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Abstract 

Glioblastomas (GBMs) are biologically heterogeneous within and between patients. Many 

previous attempts to characterize this heterogeneity have classified tumors according to their omics 

similarities. These discrete classifications have predominantly focused on characterizing malignant 

cells, neglecting the immune and other cell populations that are known to be present. We leverage a 

manifold learning algorithm to define a low-dimensional transcriptional continuum along which 

heterogeneous GBM samples organize. This reveals three polarized states: invasive, 

immune/inflammatory, and proliferative. The location of each sample along this continuum correlates 

with the abundance of eighteen malignant, immune, and other cell populations. We connect these cell 

abundances with magnetic resonance imaging and find that the relationship between contrast 

enhancement and tumor composition varies with patient sex and treatment status. These findings 

suggest that GBM transcriptional biology is a predictably constrained continuum that contains a limited 

spectrum of viable cell cohabitation ecologies. Since the relationships between this ecological 

continuum and imaging vary with patient sex and tumor treatment status, studies that integrate imaging 

features with tumor biology should incorporate these variables in their design. 
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Introduction  

Glioblastoma (GBM) is the most common primary brain tumor in adults and is known to be 

genetically, transcriptionally, and compositionally heterogeneous within and between patients (1–3). 

Treatment that effectively treats one tumor may be ineffective for another, and even cells within the 

same sample can have different therapeutic sensitivities (3). Since patients typically undergo a single 

surgery, at which time malignant cells are invariably left behind due to the diffuse nature of the disease, 

the ability to use routine magnetic resonance imaging (MRI) to non-invasively and longitudinally 

characterize tumor heterogeneity is invaluable. 

Several studies have sought to characterize the heterogeneity of GBM using bulk and single-

cell transcriptional profiling (4–9). In general, these studies have discretized GBM into biological groups 

and have focused on characterizing tumor cell populations rather than non-tumor cells. These simplified 

models of high-dimensional data, while easily interpretable, may not fully capture the biological reality 

of GBM. Mounting evidence suggests that GBM diffusely infiltrates the brain and cross-talks with normal 

cells (10–12). These pioneering tumor cells engage their environment, interact with the immune system 

(which can be co-opted by the tumor to facilitate its growth and invasion), and trigger other reactive 

responses (e.g., reactive astrocytes, expansion of progenitor cells). Under this conceptual framework, 

the biology of a tumor sample is a direct reflection of its cellular constituents and the environmental 

variables that influence them. 

MRI is the mainstay of treatment assessment for GBM, but we do not fully understand how signal 

intensities from these images reflect the underlying biology. Under the prevailing gold standard for the 

radiographic evaluation of GBM, there are four categories of tumor responsiveness: complete 

response, partial response, stable disease, and progressive disease (13). Assignment to these 

categories is determined by the changes in the contrast-enhancing (CE) and non-enhancing (NE) tumor 

volumes in light of patients’ steroid usage and clinical status. This paradigm is fundamentally limited by 

the non-specificity of contrast enhancement on T1-weighted MRI and T2/FLAIR MRI hyperintensity. 

This is evident with the use of anti-angiogenic agents (i.e., bevacizumab), where an acute reduction in 
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capillary permeability leads to a decrease in intratumoral contrast enhancement without a change in 

tumor burden (14). Conversely, about a third of patients demonstrate an increase in T1 contrast 

enhancement and progressive T2/FLAIR abnormality upon the initiation of temozolomide and radiation 

in a phenomenon called pseudoprogression (14, 15). It is assumed that T2/FLAIR hyperintensity 

represents infiltrative tumor, but it could represent several unrelated entities including vasogenic 

edema, microvascular ischemia, and leukoencephalopathies. 

In this study, we leverage a manifold learning algorithm to discern the continuous nature of 

GBM’s transcriptomes and the cellular compositions associated with them. We connect the resultant 

spectrum of tumor ecologies with MRI features in light of covariates like patient sex and tumor treatment 

status. In doing so, we assess the ability to infer tumor biology from routine imaging. 

 
 
Methods 
 
Patient populations and tumor biopsies 

525 patients (205F, 320M) with GBM underwent tissue characterization as a part of The Cancer 

Genome Atlas (TCGA) effort. Microarray data from these samples were accessed using UCSC Xena 

(16). After obtaining informed consent, we enrolled 44 patients (18F, 26M) with primary or recurrent 

GBM in our IRB-approved study. Patients underwent surgical tumor resection with intraoperative 

navigation, and a total of 157 image-localized biopsies were harvested. The tissue was flash-frozen, 

and the Illumina TruSeq v2 RNAseq kit was used to prepare sequencing libraries. An Illumina HiSeq 

4000 sequencer obtained paired-end reads, and FASTQ files were aligned to a reference genome 

(GRCh38.p37). Read counts were compiled using htseq-count, and batch effects were corrected with 

ComBat-Seq (17). 

