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ABSTRACT 

The Cancer Genome Atlas (TCGA) has yielded unprecedented genetic and molecular 
characterization of the cancer genome, yet the functional consequences and patient-relevance 
of many putative cancer drivers remain undefined. TCGADEPMAP is the first hybrid map of 
translational tumor dependencies that was built from machine learning of gene essentiality in 
the Cancer Dependency Map (DEPMAP) and then translated to TCGA patients. TCGADEPMAP 
captured well-known and novel cancer lineage dependencies, oncogenes, and synthetic 
lethalities, demonstrating the robustness of TCGADEPMAP as a translational dependency map. 
Exploratory analyses of TCGADEPMAP also unveiled novel synthetic lethalities, including the 
dependency of PAPSS1 driven by loss of PAPSS2 which is collaterally deleted with the tumor 
suppressor gene PTEN. Synthetic lethality of PAPSS1/2 was validated in vitro and in vivo, 
including the underlying mechanism of synthetic lethality caused by the loss of protein 
sulfonation that requires PAPSS1 or PAPSS2. Moreover, TCGADEPMAP demonstrated that 
patients with predicted PAPSS1/2 synthetic lethality have worse overall survival, suggesting 
that these patients are in greater need of drug discovery efforts to target PAPSS1. Other map 
“extensions” were built to capture unique aspects of patient-relevant tumor dependencies using 
the flexible analytical framework of TCGADEPMAP, including translating gene essentiality to drug 
response in patient-derived xenograft (PDX) models (i.e., PDXEDEPMAP) and predicting gene 
tolerability within normal tissues (GTEXDEPMAP). Collectively, this study demonstrates how 
translational dependency maps can be used to leverage the rapidly expanding catalog of 
patient genomic datasets to identify and prioritize novel therapeutic targets with the best 
therapeutic indices.  
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INTRODUCTION 

The rapid expansion of genomic technologies to characterize healthy and diseased patient 
populations has provided unprecedented resolution to the pathophysiological drivers of cancer 
and many other diseases. In 2018, TCGA completed a 10-year study of 33 tumor types across 
~11,000 patients, which has broadly illuminated the genetic underpinnings of cancer (1). 
Building on the success of TCGA, multiple other initiatives have been launched to explore 
aspects of cancer initiation, evolution, metastasis, and response to therapy (2–6), with the hope 
that the deepening molecular characterization of cancer will improve diagnosis, treatment, and 
prevention. However, a critical step towards fully leveraging patient data to eradicate cancer is 
to assign functionality to the observations made in TCGA that translate putative tumor 
dependencies to life-saving therapies. 

One approach to understanding tumor dependencies is through genomewide genetic and 
chemical perturbation datasets (e.g., DEPMAP (7, 8), Project SCORE (9), and Connectivity 
Map (10)) that have been paired with thousands of deeply characterized cancer models (e.g., 
Cancer Cell Line Encyclopedia (11), Cancer Cell Line Factory, (12), and Human Cancer 
Models Initiative (13)). Multiple studies have demonstrated the ability of DEPMAP to translate 
gene essentially to novel therapeutic targets (14–18) and a broader functional understanding 
of tumor dependencies (19, 20). Compared with TCGA, a differentiating strength of the 
“dependency maps” is that hypotheses can be readily tested, replicated, and refined in different 
contexts, whereas patient datasets are typically not amenable to functional experimentation. 
However, the dependency maps also pose limitations when compared to the translatability of 
TCGA, as homogeneous cell lines in culture dishes do not replicate the pathophysiological 
complexities of the intact tumor microenvironment (TME) (21). Further, the current 
experimental models do not completely recapitulate the genetic drivers that are present in the 
patient population (22), and experimental outcomes of genetic perturbation screens do not 
capture most aspects of disease outcome and patient survival. 

