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Abstract 
Polygenic risk scores are becoming increasingly predictive of complex traits, but subpar 

performance in non-European populations raises concerns about their potential clinical 

applications. We develop a powerful and scalable method to calculate PRS using 

GWAS summary statistics from multi-ancestry training samples by integrating multiple 

techniques, including clumping and thresholding, empirical Bayes and super learning. 

We evaluate the performance of the proposed method and a variety of alternatives 

using large-scale simulated GWAS on ~19 million common variants and large 23andMe 

Inc. datasets, including up to 800K individuals from four non-European populations, 

across seven complex traits. Results show that the proposed method can substantially 

improve the performance of PRS in non-European populations relative to simple 

alternatives and has comparable or superior performance relative to a recent method 

that requires a higher order of computational time. Further, our simulation studies 

provide novel insights to sample size requirements and the effect of SNP density on 

multi-ancestry risk prediction. 
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Introduction 
Genome-wide association studies (GWAS) have identified tens of thousands of single 

nucleotide polymorphisms (SNPs) associated with complex traits and diseases1,2. 

Polygenetic risk scores (PRSs), which summarize the combined effect of individual 

SNPs, have the potential to improve risk stratification for various diseases and 

conditions3–13. However, GWAS to date have mostly been conducted in populations 

predominately comprised of European (EUR) origin individuals14. Consequently, the 

PRS generated from these studies tends to underperform in non-EUR populations, 

particularly in African (AFR) ancestry populations9,15–18. The lack of representation of 

non-EUR populations in PRS research has thus raised concerns that the use of current 

PRS for clinical applications may exacerbate health inequities19–21. 

 

In addition to the critical importance of addressing inequalities in representation of non-

European population in genetic research, there is also an important need to develop 

statistical methods that leverage genetic data across populations to develop better 

performing PRS. Most of the PRS methods to date have been developed to analyze 

data from a single ancestry group22–31, and subsequently, their performance was 

primarily evaluated for risk prediction in EUR populations4–6,8–11. While the same 

methods can also be used to build PRS in non-European populations, the resulting 

PRS, irrespective of the methods, tend to have limited performance due to limited 

sample sizes of the training datasets compared to sample sizes in European 

populations15,20. Some studies have conducted meta-analyses of GWAS across diverse 

populations to develop an underlying multi-ancestry PRS32–34. While such an approach 

may lead to a single PRS that performs more “equally” across diverse groups, it does 

not account for heterogeneity across populations and thus is not optimal for deriving the 

best PRS possible for each of the underlying populations. 

 

Recent methods have focused on developing more optimal PRS in non-European 

populations by combining available GWAS from the target population of interest with 

“borrowed” information from larger GWAS in the EUR populations. One such study 

developed PRS in separate populations and then combined the PRS by optimally 
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weighting them to maximize performance in the target population35. More recent studies 

have proposed Bayesian methods that leverage multivariate priors for effect-size 

distribution to borrow information across populations; however, empirical studies 

showed the improvements in PRS performance from this approach was generally 

modest compared to simpler weighting methods35,36. Irrespective of these methods, 

methods for building PRS leveraging multi-ancestry datasets remain limited. Both 

theoretical and empirical studies have indicated that the optimal method for building 

PRS depends on multiple factors22,36,37, including sample size, heritability and effect-size 

distribution and thus exploration of alternative methods with complementary advantages 

are needed to build optimal PRS is any given setting. Moreover, and perhaps more 

importantly, evaluation of the scope of multi-ancestry methods for building improved 

PRS remains quite limited to date due to the lack of suitably large GWAS for various 

non-EUR populations, especially of African origin, where risk prediction remains the 

most challenging. 

 

In this paper, we propose a computationally simple and powerful method for generating 

PRSs using GWAS across diverse ancestry population. The method, which we refer to 

as CT-SLEB, is a model-free approach and combines the strength of multiple 

techniques, including a two-dimensional extension of the popular clumping and 

thresholding (CT) method22,23, a super-learning (SL) model for combining multiple PRS 

and an empirical-Bayes (EB) approach to effect-size estimation. We compare the 

performance of the proposed method with a variety of alternatives based on large-scale 

simulated GWAS across five ancestry groups. In addition, we develop and validate 

population-specific PRS for seven complex traits using GWAS data from 23andMe, Inc. 

across Europeans (average 𝑁 ≈	2.47 million), African Americans (average 𝑁 ≈	117K), 

Latino (average 𝑁 ≈413K), East Asians (average 𝑁 ≈	96K) and South Asians (average 

𝑁 ≈	26K). Both simulation studies and empirical data analyses indicate that CT-SLEB is 

a highly scalable and powerful method for generating PRS for non-EUR populations. 

Further, our simulation studies and evaluation of various methods in the very large 

23andMe datasets provide insights into the future yield of multi-ancestry PRSs as 

GWAS in diverse populations continues to grow. 
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Results 
Method overview  
CT-SLEB is a method designed to generate multi-ancestry PRSs that incorporate 

existing large GWAS from EUR populations and smaller GWAS from non-EUR 

populations. The method has three key steps (Figure 1, Supplementary Figure 1): 1. 

Clumping and Thresholding (CT) for selecting SNPs to be included in a PRS for the 

target population; 2. Empirical-Bayes (EB) method for estimating the coefficients of the 

SNPs; 3. Super-learning (SL) model to combine a series of PRSs generated under 

different SNP selection thresholds. The method requires three independent datasets: 

(1) GWAS summary statistics from training datasets across EUR and non-EUR 

populations; (2) a tuning dataset for the target population to find optimal model 

parameters; and (3) a validation dataset for the target population to report the final 

prediction performance. While this report assumes that individual-level data are 

available for model tuning and validation, summary-statistics-based methods38,39 could 

also be used in these steps.  
 

