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Summary 15 

Maintaining intestinal macrophage (MP) heterogeneity is critical to ensure tissue 16 

homeostasis and host defense. The gut microbiota and host factors are thought to 17 

synergistically shape colonic MP development, although there remains a fundamental 18 

gap in our understanding of the details of such collaboration. Here, we report tertiary 19 

lymphoid organs (TLOs), enriched in group 3 innate lymphoid cells (ILC3s), as a 20 

microbiota-operated intestinal niche for the development of monocyte-derived MPs. ILC3-21 
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derived colony stimulating factor 2 (CSF2) serves as a developmental and functional 22 

determinant for MPs and required microbe-derived extracellular adenosine 5’-23 

triphosphate (ATP) as a trigger. Microbial communities rich in extracellular ATP promoted 24 

MP turnover via ILC3 activity in an NLRP3-dependent fashion. Single cell RNA-25 

sequencing of MPs revealed unique TLO-associated, CSF2-dependent MP populations 26 

critical for anti-microbial defense against enteric infection. Collectively, these findings 27 

describe a fundamental framework that constitutes an intestinal MP niche fueled by 28 

microbial energy metabolism.  29 

Introduction 30 

Intestinal macrophages (MPs) represent a large proportion of the innate immune system 31 

in the gut and are critical mediators of host defense and tissue homeostasis. Research in 32 

the past decade has revealed the extensive heterogeneity in these cells, from their 33 

differential ontogeny to their location-specific divisions of labor (Chiaranunt et al., 2021). 34 

However, mechanisms regulating MP heterogeneity in the intestinal lamina propria (LP) 35 

remain enigmatic, particularly regarding the involvement of microanatomic environments 36 

that balance the abundance of MPs involved in host defense and MPs regulating tissue 37 

homeostasis.  38 

Further complicating this matter are the classification strategies for intestinal MPs. As in 39 

other organs, intestinal MP subpopulations can be distinguished based on their 40 

expression of the markers Tim-4 and CCR2 to denote fetal-derived long-lived, self-41 

renewing, tissue resident cells and monocyte-derived ones, respectively (Dick et al., 42 

2022; Kang et al., 2020). Others have demarcated gut MPs using Tim-4 and CD4 into 3 43 

subpopulations: long-lived Tim-4+CD4+ MPs, Tim-4-CD4+ MPs with slow monocytic 44 
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turnover, and Tim-4-CD4- MPs with rapid turnover (Liu et al., 2019; Shaw et al., 2018). 45 

Different populations of self-maintaining gut-resident MPs associate with neurons, 46 

vasculature, and other immune cells and reside in distinct regions of the gut, where they 47 

adopt transcriptional profiles and functions tailored to these microenvironments (De 48 

Schepper et al., 2018; Matheis et al., 2020; Muller et al., 2014). Unlike in most other 49 

organs, MPs within these intestinal microenvironments integrate signals derived from the 50 

commensal microflora into their homeostatic function (Mortha et al., 2014; Muller et al., 51 

2014). 52 

Several reports suggest that microbial metabolites affect intestinal MP function. For 53 

example, polysaccharides produced by Helicobacter hepaticus and commensal bacteria-54 

derived short-chain fatty acids (SCFAs) were shown to promote tolerogenic MPs (Chang 55 

et al., 2014; Danne et al., 2017; Schulthess et al., 2019). Bacteria-metabolized dietary 56 

tryptophan controls monocyte differentiation in an aryl hydrocarbon receptor (AhR)-57 

dependent manner (Goudot et al., 2017). Colonization with the protozoan commensal 58 

Tritrichomonas musculis (T.mu) was recently shown to induce monocyte infiltration in the 59 

gut by increasing luminal extracellular adenosine 5’-triphosphate (ATP) levels 60 

(Chiaranunt et al., 2022). This raises the question of whether a ubiquitously produced 61 

metabolite across microbial kingdoms may serve as a molecular motif to determine MP 62 

heterogeneity. 63 

Microbiota and host-derived factors are proposed to collaborate in orchestrating gut MP 64 

composition and function. Deficiency in the host-derived myeloid growth factor colony 65 

stimulating factor 1 (CSF1) results in a systemic decrease in MPs, with a less pronounced 66 

effect on the intestinal tract, suggesting compensatory growth factors (Dai et al., 2002; 67 
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Sehgal et al., 2018; Witmer-Pack et al., 1993). Interleukin (IL)-34, transforming growth 68 

factor b (TGFb), or colony stimulating factor 2 (CSF2), have been reported to affect MP 69 

development in many organs, including the intestinal tract (Greter et al., 2012; Guilliams 70 

et al., 2013; Schridde et al., 2017). In the gut, tissue-resident group 3 innate lymphoid 71 

cells (ILC3s) produce large quantities of CSF2 in a microbiota-dependent manner within 72 

intestinal tertiary lymphoid organs (TLOs), such as cryptopatches and isolated lymphoid 73 

follicles (Mortha et al., 2014). Csf2-/- mice displayed a partial reduction in intestinal MPs, 74 

suggesting that MP development may in part depend on this growth factor (Mortha et al., 75 

2014). CSF2 has recently been shown to license the effector profile of MPs in the inflamed 76 

brain, implicating an impact on MP function in addition to development (Amorim et al., 77 

2022). Whether these observations on CSF2 extend to MP development and function in 78 

the intestine remain unknown. 79 

Here, we report a molecular and spatial framework governing the collaboration between 80 

host and microbiota that regulates colonic MP heterogeneity. Combining fate-mapping 81 

models, immunofluorescence assays, microsurgical dissection, and single cell RNA-82 

sequencing (scRNA-Seq) analysis, we identified TLOs as a supporting niche for the 83 

developmental and functional programming of monocyte-derived TLO-associated Tim-4-84 

CD4- MPs. Using adoptive transfer experiments and mono-colonization of germ-free 85 

mice, we demonstrated that microbe-derived extracellular ATP serves as a driver of CSF2 86 

production by ILC3s in an NLRP3-dependent fashion to induce the monocyte to MP 87 

transition. TLO-associated MPs expressed distinct genes, displayed high metabolic 88 

demand, and followed an alternative differentiation pathway compared to LP-resident 89 

MPs. Development of TLO-associated MPs was dependent on CSF2 and protected the 90 
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host against enteric bacterial infections. Collectively, our findings identify a molecular and 91 

spatial framework for the location-specific differentiation of colonic MPs, centered around 92 

a microbiota-fueled, ILC3-driven and CSF2-dependent axis that integrates signals 93 

indicative of microbial energy into the heterogeneity of colonic MPs.  94 

Results 95 

Colonic monocyte-derived MPs require CSF2 96 

Tissue-resident MPs in extra-intestinal organs group into monocyte- or fetal-derived 97 

subpopulations based on cross-organ conserved expression of the markers CCR2, Tim-98 

4, LYVE1, and MHCII (Dick et al., 2022). In the gut, MPs have been classified by Tim-4 99 

and CD4 expression and the ‘monocyte waterfall’ gating strategy (Bain et al., 2014; Shaw 100 

et al., 2018). To consolidate these various gating strategies, we performed an unbiased 101 

t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction on colonic 102 

lamina propria (LP) CD64+ CD11b+ cells. Distinct and partial overlap in the expression of 103 

Tim-4, CD4, CCR2, MHCII, and Ly6C aligned with the previous classification into Tim-104 

4+CD4+, Tim-4-CD4+, and Tim-4-CD4- MPs. Tim-4-CD4- MPs were further delineated into 105 

Ly6C+, CCR2+, and CCR2- MPs, suggesting a developmental relationship to monocytes 106 

(Fig 1A, Fig S1A,B)(Dick et al., 2022; Shaw et al., 2018). Accordingly, Tim-4-CD4- MPs 107 

were significantly depleted in Ccr2-/- mice, leaving Tim-4+ MPs as the majority of colonic 108 

MPs in these mice (Fig 1B). Previous investigations into Csf2-/- mice did not use this 109 

detailed classification of MPs, prompting us to revisit the requirements for CSF2 on gut 110 

MP heterogeneity (Mortha et al., 2014). Analysis of MPs in the colonic LP of Csf2-/- mice 111 

revealed an elevated abundance of Ly6Chi monocytes compared to WT or Ccr2-/- mice, 112 

implicating a developmental blockade on the transition from monocytes to MPs (Fig S1C). 113 

CCR2+ and CCR2- Tim-4-CD4- MPs and Tim-4-CD4+ MPs were reduced in Csf2-/- mice, 114 
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further implicating their developmental relation to monocytes (Fig 1B, Fig S1C). Tim-4+ 115 

MPs were partially affected in Csf2-/- mice, suggesting that all MP subpopulations variably 116 

depend on this growth factor (Fig 1B, Fig S1C).  117 

Tim-4+ MPs are a long-lived, fetal-derived population with minimal replacement by 118 

monocytes. It has further been proposed that the expression of Tim-4 may reflect long-119 

term residency within a tissue following differentiation (Bleriot et al., 2020; De Schepper 120 

et al., 2018; Scott et al., 2016; Shaw et al., 2018; Theurl et al., 2016). To determine the 121 

long-term MP turnover by infiltrating monocytes, we performed parabiosis of CD45.1 122 