 

MRI acquisition and image localization 

Pre- and post-contrast T1-weighted (T1W), pre-contrast T2-weighted (T2W), and fluid-

attenuated inversion recovery (FLAIR) sequences were acquired at 3T field strength. Acquisition 
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parameters were as follows: T1W (TR/TE=600/12ms, matrix=320x240, FOV=24cm, thickness=2mm), 

T2W (TR/TE=4000/76ms, matrix=384×384; FOV=22cm; thickness=3mm), and FLAIR 

(TI/TR/TE=2600/10030/135ms, matrix=320x320, FOV=24cm, thickness=2mm). Post-contrast T1W 

images (T1Gd) were acquired following administration of a gadolinium-based contrast agent. Using 

previously-described methods, MRI coordinates for image-localized biopsies were captured and co-

registered with multimodal preoperative imaging (18). Biopsy samples from regions that were T1Gd 

hyperintense were labeled contrast-enhancing (CE), and those from regions that were T1Gd isointense 

and T2/FLAIR hyperintense were considered non-enhancing (NE).  

 

Deconvolving cell populations from RNA sequencing 

While many have employed single-cell RNA sequencing as a means of characterizing 

intratumoral heterogeneity, this approach notoriously undersamples non-neoplastic populations (e.g., 

neurons) (19). Single nucleus RNAseq (snRNAseq) circumvents this limitation by more 

comprehensively sampling malignant, immune, and other cells. We leveraged a snRNAseq data set 

(20), derived from seven patients with GBM, which contained eighteen cell types: six malignant, five 

immune, and seven “other.” Malignant cell populations included mesenchymal/immunoreactive 

(gl_Mes1 and gl_Mes2), proliferative (gl_Pro1 and gl_Pro2), and neural/oligodendrocyte precursors 

(gl_PN1 and gl_PN2). Immune cells were characterized as T-cells, myeloid cells present at baseline 

(Myel1), proliferative tumor-associated macrophages (prTAM), monocyte-derived cells (moTAM), and 

microglia-derived cells (mgTAM). Other populations were characterized as neurons, endothelial cells, 

oligodendrocytes, oligodendrocyte precursor cells (OPCs), and three subtypes of astrocytes (Ast1, 

protoplasmic; Ast2 and Ast3, reactive). 

A bulk RNAseq transcriptome reflects the sum of transcriptional contributions from individual 

cells. Therefore, the cellular composition of heterogeneous samples can be estimated using 

deconvolution methods like CIBERSORTx (21). This method relies on marker gene input and assumes 
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that expression signals are linearly additive, such that marker gene expression is related to the 

proportion of that cell type in the sample. Each cell in our snRNAseq matrix was labeled as one of 

eighteen cell populations (20). This served as the input to CIBERSORTx, where a signature matrix was 

derived to define the unique features of each cell type. This signature was applied to the bulk RNAseq 

samples to estimate the abundance of all eighteen cell types in our image-localized samples. The 

analysis was performed in absolute mode with 500 permutations and quantile mode disabled. S mode 

batch correction was applied to account for the application of a signature derived from UMI-based 

snRNAseq to bulk RNAseq data. We present CIBERSORTx output as absolute and relative 

(normalized to the total of its category - glioma, immune, or other) values. 

Trajectory inference and pseudotime ordering of TCGA microarray and image-localized RNAseq 
samples 

The objective of trajectory inference is to reduce high-complexity, asynchronous data into an 

ordered, one-dimensional path. While it was initially described in the context of ordering single-cell 

RNAseq data to infer the biological progression of cell lineages (22), it has been successfully 

repurposed to determine the relative ordering of other types of complex data (23). Monocle initially 

reduces data dimensionality using independent component analysis (ICA) (24). The data is represented 

by a series of nodes (cells) and edges (weighted by distance between samples after ICA). A manifold 

learning algorithm (DDRTree) uses reverse graph embedding to identify potential backbones of the 

trajectory and orders samples along the longest path. Each sample is assigned to a branch on the tree, 

and pseudotime is calculated using the geodesic distance to the path’s starting point. Here we used 

TCGA microarray and our biopsy RNAseq as inputs to visualize GBM’s natural transcriptional 

organization. States were defined as each of the three concurrent line segments. The “fgsea” package 

was used to perform gene set enrichment analysis, with the MSigDB database as the reference (25, 

26). 
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Statistical analyses 

The TCGA cohort contains one sample per patient and thus each sample can be considered 

independent. Chi-square tests were used to determine the significance of differences between groups. 