Two-dimensional Clumping and Thresholding 

In step one, CT-SLEB uses two-dimensional clumping and thresholding on GWAS 

summary-statistics data to incorporate SNPs with either shared effects across the EUR 

and the target populations or population-specific effects in the target population (Figure 
1a). Each SNP is assigned to the following two groups based on the p-value from the 

EUR and the target population: 1. SNPs with a p-value smaller in the EUR population; 

2. SNPs with a p-value smaller in the target population or those which exist only in the 

target population. SNPs in the first group are ranked based on EUR p-value (smallest to 

largest) and then clumped using linkage disequilibrium (LD) estimates from the EUR 

reference sample. SNPs in the second group are ranked based on the target population 

p-value and clumped using LD estimates from the target population reference samples. 

Then the clumped SNPs from the two groups are combined as a candidate set for the 

next step. In the thresholding step, p-value thresholds are varied over a two-

dimensional set of grid points. Each dimension corresponds to the threshold used for 
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the p-value obtained from one of the populations. At any given combination of 

thresholds, a SNP may be included in the target population PRS if the corresponding p-

value from either the EUR or the target population achieves the corresponding 

threshold. 

  

Empirical-Bayes Estimation of Effect Sizes 

Since the effect sizes of SNPs are expected to be correlated across populations40,41, we 

propose an EB method to efficiently estimate effect sizes for SNPs to be included in the 

PRSs (Figure 1b). Based on the selected SNP set from the CT step, we first estimate 

an underlying “prior” covariance matrix of effect sizes between the EUR population and 

the target population. Then, we estimate the effect size for each SNP in the target 

population based on the corresponding posterior mean, which weighs the effect-size 

estimate available from each population based on the bias-variance trade-off 

(Methods).  

 

Super Learning 

Previous research has shown that combining PRSs under different p-value thresholds 

can efficiently increase the prediction performance25. Thus, as a final step, we propose 

a super-learning model to predict the outcome using PRSs generated under different 

tuning parameters as training variables (Figure 1c). The super-learning model is a 

linear combination of different predictors based on multiple supervised learning 

algorithms42–45. The set of prediction algorithms can be self-designed or chosen from 

classical prediction algorithms. We choose Lasso46, ridge regression47, and neural 

networks48 as three different candidate models in the implementation. We train the 

super-learning model on the tuning dataset and evaluate the performance of the final 

PRS using the independent validation dataset. 

 

Design of Simulation Studies.  
We use simulation studies to compare eight methods across three broad categories: 1. 

single ancestry methods that only use the training and tuning data from the target 

population; 2. EUR PRS, which are generated using single ancestry methods to EUR 
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only GWAS; 3. multi-ancestry methods that use the training data from both the EUR and 

the target population. Single ancestry methods include two representative PRS 

methods: CT22,23 and LDpred224,31. EUR PRSs are generated based on CT and 

LDpred2. The multi-ancestry methods include 1. Weighted-PRS method that applies CT 

separately on the EUR and the target population and derives an optimal linear 

combination of the two. 2. PRS-CSx49, which uses a Bayesian framework to calculate 

the posterior mean of effect sizes for the EUR and the target population, and then 

further derives an optimal linear combination of the two using a tuning dataset. 3. CT-

SLEB, the proposed method. For CT-SLEB, we generate candidate SNP sets for PRS 

for each target population by applying the CT step across the EUR and the target 

population. However, for estimating effect sizes for any target population using the EB 

method, we combine GWAS summary-statistics data from either two ancestries (the 

EUR and the target population) or all five ancestries (Supplementary Figure 1). For 

computational efficiency, most analyses are restricted to ~2.8 million SNPs included in 

Hapmap3 (HM3)50, or the Multi-Ethnic Genotyping Arrays (MEGA)51 chips array, or both. 

However, the PRS-CSx method is currently implemented with only ~1.3 million HM3 

SNPs in the provided software and thus the application of the method in our analysis is 

also restricted to only the HM3 SNPs. 

 

Simulation Study Results  

Results from simulation studies (Figure 2 and Supplementary Figure 2-6) show that 

generally multi-ancestry methods lead to the most predictive PRSs in different settings. 

When the training data sample size for the target population is small (Figure 2a, 
Supplementary Figure 2a, 3-6 a-b), PRSs derived from the single ancestry methods 

perform poorly compared to EUR-based PRS. On the other hand, when the training 

sample size for the target population is large (Figure 2b, Supplementary Figure 2b, 3-
6 c-d), PRSs generated by the single ancestry methods can outperform EUR PRS. PRS 

generated from the multi-ancestry methods can lead to substantial improvement in 

either setting.  
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Among multi-ancestry methods, we observe that both CT-SLEB and PRS-CSx can lead 

to improvement over the weighted PRS method. Between the two methods, none is 

uniformly superior to the other across all scenarios considered. When the sample size 

for the target population is relatively small (N = 15K), the PRS-CSx often outperforms 

CT-SLEB when the degree of polygenicity is the highest (𝑝!"#$"% = 0.01) . On the other 

hand, in the same sample size setting, CT-SLEB often outperforms PRS-CSx, by a 

notable margin when the degree of polygenicity is the lowest (𝑝!"#$"% = 5 × 10&'). When 

the sample size for the target population is larger (N=45K-100K), the difference between 

the two methods decreases, but in several scenarios, significant advantages of the CT-

SLEB for lower polygenic setting remains but not vice versa (see Figures 2b, 
Supplementary Figure 2a-b, 5 b-d and 6 b-d). CT-SLEB, when implemented with EB 

estimation across all five ancestries, outperforms all alternative approaches across all 

scenarios considered. Under different simulation settings, the number of SNPs used by 

CT-SLEB ranged from 549K to 933K, while PRS-CSx retained all HM3 SNPs 

(Supplementary Table 1). Further, in a comparison of runtime using data on 

chromosome 22 to construct PRS for AFR (Methods, Supplementary Table 2), we 

observed runtime of CT-SLEB is on average almost 40 times faster than that of PRS-

CSx (5.74 vs. 213.13 mins) using a single core with Intel E5-26840v4 CPU.  