C57BL/6 and CD45.2 Ccr2-/- mice to assess the chimerism of each MP subpopulation 123 

after 6 or 12 months. As expected, Ccr2-/- parabionts showed CD45.1 frequencies 124 

comparable to blood monocytes in both the colonic Tim-4-CD4- MP s and Tim-4-CD4+ MP 125 

compartments (Fig 1C). Surprisingly, Tim-4+ MPs were also replaced by donor CD45.1 126 

monocytes, albeit at a slower rate, suggesting a homeostatic contribution of monocytes 127 

to the maintenance of Tim-4+ MPs (Fig 1C). To confirm our results, we employed a 128 

tamoxifen-inducible fate-mapping model. Tamoxifen-containing chow was provided to 129 

Ccr2CreERT2 x Rosa26-LSL-tdTomato (Rosa26td) mice during a 1-week pulse phase, 130 

followed by a chase period with normal chow for either 1 or 52 week(s). Loss of Tomato 131 

labeling was measured in each MP subpopulation to assess the replacement of MPs by 132 

newly infiltrated monocytes. Tamoxifen administration labelled ~94% of all blood Ly6Chi 133 

monocytes within the 1-week pulse phase. The induced Tomato label was absent in 134 

monocytes after 52 weeks (Fig 1D). Colonic Ly6C+ monocytes and Tim-4-CD4- MPs 135 

showed labeling efficiency similar to blood monocytes, while Tim-4-CD4+ MPs displayed 136 

partial Tomato labeling (64%). Surprisingly, ~17% of all Tim-4+ MPs were labeled after 137 
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the 1-week pulse phase, suggesting a possible contribution of monocytes to this 138 

population during tamoxifen administration (Fig 1D). After the first 7 days of the chase 139 

period, Tim-4-CD4- MPs (containing Ly6C+ and CCR2+ cells) displayed replacement by 140 

bone marrow-derived (BM) monocytes, as indicated by the loss of Tomato labelling (Fig 141 

1D). Tim-4-CD4+ MPs and Tim-4+ MPs did not show signs of replacement, suggesting a 142 

slower replacement rate in line with our parabiosis experiments (Fig 1C, 1D). After the 143 

52-week chase period, all MP subpopulations lost the Tomato label (Fig 1D). These 144 

results indicate that all colonic MPs share a monocytic origin, with Tim-4-CD4- MPs 145 

showing the fastest replacement and strongest reliance on CSF2.  146 

Diversified microbiotas promote the accumulation of Tim-4-CD4- MPs 147 

Tissue-resident Tim-4+ MPs dominate the MP pool during embryogenesis and are found 148 

in all tissues at early time points of fetal development, while Tim-4- MPs postnatally arise 149 

from BM monocytes (Dick et al., 2022). In the gut, this development requires the 150 

microbiota (Bain et al., 2014; Shaw et al., 2018). Our fate-mapping and parabiosis data 151 

show that colonic MP subpopulations display different rates of monocyte replacement, 152 

suggesting distinct appearances of the MP subpopulations in the neonatal and adult 153 

intestine. To delineate the developmental kinetics of colonic MPs, we assessed the 154 

composition of MPs starting in the neonatal colon, tracking along the first weeks of life 155 

until adulthood. In line with previous reports, embryonically-derived Tim-4+CD4+ MPs 156 

primarily comprise the colons of newborn mice, followed by a significantly increased 157 

abundance of Tim-4-CD4- MPs at 3-4 weeks of age. This time corresponds to weaning 158 

and the establishment of a diversified microbiota (Fig 2A)(Knoop et al., 2017). By 8-12 159 

weeks after birth, Tim-4-CD4- MPs comprise the majority of colonic MPs, implicating a 160 
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microbiota-driven adaptation of the MP pool. These adaptations in gut MPs mirror 161 

previously reported observations of intestinal CSF2 production, which similarly increased 162 

until week 8 in a microbiota-dependent fashion (Mortha et al., 2014). Depletion of the 163 

microbiota using broad-spectrum antibiotics in adult mice shifted the MP pool in favor of 164 

Tim-4+CD4+ MPs, confirming a requirement of the microbiota in regulating MP 165 

composition (Fig 2B). In contrast, reconstituting germ-free mice with an adult SPF 166 

microbiota increased Tim-4-CD4- MPs at the expense of Tim-4+CD4+ MPs (Fig 2C). 167 

Colonization of adult SPF mice with the protozoan commensal T. mu further increased 168 

the abundance of Tim-4-CD4- MPs (Fig 2D). A comparable shift towards Tim-4-CD4- MPs 169 

was also observed when analyzing “re-wilded” mice, i.e. ex-SPF mice that were colonized 170 

with the microbiota found in pet-store mice (Fig 2E). These findings suggest that the 171 

increase in Tim-4-CD4- MPs in the colon may be due to an increase in microbiota-driven 172 

monocyte replacement. To track the rate of monocyte replacement in the colon, we 173 

labeled all Cx3cr1-expressing cells in tamoxifen-inducible Cx3cr1CreERT2 x Rosa26td mice 174 

and followed the loss of Tomato labeling in each MP population after colonization with T. 175 

mu (Fig 2F). Compared to uncolonized littermate controls, T. mu-colonized mice showed 176 

significantly reduced percentages of Tomato+ cells particularly in Tim-4-CD4- MPs, 177 

suggesting an increased replacement of these cells by Tomato- monocytes (Fig 2G). In 178 

support of our fate mapping and parabiosis data, monocyte replacement was also 179 

elevated in Tim-4-CD4+ MPs and Tim-4+CD4+ MPs. Collectively, our data demonstrate 180 

that diversifying the gut microbiota promotes MP replacement by monocytes and the 181 

accumulation of Tim-4-CD4- MPs. Notably, colonization with T. mu has previously been 182 
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found to increase the production of CSF2 by ILC3s in the intestinal tract, implicating a 183 

role for ILC3s in the elevated MP replacement rates (Chudnovskiy et al., 2016). 184 

Microbial extracellular ATP regulates MP composition and CSF2 production 185 

Diversification of the microbiota manifests multiple new features within the microbial 186 

community, including adaptations to nutrients and synthesis of different metabolites (Blaut 187 

and Clavel, 2007). Such changes may not apply to individual microbial species but rather 188 

reflect a feature of complex community interactions  (Patnode et al., 2021). This raises 189 

the possibility for a conserved ubiquitously produced metabolite across all living microbes 190 

that indicates microbial vitality, but at the same time, serves as a molecular motif for 191 

immune recognition and activation that can indirectly impact MP homeostasis. ATP is one 192 

such metabolite capable of promoting intestinal immunity (Atarashi et al., 2008). We 193 

recently demonstrated that colonization with the protozoan commensal T. mu induces 194 

immune activation in the colon, including increased monocyte infiltration, regulated by 195 

elevated intestinal extracellular ATP (ATPex) levels and inflammasome activation 196 

(Chiaranunt et al., 2022). ATPex is a common danger associated molecular pattern 197 

(DAMP) that correlates with the presence of the microbiota and subsequently regulates 198 

local adaptive immune cells through P2X7R-dependent recognition by CD11c+ myeloid 199 

cells (Atarashi et al., 2008; Perruzza et al., 2017). Thus, we asked whether ATPex might 200 

serve as a rheostatic indicator of the microbiota, capable of regulating colonic MP 201 

composition. In line with previous studies, we first confirmed that levels of ATPex in the 202 

gut lumen corresponded to abundance of the microbiota by comparing fecal ATPex in 203 

SPF, antibiotics-treated, and germ-free mice (Fig 3A). ATP was shown to be released by 204 

multiple bacterial species through an unknown mechanism while undergoing cellular 205 
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respiration during the growth phase in vitro to prolong their stationary survival (Mempin 206 

et al., 2013). To specifically investigate whether bacteria-derived ATP could regulate MPs 207 

in the gut, we utilized a mutant strain of commensal E. coli MG1655 that lacks the operons 208 

encoding the ATP synthase subunits A-G (Δ(atpA-atpG)) (Jones et al., 2007). In contrast 209 

to wild-type E. coli or a mutant lacking nitrate reductase genes (ΔnarG ΔnarZ Δ(napD-210 

napA)), the ATPase-deficient mutant was unable to secrete ATP during growth in vitro, 211 

confirming an ATPase-dependent increase in ATPex (Fig S2A,B). Transformation of the 212 

Förster resonance energy transfer (FRET)-type ATP biosensor ATeam 3.10 into these E. 213 

coli strains enabled the quantification of intracellular ATP (ATPint) levels (Fig S2C) 214 

(Imamura et al., 2009). Accordingly, less pronounced ATPint levels were observed in the 215 

ATPase-deficient E. coli in vitro, confirming its metabolic impairment and release of ATP 216 

(Fig S2D,E).  217 

To determine whether an impaired ATP metabolism in commensals impacts MP 218 

heterogeneity in the gut, GF mice were mono-colonized with either control or Δ(atpA-219 

atpG) E. coli. The colonic MP composition was assessed 7 days after engraftment to 220 

avoid confounding effects of adaptive immune cells on the colonizing microbes 221 

(Hapfelmeier et al., 2010; Macpherson and Uhr, 2004). Despite equal colonization, 222 

