameter w. Additionally, as a baseline model we also 

evaluated a null model (H0) that assumes no predictive activity (i.e., no difference between 
successor and predecessor locations). Note that in order to be interpretable as a predictive 

representation, the best fitting model should not only have the smallest error, but also differ 

significantly from the H0 model. 

 

Figure 4 | Model comparison favors successor-like representation in V1. (a) Probing predictions of the successor 

representation (SR) against the competing co-occurrence (CO) model. The relational structure of the full sequence A-

B-C-D is translated into a transition matrix (top), where a non-zero value indicates a transition between two states in 

the sequence. The successor representation matrix (bottom) is computed from the transition matrix, here shown with 

a temporal discount factor of γ = 0.3 (see Materials and Methods). (b) The relational structure in the co-occurrence 

model is non-directional, resulting in a constant prediction of past and future states weighted by a factor w. (c) 

Competing model predictions were fitted to partial sequence trial V1 data of each individual participant with γ and w as 

free parameters. Comparison of model errors showed that the data is most in line with the successor representation. 

A null model (bottom), resembling no prediction of past and future locations was included in the model comparison as 

baseline. Error bars denote ± s.e.m.; RMSE, Root Mean Square Error. ***P<0.001; *P<0.05. 

 

Our results show that anticipatory activity in V1 is best described by the predictions of the SR 

(Figure 4C; SR vs. CO t(34) = -2.29, p = 0.028). Additionally, both SR and CO describe the 

data better than the null model (SR vs H0 t(34) = -8.25, p = 1.24 ´ 10-9; CO vs H0: t-test t(34) 

= -7.59, p = 8.22 ´ 10-9). 

 
Successor representation in hippocampus 
The predictive neural representation in form of a successor representation was originally 

postulated for the hippocampus (Stachenfeld et al., 2017). We therefore wanted to investigate 

whether the predictive representations that we observed in V1 were also present in the 

hippocampus. Note that while the hippocampal formation and nearby entorhinal cortex might 

feature a coarse representation of visual space (Killian et al., 2012; Knapen, 2021; Nau, 

Navarro Schröder, et al., 2018; Silson et al., 2020), it does not feature the same fine-scale 
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retinotopic organization present in V1 (Dumoulin & Wandell, 2008). Therefore, instead of 

focusing on univariate BOLD activity within certain hippocampal sub regions, we focused on 

population activity patterns across the entire hippocampus using a decoding approach similar 

to previous studies (Ekman et al., 2022; Kok & Turk-Browne, 2018; Kurth-Nelson et al., 2016; 
Russek et al., 2021; Schapiro et al., 2012). 

In keeping with the V1 analysis we used the independent stimulus localizer to extract 

location-specific activity patterns in the hippocampus and then tested during partial sequence 

trials to what extent location specific representations were reactivated. Specifically, we trained 

a pattern classifier to distinguish between the eight dot locations within the localizer. Before 
applying the trained classifier to omission trials of the main task (see Materials and Methods) 

we confirmed that cross validated decoding accuracies within the localizer were above chance-

level to ensure that hippocampal pattern show a reliable representation of space. 

Within localizer decoding accuracy results confirmed that hippocampus has a coarse 

representation of the eight stimulus locations (Figure 5B one-sample t-test; t(34) = 3.28, p = 

0.002; accuracy = 15% ± 3.6%, mean ± s.d.). Notably, compared to V1 (cf. Figure 2A), tuning 

curves in hippocampus appeared less sharp and stimulating one location triggered coactivation 

of other locations as well (Figure 5C). Further below, we will quantify this observation in more 

detail. 

Applying the trained classifier to partial sequence trials of the main task, we asked 

whether hippocampus would preferentially reactivate successor or predecessor locations 

(Figure 5D). To answer this question, we first subtracted the probabilistic classifier evidence 

for the control locations from the classifier evidence of the sequence locations. Consequently, 

values greater than zero reflect evidence for the reactivation of sequence representations, while 

values smaller than zero reflect a relative suppression of sequence locations. After that we 

averaged the evidence across all successor and predecessor locations, respectively, and 
tested for differences across participants. Our results reveal that hippocampus representations 

were preferentially biased toward successor locations (Figure 5E; paired-sample t-test, t(34) = 

2.74, p = 0.009), mirroring the results found in V1. 

Finally, in order to better understand the temporal dynamics of the anticipatory 

representations in hippocampus, we repeated the decoding analysis in a time-resolved manner. 
We reasoned that if reactivations of future sequence locations were triggered by the brief 

presentations of partial sequence dots, the evidence time-course should follow a transient 

response profile. Alternatively, if hippocampus were to signal a constant bias toward future 

sequence locations, the evidence time-course should be unrelated to the stimulus onset and 

show a sustained temporal profile.  