To address the unique challenges posed by TCGA and DEPMAP, a hybrid dependency map 
(TCGADEPMAP) was built by machine learning of gene essentiality in the cell based DEPMAP 
that was translated to TCGA patients. As such, TCGADEPMAP leverages the experimental 
strengths of DEPMAP, while enabling patient-relevant translatability of TCGA. TCGADEPMAP 
captured well-known cancer lineage dependencies, oncogenes, and synthetic lethalities, 
demonstrating the robustness of TCGADEPMAP as a translational dependency map. Exploratory 
analyses using TCGADEPMAP also revealed novel tumor dependencies and synthetic lethalities, 
which could be translated to treatment response and clinical outcomes. Finally, the flexible 
framework of TCGADEPMAP enabled the assembly of map “extensions” that captured other 
aspects of patient-relevant tumor dependencies, including translating dependencies to drug 
responses in PDX models (i.e., PDXEDEPMAP) and predicting gene essentiality within normal 
tissues (GTEXDEPMAP). Collectively, this study demonstrates how translational dependency 
maps can be leveraged to functionalize oncogenic drivers and novel therapeutic targets in the 
rapidly expanding catalog of patient genomic datasets. 
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RESULTS 

Predictive modelling of gene essentiality 

To begin building translational dependency maps, predictive models of gene essentiality were 
generated from the DEPMAP (7) using elastic-net regularization for feature selection and 
modeling (23) (Figure 1A). Genomewide gene effect scores for DEPMAP cancer cell models 
(n = 897) were estimated by CERES (24), which measures the dependency probability of each 
gene relative to the distribution of effect sizes for common essential and nonessential genes 
within each cell line (25). Because many genes do not impact cell viability, elastic-net models 
were attempted only for genes with at least five dependent and non-dependent cell lines, which 

Figure 1. Predictive modeling of 
gene essentiality in the DEPMAP. 
(A) Schematic of elastic-net models 
for predictive modeling of gene 
essentiality in the DEPMAP using 
expression-only data or multi-omics 
data. Note the broad overlap in 
cross-validated models using 
expression-only or multi-omics  
data. (B)  Distribution of features 
per multi-omics models. (C) 
Number of features per multi-omics 
model that passed or failed cross-
validation. (D) Distribution of the 
target gene (i.e., self) as a feature in 
the cross-validated multi-omics 
models. (E) Distribution of features 
per expression-only models. (F) 
Number of features per expression-
only model that passed or failed 
cross-validation. (G) Distribution of 
the target gene (i.e., self) as a 
feature in the cross-validated 
expression-only models. (H) 
Comparison of model performance 
(correlation coefficients) of cross-
validated models from multi-omics 
and expression-only data. Note for 
(B-H) that the performance and 
characteristics of multi-omics and 
expression-only models are very 
similar. All p-values indicated on 
graphs, as determined by the 
Wilcoxon rank sum test for two 
group comparison and Kruskal-
Wallis followed by Wilcoxon rank 
sum test with multiple test 
correction for the multi-group 
comparison 
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included 7,260 out of 18,119 genes (40%) with effects scores in the DEPMAP. In addition to 
gene effect scores, the input variables for elastic-net predictive modelling included genome-
wide gene expression, mutation, and copy number profiles for each cancer cell model. Based 
on prior evidence that predictive modeling of gene essentiality with RNA expression 
outperformed similar modeling with DNA features (26, 27), two sets of elastic-net models were 
generated with RNA alone (i.e., expression-only) or combined with mutation and copy number 
profiles (i.e., multi-omics). Finally, the best fitting elastic-net models were selected by a 10-fold 
cross-validation to identify models with the minimum error, while balancing the predictive 
performance with the number of features selected (see Methods for details).  

The elastic-net models for predicting essentiality of the 7,260 genes (as described above) were 
compared by 10-fold cross-validation (Pearson’s r > 0.2; FDR < 1e-3) when considering 
expression-only or multi-omics data as input variables (Tables S1, S2). The distribution of 
features per model skewed higher in the multi-omics models (3 to 510 features, median = 98) 
(Figure 1B) compared with the expression-only models (3 to 369 features, median = 80) 
(Figure 1C), and the performance of both improved with the number of features per model 
(Figure 1D, E). Of the 7,260 models, cross-validation confirmed 1,996 expression-only models 
and 2,045 multi-omics models, of which most cross-validated models overlapped (n=1,797) 
between the two datasets (Table S3). The incidence of self-inclusion of the target gene in the 
cross-validated models was also similar between multi-omics dataset (31% of models) (Figure 
1F) and expression-only dataset (26% of models) (Figure 1G). Finally, the predictive accuracy 
of most cross-validated expression-only and multi-omics models performed comparably (e.g., 
HER2, BRAF, PIK3CA, etc.), with a few notable examples that included the oncogenes: NRAS, 
FLT3, and ARNT (Figure 1H). Collectively, these data demonstrate that predictive models of 
gene essentiality with expression-only and multi-omics data as input variables perform 
equivalently in detecting the selective vulnerabilities of cancer. 