Δ(atpA-atpG) E. coli produced less ATPint at the time of analysis compared to the wild-223 

type control strain (Fig S2F,G). Accordingly, mice colonized with control E. coli showed 224 

higher infiltration of Ly6C+ and CCR2+ MPs in comparison to Δ(atpA-atpG) E. coli-225 

colonized mice (Fig 3B,C). CSF2 governed the abundance of CCR2+ MPs and has 226 

previously been reported to be produced by ILC3s in a microbiota-dependent manner 227 

(Mortha et al., 2014; Satoh-Takayama et al., 2008). To determine the impact of ATPex on 228 
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ILC3s, we analyzed CSF2 release and ILC3 counts in the colonic LP of untreated GF 229 

mice versus mice mono-colonized with Δ(atpA-atpG) or control E. coli. Notably, only mice 230 

gavaged with wild-type E. coli but not Δ(atpA-atpG) showed an increase in ILC3 numbers 231 

and CSF2 release, implicating the regulation of CSF2-producing ILC3s by microbe-232 

derived ATPex (Fig 3D). In support of these data, decreased CSF2 production by ILC3s 233 

was observed in Nlrp3-/- and P2rx7-/- mice, deficient in initiating ATPex-dependent 234 

inflammasome activation (Fig 3E). Altogether, these data indicate that microbe-derived 235 

ATPex regulates colonic monocyte-derived MPs and the production of CSF2 by ILC3s via 236 

the inflammasome. 237 

CSF2-producing ILC3s support intestinal CCR2+ Tim-4-CD4- MPs 238 

Microenvironmental cues within anatomical niches are critical for imprinting tissue-239 

resident MP identity in various organs (Guilliams et al., 2020). However, less focus has 240 

been placed on niches for monocyte-derived MPs. In the gut, CSF2-producing ILC3s are 241 

abundantly found within postnatally formed tertiary lymphoid organs (TLOs), such as 242 

cryptopatches and isolated lymphoid follicles (Mortha et al., 2014). These data prompted 243 

us to determine whether CSF2-producing ILC3s constitute supporting cells for monocyte-244 

derived MPs in the colon. In support of our hypothesis, live imaging of Rorc+/EGFPCcr2+/RFP 245 

colons revealed an accumulation of CCR2+ cells along the edges of TLOs, surrounding 246 

RORγt+ ILC3s within the structures (Fig 4A). To confirm that these CCR2+ cells 247 

surrounding TLOs are MPs, we quantified CX3CR1+CCR2+ MPs in the LP or TLOs of the 248 

colon in immunofluorescence images from Cx3cr1+/EGFPCcr2+/RFP mice. CCR2+ MPs 249 

displayed an elevated accumulation within TLOs compared to the surrounding LP (Fig 250 

4B,C). TLOs have been reported to contain B cells and T cells (Hamada et al., 2002). To 251 
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determine whether B and T cells were involved in shaping intestinal MP heterogeneity, 252 

MP composition was analyzed in WT, Rag2-/- and Rag2-/-Il2rg-/- mice. Interestingly, only 253 

Rag2-/-Il2rg-/- mice (lacking all lymphocytes), but not Rag2-/- mice (sufficient in ILCs), 254 

displayed a significant reduction in colonic Tim-4-CD4- MPs that was comparable to the 255 

decrease observed in Csf2-/- mice. These findings indicate that ILCs but not T and B cells 256 

regulate the homeostatic CSF2-dependent MP composition in the colon (Fig 4D). In line 257 

with this, adoptive transfer of 104 FACS-purified Rorc+/EGFP ILC3s from WT (ILC3CSF2) or 258 

Csf2-/- (ILC3ΔCSF2) mice into Rag2-/-Il2rg-/- recipients revealed a significant accumulation 259 

of Tim-4-CD4- MPs in the colonic LP after 6 weeks (Fig 4E, S4A). The accumulation of 260 

Tim-4-CD4- MPs was critically dependent on ILC3-derived CSF2 (Fig 4E, S4B). Notably, 261 

numbers of Tim-4-CD4+ and Tim-4+CD4+ MPs were also slightly increased in Rag2-/-Il2rg-262 

/- mice after transfer of ILC3CSF2, suggesting a partial dependency of this subpopulation 263 

on CSF2-producing ILC3s (Fig 4F). In summary, these findings demonstrate that CCR2+ 264 

MPs accumulate around colonic TLOs and that colocalization with CSF2-producing ILC3s 265 

supports Tim-4-CD4- MPs in the colon.  266 

scRNA-Seq reveals unique TLO-associated MP populations  267 

To incorporate spatial information into the actions of CSF2 on colonic MPs at higher 268 

granularity, we performed scRNA-Seq analysis of MPs isolated from either the TLOs or 269 

LP of WT or Csf2-/- mice. Live Cx3cr1+/EGFPCcr2+/RFP colonic tissues revealed TLOs and 270 

LP using a fluorescence stereomicroscope (Fig 5A). Biopsy punches containing colonic 271 

TLOs or LP, free of TLOs, were isolated and digested prior to enrichment for CD11b+ 272 

cells by magnetic beads (>90% purity) and subsequent scRNA-Seq analysis (Fig 5B). 273 

UMAP dimensionality reduction and combined analysis of all 4 groups (LPWT, TLOWT, 274 
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LPCsf2-/-, TLOCsf2-/-) yielded 18 clusters from a total of 15,369 cells (Fig S4A). Based on 275 

their top 30 cluster-defining genes, we identified clusters corresponding to B cells 276 

(clusters 7, 10), T/NK cells (cluster 14), and epithelial and stromal cells (clusters 0, 5, 6, 277 

9, 11, 15-17), which were excluded from subsequent analysis (Fig S4B). DC clusters (3, 278 

12, 13) were identified based on Flt3, Dpp4, Zbtb46, and Itgax expression. The remaining 279 

clusters (1, 2, 4, 8) were identified as MPs and monocytes based on their expression of 280 

Csf1r, Cx3cr1, and C1qa and absence of DC markers (Fig S4C, D). 281 

Subsetting and re-analysis of the MP/monocyte clusters resulted in 9 distinct clusters, 282 

revealing substantial heterogeneity within the colonic MP pool (Fig 5C). Cells within 283 

clusters 0, 1, and 7 were enriched in the LP, while TLOs primarily comprised clusters 2, 284 

3, 5, and 6, indicating preferential localization of some MP subpopulations within these 285 

structures (Fig 5D). Each MP cluster was then identified based on their top 30 cluster-286 

defining genes (Fig 5E). MPs in clusters 0 and 5 highly expressed Lyve1, Mrc1, Maf, and 287 

Timd4, thus corresponding to tissue-resident Tim-4+ MPs (De Schepper et al., 2018; Dick 288 

et al., 2022; Moura Silva et al., 2021). MPs in clusters 0 and 5 co-expressed Cd4 but not 289 

Ccr2, consistent with our flow cytometric classification (Fig 5F). Interestingly, MPs in 290 

cluster 5, enriched in the TLO, expressed higher levels of Folr2, which was shown to be 291 

expressed in gut and brain c-MAF-dependent perivascular MPs involved in metabolic 292 

regulation (Moura Silva et al., 2021). Consistent with previous reports, pathway analysis 293 

demonstrated that MPs in clusters 0 and 5 were enriched in endocytosis and vesicle-294 

mediated transport pathways and mediated tissue homeostatic functions, including 295 

synapse pruning (Fig 5G, Fig S4E). These observations prompted us to label MP clusters 296 

0 and 5 as Tim-4+ LP MPs and Tim-4+ TLO MPs, respectively. We also identified clusters 297 
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corresponding to CCR2+ MPs (cluster 1), monocytes (cluster 4), Tim-4-CD4+ MPs (cluster 298 

6), RELMα+ MPs (cluster 7), and epithelium/endothelium-associated Pecam1+ MPs 299 

(cluster 8) (Fig 5E,F). Although previous reports identified Tim-4-CD4+ MPs and 300 

investigated their developmental kinetics, the functions of this subpopulation remain 301 

unclear (Shaw et al., 2018). Interestingly, cluster 6 MPs, corresponding to Tim-4-CD4+ 302 

MPs, displayed a gene expression pattern similar to that reported in inflammatory 303 

microglia and border-associated MPs, including expression of Apoe, Ms4a7, and 304 

Tmem119 (Amorim et al., 2022; De Schepper et al., 2018; Sankowski et al., 2019; Satoh 305 

et al., 2016). Pathway analysis on MP cluster 6 indicated that Tim-4-CD4+ MPs are 306 

involved in leukocyte activation, antigen presentation, T cell activation, and NF-κB 307 

signaling, suggesting a pro-inflammatory role for this subpopulation (Fig 5G, S4E).  308 

Interestingly, cluster 2 and 3 MPs were found almost exclusively in TLOs and expressed 309 

high levels of Il22ra2 and Lyz1, markers reported for TLO-residing CD11c+MHCII+CD11b-310 

CD103- DCs in the small intestine (Guendel et al., 2020). However, we confirmed the MP 311 

identity for cluster 2 and 3 cells based on their expression of MP markers (Csf1r, Cx3cr1, 312 

C1qa, Adgre1, and Fcgr1) and the absence of DC markers (Flt3, Dpp4, and Zbtb46) (Fig 313 