Results of the evidence difference time-course clearly show a transient response 

peaking approximately 4.7 s post stimulus onset (Figure 5F) indicating that hippocampal 

predictions were triggered by the partial sequence dot. 
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Figure 5 | Hippocampus represents spatial locations and engages in future directed predictions. (a) 

Hippocampus region of interest (green). (b) A pattern classifier was trained to distinguish between the 8 stimulus 

locations during a perceptual localizer. Resulting stimulus response profiles reveal that hippocampus distinguishes 

between individual stimulus locations. (c) Averaged tuning profiles shifted to one location. (d) A classifier that was 

trained on the perceptual localizer was applied to partial sequence trials during the main task to probe whether 

hippocampal representations skew toward predecessor locations (purple), or successor locations (orange). (e) 

Classifier evidence, averaged across possible successor and predecessor locations, shows that hippocampus 

predominantly represents future (successor) stimulus locations over predecessor locations. (f) Since the hemodynamic 

properties of hippocampal functions are not well understood, the decoding analysis was additionally performed in a 

time-resolved manner and fitted with a canonical hemodynamic function to estimate the time to peak. The difference 

time-course (successor minus predecessor) showed a temporally distinct peak around 4.7s indicating that the future 

directed prediction occurs as transient response to the partial stimulus input and not as a sustained signal throughout 

the trial. Error bars denote ± s.e.m.; **P<0.01. 

 

 

Hippocampal codes preserve spatiotemporal tuning. 

In contrast to V1, hippocampal representations are not inherently retinotopic and feature only 

a coarse representation of visual space (Knapen, 2021; Nau, Navarro Schröder, et al., 2018; 

Silson et al., 2021). Instead, hippocampal place cells provide a detailed representation of the 

allocentric position in an environment. However, more recently the intriguing picture emerged 

that hippocampus also contributes to a more general organization of information by 

representing non-spatial aspects of experience in a map-like way (Constantinescu et al., 2016; 

Garvert et al., 2017; Stachenfeld et al., 2017), similar to the representation of space (Aronov et 

al., 2017).  

 Inspired by these recent observations, we asked what the underlying properties of the 

reported hippocampus representations were. Given that we successfully trained a classifier 

based on eight spatial locations it might seem obvious to conclude that the underlying code for 
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these representations is purely spatial (retinotopic) as well. This is however not necessarily the 

case. Instead, robust discrimination of sequence locations could theoretically also be based on 

coding of temporal properties of the sequence. Indeed, Deuker et al. (2016) have recently 

shown that hippocampus representations can reflect in principle both spatial and temporal 
aspects. In our case, a temporal coding mechanism could represent stimulus locations not 

based on proximity in space, but rather by proximity in time. 

 
Figure 6 | Stimulus localizer reveals complementary tuning properties in hippocampus and V1. (a) Schematic 

of the localizer trial with the stimulated location ‘A’ and the non-stimulated locations (B, C, D, dashed circle) that 

were part of the sequence in the main task preceding the localizer. (b) Illustration of coactivation (‘tuning’) of 

sequence locations based on spatial (Euclidean) distance from the stimulated location (left) and temporal distance 

in sequence space (right). Note how sequence locations A and B are far apart in the spatial (Euclidean) domain, 

but close in terms of temporal distance in sequence space. (c) Hypothetical activation pattern for representational 

tuning of spatial distance and temporal distance for illustration shown in (b). (d) Illustration of tuning pattern 

averaged across all localizer conditions for temporal tuning (top), spatial tuning (middle) and no coactivation (NoCo, 

bottom). For visualization purposes the x-axis is sorted by time for all three tuning patterns. (e) Classifier evidence 

for current, future and past locations for hippocampus (left) and V1 (right). (h) Comparing model errors (i.e., lower 

is better) show that hippocampal representations were best described by temporal tuning (left), while V1 (right) was 

best described by spatial tuning and the absence of coactivation (NoCo) of sequence locations. Error bars denote 

± s.e.m.; RMSE, Root Mean Square Error.  

 

In order to address this question, we conducted a detailed analysis of the coactivation 

pattern in the stimulus localizer (Figure 6A). Note that the localizer was shown at the end of 

the study, allowing us to test whether learned associations persisted even after the full 
sequence was not relevant anymore. Here, coactivations were defined as activation of non-
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stimulated locations. For instance, when presenting stimulus A, locations B-C-D might become 

activated as well. In general, such coactivations are often attributed to noise or ambivalent 

responses driven by overlapping receptive fields. However, in this case we made use of the 

coactivation pattern to draw inferences about the underlying coding mechanism. 