 

Unequal predictive performance of PRS across different populations has been 

considered as a barrier to ethical implementation of the technology in healthcare. Thus, 

we examined how large the sample size one may need for training GWAS in various 

minority populations to bridge the gap in the performance of PRS in comparison to that 

of the EUR population. Results indicate that when effect sizes for shared causal SNPs 

are similar across populations (genetic correlation=0.8), the gap can be mostly 

eliminated for all populations except AFR when the sample size reaches between a 

quarter to half of that of the EUR population (Figure 3, Supplementary Figure 7). For 

the AFR population, however, the sample size requirement can dramatically vary 

depending on the underlying genetic architecture of the traits. If the common SNP 

heritability is assumed to be the same for the AFR population as that of the other 

populations, then the sample size requirement for the AFR population is dauntingly 
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large because of substantially smaller per-SNP heritability (Figure 3a-b, 

Supplementary Figure 7a-b). If we allow the per-SNP heritability to remain the same 

across populations, but heritability to vary proportionately to the number of common 

variants, then the sample size requirement for the AFR population is similar to those for 

the other minority populations (Figure 3c-d, Supplementary Figure 7c). 
 

A major advantage of CT-SLEB over PRS-CSx is its computational scalability of the 

former method to handle much larger number of SNPs. Thus we use CT-SLEB to 

investigate the effect of SNP density on PRS performance by considering three different 

SNP sets to be used for PRS building: (1) ~1.3 million SNPs represented in HM350 (2) 

~2.8 million SNPs that include all HM3 SNPs and additional SNPs represented in the 

MEGA array (3) All ~19 million common SNPs included in the 1000 Genomes Project 

(Phase 3)52 which were used to generate the traits in our simulation studies. We 

observe that in general performances of PRS in various US minority populations can be 

substantially enhanced by inclusion of SNPs in denser panels, and the benefit due to 

denser panels is more enhanced when the sample size for the target population is 

larger and in settings where the proportions of causal SNPs are smaller (Figure 4 and 
Supplementary Figure 8).  

 

23andMe data analysis results  
We develop and validate population-specific PRS for seven complex traits using GWAS 

data from 23andMe, Inc. (Methods, Supplementary Table 3). We conduct GWAS 

using a training dataset for each population adjusting for principal component (PC) 1-5, 

sex and age following standard quality control (Methods). The Manhattan plots and QQ 

plots for GWAS are shown in Supplementary Figures 9-15, and no inflation is 

observed given the genomic inflation factor (Supplementary Table 4). We estimate 

heritability for the seven traits in the EUR population using LD-score regression53 

(Supplementary Table 5, Methods). 
 

Results for heart metabolic disease burden and height (Figure 4, Supplementary 
Table 7) show a similar pattern as our simulation studies. The CT-SLEB and PRS-CSx 
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methods generally lead to the best performing PRS across different populations. 

Compared to the best performing European or single ancestry PRS, the relative gain is 

often large, especially for the African American (AA) population. The weighted method 

did not perform well for the AA population, but it substantially improved performance 

compared to each component PRS (EUR and single ancestry) for other populations. 

Among CT-SLEB and PRS-CSx, both of which perform notably better than the weighted 

method, the former tends to outperform the latter by a modest margin for heart 

metabolic disease burden, while the converse is true for height. We also observe that 

even with the best performing method and large sample sizes across all populations, a 

significant gap remains for the performance of the PRSs in non-EUR populations 

compared to those in the EUR population (Supplementary Table 7).  

 

We also observe similar trends for the analyses of 23andMe data for the five binary 

traits: any cardiovascular disease (any CVD), depression, migraine diagnosis, morning 

person, and sing back musical note (SBMN) (Figure 5, Supplementary Table 7). For 

most settings, CT-SLEB and PRS-CSx often produce the best performing PRS and 

often lead to substantial improvement over best EUR PRS, single ancestry PRS, or 

weighted PRS. For CVD, which is the clinically most relevant trait for risk prediction and 

preventive intervention, we observe that CT-SLEB tends to outperform PRS-CSx by a 

notable margin except for the EAS population. We also observe that for the AA 

population, which are particularly underrepresented in genetic research, CT-SLEB 

outperforms PRS-CSx by a notable margin for several traits (e.g., CVD and morning 

person). In contrast, PRS-CSx outperforms CT-SLEB by a significant margin for 

predicting migraine diagnosis and SBMN in the SAS population. Similar to the 

continuous traits, we also observe that even with best performing methods and 

substantially large GWAS in a number of non-EUR populations, major gap often 

remains for the performance of PRS in these populations compared to those for the 

EUR population. 

 

Discussion 
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In summary, we have proposed CT-SLEB as a powerful and computationally scalable 

method to generate optimal PRS across ancestrally distinct groups by utilizing GWAS 

across diverse populations. We compare the performance of CT-SLEB with those from 

a variety of both simple and complex methods, in large-scale simulation studies and 

very large datasets. Results indicate that while there is not a uniformly best performing 

method across all scenarios, the CT-SLEB method remains optimal or close to optimal 

in a wide variety of settings. Computationally, CT-SLEB is an order of magnitude faster 

than a recently proposed Bayesian method, PRS-CSx49, and can more easily handle 

much larger SNP contents and additional populations.  

 

A unique contribution of our study is the evaluation of a variety of PRS methodologies in 

the unprecedented large and diverse settings of the 23andMe, Inc. GWAS datasets. 

Our results provide important insights into the future yield of emerging large multi-

ancestry GWAS. Adult height is often used as a model to explore the genetic 

architecture of complex traits and the potential for polygenic prediction. We observe that 

the standard CT method, when trained in ~2 million EUR individuals, leads to a PRS for 

the underlying population with a prediction 𝑅( of approximately 0.276. Application of LD-

score regression to the same 23andMe data leads to an estimated GWAS heritability 

(the optimal 𝑅( for a PRS) of height of 0.395, indicating that the PRS has achieved 

about 69.8% (0.276/0.395) of its maximum potential in the 23andMe EUR population. 