Building a translational resource for tumor dependencies: TCGADEPMAP 

The schematic in Figure 2A outlines the approach to transposing the cross-validated gene 
essentiality models from the cell-based DEPMAP onto TCGA patients (n = 9,596) to build a 
translational dependency map (i.e., TCGADEPMAP). TCGADEPMAP was built using the expression-  
only elastic-net models of gene essentiality, based on the evidence here (Figure 1) and 
elsewhere (26, 27) that only marginal gains were made in model performance by including 
genomic features. Secondly, transcriptomics data are broadly captured across TCGA and 
many other clinical studies (28), as well as PDX studies (29, 30), whereas genomic data are 
less frequently captured and have greater discrepancies in representation across cancer 
models and patients. Thirdly, because genetic information is withheld from the expression-only 
elastic-net models, the transposed essentiality scores can be correlated with genetic drivers in 
TCGADEPMAP patients that might otherwise be missed in cancer cell models. Finally, expression-
based predictive modeling of dependency can be extended to non-oncological studies (e.g., 
GTEX), which do not have somatic mutations and copy number changes (31). Thus, building 
a translational dependency map using expression-based modeling robustly predicts gene 
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essentiality and offers a flexible framework that can be broadly applied across malignant and 
normal tissue types alike. 

Figure 2. Building a translational dependency map: TCGADEPMAP. (A) Schematic of gene essentiality model transposition from 
DEPMAP to TCGA, following alignment of genomewide expression data to account for differences in homogeneous cultured cell 
lines and heterogenous tumor biopsies with stroma. (B) Correlation coefficients of gene essentiality scores and tumor purity 
before and after transcriptional alignment. (C) UMAP visualization of normalization of genomewide transcriptomes improves 
alignment between cultured cells and patient tumor biopsies with contaminating stroma. (D) Correlation coefficients of 
essentiality profiles of different lineages of cultured cell models and TCGA patient tumors. (E) Unsupervised clustering of 
predicted gene essentiality scores across TCGADEPMAP revealed strong lineage dependencies. Blue indicates gene genes with 
stronger essentiality, and red indicates genes with less essentiality. (F) KRAS dependency was enriched in TCGADEPMAP lineages 
with high frequency of KRAS gain-of-function (GOF) mutations, including colon adenocarcinoma (COAD), lung adenocarcinoma 
(LUAD), stomach adenocarcinoma (STAD), rectal adenocarcinoma (READ), esophageal carcinoma (ESCA), and pancreatic 
adenocarcinoma (PADD). (G) KRAS essentiality correlated with KRAS mutations in all TCGADEPMAP lineages. (H) BRAF 
dependency in TCGADEPMAP was enriched in skin cutaneous melanoma (SKCM), which has a high frequency of GOF mutations 
in BRAF. (I) BRAF essentiality correlated with BRAF mutations in all TCGADEPMAP lineages. (J) Scatter plot of model selectivity 
in TCGADEPMAP and DEPMAP, as determined by normality likelihood (NormLRT). (K) Ranking of model selectivity between in 
TCGADEPMAP and DEPMAP, as determined by the NormLRT scores. ***P < 0.001, as determined by the Wilcoxon rank sum test 
for two group comparison and Kruskal-Wallis followed by Wilcoxon rank sum test with multiple test correction for the multi-group 
comparison.  
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As outlined in Figure 2A, the expression-based predictive models of DepMap dependencies 
were transposed to the transcriptomic profiles of 9,596 TCGA patients, following alignment to 
account for differences between the expression profiles of homogenous cell lines and tumor 
biopsies with varying stromal content. To control for the confounding stromal signatures, the 
expression profiles of the DEPMAP cell lines and TCGA patients were transformed by contrast 
PCA (cPCA) to remove cPC1-4 that comprised the tumor stroma (34) and correlated with tumor 
purity (Figure 2B and Table S4). The removal of cPC1-4 significantly improved the alignment 
of the expression-based dependency models when applied to TCGA patient transcriptomes 
(Figure 2C, D and Figure S1). Unsupervised clustering of gene essentialities across 
TCGADEPMAP revealed striking lineage dependencies (Figure 2E and Table S5), including well-
known oncogenes such as KRAS (Figure 2F, G) and BRAF (Figure 2H, I). For example, KRAS 
essentiality was markedly stronger in KRAS-mutant STAD, READ, PAAD, and COAD lineages 
(Figure 2F, G), whereas BRAF essentiality was strongest in BRAF-mutant SKCM (Figure 2H, 
I). To ensure that the associations between dependencies and mutations were not due to the 
same underlying predictive features, the accuracy of elastic-net models to predict essentiality 
and somatic mutations in the same genes were compared. The comparison was restricted to 
genes with cross-validated models of essentiality and somatic mutations with >2% prevalence 
(n = 891 models). The elastic-net models were allowed to select the most informative predictive 
features for mutation and essentiality for each gene, as the best predictors for essentiality may 
not be the best features to predict mutation. Comparison of the AUCs of the two model sets 
revealed that transcriptomic features were significantly more predictive of gene essentiality 
compared with mutational status (Figure S2). Considering that the expression-only models of 
essentiality did not include genomic features, these data further demonstrate that the 
essentiality scores in TCGADEPMAP can be independently correlated with genomic features in 
patient tumors.  