Specifically, for a representation based on spatial tuning one would expect a 

coactivation of nearby spatial locations. In other words, the coactivation of non-stimulated 

locations should be modulated by the spatial (Euclidean) distance to the stimulated location 

(Figure 6B). This spatial tuning pattern is typically seen in early visual areas with overlapping 

receptive fields and is also visually present in our V1 results (Figure 2A). Alternatively, for a 
representation based on temporal tuning one would expect a coactivation of nearby locations 

in sequence space (Figure 6C). 

Thus, spatial and temporal tuning codes lead to different coactivation pattern (Figure 
6D) that can be disentangled with our stimulus paradigm. For instance, sequence locations A 

and B were far apart in the spatial (Euclidean) domain, but close in the temporal domain 
(distance in sequence space). Conversely, locations A and D are close in terms of spatial 

distance, but far apart in terms of temporal distance (Figure 6B). Note, while spatial tuning is 

in principle independent of any task-specific experience, temporal tuning on the other hand 

requires exposure to a sequential structure and can therefore only occur for the four dots that 

were part of the sequence. For this reason, we restricted the coactivation analysis to the four 

dot locations that were part of the sequence. 

For each participant, individual localizer data were fitted by a spatial tuning model, a 

temporal tuning model and a no-coactivation control model. The latter was included as a low-

level baseline control. Visual inspection of the group averaged localizer coactivation pattern 

revealed a clear temporal tuning pattern in hippocampus but not in V1 (Figure 6E). These 

results were confirmed by a formal model comparison (Figure 6F). 

 

 

Discussion 

Uncovering the computations that drive human prediction and planning is a central aspect when 

it comes to understanding human cognition. What are the general coding mechanisms that 

allow to utilize knowledge of the environment to make inferences and generalizations about 

future events? In this study, we sought to answer the question whether the map-like successor 

representation (SR) that has been posited for the hippocampus (Mehta et al., 2000; Stachenfeld 
et al., 2017) may also explain the shape of anticipatory activity in visual cortex (V1). 

There is an extensive body of literature that shows how expectations elicit anticipatory 

activity in early visual cortices (de Lange et al., 2018; Hindy et al., 2016; Kok et al., 2012). For 

instance, we have previously shown that flashing an individual dot of a simple, linear sequence 

triggers an activity wave in V1 that resembles the full stimulus sequence (Ekman et al., 2017, 
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2022), akin to replay of place field activity during spatial navigation (Foster & Wilson, 2006; 

Gupta et al., 2010). However, what remains unknown is whether these sensory replay traces 

are guided by a generative model that represents the relational structure of the stimulus 

sequence, akin to a predictive map. Alternatively, anticipatory activity traces could simply reflect 
the association between different stimuli, based on their co-occurrence, without the added 

complexity of any temporal relational structure. The latter explanation appears plausible, given 

that predictive representations in early visual cortex are generally time critical and operate in 

parallel to a constant stream of new sensory input, which arguably requires efficient processing 

and in turn limits the complexity of such representations.  

In fact, we previously speculated that cue-triggered reactivation of simple sequences 

might be driven by an automatic pattern completion-like mechanism that reactivates all 

associated items based on partial input (Ekman et al., 2017). This idea is in line with the finding 

that predictive representations in V1 correlated with pattern completion-like activity in the 

hippocampus (Hindy et al., 2016; Kok & Turk-Browne, 2018) that might be driving V1 activity 

(Finnie et al., 2021; Ji & Wilson, 2007). 
 

Our current findings directly challenge this interpretation and instead point to a predictive 

representation of expected, temporally discounted, future states. We accomplished this by 

using a paradigm in which one visual event (e.g., the presentation of one dot) was framed as 

one state in a directed transition matrix with a fixed relational structure. The SR hypothesis 
makes two testable predictions, namely that population activity represents future states over 

predecessor states, and that future state representations are temporally discounted, such that 

events in the close future are more prominently represented compared to events in the distant 

future. Using a paradigm in which we occasionally presented only single items of the full 

sequence, allowed us to investigate V1 activity at omitted sequence locations.  