We observe, however, that even with the best method and large sample size of the 

GWAS (NLatino~350K and NAA ~100K), the prediction accuracy of height PRS for non-

EUR populations fell substantially short compared to that of the EUR population 

(Relative 𝑅(~0.67 for East Asians, Latinos and South Asians and ~0.33 for AA 

compared to that of EUR).  

 

We also observe similar patterns for other traits, including disease outcomes for which 

risk prediction is of most interest. For CVD, for example, the CT method, when trained 

in a sample of ~700K cases and ~1.3 million controls from the EUR population, 

produces a PRS that by itself has a prediction accuracy of the area under the ROC 

curve (AUC) as 0.65. For other populations, in some of which the sample size is 
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considerably large (Ncase/Ncontrol =32K/66K for AA and Ncase/Ncontrol =84K/270K for Latino) 

but still much smaller than that of the EUR population, the AUCs for best performing 

PRSs are close to 60% or lower. Further, the sample size is not the only driving factor 

for differential performances of PRS across populations. For example, the performance 

of the best performing CVD-PRS for the Latino and South Asian populations are very 

similar even though the sample size for the later population is much smaller. 

Collectively, these and additional results from simulation studies, indicate that bridging 

the gap between PRS performance across populations will require much more parity in 

the sample size of the underlying GWAS.  

 

Both our simulation studies and data analyses indicate that no single PRS method is 

expected to be uniformly most powerful in all settings. In general, the optimal method for 

generating PRS will depend on the nature of the underlying multivariate effect-size 

distribution of the traits across different populations. While Bayesian methods, in 

principle, can generate the optimal PRS under correct specification of underlying effect-

size distribution24,31, modeling of effect-size distribution in multi-ancestry settings can be 

challenging. The CT method and their extensions, on the other hand, while they do not 

require strong modeling assumptions about effect-size distribution, they do not optimally 

incorporate LD among SNPs. We advocate that in future applications, researchers 

consider generating and evaluating a variety of PRS obtained from complementary 

methods. As different PRS may contain some orthogonal information, at the end, 

instead of choosing one best PRS, the best strategy could be to combine them using a 

final super learning step.  

  

Our study has several limitations. While sample sizes for 23andMe datasets are 

extremely large, the power of genetic risk prediction is likely to have been blunted in this 

population, compared to other settings, due to the presence of a higher level of 

environmental heterogeneity. For example, a recent study54 reported achieving 

prediction R2 for height of ~41% for the EUR individuals within the UK Biobank using a 

PRS developed on ~1.1 million individuals from the UK Biobank (N=400K) and 

23andMe (N=700K). In comparison, the PRS prediction R2 for height we could achieve 
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within 23andMe EUR population is only ~30% despite doubling the sample size of the 

training dataset. We, however, also note that the estimate of heritability in 23andMe 

(ℎ)*+( = 0.395) is substantially smaller than those previously reported55,56 based on the 

UK Biobank (ℎ)*+( ~0.5 − 0.7). When we compare the results across the two studies 

using prediction R2 relative to the underlying heritability of the respective populations, 

we do see a significant gain in performance due to the increased sample size of the 

current study. Thus, we believe that while caution is needed to extrapolate 23andMe 

study results to other populations, the relative performance of PRSs we observe across 

different methods and different ancestry groups within this population is likely to be 

generalizable to other settings. 

 

While we have compared the performance of the proposed method relative to a variety 

of alternatives, several additional methods not included in our analysis merit attention. 

These include the XPASS method57, which uses a bivariate normal prior for effect sizes 

for shared variants across a pair of population and allows additional components for 

incorporating of population-specific SNPs. The method is also shown to improve the 

performance of PRS in a minority population by borrowing information from a larger 

GWAS from a majority population. The PRS-CSx method, which we did include in our 

comparison, is more flexible and likely to be a more powerful Bayesian method as it 

allows non-normal effect-size distribution and incorporation of data from more than two 

populations. Other available methods include Polypred58, which extends the weighted 

PRS method incorporating functional annotation information. The method, however, is 

not directly comparable to the other methods we considered in our analysis, which do 

not incorporate any functional annotation data. Future studies are needed to explore 

how functional annotation data, including those from recent multi-ancestry omic 

studies59, can be optimally incorporated in alternative advanced methods including 

PRS-CSx and CT-SLEB. Another limitation of the proposed method is that it is primarily 

designed to generate PRS across diverse populations which can be considered 

ancestrally distinct. But for many populations, such as the African and Hispanic origin 

population in the US, are highly admixed in nature and for these populations the 
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development or/and clinical reporting of PRS can be potentially improved by explicitly 

taking into consideration individual-level estimates admixture proportions.  

 

In conclusion, we have proposed a novel and computationally scalable method for 

generating powerful PRS using data from GWAS studies in diverse populations. 

Further, our simulation studies and data analysis across multiple traits involving large 

23andMe Inc. studies provide unique insight into what is likely to emerge from future 

GWAS in diverse populations for years to come. 
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Online Methods 
We assume there are 𝑙 = 1,… 𝐿 populations with 𝑙 = 1 indexing the EUR population. We 

assume that for each population, summary-statistics data from underlying GWAS are 

available in the form of (𝛽9,% , 𝑠,% , 𝑝,%) for 𝑘 = 1,2, … , 𝐾- SNPs, where 𝛽9, 𝑠 and 𝑝 denote 

estimates of effect-size, standard errors and p-values associated with individual SNPs, 

respectively. We further assume that additional datasets are available for each target 

population of interest, which could be split into tuning and validation sets. Our proposed 

CT-SLEB method contains three steps: 1. Two-dimensional clumping and thresholding 

(CT); 2. EB procedure; 3. Super-learning algorithm, which will be described in detail in 

the following three subsections. 