S4B,C). The absence of Timd4 and Cd4 expression and low level of Ccr2 expression in 314 

cluster 2 and 3 MPs suggest that these cells correspond to a subset of the Tim-4-CD4- 315 

MPs (Fig 5F). These MPs were enriched in ATP metabolism, oxidative phosphorylation, 316 

and phagocytic pathways, indicative of a population high in energy demand (Fig 5G, 317 

S4E). To determine the developmental relationship between TLO-enriched and LP-318 

enriched MP clusters, we performed trajectory analysis using Monocle 3 with Seurat-319 

generated clusters overlaid, which revealed a common origin for all MPs within the 320 
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monocyte cluster 4, confirming our fate-mapping and parabiosis studies (Fig 5H). 321 

Pseudotime analysis revealed a gradual loss of Ly6c2 and Ccr2 expression and gain of 322 

Cd4 and Timd4 expression as cells transition from monocytes towards differentiated MPs 323 

(Fig 5H). Importantly, Tim-4-CD4+ MPs represent a differentiation branching point, at 324 

which cells either transition into Tim-4+ MPs (clusters 0 and 4) or into TLO-associated 325 

MPs (first to cluster 3, then cluster 2) (Fig 5H). Given that Tim-4-CD4+ MPs were least 326 

affected by perturbations in the microbiota (Fig 2), their status as a defining branchpoint 327 

for tissue-resident MPs may be worth additional investigation in the future. In summary, 328 

our scRNA-Seq analyses reveal a novel TLO-associated Tim-4-CD4- MP population, high 329 

in energy metabolism and possibly originating from Tim-4-CD4+ MPs along a distinct 330 

differentiation pathway.  331 

CSF2 is a spatial determinant of MP development and function in the colon  332 

To determine whether TLO MPs may be regulated by CSF2, we first identified CSF2-333 

responsive MP clusters based on their Csf2ra and Csf2rb expression. All MP clusters with 334 

the exception of Timd4+Lyve1+ MPs (clusters 0, 5, and 8) expressed detectable levels of 335 

Csf2ra and Csf2rb (Fig 6A). Comparison of MP cluster composition in WT and Csf2-/- 336 

TLOs revealed a loss in the relative abundance of cluster 2 and 3 MPs in TLOCsf2-/- (Fig 337 

6B). Surprisingly, Tim-4+ LP MPs (cluster 0) were reduced in the LPCsf2-/-, even in the 338 

absence of Csf2ra and Csf2rb mRNAs (Fig 6B). We hypothesized that CSF2 deficiency 339 

renders colonic monocytes and CCR2+ MPs unable to differentiate and undergo 340 

apoptosis, based on CSF2’s role as a pro-survival factor for myeloid cells (Wan et al., 341 

2013). An assessment of apoptosis in colonic MPs revealed an increase in apoptotic 342 
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Ly6C+ and Tim-4-CD4- MPs in Csf2-/- mice, the latter corresponding to the loss of TLO 343 

MPs in TLOCsf2-/- (Fig S5).  344 

CSF2 promotes the transition of monocyte to MPs in the inflamed brain, specifically by 345 

supporting disease-promoting functions in MPs (Amorim et al., 2022). These new findings 346 

are in contrast to our data showing CSF2-driven pathways in steady state colonic MPs. 347 

Pathway analysis based on differential gene expression of each cluster in each region of 348 

WT versus Csf2-/- mice revealed significant differences in multiple MP clusters, even 349 

those devoid of Csf2ra or Csf2rb mRNAs (Fig 6C). Within the LPCsf2-/-, Tim-4+ (red) and 350 

CCR2+ (orange) MPs were impaired in cytoskeleton organization, migration, and 351 

endocytosis, but enriched in pro-inflammatory processes like T cell activation, antigen 352 

activation, leukocyte-mediated cytotoxicity, and the response to biotic stimuli (Fig 6C). 353 

However, an even larger number of MP clusters were affected in TLOCsf2-/-. Similar to 354 

LPCsf2-/- Tim-4+ MP, homeostasis of TLOCsf2-/- Tim-4+ (aqua) MPs was impaired as shown 355 

by altered synapse pruning and wound healing functions, and upregulated pro-356 

inflammatory pathways (Fig 6C). Tim-4-CD4+ (dark blue) MPs followed these trends 357 

towards altered homeostasis and increased inflammation. Conversely, clusters 358 

corresponding to monocytes (green) and CCR2+ MPs downregulated pathways involved 359 

in response to stimuli and were enriched in pathways related to cell survival, glycolipid 360 

catabolism and protein stabilization in TLOCsf2-/-, confirming the increased apoptosis in 361 

Csf2-/- mice (Fig S5A and 6C). These data show that CSF2 deficiency induces the 362 

functional dysregulation of multiple colonic MP populations, particularly in the TLO. As a 363 

result, Csf2-/- colons are enriched in MPs skewed towards pro-inflammatory processes, 364 

while downregulating functions attributed to anti-microbial host defense and homeostasis. 365 
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Collectively, these findings demonstrate that CSF2-rich TLOs constitute microanatomic 366 

niches for the homeostatic development and functional programming of MPs in the colon.  367 

CSF2-dependent Tim-4-CD4- MPs are required for proper host defense against 368 
enteric infections 369 

ILC3s are central for the innate immune response against attaching and effacing enteric 370 

pathogens like Citrobacter rodentium, the murine counterpart of human enteropathogenic 371 

E. coli (Song et al., 2015). CSF2 has been implicated in supporting anti-microbial host 372 

defense against C. rodentium through the modulation of CD11c+ myeloid cells (Hirata et 373 

al., 2010). Assessment of the colonic MP composition in WT and Csf2-/- mice after 374 

infection with C. rodentium revealed a significantly altered expansion of Tim-4-CD4- MPs 375 

in the absence of CSF2 (Fig 7A). In contrast to previous reports using C. rodentium 376 

infections, CD11c+MHCII+CD64- DCs did not significantly differ in Csf2-/- and littermate 377 

controls post infection (Fig S6A). While differences in the distribution of cDC1 and cDC2 378 

were observed, these results suggest that CSF2-dependent MPs mediate efficient anti-379 

microbial host defense (Fig S6B). Consequently, Csf2-/- mice showed greater weight loss, 380 

accompanied by higher bacterial burden and dissemination despite comparable infection 381 

efficiency (Fig 7B and C).  382 

Discussion 383 

Intestinal MPs are critical for gut homeostasis and host defense. Uncovering the 384 

mechanisms regulating their developmental and functional heterogeneity across the 385 

largest mucosal surface is a critical yet challenging step towards a detailed understanding 386 

of these cells during steady state and inflammation. Here, we provide new insights into 387 

the molecular and cellular interactions that govern microbiota- and host-regulated MP 388 

development and function in the colon. We demonstrate that microbe-derived ATPex fuels 389 
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NLRP3-driven production of CSF2 by ILC3s. We identify TLOs as microanatomic 390 

locations for the interaction of ILC3s and monocyte-derived, CSF2-dependent MPs, 391 

representing a distinct niche for myeloid development and functional programming in the 392 

gut to support enteric anti-microbial host defense.  393 

Intestinal TLOs form postnatally, or in response to chronic inflammation and colorectal 394 

cancer in a microbiota-dependent manner (Eberl and Lochner, 2009; Koscso et al., 2020; 395 

Overacre-Delgoffe et al., 2021). Although best known for their role in T cell-independent 396 

B cell maturation, our findings indicate that TLOs also serve as an activation hub for 397 

monocyte-derived MPs (Tsuji et al., 2008). While a population of TLO-located Cxcl13-398 

expressing MPs support IgA-producing B cells during Salmonella infection, their 399 

developmental origin remains unknown (Koscso et al., 2020). We show that monocytes 400 

transition into TLO-associated, CSF2-dependent MPs to support host defense against 401 

infections. Whether monocyte-derived, TLO-associated MPs regulate adaptive immunity 402 

within TLOs in the steady state or inflammation remains an intriguing question for future 403 

investigation. 404 

Collectively, our findings extend our knowledge on how the microbiota contributes to the 405 

steady state heterogeneity of intestinal MPs. In contrast to bacteria-derived metabolites 406 

like tryptophan or short-chain fatty acids, which require specialized biochemical pathways 407 

not present in all microbes, ATP is abundantly produced across all microbial kingdoms 408 

and governs the steady state activation of ILC3s. Our findings indicate that ATPex, as a 409 

measurement for universal microbial energy metabolism, may serve as a rheostat for the 410 

control of gut MP development. The instability of ATP and expression of ecto-411 

nucleotidases by the intestinal epithelium may be a rate limiting step in the activation of 412 
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ILC3s and the regulation of MP heterogeneity, opening new avenues for exploration into 413 

these interactions.  414 

While ATPex-mediated activation of the inflammasome exacerbates disease in extra-415 

intestinal locations, it constitutes a critical element to tune immune homeostasis (Aganna 416 

et al., 2002). In contrast to its pro-inflammatory role in other organs, CSF2 governs the 417 

steady-state transition of monocytes to macrophages in the colon and controls essential 418 

homeostatic functions and defense pathways across multiple gut MP subpopulations 419 