Confirming the SR predictions, V1 activity at the successor locations was enhanced 

compared to activity at the predecessor locations, indicating a representation skewed toward 

future locations and away from the past. Notably, this relative difference was not only due to an 

enhancement of successor states, but our results also showed a decrease of activity at the 

predecessor states (compared to baseline). This suppression of predecessor states might 

seem surprising at first given that SR postulates the mere absence of predecessor activity 

(Momennejad, 2020; Stachenfeld et al., 2017). We speculate that the observed decrease at the 

predecessor states might constitute a functional separation mechanism between predecessor 
and successor states, strengthening the future directed representation of the sequence by 

selectively decreasing representations of the unexpected predecessor states. 

One aspect that sets our study apart is that the viewing of the visual sequence does 

not require any predictive planning of the participant to evaluate different future outcomes. In 

contrast, related studies reporting neuronal evidence for SR-like representations in 
hippocampus and PFC (Barron et al., 2020; Brunec & Momennejad, 2022) and occipital cortex 

(Schwartenbeck et al., 2021) have used paradigms in which participants were actively engaged 
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in prospective planning and choice evaluation. Given the relatively passive nature of our task, 

one might therefore wonder whether it is expected to find any map-like activity at all. However, 

in this context it is important to stress that the SR, unlike other model-based algorithms, does 

not depend on choice-dependent reward to build its transitional task structure (Momennejad et 
al., 2017; Stachenfeld et al., 2017) and therefore might not depend on participants’ active 

engagement. Furthermore, Russek et al. (2021) have recently used a paradigm in which 

subjects were passively exposed to transitions between visual states and reported evidence for 

SR-like representations in the absence of active choices in line with the results of the present 

study. Further supporting this notion, we have previously shown that anticipatory sequence 

activity occurred even after subjects’ attention was diverted from the sequence to a demanding 

task at fixation (Ekman et al., 2017), rendering the sequence task irrelevant. Taken together, 

these observations indicate that SR-like representations are not limited to situations that require 
active planning, or multiple-choice evaluations but may rather be formed automatically and 

incidentally, as has been shown repeatedly in the domain of statistical learning (Fiser & Aslin, 

2002; Turk-Browne et al., 2005). 
 

The hippocampal formation can acquire arbitrary relationships between objects (Aronov et al., 

2017; Backus et al., 2016; Behrens et al., 2018; Constantinescu et al., 2016; Garvert et al., 

2017) beyond geometric location in space (O’Keefe & Nadel, 1978). While our main focus in 

the current study was on V1 representations, we also wanted to test to what extent 

hippocampus showed a similar SR-like representation of visual sequences. Previous fMRI 

studies investigating hippocampal representations have mainly focused on either navigation in 

a spatial (Brunec & Momennejad, 2022; Deuker et al., 2016) or non-spatial task (Garvert et al., 
2017; Schapiro et al., 2013; Schuck & Niv, 2019) in which participants explore a relatively 

complex task space. It was recently shown that hippocampus has a rudimentary representation 

of visual space (Knapen, 2021; Silson et al., 2021), but it was not clear whether hippocampus 

would also engage in the representation of a comparably simple, low-level visual sequence 

presented in our paradigm. 

Our results confirmed that hippocampus representations resemble a SR-like predictive 

map, favoring future over past sequence locations. This result highlights the compelling 

conceptual parallels between mnemonic expectations in hippocampus (Hindy et al., 2016) and 

its perceptual manifestation in sensory cortex. On a conceptual level, navigation (in memory 

and space) and processing visual events both involve abstraction of the relational structure 

between events to enable forward planning and predictions. Similar to navigational space, 

visual space can be represented in terms of its relational structure like direction and distance, 
and it has been suggested that similar mechanisms might underlie spatial and non-spatial 

representations (Nau, Julian, et al., 2018), especially if there is sequential structure present 

(Finnie et al., 2021). Supporting this notion, recently, a conceptual link between representations 

for visual understanding and spatial navigation has been proposed that suggests a common 
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underlying map-like representation of visual and navigational task structure (Schwartenbeck et 

al., 2021). 

These conceptual links, as well as anatomical (Felleman & Van Essen, 1991; Huang 

et al., 2021) and functional connections between the hippocampus and visual cortex (Bosch et 

al., 2014; Hindy et al., 2016; Ji & Wilson, 2007; Kok & Turk-Browne, 2018; Lee et al., 2012; 

Nau, Julian, et al., 2018) raise the question whether hippocampal representations are 

independent from V1, or whether V1 is instead receiving the predictions as a feedback signal 

from hippocampus. Supporting the idea of functional feedback, Finnie et al. (2021) recently 

showed that V1 predictions were heavily impaired after hippocampus damage. However, 
contrary to this notion, spatiotemporal sequence predictions have also been shown to occur 

locally within V1 without the need for top-down predictions (Gavornik & Bear, 2014; Xu et al., 

2012). Our study was not designed to address the question to what extent V1 and hippocampus 

representations are independent of each other. Here, we purposefully refrained from reporting 

correlations between the two regions as we could not exclude that an apparent coordination 

might be driven by other factors like attentional fluctuations. Future experiments, using more 

than one stimulus sequence could potentially address this question by comparing evidence of 

sequence specific representations in both areas. 