Since the image-localized biopsy cohort contains multiple samples per patient, linear mixed-effects 

models coupled with ANOVA tests (Type II Wald tests) were used to determine the significance of 

differences in this cohort, with cumulative plots and box plots employed for data visualization (27). For 

categorical outcome variables, groups were binarized. A dummy variable of patient number was 

included as a random effect in each test within the lmer and glmer functions in the “lme4” R package 

(28, 29) for continuous and categorical dependent variables, respectively. The “car” package in R was 

used for ANOVA tests (30). The “rmcorr” package in R was used to determine the significance of 

correlations between CIBERSORTx populations alongside the Bonferroni method to adjust for multiple 

comparisons (31). 

 

Results 

Trajectory inference of GBM samples reveals three polarized states 

To discern GBM’s transcriptional continuum, a manifold learning algorithm inferred the biological 

trajectory of TCGA GBM microarray samples (n=525). This approach reduces data dimensionality, 

computes the minimum spanning tree trajectory, and orders samples along the longest path (Figure 

1A). Pseudotime, the geodesic distance of a point from the trajectory’s origin (pseudotime=0), reveals 

an initiating trunk that bifurcates into two paths (Figure 1B). There is no sex difference in pseudotime 

distribution (p=0.19; Figure 1C). The three concurrent line segments of the trajectory are labeled as 

“states” A, B, and C (Figure 1D). Each state has a unique transcriptional profile of the top 1000 most 

highly variable genes (Figure 1E). Pre-ranked GSEA, using known transcriptional subtype signatures 

as a reference, reveals that state A is concordant with neural and proneural signatures, state B is more 

mesenchymal, and state C agrees with the classical signature (Figure 1F). TCGA sample classification 

overlaid on the trajectory confirms that each state is associated with a transcriptional subtype (X2=239, 
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p<0.0001; Figure 1G). Relative distribution of age, IDH1 mutation status, and MGMT methylated status 

are shown in Figure S1A-D.  

Bulk transcriptomic sequencing of 134 image-localized biopsies (median=3 per patient) from 39 

patients with primary (n=30) or recurrent (n=9) GBM underwent trajectory inference. Patient 

demographics and biopsy characteristics are summarized in Table S1. The inferred biological trajectory 

of these samples again reveals three concurrent segments that recapitulate those seen with TCGA 

(Figures 2A-B). In this cohort, there is a bias for female samples towards lower pseudotime values 

(55.2 vs. 71.7, p=0.002; Figure 2C). There is no difference in IDH status between the states (X2=1.19, 

p=0.55; Figure S1E). 

 

States reflect transitions in cellular population ecologies 

To interpret how tumor composition contributes to this trajectory, each image-localized sample 

underwent RNA sequencing deconvolution to estimate the abundance of the individual cell populations 

(Figure S2A; Table S2). Eighteen cell populations, as defined by snRNAseq (20), were predicted: six 

malignant glioma, five immune (e.g., myeloid cells, T-cells), and seven “other” (e.g., astrocytes, 

neurons, endothelial cells). The sums of malignant cells, immune cells, and other cells are highest in 

states C, B, and A, respectively (Figure 2D). The trajectory as labeled by each cellular component can 

be found in Figure S2B. 

When ordering sample composition heatmaps by pseudotime, we find that transitions between 

states correlate with changes in composition (Figure 2E). Ecological diversity measures (e.g. Shannon 

entropy and evenness) have lower values at the distal poles of each state’s segment compared to the 

transitional arms (Figure S2B). Taken together, these data suggest that GBM states are on a spectrum 

between three polarized states: invaded brain, immunoreactivity, and proliferation. Any sample can be 

a transitional admixture between these states by way of changes in their underlying cellular 

composition. As such, the abundance of certain cell populations tends to correlate with one another. 
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Sex-specific cell abundance correlation networks are quantified in Figure 2F and overall cohabitation 

trends are schematized in Figure 2G. 