 

CT. In this step, we extend the traditional CT to a two-dimensional setting so that PRS 

for a target population can be built using approximately independent SNPs that show 

significant association in at least one of the two populations (majority population and the 

target population). The CT method has two components, the Clumping step and the 

Thresholding step. In the two-dimensional setting where the lead SNPs might be 

informed by GWAS of either the EUR or target population, it is unclear what reference 

sample is the most suited for LD clumping. After initial exploration of alternative 

approaches through simulation studies, we find the most informative approach is to split 

the SNPs into two sets depending on which population they show stronger signals and 

then perform LD clumping for each set separately based on the reference sample for 

the respective population. For the thresholding step, we select SNPs based on two 

distinct thresholds for their respective p-values in the two populations. As the optimal 

threshold for p-value selection is known to depend on sample size for underlying 

GWAS23,36,37, and sample sizes for GWAS across EUR and minority populations are 

highly differential, we anticipate (and confirm through simulation studies) that a two-

dimensional approach for threshold selection is more optimal than using a single p-

value threshold across both populations. Following, we describe details of the CT step: 

1. The clumping 𝑟(-cutoff and base size of the clumping window size 𝑤. vary 

across (0.01, 0.05, 0.1, 0.2, 0.5, 0.8) and (50kb, 100kb), respectively. The 
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clumping window size 𝑤$ is defined as 𝑤./𝑟( because LD is inversely 

proportional to the genetic distance between variants25,60.  

2. Select all SNPs with smaller p-values in EUR (𝑝,/ < 𝑝,(), and then, clump 

based on 𝑝,/ using LD estimates from the EUR reference samples with 

selected 𝑟( and 𝑤$. 

3. Select all variants with smaller p-values in the target population (𝑝,( < 𝑝,/) 

and the population-specific SNPs, and then, clump based on 𝑝,( using LD 

estimates from the reference samples of the target population with the same 

𝑟(-cutoff and 𝑤..  

4. Combine the post-clumping variants from the second and third steps as the 

candidate variants set. 

5. Define two different p-value cutoffs (𝑝0/, 𝑝0() for the EUR and the target 

population. A variant is selected if 𝑝,/ < 𝑝0/ or 𝑝,( < 𝑝0(. We allow 𝑝0/ and 𝑝0( 

to vary in the set: (5 × 10&1, 5 × 10&2, 5 × 10&3, … , 5 × 10&/, 1.0). With the 

cross combination of 𝑝0/ and 𝑝0(, a total of 81 different p-value cutoffs are 

applied.  

6. With the cross combination of 𝑝0/, 𝑝0(, 𝑟( and 𝑤., a total of 972 PRSs are 

evaluated on the tuning dataset using estimated regression coefficients (𝛽9,() 

from GWAS of the target population.  

 

EB to calibrate regression coefficients. In the CT step above, we use 𝛽9,( from the 

target population to calculate PRS. However, 𝛽9,( can be noisy when the GWAS sample 

size of the target population is small. Meanwhile, given the high genetic correlation 

across different ancestries40,41, effect sizes from other populations can be used to 

calibrate the regression coefficients for the PRS. Although we only use p-values from 

GWAS for the EUR and the target population for selecting SNPs in the CT step, the EB 

step takes advantage of existing GWAS from multiple populations. Suppose 𝒖C, =

(𝑢F,/, … , 𝑢F,-) = (𝛽9,/G2𝑓,/(1 − 𝑓,/), … , 𝛽9,-G2𝑓,%(1 − 𝑓,-)), is the vector of the 

standardized effect-size for the 𝑘th SNP in L different populations, with 𝒔F𝒌∗ =

(𝑠,/∗ , … , 𝑠,-∗ ) = J𝑠,/G2𝑓,/(1 − 𝑓,/), … , 𝑠̂,-G2𝑓,-(1 − 𝑓,-)L	being the vector of the 
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corresponding standard errors of 𝒖C,. We assume that 𝒖C,|𝑢,~𝑁(𝒖, , 𝚺𝐤), where 𝚺𝐤 =

𝑑𝑖𝑎𝑔{(𝒔F𝒌∗ )𝟐} given that the GWAS for different populations are independent. Additionally, 

we assume that the prior distribution of the mean of 𝒖C, is 𝒖,~𝑁(𝟎, 𝚺𝟎). By integrating 

the conditional and prior distribution, we can obtain the marginal distribution of 𝒖C, 

as	𝑁(𝟎, 𝚺𝟎 + 𝚺𝐤). Suppose the SNP set selected from the CT step has 𝐾∗ variants 

overlapped across all the populations. We estimate the prior covariance matrix 𝚺𝟎 using 

the 𝐾∗overlapped variants shared across all populations as: 

𝚺W𝟎 =
1

𝐾∗ − 1X𝒖C,9𝒖C,

:∗

,;/

− 𝚺𝐤. 

We note that we ignore any potential correlation across selected SNPs in this step, but 

the estimate is still expected to be consistent for 𝚺𝟎 which represents marginal variance-

covariance matrices for effect sizes associated with an individual SNP across 

populations. Applying the Bayes formula, the posterior distribution of 𝒖, becomes 

𝒖,|𝒖C,~𝑁J𝚺W𝟎(𝚺W𝟎 + 𝚺𝐤)&𝟏𝒖C, , 𝚺W𝟎(𝚺W𝟎 + 𝚺𝐤)&𝟏𝚺𝐤L. 

The EB coefficients for the 𝑘th SNP are defined as: 

𝜷W,=> = 𝐅𝐤	𝚺W𝟎J𝚺W𝟎 + 𝚺𝐤L
&𝟏𝒖C, , 

where 𝐅𝐤 = diag _ /
?(@"#(/&@"#)

`
C×C

is the scaling matrix to scale effect sizes from the 

standardized scale back to the original scale. Preliminary simulation studies indicate 

that EB step of effect-size calibration leads to distinct improvement in PRS performance 

(compared to using effect-size estimates from the target population) irrespective of all 

other steps. 