It is notable that while hippocampal and visual representations appear similar with 

respect to their SR-like representation, they also show qualitative differences with respect to 

their underlying coding properties. V1 representations of individual sequence items resembled 

a coding based on spatial tuning. Hippocampus on the other hand represented relevant items 

predominantly in terms of their temporal distance within the sequence, suggesting that 
representations capitulate on the transitionally structure of the visual sequence. These results 

align with previous reports that hippocampus can learn to represent temporal proximity in a 

spatial navigation task (Deuker et al., 2016; Howard et al., 2014), but to the best of our 

knowledge, constitute the first reports of coding temporal distance of a visual sequence.  

Furthermore, hippocampus predictive codes were found to persist after the sequence 
task and coactivation of related sequence locations were still present during the stimulus 

localizer, potentially indicating that hippocampus representations reflect a more stable code 

operating on a longer timescale. V1 representations on the other hand did not persist 

throughout the stimulus localizer and reverted back to representing individual spatial locations 

without coactivation of related sequence locations, further highlighting another qualitative 

difference between V1 and hippocampus coding. Taken these qualitative differences together, 

it is reasonable to speculate that predictive activity in V1 does not merely reflect top-down 

feedback from hippocampus, but instead that SR-like representations in V1 are somewhat 
independent, and potentially complementary, to SR-like representations found in the 

hippocampus.  
 

In conclusion, our data show that anticipatory activity in early visual cortex and hippocampus 

are guided by a generative model that represents the relational structure of the visual world, 
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akin to a predictive map. Our results suggest that the observed SR-like representation 

underlying visual predictions can provide both a sophisticated state space representation that 

enables flexible generalization from partial input to future sequence locations, while also being 

efficient enough to provide rapid visual computations. 

 

 

Material and Methods 

Data and code availability. All data and code used for stimulus presentation and analysis is 

available on the Donders Repository https://data.donders.ru.nl/[direct link to dataset after 

publication]. Note, that during the review process, reviewers have anonymous access using the 

following link [redacted]. After publication this link will be made publicly available. 

 

Preregistration. The experimental design, data analyses and hypotheses were all 

preregistered at Open Science Framework (https://osf.io/f8dv9/) prior to data collection. 

Participants. Thirty-seven right-handed subjects participated in the fMRI study. Two 

participants were excluded based on predetermined performance and motion criteria during 

scanning (error rate/relative motion three standard deviations above the group mean). The final 

sample included 35 subjects (20 females, mean age = 27 years). Target sample size was 

decided prior to data collection based on a power analysis (two-sided paired t-test, power = 

80%, Cohen’s d ≥ 0.5 and α = 0.05). Participants gave written informed consent in accordance 

with the institutional guidelines of the local ethical committee (CMO region Arnhem-Nijmegen, 
The Netherlands) and received monetary compensation for their participation. All participants 

had normal or corrected-to-normal visual acuity. 

 

Stimuli. Participants viewed a sequence of four white dots on a black background. Dot 

locations were sampled from eight possible locations (Figure 1B). The center of each dot 

location was seven degrees visual angle away from the central white fixation cross (0.5° visual 

angle) and the locations were equally spaced around the center (distance in polar angle from 

the vertical line: 22.5°, 67.5°, 112.5°, 157.5°, 202.5°, 247.5°, 292.5°, 337.5°, see Figure 1B). 

The dots had a diameter of 1.2° visual angle. Stimulus sequences were shown on an MRI safe 

LCD screen (BOLDscreen 32, 1920 x 1080 pixel resolution, 60 Hz refresh rate). Participants 
were positioned 134 cm away from the screen and viewed the stimuli via a mirror on top of the 

headcoil. 

During full sequence trials, each dot was shown for 100 ms with an interstimulus 

interval (ISI) of 17 ms, resulting in a total sequence duration of 451 ms. For 52 out of 128 full 

sequence trials the onset of the last dot was delayed with an ISI of 170 ms (instead of 17 ms). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.23.485480doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.23.485480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Participants were instructed to detect and report these delayed sequence presentations via a 

button press with their right index finger.  