 

Contrast-enhancing samples contain more malignant cells than non-enhancing samples 

Since measures of contrast-enhancement (CE; from the T1Gd+ core) and non-enhancement 

(NE; from the T1Gd-/FLAIR+ penumbra) are central to surgical planning and the radiological 

assessment of treatment responsiveness, we were interested in the relationship between enhancement 

and tumor biology (i.e., pseudotime and cellular composition). State A samples tend to be NE, while 

samples from states B and C tend to be CE (p=0.00034; Figure 3A). Tumor status (i.e., primary and 

recurrent) has no significant relationship to states (X2=0.39, p=0.82; Figure 3A). Overall cellular 

composition varies widely within and between CE and NE samples but is more predictable within states 

(Figure 3B). 

The absolute abundance of malignant cells is higher in samples harvested from CE than NE 

regions for each sex individually (p=0.0053 males, p=0.021 females; Figure 3C). This remains true 

when considering all data together (p=0.00025; Figure S3A) or separating biopsies collected from 

primary (p=0.037; Figure S3B) and recurrent tumors (p<0.0001; Figure S3C). This finding was also 

seen within males for primary biopsies alone (p=0.027; Figure S3D), with an analogous but insignificant 

difference in the recurrent setting (p=0.081). Within females, the result did not hold for primary samples 

only (p=0.65) but did for recurrent samples only (p<0.0001; Figure S3E). Amongst NE samples, there 

are fewer malignant cells in recurrent compared to primary biopsies (p=0.0045; Figure S3F). 

To determine if specific populations are driving the relationship between contrast enhancement 

and malignant cell abundance, each subtype was considered individually. There was an 

overrepresentation of gl_Mes2 cells in CE compared to NE biopsies (p=0.0002; Figure S3G). Notably, 

an increased abundance of gl_Pro1 cells in all CE samples (p=0.0028; Figure S3G) was driven by 

female patients (p=0.00059; Figure 3D). Conversely, NE biopsies have more gl_PN1 cells than their 

CE counterparts (p<0.0001; Figure S3G), which was also the case within male (p=0.026; Figure 3D) 
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and female samples (p=0.00010; Figure 3D). There were no significant regional differences in gl_Pro2 

across all samples or by sex. 

 

Some immune cells have sex-specific imaging correlates 

Although GBM is known as a “cold” tumor with little lymphocytic infiltration, tumor-associated 

macrophages and other immune cells are abundant and can account for up to half of a sample (32, 

33). Thus, we were interested in the ability of contrast enhancement to discern the presence of immune 

cells. We observed a difference in the total abundance of immune cells between NE and CE imaging 

regions for females but not males (Figure 3E). 

We next considered each population individually under the assumption that the imaging 

representations of immune activity could be sex-dependent. Contrast enhancement had no significant 

relationship to Myel1 cells, T-cells, or prTAMs. In females, mgTAMs were more likely to be present in 

NE samples (p=0.0019; Figure 3F), with significance retained only in the recurrent subcohort 

(p=0.00058; Figure S4A). In both sexes combined, moTAMs were significantly more abundant in CE 

than NE regions (p=0.00063; Figure S4B), a relationship that was retained only in primary samples 

(p=0.0078; Figure S4C). 

 

MRI contrast enhancement corresponds with the abundance of some normal brain cell populations 

NE tumor regions are expected to have fewer malignant cells and more normal and/or reactive 

CNS populations (34). We observe more neurons in NE samples (p<0.0001; Figure S5A), the 

significance of which is retained in both male and female samples (p=0.00035 and p=0.0046, 

respectively; Figure 3H), and primary and recurrent settings (p=0.00092, Figure S5B; p=0.00024, 

Figure S5C, respectively). Ast1 prevalence in NE (p<0.0001; Figure S5A) is not recapitulated in male 

primary GBM biopsies (p=0.36) but is driven by females in the primary setting and males in the recurrent 

setting (p=0.019, Figure S5D; p=0.014, Figure S5E, respectively). Endothelial cells, which line the 

neovasculature from which contrast extravasates into tissue (35), were more abundant in CE compared 
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to NE samples (p<0.0001; Figure S5A). This significance was retained in primary (p=0.00011; Figure 

S5B) and recurrent samples (p=0.018; Figure S5B). There were no cohort-wide significant relationships 

between imaging and Ast3, oligodendrocytes, or OPCs. 