(Achuthan et al., 2021). ILC3-derived CSF2 promotes survival of monocytes and shapes 420 

the metabolic program of colonic monocyte-derived MPs in TLOs, while maintaining 421 

functional specification of other gut-resident MP subpopulations. Moreover, TLO-422 

associated MPs follow a distinct developmental trajectory compared to LP MPs diverging 423 

from Tim-4-CD4+ MPs. Deficiency in Csf2 results in the loss of TLO-associated MPs and 424 

promotes inflammatory pathways in LP MPs even if their gene expression suggests 425 

unresponsiveness to CSF2. This enrichment of inflammatory pathways in Csf2-deficient 426 

MPs may pose as a coping strategy to prevent infections and is of translational relevance, 427 

considering the presence of mutations in CSF2RB and the presence of neutralizing anti-428 

CSF2 autoantibodies in complicated Crohn’s disease (CD) (Chuang et al., 2016; Han et 429 

al., 2009). Interestingly, neutralizing anti-human CSF2 autoantibodies precede the onset 430 

of CD by several years (Mortha, 2021). This suggests that such perturbations of the 431 

steady state, microbiota-triggered, ILC3-CSF2 niche for MP development and function 432 

may raise the susceptibility of enteric infections that may possibly contribute the onset of 433 

CD (Mortha, 2021).    434 
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Collectively, our data identify a previously underappreciated role for microbe-derived ATP 435 

as a regulator of a CSF2-dependent tissue niche for the development of TLO-residing 436 

monocyte-derived MPs that support host defense in the healthy intestine.  437 
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 463 

Figure legends 464 

Figure 1. Developmental requirements and kinetics of colonic lamina propria MPs. 465 

(A) Representative flow cytometry analysis using (top) unbiased t-SNE dimensionality 466 

reduction of colonic CD64+ CD11b+ cells showing expression of common MP markers, or 467 

(bottom) Tim-4/CD4, Tim-4/CCR2, and Tim-4/MHCII classification strategies. (B) Contour 468 

plots (top) and quantification (bottom) of colonic MPs in B6, Csf2-/-, and Ccr2-/- mice. (C) 469 

CD45.1 B6 and CD45.2 Ccr2-/- female parabiotic pairs (top) were analyzed at 6 months 470 

(bottom left) or 1 year (bottom right) after surgery. Chimerism was quantified for colonic 471 

MP populations, blood monocytes and microglia. (D) Ccr2CreERT2 x Rosa26td 3-week-old 472 

mice were fed tamoxifen-containing chow for 1 week, then assessed for loss of Tomato 473 

labeling in colonic MP populations at 0, 1, and 52 weeks post withdrawal of tamoxifen. 474 

Significance is calculated for each group comparing to previous timepoint. Data shown in 475 

(A) and (B) are representative of at least three independent experiments with at least 476 

three mice per group per experiment. Data shown in (C) and (D) are from two independent 477 

experiments. Two-way ANOVA (for (B and D)) or one-way ANOVA (for (C)) with post-hoc 478 
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Tukey’s test was performed; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n.s., not 479 

significant. 480 

Figure 2. The development of colonic Tim-4-CD4- MPs requires an intact and 481 

diversified microbiota. Colonic MP composition in (A) B6 mice across various ages, (B) 482 

B6 mice either left untreated or treated with broad-spectrum antibiotics (metronidazole, 483 

ampicillin, neomycin, streptomycin; MANS), (C) germ-free (GF) mice or GF mice 484 

conventionalized with SPF microbiota, (D) B6 mice colonized with T. mu, and (E) re-485 

wilded B6 mice reconstituted with microbiota derived from pet-store mice. (F) Ccr2CreERT2 486 

x Rosa26td mice were injected with tamoxifen , and colonized with T. mu after 2 weeks 487 

via oral gavage. Colonic MPs were analyzed for Tomato label 3 weeks later. (G) 488 

Representative flow cytometry plots of mice in (F) with quantification of % Tomato+ cells 489 

in each colonic MP compartment. Data shown are representative of at least three 490 

independent experiments with at least three mice per group per experiment. Multiple 491 

unpaired t-tests with two-stage Benjamini, Krieger, & Yekutieli FDR test was performed 492 

for (A), Q = 5%, reporting q-values; each time point compared to previous time point. 493 

Two-way ANOVA with post-hoc Sidak’s multiple comparisons test was performed for (B-494 

E), unpaired Student’s t-test was performed for each group in (G). *p < 0.05, **p < 0.01, 495 

***p < 0.001, ****p<0.0001; n.s., not significant. 496 

Figure 3. Microbial ATP regulates MP composition and drives CSF2 production by 497 

ILC3s. (A) Extracellular ATP levels in supernatants extracted from freshly isolated fecal 498 

pellets in SPF, MANS-treated SPF, and GF mice. (B-D) GF mice were orally gavaged 499 

with WT or Δ(atpA-atpG) Strr E. coli MG1655 and analyzed 1 week later. (B) 500 

Quantifications of Ly6C+ and CCR2+ MPs. (C) Representative flow cytometry plots show 501 
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colonic monocyte and MP composition. (D) Quantifications of total ILC3s and CSF2-502 

producing ILC3s in the colon. (E) Percentage of CSF2-producing colonic ILC3s in Nlrp3-503 

/- and P2rx7-/- mice with respective littermate controls. Data shown are representative of 504 

at least three independent experiments with at least three mice per group per experiment. 505 

One-way ANOVA with post-hoc Tukey’s test (A-D) or Student’s t-test (E) was performed; 506 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001; n.s., not significant. 507 

Figure 4. CSF2-producing ILC3s in TLOs induce CCR2+Tim-4-CD4- MPs. (A) 508 

Representative live image of a colonic tertiary lymphoid organ (TLO) in 509 

Rorc+/EGFPCcr2+/RFP mice. (B) Representative immunofluorescence images of colonic 510 

lamina propria (LP) and TLOs of Cx3cr1+/GFPCcr2+/RFP mice stained for Tim-4 and DNA. 511 

(C) Proportion of CCR2-RFP+ of CX3CR1-GFP+ cells based on CellProfiler quantification 512 

of images in each colonic LP (CLP) region and TLOs, as indicated. (D) Colonic MP 513 

composition in adult sex-matched littermate mice as indicated. (E) 104 FACS-sorted small 514 

intestinal ILC3s from either WT or Csf2-/- mice were adoptively transferred into Rag2-/-Il2r-515 

/- mice, and recipients were analyzed at 6 weeks (left). Quantifications (right) of colonic 516 

MP populations post-transfer, as indicated. Data shown are representative of at least 517 

three independent experiments with at least three mice per group per experiment. One-518 

way ANOVA with post-hoc Tukey’s test was performed for (C) and (E); *p < 0.05, **p < 519 

0.01, ***p < 0.001, ****p < 0.0001; n.s., not significant. 520 

Figure 5. scRNA-Seq analysis of colonic LP MPs inside and outside of TLOs reveal 521 

further heterogeneity and preferential localizations. (A) Representative live image of 522 

a colonic tertiary lymphoid organ (TLO) in Rorc+/EGFPCcr2+/RFP mice. (B) Experimental 523 

scheme for scRNA-Seq set-up. (C) UMAP projection of the combined analysis of LPWT, 524 
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TLOWT, LPCsf2-/-, and TLOCsf2-/- subsetted and re-clustered for MPs and monocytes 525 

visualized together. (D) UMAP projection of MPs/Mos of LPWT and TLOWT (left) with 526 

quantification of the relative abundance of each cluster for each sample (right). (E) 527 

Heatmap depicting the top 30 DEGs for each cluster (log2FC threshold = 0.25, min.pct = 528 

0.25, adjusted p <0.05), downsampled to 50 cells for visualization. The number of DEGs 529 

in each cluster is shown (bottom). (F) Feature plots illustrating expression of subset-530 

defining genes. (G) Pathway enrichment analysis (gProfiler, Gene Ontology (GO) 531 

biological processes) using DEGs for each cluster. (H) UMAP dimensionality reduction 532 

using Monocle 3 was performed and visualized with overlaid Seurat annotations from (D) 533 

(left). Trajectory analysis was performed using Monocle 3 as indicated by solid black lines 534 

(middle, right). Changes in expression of subset-defining genes were visualized in 535 

conjunction with trajectory analysis (middle), and pseudotime analysis was performed and 536 

visualized using Monocle 3 (right). 537 

Figure 6. CSF2 deficiency results in a loss of TLO MPs and functional dysregulation 538 

of colonic MPs. (A) Dot plot showing expression of Csf1r, Csf2ra, and Csf2rb in each 539 

cluster from the merged data. Color denotes expression level, and dot size indicates 540 

percent of cells within the cluster expressing the gene, as indicated. (B) UMAP projection 541 

of MPs/Mos of each sample (left) with quantification of the relative abundance of each 542 

cluster for each sample (right). (C) Pathway enrichment analysis (gProfiler, Gene 543 

Ontology (GO) biological processes) using DEGs differentially regulated between WT 544 

versus Csf2-/- in each region (LP, left; TLO, right) for selected clusters, as indicated. 545 

Negative values of -log10 of adjusted p-value indicate upregulation in Csf2-/-, positive 546 

values indicate upregulation in WT. 547 
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Figure 7. Host defense against C. rodentium requires CSF2-dependent Tim-4-CD4- 548 

MPs. Groups of age- and sex-matched mice were infected with C. rodentium for 2 weeks. 549 