Sequences were constructed such that each of the eight locations served as a starting 

location for one possible sequence. Further, each quadrant was stimulated once, which also 

excluded the possibility that neighboring dots were part of the same sequence. This constraint 

was chosen to minimize the potential spreading of activity from one location to neighboring 

sequence locations. Specifically, the second dot was always presented opposite of the starting 

location (180 degrees clockwise from the start). The third dot was shown 90 degrees clockwise 

from the second location and the last dot was on the opposite side of the third location. These 
constraints also served to decouple spatial and temporal distance within the sequence. With 

these constraints, there were 8 possible visual sequences that were randomly assigned and 

counterbalanced in frequency across subjects. Dots that were part of the sequence are labelled 

as sequence dots A-B-C-D. While the remaining four dots at locations that were not part of the 

sequence are referred to as ‘control dots’. 

 

Experimental Design. The experiment lasted a total of 2h and consisted of three blocks (i) 

learning, (ii) main task and (iii) a stimulus localizer. During the learning part participants were 

familiarized with one of the eight sequences. The full sequence, consisting of four successively 

presented dots A-B-C-D, was shown 352 times outside and 160 times inside the scanner. In 

order to maintain participants’ attention during the learning part, there was a delay detection 
task on 50% of the trials. Participants were instructed to detect a timing delay of the last dot for 

which they had 1 s to respond. After every 30 trials participants were shown their aggregated 

detection accuracy. During the initial learning phase outside the scanner, participants received 

additional feedback after each trial on whether their response was correct or incorrect through 

changes in the color of the fixation cross (green for correct and red for incorrect answers). No 

trial-wise feedback was given inside the fMRI. Participants were instructed to maintain fixation 

throughout the experiment and eye movements were measured with an Eyelink 1000 eye-
tracker system (SR Research, Ontario, Canada; 1000 Hz sampling rate). 

The main task consisted of three runs of equal duration (about 13 min). There were 

192 trials per run and 576 trials in total. Trials were separated by a variable inter-trial-interval 

(ITI) with a duration drawn from a truncated exponential distribution with a minimum of 2 s, 

maximum of 10.9 s and mean of 3.72 s.  

To probe activity replay we introduced partial sequence trials where only one of the 

four dots was shown for 100 ms, instead of the full sequence. During each run, two-thirds of 

the 192 trials were full sequence trials (128 trials) and one-third of the trials were partial 

sequence trials (64 trials). Trial order was pseudo-randomized with the constrain that partial 

sequence trials were always followed and preceded by a full sequence trial, excluding the 
possibility of partial sequence trial repetitions. There was a task on ~40% of the full sequence 
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trials (156/384 trials). At the end of each run, participants received feedback on their 

performance. 

After the main task we ran a functional localizer (~16 min) where each dot was flashed 

at 2 Hz for 13.5 s in a pseudorandomized order, followed by 15 s rest period. In total, each dot 

location was presented eight times and each of the eight dots followed once immediately after 

the rest period. Participants performed a letter stream task at fixation where they had to detect 

target letters (‘X’ and ‘Z’) in a stream of non-target letters (‘A’, ‘T’, ‘N’, ‘U’, ‘V’, ‘Y’, ‘H’ and ‘R’). 

The target probability was 10%. Each letter was presented for 500 ms. 

For a small subset of N=7 participants, after the localizer, we additionally presented 

moving bar stimuli, in order to map the population receptive fields (pRFs) of voxels in early 

visual cortex. During these runs, bars containing full contrast flickering checkerboards (2 Hz) 

moved across the screen in a circular aperture with a diameter of 20°. The bars moved in eight 

different directions (four cardinal and four diagonal directions) in 20 steps of 1°. Four blank 

fixation screens (10.8 s) were inserted after each of the cardinally moving bars. Throughout 
each run (5.76 min), a colored fixation dot was presented in the center of the screen, changing 

color (red to green and green to red) at random time points. Participants’ task was to press a 

button whenever this color change occurred. Participants performed four identical runs of this 

task. 

 

MRI acquisition. Functional and anatomical MRI data were acquired on a 3T PrismaFit 

scanner (Siemens AG, Healthcare Sector, Erlangen, Germany) using a 32-channel head coil. 