 

Overall tumor composition has little bearing on MRI contrast enhancement 

To reflect on the connections between contrast enhancement, pseudotime state, and cellular 

composition, we share a case example. A 59-year-old female with primary IDH wild-type, MGMT 

methylated GBM underwent seven image-localized biopsies (Figure 4A; 5CE, 2NE). The biopsies are 

distributed across the pseudotime trajectory and all three states (Figure 4B). Inter-sample correlations 

of cellular composition, as enumerated by CIBERSORTx, revealed a spectrum of biological 

heterogeneity between the samples (Figure 4C). Biopsies with similar imaging appearance (i.e., both 

NE or both CE) were associated with a spectrum of cellular composition similarity (Figure 4D). Samples 

2 and 3 have nearly identical cell compositions (R=0.95), but one is CE and one is NE. Conversely, 

samples 4 and 5 are compositionally dissimilar (R=0.07) and belong to different pseudotime states (B 

and C), yet they are both CE. 

 

Discussion 
 

An unsupervised trajectory inference algorithm revealed that the GBM transcriptome is a 

continuum of three polarized states: invasive, immune/inflammatory, and proliferative. The states are 

conserved regardless of patient sex and tumor treatment status. The trajectory’s constrained nature 

may have implications for treatment, as transcriptional dynamics should be predictably modifiable as a 

function of therapy and one should theoretically be able to artificially transmute the tumor into a more 

favorable (less aggressive) state. This emboldens the potential for adaptive therapy schemas (36) 

which are increasingly focused away from cytotoxic treatments and towards cytostatic population 

control approaches. 
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We next employed a cellular deconvolution strategy to predict the abundance of eighteen cell 

types amongst these states. Previous efforts to characterize GBM’s cellular composition in totality have 

been impeded by the limitations of single-cell RNA sequencing (e.g., under-representation of cell 

populations) (19). Recent methodological advancements, (i.e., single nucleus RNA sequencing) 

circumvent these limitations and allow for a more complete characterization of all populations including 

malignant, immune, and other cells. We leveraged a unique cohort of GBM snRNAseq as training data 

for a cellular deconvolution algorithm (20). This paradigm allowed us to quantify all GBM cell 

subpopulations in a large number of bulk RNA sequencing samples, which has never been done before. 

In connecting cell abundances to the three tumor states, we observe that transitions between states 

directly correlate with changes in population ecologies. Many prior efforts to classify transcriptomics 

data have underappreciated the continuity of these low-dimensional spaces. 

  The widespread clinical utility of these results hinges on the ability to integrate them with routine 

clinical imaging. Several factors have historically hindered our ability to understand the relationships 

between tumor biology and MRI. First, since GBM has such profound intratumoral heterogeneity, 

biological data from tissue biopsies and corresponding imaging features cannot be aligned without 

knowing the exact location from which the sample was harvested. Since image-localized biopsy 

collection is a resource-intensive process, the vast majority of GBM samples are non-localized. Second, 

GBM has known sex differences in incidence, treatment responsiveness, and prognosis (37, 38). For 

this reason, its biological states, and the imaging representations associated with them, cannot be 

assumed to be the same for males and females. However, across all of biomedicine, few studies have 

considered sex differences in their design (39). Despite our lack of biological understanding of what 

imaging means due to these limitations, serial MRIs are paramount in the evaluation of GBM and many 

assumptions are made in their interpretation. 

  To address these limitations, we leveraged image-localized biopsies to directly connect MRI 

features with transcriptional states and cellular composition. A sample’s biological state is generally 

associated with measures of contrast enhancement or non-enhancement. Samples from regions of 
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contrast enhancement had higher abundances of malignant cell populations, whereas non-enhancing 

samples generally contained more normal brain cells. These findings in isolation support the traditional 

notion that CE and NE represent proliferative tumor and invaded brain, respectively. However, an 

assessment of cellular composition as it relates to imaging and pseudotime revealed a more nuanced 

story.  

  Patterns of cellular cohabitation could most simply be described as a function of the pseudotime 

trajectory. However, these ecological patterns, as well as their relationships to CE and NE, varied based 

on patient sex and tumor treatment status. Notably, the polarization of the malignant gl_Pro1 population 

towards CE regions and gl_PN1 population towards NE regions was driven primarily by female 

samples. Further, enrichment for the Myel1 population was spatially skewed towards NE for males and 

CE for females. Taken together, these findings support the potential for sex-distinct imaging patterns 

of tumor ecologies. 

Of particular clinical relevance, we presented a case example of a patient who underwent seven 

biopsies from both CE and NE regions (Figure 4). The cellular composition of these samples had very 

little bearing on contrast enhancement status. This result highlights the limitations of current methods 

of treatment assessment, where a tumor is considered to be responsive if the CE volume regresses. 