 

To save computational time, we estimate 𝚺WE in the above step only once based on the 

SNP set that gives the best PRS in the CT step across all different p-value thresholds, 

𝑟(-cutoff, and window sizes. We then apply the same 𝚺WE to derive the EB-calibrated 

effect sizes for SNPs included in all different PRSs corresponding to cross combination 

of 𝑝0/, 𝑝0(, 𝑟(-cutoff and 𝑤.. In all analyses, we compute the 1944 PRSs using EB-

calibrated effect sizes of the target population and EUR (972 PRSs using the posterior 

coefficients for each population). When more than two ancestries are involved, we use 
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data from all populations to derive the EB estimates of effect-sizes for SNPs for each 

population. However, to save computational time at the super-learning step, we derive 

the final PRS for a target population by only incorporating the initial PRSs derived for 

the larger EUR population and those for the specific target population. All 1944 PRSs 

are used as input for the super-learning step to predict the outcome for the target 

population. Because many PRSs are highly correlated with each other, we filter out the 

highly redundant one with pairwise correlations higher than 0.98.  

 

Super learning. We combine all PRSs generated from the above steps into an input 

dataset and train them on the tuning dataset to predict the outcome 𝑌. The super-

learning algorithm generates an optimally weighted combination from a set of distinct 

prediction algorithms42–45 (Supplementary Note). The set of prediction algorithms can 

be self-designed or chosen from classical prediction algorithms e.g., Lasso46, ridge 

regression47, neural networks48, etc. We use three different prediction algorithms 

implemented in the SuperLearner package61 to generate the super learning estimate: 

Lasso46, ridge regression47 and neural networks48. For binary traits, since the ridge 

regression algorithm is not supported by the SuperLearner package now, we only use 

Lasso and neural networks in the data analysis. To use AUC as the objective function, 

we use the flag “method = method.AUC” in the SupearLearner package.  

 
Simulation. Large-scale multi-ancestry genotype data are generated using HAPGEN2 

(version 2.1.2)62 mimicking the LD of EUR, AFR, Americas (AMR), East Asia (EAS) and 

South Asia (SAS). The 1000 Genomes Project (Phase 3)52 is used as the reference 

panel which include 503 EUR, 661 AFR, 347 AMR, 504 EAS and 489 SAS subjects. 

Biallelic SNPs with MAF more than 0.01 in any of the populations are kept in the 

reference panel, resulting in ~8.6 million SNPs for EUR, ~14.8 million SNPs for AFR, 

~9.8 million SNPs for AMR, ~7.6 million SNPs for EAS, and ~9.0 million SNPs for SAS. 

The genotype data are generated with a total of ~19.2 million SNPs. Different 

populations have population-specific SNPs and shared SNPs with other populations. 

The proportion of population-specific SNPs range from 2.92% for AMR to 43.84% for 
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AFR (Supplementary Figure 16). We simulate a total of 120,000 independent subjects 

for each of the population.  

 

For generating trait values, we select causal SNPs randomly across the whole genome 

with the causal SNP proportion being set to 0.01, 0.001, or 5 × 10&'. We consider two 

alternative models for generating heritability distribution within each population: (A) 

Constant common-SNP heritability. (B) Constant per-SNP heritability that implies the 

total heritability is proportional to the number of common SNPs. We also consider three 

different models for negative selection pattern: strong, mild and no negative selection.  

 

We denote by 𝑢,% the standardized effect-size for 𝑘th causal SNP for the 𝑙th population. 

Under strong negative selection and constant heritability model, the standardized effect-

sizes are drawn from a multivariate normal distribution of the form: 

𝑢,%~𝑁b0,
ℎ(

𝐶%
d , 𝑐𝑜𝑣J𝑢,%$ , 𝑢,%%L =

𝜌ℎ(

G𝐶%$𝐶%%
, 

where 𝐶% is the number of causal SNPs with MAF > 0.01 in the 𝑙th population, the 

heritability ℎ( associated with common SNPs for each population is set to 0.4, and the 

genetic correlation 𝜌 is set to 0.8. We then generate the phenotype using linear model 

of the form	𝑌F% = ∑ G&"#
?((@"#(/&@"#)

𝑢,% + 𝜖F% 	
H#
,;/  for the 𝑖th subject in the 𝑙th population, 

where	𝑓,% is the effect allele frequency for the 𝑘th causal SNP in 𝑙th population. The error 

terms are generated as 𝜖F%~𝑁(0,1 − ℎ(). We also consider mild negative selection (𝑢,%( ∝

[𝑓,%(1 − 𝑓,%)]E.2J) and no negative selection (𝑢,%( ∝ [𝑓,%(1 − 𝑓,%)]) scenarios (see 

Supplemental Notes for details). Finally, we simulate data under an assumption of total 

heritability of all ~19 million SNPs being 0.4 across all populations, but the common 

SNP heritability varying proportionately to their number within each the populations. The 

model assumes per SNP heritability to be the same across all populations and thus 

leads to the common SNP heritability value of 0.32, 0.21, 0.16, 0.19 and 0.17 for AFR, 

AMR, EAS, EUR and SAS, respectively. The genetic correlation is set to 0.8 or 0.6.  
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We set the training sample sizes for each target population to 15,000, 45,000, 80,000, 

or 100,000. We generate GWAS summary statistics for each population based on the 

training samples using PLINK version 1.90 with the command “--linear”. We fixed the 

sample sizes for the EUR population at 100,000. We further simulate the tuning and 

validation dataset of size 10,000 for each target population. The final prediction 𝑅( is 

reported as the average of ten independent simulation replicates for each simulation 

setting. For evaluating CT-SLEB that incorporates data across all five ancestries, we 

assume the training sample size for the each of the other non-EUR populations to be 

the same as that of the target population.  