(A) Quantification of relative abundance of colonic MP populations. (B) Body weight was 550 

tracked daily during the course of infection. (C) Quantification of C. rodentium in the colon, 551 

feces, and liver at end point. Data shown is representative of at least three independent 552 

experiments with at least three mice per group per experiment. Two-way ANOVA with 553 

post-hoc Tukey’s multiple comparison test was performed for (A), mixed-effects analysis 554 

was performed with post-hoc Sidak’s multiple comparisons test for (B), and unpaired 555 

Student’s t test was performed for (C); *p < 0.05, **p < 0.01, ***p < 0.001; n.s., not 556 

significant. 557 

Supplemental Figure 1. Macrophage classification and developmental 558 

phenotyping. (A) Gating strategy for intestinal MPs. (B) Representative flow cytometry 559 

plots of colonic and small intestinal MPs using the Tim-4/CD4 classification. (C) 560 

Representative flow cytometry plots of colonic MPs in sex-matched littermate WT, Csf2-/-561 

, and Ccr2-/- mice showing the monocyte waterfall (top) and Tim-4/CCR2 (bottom) gating 562 

strategies. (D) Representative flow cytometry plots showing CD45.1 chimerism of colonic 563 

MP populations in 6-month parabiotic mice. 564 

Supplemental Figure 2. ATPase-deficient E. coli generate lower levels of ATP. (A-565 

E) E. coli MG1655 wild-type, ATPase-deficient (Δ(atpA-atpG)), and nitrate reductase-566 

deficient (ΔnarG ΔnarZ Δ(napD-napA)) mutant strains were cultured in vitro overnight, 567 

then transferred into fresh media, and subsequently evaluated at the indicated timepoints. 568 

(A) Growth curve of E. coli MG1655 strains measured by OD600 as indicated. (B) 569 

Supernatant ATP levels (ATPex) were quantified using the Promega ENLITEN ATP Assay 570 
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as per the manufacturer’s instructions. (C) Intracellular ATP (ATPint) can be quantified by 571 

measuring fluorescence intensity of the ATeam 3.10 plasmid. (D) Representative 572 

histograms showing fluorescence intensity of the ATeam 3.10 plasmid in each E. coli 573 

strain at the specified timepoints measured by flow cytometry. (E) Quantification of the 574 

median fluorescence intensity of (D). (F-G) E. coli MG1655 wild-type and Δ(atpA-atpG) 575 

mutant were isolated and assessed from 1-week-colonized germ-free mice. (F) CFUs of 576 

each E. coli strain were quantified in the feces of colonized mice. (G) Each E. coli strain 577 

was isolated from fecal samples of respective colonized mice and assessed for levels of 578 

ATPint by flow cytometry; showing median fluorescence intensity (MFI). Data shown are 579 

representative of at least three independent experiments with at least three mice per 580 

group per experiment. Unpaired Student’s t test was performed for (F) and (G); *p < 0.05; 581 

n.s., not significant. 582 

Supplemental Figure 3. Sorting strategy and post-transfer verification of ILC3s for 583 

adoptive transfer experiment. (A) Representative sorting strategy of SI Rorc+/EGFP 584 

ILC3s (WT or Csf2-/-) for adoptive transfer. (B) Relative abundance of colonic ILC3s (Lin- 585 

RORgt-GFP+) out of CD45+ cells to validate the reconstitution of Rorc+/EGFP ILC3s in Rag2-586 

/-Il2r-/- recipients at 6 weeks post-transfer. One-way ANOVA with Tukey’s test was 587 

performed; *p < 0.05. 588 

Supplemental Figure 4. Gene expression profiling of macrophage clusters by 589 

scRNA-Seq. (A) UMAP dimensionality reduction and combined analysis of all datasets, 590 

representing 15,369 cells that have passed QC filtering; colored based on sample identity 591 

(left) or clusters (right). Cell populations identified and annotated based on DEG 592 

expression analysis of each cluster. (B) Heatmap of the top 30 genes per cluster, 593 
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downsampled to 50 cells per cluster for visualization, based on DEG analysis across 594 

clusters (logFC threshold = 0.25, min.pct = 0.25, adj p val < 0.05). (C) Feature plots 595 

depicting gene expression patterns of MP/DC markers used to subset MP/Mo clusters 596 

and exclude DC clusters. (D) Feature plots confirming expression of MP markers in 597 

subsetted and re-clustered MP/Mos. (E) KEGG pathway enrichment analysis (gProfiler) 598 

using DEGs for each cluster. 599 

Supplemental Figure 5. Differential analysis of WT versus Csf2-/- MP 600 

subpopulations. Quantification of apoptotic cells within each colonic MP population in 601 

sex-matched littermate WT versus Csf2-/- mice by ApoTracker staining, as indicated. 602 

Unpaired Student’s t test was performed; *p < 0.05; n.s., not significant.  603 

Supplemental Figure 6. DC phenotyping during C. rodentium infection. Groups of 604 

age- and sex-matched mice were infected with C. rodentium for 2 weeks. (A) 605 

Quantification of CD11c+MHCII+CD64- DCs. (B) Relative abundance of each DC subset. 606 

Unpaired Student’s t test was performed; *p < 0.05. 607 

 608 

STAR Methods 609 

Key resources table 610 

For surface staining, the following anti-mouse Abs were used: TCRb (H57-597; 611 

eBioscience), CD4 (GK1.5; BioLegend), CD45 (30-F11; BioLegend), CD218a (IL-18Ra) 612 

(P3TUNYA; eBioscience), ST2 (RMST2-2; eBioscience), CD11b (M1/70; BioLegend), 613 

Ly6c (HK1.4; eBioscience), CD64 (X54-5/7.1; BioLegend), and MHCII (I-A/I-E) 614 

(M5/114.15.2; eBioscience). Intracellular markers include anti-mouse IFN-g (XMG1.2; 615 
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eBioscience), TNFa (MP6-XT22; eBioscience), IL-10 (JESS-16E3; BioLegend), IL-17A 616 

(TC11-18H10.1; BioLegend), and FOXP3 (MF-14; BioLegend). CD4+ T cells were gated 617 

as Live CD45+ TCRβ+ CD4+. Immature macrophages were gated as Live CD45+ CD64+ 618 

CD11b+ Ly6chi MHCIIlo. 619 

 620 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Antibodies 
CD45 (clone 30-F11) BioLegend Cat #103116 
CD45.1 (clone A20) BioLegend Cat #110724 
CD45.2 (clone 104) BioLegend Cat #109824 
CD4 (clone GK1.5) BioLegend Cat #100406 
CD11b (clone M1/70) BioLegend Cat #101216 
Ly6c (clone HK1.4) BioLegend Cat #128012 
CD64 (clone X54-5/7.1) BioLegend Cat #139311 
MHCII (I-A/I-E) (clone 
M5/114.15.2) 

eBioscience Cat #107620 

CCR2 (clone SA203G11) BioLegend Cat #150610 
Tim-4 (clone RMT4-54) BioLegend Cat #130008 
RORgt (clone B2D) eBioscience Cat #53-981-82 
TCRb (clone H57-597) eBioscience Cat #45-5961-82 
TCRg/d (clone eBioGL3) eBioscience Cat #46-5711-82 
B220   
CD3ε (clone 145-2C11) BioLegend Cat #100328 
CSF2 (clone MP1-22E9) BioLegend Cat #505406 
CD115 (CSF1R) (clone 
AFS98) 

BioLegend Cat #135510 

Ly6g (clone 1A8) BioLegend Cat #127612 
Fc block (CD16/CD32) eBioscience Cat #14-9161-73 
Fixable Viability Dye 
eFluor™ 506 

eBioscience Cat #65-0866-18 

ApoTracker™ Green BioLegend Cat #427402 
Experimental models: Organisms/Strains/Plasmids 
B6.129S-Csf2tm1Mlg/J 
(Csf2-/-) 

The Jackson 
Laboratory 

Strain #026812 

B6.129S4-Ccr2tm1Ifc/J 
(Ccr2-/-) 

The Jackson 
Laboratory 

Strain #004999 

B6.129P2(Cg)-
Cx3cr1tm1Litt/J (Cx3cr1gfp) 

The Jackson 
Laboratory 

Strain #005582 
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B6.129(Cg)-Ccr2tm2.1Ifc/J 
(Ccr2rfp) 

The Jackson 
Laboratory 

Strain #017586 

B6.129P2(C)-
Cx3cr1tm2.1(cre/ERT2)Jung/J 
(Cx3cr1CreERT2) 

The Jackson 
Laboratory 

Strain #020940 

B6.Cg-
Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze/J (Rosa26Td) 

The Jackson 
Laboratory 

Strain #007914 

B6.129P2(Cg)-Rorctm2Litt/J 
(Rorcgfp) 

The Jackson 
Laboratory 

Strain #007572 

B6.Cg-Rag2tm1.1Cgn/J The Jackson 
Laboratory 

Strain #008449 

B6.129S6-Nlrp3tm1Bhk/J 
(Nlrp3-/-) 

The Jackson 
Laboratory 

Strain #021302 

B6.129P2-P2rx7tm1Gab/J 
(P2xr7-/-) 