The protocol included a T1-weighted anatomical scan and five functional runs. The anatomical 

scan was acquired with a Magnetization Prepared Rapid Acquisition Gradient Echo sequence 

(MP-RAGE; TR = 2300 ms, TI = 1100 ms, TE = 3ms, flip angle = 8°, 1x1x1 mm isotropic). To 

acquire the functional images, we used a T2*-weighted multiband 4 (Moeller et al., 2010) 
sequence (TR = 1500 ms, TE = 39 ms, flip angle = 75°, 2x2x2 mm, 68 slices). The five functional 

runs comprised of one learning run, three main task runs and one localizer run. For two subjects 

only two main task runs were acquired because of time constraints. Seven participants did four 

runs of pRF mapping. 

 

fMRI preprocessing. MRI data was preprocessed using FSL (version 6.00; FMRIB Software 

Library) (Smith et al., 2004). We applied brain extraction using BET, motion correction using 

MCFLIRT, temporal high-pass filtering (100 s) and spatial smoothing (Gaussian kernel, FWHM 

= 5 mm). All analyses were carried out in native subject-space. The first 3 volumes of each run 

were discarded to allow for signal stabilization. Registration of the functional images to the 
anatomical image was performed with FLIRT boundary-based registration (BBR). The 

anatomical image was registered to the MNI152 T1 2 mm standard space template (linear 

registration, 12 degrees of freedom). 
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ROI selection. V1 and hippocampus region of interests (ROIs) were determined using the 

automatic cortical parcellation provided by Freesurfer (Fischl, 2012) based on individual T1 

images. Anatomical V1 and hippocampus masks were then transformed into native space using 

linear transformation. For V1 we used a preregistered voxel selection method to determine V1 
subpopulations that are most responsive to individual stimulus locations.  

First, the localizer data was fitted with a voxel-wise general linear model (GLM) using FSL FEAT 

(Smith et al., 2004) with the following regressors: eight regressors of interest for stimulation of 

each of the locations (duration = 13.5 s), one regressor for the instructions and the end-of-block 

screen (duration = 4.5 s and 15 s, respectively) as well as the 24 FSL motion regressors.  

Second, for each location we calculated the GLM contrast comparing one location to 

all other locations and selected the 25 most selective voxels (highest z-values). Third, we 

removed voxel from the selection that were selective for multiple dot locations. Finally, we 

determined the lowest number of selective voxels per region and removed the least active 

voxels from all other locations until all V1 subpopulations had the exact same number of 
selected voxels per location. This procedure was chosen to rule out the possibility that potential 

activity differences across locations could be attributed to different number of voxels per region. 

Across subjects we selected on average 22.05 voxels (SD = 2.88) per location. 

 

V1 BOLD amplitude modulation. A GLM for the main task was created with the following 

regressors: eight regressors for each single dot trial (4 sequence dots and 4 control dots), one 

regressor for the full sequence trial, one regressor of no interest to model the instructions and 

the feedback at the end of a run and 24 motion regressors (six standard and 18 extended FSL 

motion parameters, i.e. the derivatives of the standard motion parameters, the squares of 

standard motion parameters and the squares of the derivatives). The model was convolved 

with a single gamma haemodynamic response function. Nine contrasts were set up that tested 
which voxels were more responsive to presentation of a single dot (eight contrasts, one for 

each dot) or the full sequence (one contrast) compared to baseline. The GLM was fit to each 

run separately and resulting beta estimates were averaged across runs for each participant. In 

order to obtain an estimate of stimulus specific activity (cf. Figure 2B) we averaged the activity 

at the four control ROIs and subtracted it from the activity at the sequence ROIs. 

 

V1 model comparison. For each participant V1 BOLD activity from the partial trials were fitted 

with 3 models, successor representation (SR), co-activation (CO) and a null-model (H0). The 

resulting root mean square error (RSME, lower values = better fit) between model fit and 

observed data was then tested across participants for significance using paired-sample t-tests 
to address the question whether one model prediction describes the underlying data better than 

competing models. 

The model prediction of the SR is based on the task structure, formalized in a transition 

matrix 𝑇 of the sequence A-B-C-D (Figure 4). The SR matrix 𝑀 is then calculated as: 
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𝑀 = (𝐼 − 	𝛾𝑇)*+ 

where I is the identity matrix and γ	Î	[0,1] is the discount factor or predictive horizon. During 

model fitting g was a free parameter, with larger values of g result in a smaller exponential decay 

of future states. The model prediction of the CO model is based on the co-occurrence of events. 

In contrast to SR, the task structure is non-directed and off diagonal values in the CO model 

are constant and modulated in amplitude by a free multiplicative parameter w. The H0 (null) 

model serves as a baseline that assumes no off-diagonal (predictive) activity. In order to be 

interpretable any winning model should outperform the H0 model. The diagonal values in all 

three models reflect the bottom-up stimulation induced by the single dot of the partial trials. 