 
Existing PRS methods. The CT method selects clumped SNPs with different p-value 

thresholds and picks a single optimal PRS based on its performance on the tuning 

dataset. We implement CT using PLINK version 1.9063 with the clumping step command 

“--clump --clump-r2 0.1 --clump-kb 500”. We estimate LD based on 3,000 randomly 

selected unrelated subjects from the training dataset for each population. We set the 

candidate p-value thresholds to be (5 × 10&1, 1	 × 10&2, 5 × 10&2, 1 × 10&3, … , 5 ×

10&/, 1.0) and for computing PRS, we use the PLINK command “--score no-sum no-

mean-imputation”. The optimal p-value threshold is determined based prediction R2 

(variation explained by the corresponding PRS) on the tuning dataset. 

 

The LDpred2 method infers SNP effect sizes by a shrinkage estimator that combines 

GWAS summary statistics with a prior on effect sizes while leveraging LD information 

from an external reference panel. LDpred2 is implemented using the R package 

“bigsnpr”31. The tuning parameters included are: (1) the proportion of causal SNPs, with 

candidate values set to a sequence of length 17 that are evenly spaced on a logarithmic 

scale from 10-4 to 1; (2) per-SNP heritability, with candidate values set to 0.7, 1, or 1.4 

times the total heritability estimated by LD score regression divided by the number of 

causal SNPs; (3) “sparse” option, which is set to “yes” or “no” (the “sparse” option sets 

some weak effects to zero). The method selects tuning parameters based on the 

performance on the tuning dataset.  
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The EUR PRS based on CT or LDpred2 are built based on training dataset from the 

EUR population and estimates tuning parameters based on tuning sample for the EUR 

population. When the EUR PRSs are evaluated in the target population, we exclude the 

SNPs that do not exist in the target population.  

 

The weighted-PRS linearly combines the CT PRS generated from the EUR and from 

the target population. The weights for EUR PRS and for the target population PRS in 

the linear combination are estimated using the tuning dataset from the target population 

through a linear regression. We implement the weighted-PRS using R version 4.0.0. 

 

The PRS-CSx method estimates population-specific SNP effect sizes based on a 

Bayesian framework using continuous shrinkage priors to jointly model the GWAS 

summary statistics from multiple populations. Besides the Bayesian modeling step, 

PRS-CSx further conducts a step similar to weighted-PRS, which is to linearly combine 

the PRS based on the posterior effect-sizes obtained from the EUR and the target 

population with the weights in the linear combination being estimated based on the 

tuning dataset of the target population. We implemented PRS-CSx following the 

guidance provided in https://github.com/getian107/PRScsx. We set the 

hyperparameters 𝑎 and 𝑏 in the gamma-gamma prior to their default values of 1 and 

0.5, respectively. Further, the parameter 𝜙 is varied over the default set of values 10&3, 

10&', 10&(, and 1. The optimal 𝜙 is determined based on the performance on the tuning 

dataset. 

 
Runtimes and memory usage. The computation time and memory usage of CT-SLEB 

(two ancestries), CT-SLEB (five ancestries), and PRS-CSx are compared based on 

their performance on chromosome 22 and assuming AFR is the target population. All 

analyses are performed using a single core with Intel E5-26840v4 CPU. The reported 

performance is averaged over 100 replicates. The training dataset includes GWAS 

summary statistics for AFR (NGWAS=15,000) and for EUR (NGWAS=100,000) population. 

The tuning dataset and validation dataset each contains 10,000 subjects. For five 
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ancestries analyses, the training GWAS sample sizes for AMR, EAS and SAS are all 

set to 15,000. 

 
23andMe Data analysis. The individuals included in our analyses are part of the 

23andMe participant cohort. All these individuals included have provided informed 

consent and answered surveys online according to our human subject protocol 

reviewed and approved by Ethical & Independent Review Services, a private 

institutional review board (http://www.eandireview.com). Detailed information about 

genotyping, quality control, imputation, removing related individuals, and ancestry 

determination is provided in Supplementary Note. Participants were included in the 

analysis based on consent status as checked when data analyses were initiated.  

 

The analyses include five ancestries: African American, East Asian, European, Latino, 

and South Asian. Meanwhile, the analyses include two continuous and five binary traits: 

1. Heart metabolic disease burden 2. Height 3. Any CVD 4. Depression 5. Migraine 

Diagnosis 6. Morning Person 7. SBMN. We randomly split the data for each population 

into training, tuning, and validation datasets with the proportion of 70%, 20%, and 10% 

(Supplementary Table 1). We perform GWAS for the seven traits using the training 

dataset for each population, adjusting for PC 1-5, sex, and age using standard quality 

control procedures (Supplementary Note). SNPs with MAF > 0.01 in at least one of the 

five populations are kept in the analyses. We further restrict analyses to SNPs that are 

on HM3 + MEGA chips with ~2.8 million SNPs (Supplementary Table 3). We use 

LDSC version 1.0153 to estimate the heritability using the GWAS summary statistics of 

European populations for the seven traits. We estimate the LD score using the 503 

unrelated samples of EUR ancestry from 1000 Genomes Project. We restrict heritability 

analyses to EUR populations since some non-EUR populations don’t have sufficient 

sample size to get stable estimate from LD-score regression.  

 

We apply seven methods to compare PRS prediction performance, CT, LDPred2, best 

EUR PRS based on CT and LDpred2, weighted-PRS, PRS-CSx, CT-SLEB using data 

from EUR and the target population, and CT-SLEB using all five populations. Since 
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individual-level data is not available in the training step, we use the reference data from 

the 1000 Genomes Project (Phase 3) to estimate the LD for each population. 