The Jackson 
Laboratory 

Strain #005576 

Pet store mice Hill Oak Ranch, Ltd.  
Citrobacter rodentium 
ICC180 

Dana Philpott 
(University of Toronto) 

 

E. coli MG1655 Strr Tyrell Conway 
(Oklahoma State 
University) 

 

E. coli MG1655 Strr 
Δ(atpA-atpG) 

Tyrell Conway 
(Oklahoma State 
University) 

 

E. coli MG1655 Strr ΔnarG 
ΔnarZ Δ(napD-napA) 

Tyrell Conway 
(Oklahoma State 
University) 

 

pRSET-AT3.10 Hiromi Imamura (Kyoto 
University) 

 

Software and algorithms 
FlowJo v.10 FlowJo, LLC https://www.flowjo.com/  
Zen Pro Zeiss  
CellProfiler Broad Institute https://cellprofiler.org/  
GraphPad Prism v.8.0 GraphPad  
CellRanger 10x Genomics  
Seurat v.4.0 (Hao et al., 2021) https://satijalab.org/seurat/  
R v.4.1.2 The R Foundation https://www.r-project.org  
SCTransform (Hafemeister and 

Satija, 2019) 
 

gProfiler  https://biit.cs.ut.ee/gprofiler/gost 
Monocle 3  https://cole-trapnell-

lab.github.io/monocle3/  
 621 

 622 
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Resource availability 623 

Single-cell RNA-seq data additional information required to reanalyze the data reported 624 

in this paper is available from the lead contact upon request. 625 

Experimental model and subject details 626 

Mice 627 

All mice were purchased from Jackson Laboratory and subsequently bred in-house under 628 

specific pathogen-free conditions at the University of Toronto, Division of Comparative 629 

Medicine. Strains and stock numbers are listed in the Key resources table. Unless 630 

otherwise stated, all experiments were conducted using 8-10-week-old age- and sex-631 

matched littermates. Germ-free animals were maintained in the gnotobiotic facility at the 632 

University of Toronto, Division of Comparative Medicine.  To obtain re-wilded mice, pet 633 

store mice were purchased from High Oak Ranch Ltd. (Baden, ON) and bred in our mouse 634 

facility in a containment room (bioBUBBLE Inc, Fort Collins, CO). C57Bl/6 (B6) pups were 635 

co-housed with pet store pups from 3 to 7 weeks of age, separated and subsequently 636 

bred. B6 pregnant dams were gavaged with cecal content from pet store female mice 2 637 

to 3 days prior to delivery. The pups were used to establish a re-wilded colony for 638 

experiments. All experiments were approved by the Faculty of Medicine and Pharmacy 639 

Animal Care Committee at the University of Toronto (animal use protocols 20011887 and 640 

20012454 to TM and 20012400 to AM).  641 

Microbes 642 

All E. coli MG1655 strains were provided by Dr. Tyrell Conway (Oklahoma State 643 

University). C. rodentium ICC180 was a gift from Dr. Dana Philpott (University of Toronto). 644 

The plasmid encoding the ATP biosensors (pRSET-AT3.10) were a kind gift from Dr. 645 

Hiromi Imamura (Kyoto University).  646 
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Method details 647 

Purification and colonization of Tritrichomonas musculis  648 

Cecal contents of T. mu+ mice were collected, resuspended in PBS, filtered through a 70 649 

μm cell strainer, and spun for 10 min at 600 x g. The resulting pellet was put through a 650 

40/80% Percoll gradient centrifugation. The T. mu-enriched interphase was collected. 651 

Protozoa were then resuspended in PBS and double sorted into PBS based on size, 652 

granularity, and violet autofluorescence on a FACSAria II. Two million T. mu were orally 653 

gavaged into mice immediately after the sort. 654 

C. rodentium infection and pathological assessment  655 

Groups of age- and sex-matched littermates were infected with C. rodentium ICC180 (~2 656 

x 108 CFUs) by oral gavage as previously described (Bouladoux et al., 2017). Mice were 657 

weighed daily to monitor disease progression and euthanized at 2 w p.i. Colons were 658 

harvested for lamina propria leukocyte isolation and downstream analysis. Colony 659 

forming units (CFUs) of C. rodentium in feces, colon, and liver were measured on 660 

MacConkey agar plates containing 100 μg/mL kanamycin. 661 

Generation of E. coli MG1655 ATeam strains 662 

ATeam plasmid was isolated from E. coli ATeam3.10 using the Monarch® Plasmid DNA 663 

Miniprep Kit (New England Biolabs) as per the manufacturer’s protocol. E. coli MG1655 664 

Strr, E. coli MG1655 Strr Δ(atpA-atpG), and E. coli MG1655 Strr ΔnarG ΔnarZ Δ(napD-665 

napA) strains were treated with calcium chloride to make them chemically competent for 666 

plasmid DNA uptake. Transformation was performed on these chemically competent cells 667 

to transfer the ATeam plasmid, following New England Biolabs’ High Efficiency 668 

Transformation Protocol. 669 
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Colonization of germ-free mice with E. coli strains 670 

Groups of age- and sex-matched littermate germ-free mice were orally gavaged with ~103 671 

CFU of E. coli MG1655 WT or E. coli MG1655 ΔnarG ΔnarZ Δ(napD-napA), or ~104 CFU 672 

of E. coli MG1655 Strr Δ(atpA-atpG). Differences in starting CFU accounted for the slower 673 

growth rate of E. coli Δ(atpA-atpG) to ensure equal colonization efficiency at time of 674 

analysis. Mice were analyzed 1 w later. Fecal pellets were collected both prior to gavage 675 

and at time of harvest to confirm colonization. 676 

Antibiotics treatment 677 

Mice were treated with metronidazole (0.5 g/L), ampicillin (1 g/L), neomycin (1 g/L), and 678 

streptomycin (1 g/L) ad libitum for 2 weeks via drinking water. Water containing antibiotics 679 

was exchanged every 3 days. 680 

Isolation of intestinal lamina propria leukocytes 681 

Colonic or small intestinal (SI) lamina propria (LP) cells were isolated as previously 682 

described (Chiaranunt et al., 2020). Briefly, intestines were washed in HBSS plus 5 mM 683 

EDTA and 10 mM HEPES to strip the epithelium. Tissues were then minced and shaken 684 

at 37°C for 20 min in digestion buffer (HBSS with calcium and magnesium, supplemented 685 

with 10 mM HEPES, 4% FBS, penicillin-streptomycin (Sigma Aldrich), 0.5 mg/mL DNase 686 

I (Sigma Aldrich), and 0.5 mg/mL Collagenase (Sigma Aldrich)). Supernatants were 687 

collected and enriched for leukocytes using a 40/80% Percoll gradient, after which cells 688 

are ready for downstream use.  689 

Flow cytometry 690 

For surface staining, after isolation of intestinal LP leukocytes, cells were resuspended in 691 

FACS buffer (PBS w/o Ca2+ Mg2+ supplemented with 2% heat inactivated FBS and 5 mM 692 
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EDTA) and then incubated on ice for 20 min with Fc block (CD16/CD32; eBioscience), 693 

surface marker antibodies, and Fixable Viability Dye eFluor™ 506 (eBioscience). For flow 694 

cytometric detection of apoptotic cells, ApoTracker™ Green was added in conjunction to 695 

surface stains, and samples were instead incubated at room temperature for 20 min as 696 

per manufacturer’s protocol. 697 

For intracellular staining, cells were first stimulated for 4 h at 37°C in R-10+ media 698 

supplemented with protein transport inhibitor cocktail containing Brefeldin A and 699 

Monensin (eBioscience). Cells were then washed and resuspended in FACS buffer and 700 

incubated on ice for 20 min with Fc block (CD16/CD32; eBioscience), surface marker 701 

antibodies, and Fixable Viability Dye eFluor™ 506 (eBioscience). Cells were fixed and 702 

permeabilized using the BD Cytofix/Cytoperm Kit, followed by cytokine stains, then re-703 

fixed and permeabilized using the eBioscience Foxp3/Transcription Factor Staining 704 

Buffer Set, followed by transcription factor stains.  705 

Samples were analyzed on an LSR Fortessa X-20 (BD) with subsequent cytometric data 706 

analysis using FlowJo. All antibodies used in this study are listed in the Key resources 707 

table. 708 

In vitro E. coli culture and ATP measurement 709 

Each E. coli strain was grown overnight at 37°C with shaking in LB broth containing 50 710 

μg/mL streptomycin. The next day, OD600 was measured for each culture, and aliquots 711 

were taken for extracellular ATP (ATPex) and intracellular ATP (ATPint) quantification. 712 

Each sample was then aliquoted into fresh media (LB with 50 μg/mL streptomycin) and 713 

placed in the shaking incubator. An aliquot was removed every 2 h for OD600 714 

measurement and ATP quantification. For ATP measurements, aliquots were spun down 715 
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at 3,000 x g. Supernatants were analyzed for ATPex using the ENLITEN ATP Assay 716 

System Bioluminescence Detection Kit (Promega) according to the manufacturer’s 717 

instructions. Pellets containing E. coli were resuspended and analyzed on the BD 718 

LSRFortessa for ATPint. 719 

Luminal ATP measurement 720 

Fecal samples were collected, homogenized in PBS plus 0.01% NaN3 using the Omni 721 