Strongly selective dependencies (SSDs) have also been characterized in cell-based maps 
using the normality likelihood ratio test (NormLRT) to rank whether an essentiality fits a normal 
or t-skewed distribution (i.e., selective) across the cohort (20, 32). A strength of this approach 
is the ability to rank SSDs regardless of the underlying mechanisms of dependency (e.g., 
lineage, genetic, expression, etc.). To compare the SSDs in cancer patients and cell models, 
NormLRT was applied to gene effect scores for the cross-validated essentiality models in 
TCGADEPMAP and DEPMAP, respectively. Most SSDs (NormLRT > 100) correlated well 
between TCGADEPMAP and DEPMAP (r = 0.56, p < 0.0001), including KRAS, BRAF, MYCN, 
and many other known SSDs (Figure 2J and Table S6). Although most SSDs correlated well 
between TCGADEPMAP and DEPMAP, there were several examples where the SSDs differed 
between patients and cell models (Figure 2I). Notably, the druggable oncogenes (e.g., FLT3 
and PTPN11) were more prominent SSDs in TCGADEPMAP patients than DEPMAP cell lines, 
whereas other notable SSDs in the DEPMAP (e.g., ATP6V0E1) were less noticeable in 
TCGADEPMAP (Figure 2J, K). The top predictive features for essentiality of FLT3 (self-
expression) and ATPV6V0E1 (paralog expression) did not differ between DEPMAP and 
TCGADEPMAP, yet the distribution and prevalence of strong dependency scores varied across 
lineages between patients and cell lines (Figure S3A-D). Likewise, the dependency on 
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PTPN11 (SHP2) was noticeably more selective in TCGADEPMAP than DEPMAP (Figure 3J, K), 
which was reflected by greater essentiality in a subset of breast cancer patients (Figure S3E) 
that was absent from breast cancer cell lines (Figure S3F). A Fisher’s exact test of the genetic 
drivers that were enriched in TCGADEPMAP breast cancer patients that were most dependent on 
PTPN11 included TP53 mutations and HER2 amplifications (Figure S3G), whereas FAT3 
deletions and GATA3 mutations were significantly depleted in these patients (Figure S3H). 
Particularly in the case of ERRB2, which signals through PTPN11 and the RAS pathway, these 
data fit with the observation that RAS pathway inhibition, including SHP2 inhibitors, are more 
potent in the 3D versus 2D context (33, 34). Thus, the presence of TCGADEPMAP breast cancer 
patients that were highly dependent on PTPN11 is likely due to the 3D context of patient 
tumors, whereas DEPMAP breast cancer cell lines with similar genetic drivers are not PTPN11 
dependent due to the 2D context of cultured cells. Collectively, these data demonstrate that 
identifying SSDs can be impacted by different prevalence and distributions of the underlying 
drivers in patients and cell models, which can be overcome by patient-relevant dependency 
maps, such as TCGADEPMAP. 