 

Hippocampal decoding. The decoding analysis was performed with scikit-learn (Pedregosa 

et al., 2011). Individual voxel time courses were low-pass filtered using a Savitzky-Golay filter 

with a window length of 5 TRs and polynomial order of 3 (Savitzky & Golay, 1964) and 

normalized to z-scores. Volumes for individual localizer trials were averaged between 3-13.5 s 

to capture only stimulus related BOLD activity. A logistic regression classifier (default values, 
L2 regularization; C=1) was trained to distinguish between 8 stimulus locations during the 

independent localizer run. Before applying the trained classifier to the main task, we confirmed 

that the classifier was indeed able to distinguish between stimulus locations within the localizer. 

To this end, we performed a leave-one-out cross validation and tested the decoding accuracy 

against chance level (1/8 = 12.5 %) across subjects using a one-sample t-test. In addition to a 

binary classifier output for each class, we also looked at the probabilistic output. For each 

sample in the localizer test set, we obtained 8 probability values, one for each class. We refer 
to the classifier probability as classifier evidence, as the probability reflects the evidence that a 

particular class is represented. For each participant probability values were averaged across 

trials to obtain location specific response profiles. 

 Next, we trained the classifier on all localizer trials and applied it to individual trials of 

the main task. Volumes for individual main task trials were averaged between 3-6 s to capture 

only stimulus related BOLD activity. Note that the main task was an event-related design with 
shorter trial durations compared to the block-design localizer with 13.5 s stimulation periods, 

hence the different averaging windows of 3-13.5 s and 3-6 s. Similar to the BOLD analysis in 

V1, for each partial sequence trial in the main task we averaged the classifier evidence for the 

four control locations and subtracted it from the evidence of the sequence locations. We then 

averaged the classifier evidence for all predecessor and successor locations, respectively and 

compared the evidence across subjects with a paired-sample t-test. 

 Finally, in order to rule out that the chosen time window had any influence on the 

results, we repeated the decoding analysis in a time-resolved manner, repeating the steps 

above for each volume from 0 to 13.5 s separately. Fitting a standard hemodynamic response 

function (hrf) revealed a transient decoding evidence peak at around 4.7 s. 
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Hippocampus and V1 tuning. The tuning analysis investigates coactivation pattern during the 

localizer and focuses on the four locations that were part of the stimulus sequence in the 

preceding main task. Classifier evidence values within the localizer were averaged and sorted 

to reveal potential coactivation (‘tuning’) pattern of sequence locations. Three tuning patterns 
were considered and tested: (i) temporal tuning, assuming a linear decay from the currently 

presented stimulus toward location that where farther in the past and future (2 free parameters, 

slope and intercept), (ii) spatial tuning, assuming a linear decay from the current stimulus 

toward other stimulus locations modulated by spatial distance (2 free parameters, slope and 

intercept) and (iii) a baseline no-coactivation pattern. Note that the latter model was considered 

because V1 tuning curves were rather sharp with little activity spread to immediate neighboring 

locations (5.4° apart; cf. Figure 2A) and locations in the current analysis were 9.9° apart. For 

each participant, aggregated classifier evidence was fitted using three tuning pattern and 
resulting errors were compared across subjects to determine the best fitting pattern. Fitting was 

performed using the curve_fit function in SciPy 1.6.2 (Virtanen et al., 2020). 

 

pRF estimation. Data from the moving bar runs were used to estimate the population receptive 

field (pRF) of each voxel in the functional volumes using MrVista 

(http://white.stanford.edu/software). In this analysis, a predicted BOLD signal is calculated from 

the known stimulus parameters and a model of the underlying neuronal population. The model 

of the neuronal population consisted of a two-dimensional Gaussian pRF, with parameters x0, 

y0, and σ0, where x0 and y0 are the coordinates of the center of the receptive field, and σ0 

indicates its spread (standard deviation), or size. All parameters were stimulus-referred, and 
their units were degrees of visual angle. These parameters were adjusted to obtain the best 

possible fit of the predicted to the actual BOLD signal. This method has been shown to produce 

pRF size estimates that agree well with electrophysiological receptive field measurements in 

monkey and human visual cortex (Klink et al., 2021). For details of this procedure, see 

(Dumoulin & Wandell, 2008; Kay et al., 2015). Once estimated, x0 and y0 were converted to 

eccentricity and polar-angle measures and co-registered with the functional images using linear 

transformation. Only voxels with a model fit of R2 ³ 5% were considered. 
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