Specifically, we use AFR and AMR from the 1000 Genomes Project as the reference for 

the AA and Latino population in 23andMe, respectively. All PRS prediction 

performances are reported based on the independent validation dataset that is 

independent of the training and tuning datasets. To calculate the adjusted R2 for 

continuous traits, we first regress the traits on covariates and then evaluate 

performance for the PRS to predict residualized trait values. To calculate the adjusted 

AUC for binary traits, we used the roc.binary function in the R package RISCA version 

0.964.  
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Figure 1: CT-SLEB Workflow. The method contains three major steps: 1. Two-
dimensional clumping and thresholding method for selecting SNPs (Figure 1a) 
; 2. Empirical-Bayes procedure for utilizing correlation in effect sizes of genetic variants 
across populations (Figure 1b); 3. Super-learning model for combing the PRSs derived 
from the first two steps under different tuning parameters (Figure 1c). The GWAS 
summary-statistics data are obtained from the training data. The tuning dataset is used 
to train the super learning model. The final prediction performance is evaluated based 
on an independent validation dataset.  
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Figure 2: Simulation results showing performances of different methods for 
generating PRS in the multi-ancestry setting. The training sample size for each of 
the four non-EUR populations is 15,000 (Figure 2a) or 80,000 (Figure 2b). The training 
sample size for the EUR population is fixed at 100,000. The sample size for the tuning 
dataset of each population is fixed at 10,000. Prediction 𝑅( values are reported based 
on an independent validation dataset with 10,000 subjects for each population. 
Common SNP heritability is assumed to be 0.4 across all populations, and effect-size 
correlation is assumed to be 0.8 across all pairs of populations. The causal SNPs 
proportion (degree of polygenicity) is varied across 0.01, 0.001, 5 × 10&' (𝑁!"#$"% =
192𝐾, 19.2𝐾, 9.6𝐾), and effect sizes for causal variants are assumed to be related to 
allele frequency under a strong negative selection model. All data are generated based 
on ~19 million common SNPs across the five populations, but analyses are restricted to 
~2.8 million SNPs that are used on Hapmap3 + Multi-Ethnic Genotyping Arrays chip 
(PRS-CSx analysis is further restricted to ~1.3 million HM3 SNPs). 

 

a)

b)
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Figure 3: Prediction performance of CT-SLEB PRS across different ancestries 
relative to single ancestry EUR PRS in the EUR population. The training sample 
size for each of the four non-EUR populations is 15,000, 45000, 80,000, or 100,000. 
The training sample size for the EUR population is fixed at 100,000, and PRS 
performance is assessed using single ancestry CT or LDpred2, whichever performs the 
best in each setting. Two different models for genetic architectures are considered 
where either the common SNP heritability is fixed (at 0.4) (Figure 3a and 3b) or per-
SNP heritability is fixed (Figure 3c and 3d) across the five populations (Figure 3c and 
3d). The effect-size correlation is assumed to be 0.8 across all pairs of populations. The 
effect sizes for causal variants are assumed to be related to allele frequency under a 
strong negative selection model. 
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c) d)

b)
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Figure 4: Prediction performance of CT-SLEB PRS under different SNP density. 
Analysis of each simulated data based on ~19 million SNPs are restricted to three 
different SNP sets Hapmap3 (~1.3 million SNPs), Hapmap3 + Multi-Ethnic Genotyping 
Arrays (~2.8 million SNPs), 1000 Genomes Project (~19 million SNPs). The training 
sample size for each of the four non-EUR populations is 15,000 (Figure 4a) or 80,000 
(Figure 4b). The training sample size for the EUR population is fixed at 100,000. 
Prediction 𝑅( values are reported based on independent validation dataset with 10,000 
subjects for each population. Common SNP heritability is assumed to be 0.4 across all 
populations and effect-size correlation is assumed to be 0.8 across all pairs of 
populations. The causal SNPs proportion are varied across 0.01, 0.001, 5 × 10&' 
(𝑁!"#$"% = 192𝐾, 19.2𝐾, 9.6𝐾) and effect sizes for causal variants are assumed to be 
related to allele frequency under a strong negative selection model.  
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Figure 5: Prediction accuracy of PRS for heart metabolic disease burden and 
height in 23andMe, Inc. datasets. The total sample size for heart metabolic disease 
burden and height is, respectively, 2.46 million and 2.93 million for European, 131K and 
141K for African American, 375K and 509K for Latino, 110K and 121K for East Asian, 
and 29K and 32K for South Asian. The dataset is randomly split into 70%, 20%, 10% for 
training, tuning and validation dataset, respectively. The prediction R2 values are 
reported based on the performance of the PRS in the validation dataset. The red 
dashed line represents the prediction performance of EUR PRS generated using single 
ancestry method (best of CT or LDpred2) in the EUR population. Analyses are restricted 
to ~2.8 million SNPs that are included in Hapmap3, or the Multi-Ethnic Genotyping 
Arrays chips array or both. However, PRS-CSx is further restricted to ~1.3 million 
Hapmap3 SNPs as has been implemented in the provided software. 
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Figure 6: Prediction accuracy of five binary traits in 23andMe, Inc datasets. We 
used the data from five populations: EUR (averaged N ≈ 2.37 million), African American 
(averaged N ≈ 109K), Latino (averaged N ≈ 401K), EAS (averaged N≈ 86K), SAS 
(averaged N≈ 24K). The datasets are randomly split into 70%, 20%, 10% for training, 
tuning and validation dataset, respectively. The AUC values are reported based on the 
validation dataset. The red dashed line represents the prediction performance of EUR 
PRS generated using single ancestry method (best of CT or LDpred2) in the EUR 
population. Analyses are restricted to ~2.8 million SNPs that are included in Hapmap3, 
or the Multi-Ethnic Genotyping Arrays chips array or both. However, PRS-CSx is further 
restricted to ~1.3 million Hapmap3 SNPs as has been implemented in the provided 
software. 
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