Bead Ruptor 24, and centrifuged twice (800 x g followed by 10000 x g) to remove debris 722 

and microbes. Supernatants were filtered through a 0.2 μm filter and Amicon Ultra-0.5 723 

centrifugal filter unit (Millipore Sigma), then analyzed for ATP levels using the ENLITEN 724 

ATP Assay System Bioluminescence Detection Kit (Promega) according to the 725 

manufacturer’s instructions. 726 

Parabiosis 727 

The lateral aspects of CD45.1 mice (Jackson, #002014; left, donor) and CD45.2 Ccr2-/- 728 

mice (Jackson, #004999; right, recipient) were shaved, and matching skin incisions were 729 

made from behind the ear to the tail of each mouse, as previously described (Dick et al., 730 

2022). The subcutaneous fascia was dissected to create ~0.5 cm of free skin. The 731 

olecranon and knee joints were attached by a mono-nylon 5.0 suture (Ethicon) and the 732 

dorsal and ventral skins were attached by continuous suture. Animals recovered with an 733 

immediate 0.1mg/kg injection of buprenorphine given subcutaneously. Subcutaneous 734 

injections of saline and buprenorphine were given daily for 1 week after the surgery and 735 

3% neomycin antibiotics for 2 weeks. Four-week-old mice were joined for 6 months to 1 736 

year. The CD45.2 recipient mice were analyzed for level of chimerism of CD45.1+ cells.  737 

Fate-mapping 738 
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Tamoxifen was dissolved in corn oil at a concentration of 20 mg/mL by shaking for at least 739 

an hour at 55°C and then brought to room temperature. Dissolved tamoxifen was injected 740 

intraperitoneally to Cx3cr1CreERT2 x Rosa26Td mice at 1 mg/kg body weight at day -2 and 741 

day 0 prior to the start of the experiment. For Ccr2CreERT2 x Rosa26Td mice, mice were fed 742 

tamoxifen-containing chow (Envigo) for 10 days and then switched back to normal chow 743 

during the chase period. 744 

Immunofluorescence 745 

Colonic tissues were flushed with 4% formaldehyde, then fixed with 2% formaldehyde 746 

10% sucrose for 1.5 h on ice, followed by an overnight 30% sucrose gradient. Tissues 747 

were subsequently embedded in OCT medium (ThermoFisher), flash frozen in 2-748 

methylbutane, and sectioned in 7 μm slices. Sections were blocked and permeabilized 749 

for 1 h with blocking/permeabilization buffer (10% BSA, 0.01% Triton X in PBS), washed 750 

with PBS, and subsequently stained with antibodies diluted in blocking/permeabilization 751 

buffer for 1 h at RT. Sections were mounted with Fluoroshield with DAPI medium (Sigma 752 

Aldrich). Slides were imaged at 20X using a Zeiss Axio Imager Z1 and quantified with 753 

CellProfiler software (Broad Institute)(McQuin et al., 2018). 754 

Adoptive transfer 755 

Leukocytes were isolated from the small intestines of CD45.1/2 Rorc+/EGFP or CD45.1/2 756 

Rorc+/EGFP x Csf2-/- littermate mice as described above and FACS-sorted for ILC3s using 757 

the BD FACSAria II based on Lin- and GFP+ expression. Cells were sorted into R-10+ 758 

media, checked for purity, then washed with sterile PBS. 104 purified ILC3s were injected 759 

intravenously into age- and sex-matched Rag2-/-Il2rg-/- recipient co-housed littermate 760 

mice via the retroorbital route. Recipient mice were analyzed 6 weeks later. 761 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.23.485563doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.23.485563


 36 

Single-cell RNA sequencing 762 

Sample preparation 763 

Colons (n=5 per group) from age- and sex-matched Cx3cr1GFP/+Ccr2RFP/+ WT versus 764 

Csf2-/- littermate mice were isolated and stripped of epithelium as detailed above, then 765 

placed under a Zeiss AxioZoom.V16 fluorescent macroscope for live imaging. Solitary 766 

isolated lymphoid tissues (SILTs) were identified based on GFP and RFP expression and 767 

isolated using a 1.25 mm biopsy puncher. SILTs and remaining punched out colons were 768 

pooled and placed separately into R-10+ media. Samples were digested and enriched for 769 

leukocytes as detailed above. Samples were then enriched for CD11b+ cells using the 770 

EasySep™ Mouse CD11b Positive Selection Kit II (StemCell Technologies) as per the 771 

manufacturer’s protocol. Purified single cell suspensions (>90% purity) were 772 

resuspended in R-10+ media for 10x Genomics single-cell RNA sequencing. 773 

Library preparation, sequencing, pre-processing, and quality control 774 

Single cell suspensions were prepared and loaded onto the v3 10x Chromium for the 775 

generation of sequencing libraries and processing as described by 10x Genomics. 776 

CellRanger (10x Genomics) was used to pre-process sequenced cells, align reads, and 777 

generate expression matrices. Seurat (v.4.0) was used for all pre-processing, filtering, 778 

and downstream analyses (Hao et al., 2021). Low-quality cells expressing fewer than 200 779 

genes were removed. Doublets and dead cells were excluded based on high number of 780 

genes (>6000) and high percentage (>9%) of transcripts mapping to mitochondrial genes, 781 

respectively. Cells with high percentage (>20%) of transcripts mapping to dissociation-782 

associated genes (DAGs), as previously described, were also removed (O'Flanagan et 783 

al., 2019). 784 
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Normalization, dimensionality reduction, clustering, and cell annotation 785 

To remove technical variation, data was normalized using SCTransform, which utilizes 786 

negative binomial regression to normalize the data, find variable features, and scale the 787 

data (Hafemeister and Satija, 2019). The variance-stabilizing transformation (vst) method 788 

in SCTransform was used to select 3000 highly variable features. Mitochondrial gene 789 

percentage and number of counts (nCount_RNA) were regressed out. Dimensionality 790 

reduction was performed using principal component analysis (PCA), and an elbow plot 791 

was used to determine the number of statistically significant PCs for subsequent 792 

clustering. FindNeighbors and FindClusters functions were used to perform graph-based 793 

clustering. Non-linear dimensionality reduction and visualization was performed using the 794 

Uniform Manifold Approximation and Projection (UMAP) method. Clusters were identified 795 

and annotated based on differential gene expression testing using the Wilcoxon Rank 796 

Sum Test, with the following parameters in the FindAllMarkers function: min.pct=0.25, 797 

logFC threshold=0.25, adjusted p-value<0.05. For heatmaps, each cluster was 798 

downsampled to 50 cells for visualization, showing the top 30 differentially expressed 799 

genes of each cluster.  800 

Macrophage and monocyte clusters were identified based on expression of MP markers 801 

(C1qa, Csf1r, Cx3cr1, and Adgre1) and absence of DC markers (Flt3, Dpp4, Zbtb46). 802 

These clusters were further subsetted (using the “subset” function), and normalization, 803 

dimensionality reduction, and clustering were re-performed as described above to obtain 804 

specific MP and monocyte clusters. Clusters were identified, annotated, and visualized 805 

as described above.  806 

Differential gene expression 807 
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To compare gene expression of MPs between wild-type (WT) versus Csf2-/- (KO) LP and 808 

TLO, the “subset” function was used to separate each cluster from each dataset. The 809 

FindMarkers function (min.pct = 0.25, logFC threshold = 0.25, adjusted p value < 0.05) 810 

was used to compute differentially upregulated and downregulated genes for each cluster 811 

in KO relative to WT of each region (e.g. KO LP relative to WT LP, KO TLO relative to 812 

WT TLO). Resulting genes were used for subsequent pathway enrichment analysis, as 813 

indicated. 814 

Pathway enrichment analysis 815 

gProfiler functional profiling (https://biit.cs.ut.ee/gprofiler/gost) was used to measure over-816 

representation of target gene list against the annotated gene database of Gene Ontology 817 

(GO; http://www.geneontology.org). Enriched biological processes of GO (BP, 2019) and 818 

enriched KEGG pathways were identified and ordered based on enrichment scores (-819 

log10 of the adjusted p value). 820 

Single-cell trajectory analysis 821 

The R package Monocle 3 was used to assess cell trajectories (Cao et al., 2019; Qiu et 822 

al., 2017; Trapnell et al., 2014). Data previously analyzed with Seurat (v.4.0), as 823 

described above, were imported into Monocle 3 for re-clustering. Briefly, highly variable 824 

genes imported from the Seurat analysis were used for PCA dimensionality reduction, 825 

followed by UMAP non-linear dimensionality reduction and subsequent clustering using 826 

Leidan community detection (https://arxiv.org/abs/1802.03426). The number of Monocle 827 

clusters were similar to Seurat clusters. This method also generates ‘partitions’ 828 

representing groups corresponding to separate trajectories. Cell trajectory was assessed 829 

using the “learn_graph” function, which uses the DDRTree method to learn tree-like 830 
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trajectories and further reduce dimensionality. Data were visualized with UMAP 831 

embeddings and trajectories derived within Monocle and overlaid with Seurat clusters. 832 

Quantification and statistical analysis 833 

Statistical analysis of non-sequencing data was performed with the GraphPad Prism 834 

software (GraphPad), with statistical tests detailed in the figure legends. All data are 835 

shown as mean ± SEM.  836 
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