The inability of contrast enhancement alone to fully predict cellular composition motivates a role for 

advanced imaging strategies like radiomics. Radiomics is a quantitative approach to predict biological 

attributes from complex imaging features (40, 41). Early radiomics efforts focused on connecting an 

entire image to a biological prediction, thus failing to capture the spatial heterogeneity within individual 

tumors. More recently, our group and others have leveraged image-localized biopsies to directly 

connect spatially-resolved imaging features with tissue biology (42–48). The differences in bioimaging 

relationships seen in the primary and recurrent setting as well as between the sexes embolden the 

careful incorporation of these variables in the context of radiomics. Elucidating these bioimaging 

relationships will provide the opportunity to non-invasively characterize tumors in their entirety and 

personalize each patient’s therapy to exploit the unique weaknesses of their tumor’s dominant state. 
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Figure 1. Trajectory inference and pseudotime ordering of TCGA GBM microarray samples reveal a continuum of

three states. (A) An illustrative overview of the manifold learning approach to infer trajectories and order complex data

along a progression. (B) When ordered by pseudotime, TCGA GBM microarray samples (n=525) fall along a continuum

of three contiguous arms. (C) There is no sex bias in pseudotime distribution (p=0.19). (D) Each segment of the

trajectory defines a “state.” (D) A heatmap of expression of the 1000 most highly variable genes reveals distinct
transcriptomes for each state. (E) Pathway analysis quantifies the concordance of traditional transcriptional subtypes

within each state. (F) Transcriptional subtype classification is related to state (X2=239, p<0.0001).
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Figure 2. Trajectory inference of 134 image-localized GBM biopsies from 39 patients recapitulates the three

states, each of which has distinct cellular cohabitation patterns. (A) Pseudotime trajectory and (B) states derived

from biopsies mirror those that are derived from TCGA. (C) There is a sex bias in our samples such that F samples have

lower pseudotime (55.2 vs. 71.7, p=0.002). (D) Deconvolution of bulk RNAseq allows for the estimation of cell population

abundances. Malignant cells are present on all arms of the trajectory, with particular overrepresentation in state C. (H)

Immune cells (i.e., moTAM, gmTAM, prTAM, Myel1, Tcell) are most abundant in state B. (I) Other cells (i.e., neurons,

oligodendrocytes, OPCs, astrocytes, endothelial cells) are most populous in state A. (E) Estimates of all 18 malignant,

immune, and other cell populations were z-scaled across all samples. Each state tends to be composed of distinct

cellular constituents that transition over pseudotime. (F) Correlation networks between cell population abundances are

sex-distinct. (G) Schematic of relative cohabitation tendencies of cell populations.
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Figure 3. Pseudotime and imaging reveal complementary but distinct insights into tumor biology. (A) Biopsies

from non-enhancing (NE) regions on MRI are more prevalent in state A, whereas contrast-enhancing (CE) biopsies

are more common in states B and C (p=0.00034). Samples from primary (P) and recurrent (R) tumors are not

significantly biased in their distribution (p=0.75). (B) Cellular composition of biopsy samples ordered by MRI

localization (CE/NE) and pseudotime. (C) CE samples have more total glioma (malignant) cells than NE samples. (D)

Glioma cell population abundance changes based on imaging localization and sex. (E) Immune cell abundance is

enriched in CE for F with a trend toward significance in Ms. (F) Immune cell populations differ between imaging

regions and the sexes. (G) Other (non-malignant, non-immune) cell abundance is not different between CE and NE

samples. (H) The abundance of other cell populations varies based on sex and MRI localization. Differences in

relative and absolute abundances are corrected for multiple observations within patients with significance levels

denoted as * < 0.05, ** < 0.01, *** < 0.001.
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Figure 4. An illustration of biopsy locations and corresponding cell composition in a single patient. (A) A 59-

year-old female with primary IDH wildtype, MGMT methylated glioblastoma underwent seven image-localized biopsies

(5 CE, 2 NE). (B) Samples were distributed across the biological trajectory including States A and C. (C) A correlation

matrix of cellular composition reveals a spectrum of biological heterogeneity and likeness between samples. (D) Though

samples that are abundant in malignant cell populations were more commonly harvested from CE regions, imaging

localization overall has little bearing on compositional similarity, whereas pseudotime similarity translated to

compositional similarity.
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