Translating TCGADEPMAP to clinically relevant phenotypes and outcomes 

Another strength of translational tumor dependency maps is the ability to assess the impact of 
gene essentiality on clinically relevant phenotypes, such as molecular subtyping, therapeutic 
response, and patient outcomes. To evaluate the utility of TCGADEPMAP for therapy-relevant 
patient stratification, an unsupervised clustering of the 100 most variable gene dependencies 
was performed using the TCGADEPMAP breast cancer cohort (Figure 3A). The 100-dependency 
signature (DEP100) performed comparably to the established PAM50 signature (35) in 
classifying breast cancer subtypes (AUC close to 0.9 for most subtypes), despite only 3 
overlapping genes between PAM50 and DEP100 (Figure 2B). Dependency subtyping with 
DEP100 predicted significantly higher ESR1 essentiality in ER-positive tumors (Figure 3C) 
and higher HER2 essentiality in HER2-amplified tumors (Figure 3D). Finally, due to the limited 
accessibility of therapeutic response data in TCGA (36), we applied the predictive gene 
essentiality model for HER2 to a clinical trial of HER2-amplified breast cancer patients 
receiving trastuzumab (37), which revealed significantly higher predicted HER2 dependency 
in patients that responded better to trastuzumab (Figure 3E, F). Taken together, these data 
establish the physiological relevance of TCGADEPMAP to associate dependencies with common 
clinicopathological features, such as molecular subtyping and therapeutic response. 

The ability to associate gene essentiality with patient survival is a unique strength of 
TCGADEPMAP, which is not accessible using cell-based dependency maps. Moreover, outcomes 
driven by perturbations of oncogenic pathways and genetic drivers of human cancers are likely 
not captured by gene expression alone and rather require a readout of gene essentiality. To 
test this possibility, the cross-validated gene essentiality models (n = 1,996) were tested for 
association with the progression free interval (PFI) in TCGADEPMAP. Among 29 cancer lineages 
that are well powered for PFI analysis (36), 105 known genetic drivers of human cancer were 
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significantly associated with the PFI of TCGA patients (Table S7), including 29 that were   
prognostic in at least four cancer lineages (Figure 3G). For example, a stronger dependency 
on the druggable oncogene, STAT3 (38), was significantly associated with a shortened time to 
disease progression of six different cancers (Figure 3H). Likewise, multiple other prevalent 
genetic drivers of human malignancies were associated with a significantly shorter PFI, 
including PAX5 and PDGFRA (Figure 3H). Notably, both proteins have been investigated 
previously as prognostic indicators of poor outcomes by expression analysis in patient biopsies 
(39, 40), yet to our knowledge this is the first time that dependency on these oncogenes has 
been associated with worse outcome in patients using a translational dependency map.  

Figure 3. Translating TCGADEPMAP 
to clinically relevant phenotypes and 
outcomes. (A, B) Subtyping breast 
cancer dependencies by the top 100 
gene dependencies (DEP100). (C) 
ESR1 dependencies are strongest 
in ER-positive luminal breast 
cancer. (D) HER2 dependencies 
are strongest in HER2-amplified 
breast cancer. HER2 dependency 
predicts trastuzumab response in 
patients (E) and correlates with 
HER2 expression after treatment 
(F). (G) Top gene essentialities 
associated with the progression free 
interval (PFI) by univariate Cox-
proportional hazard regression 
model across multiple lineages in 
TCGADEPMAP (Benjamini-Hochberg, 
FDR<0.2). (H) Hazard ratios (HR) 
of the top essentialities across 
TCGADEPMAP. Blue indicates a 
greater dependency associated with 
worse outcome and red indicates a 
greater dependency is associated 
with better outcome. *P < 0.05 and 
***P < 0.001, as determined by the 
Wilcoxon rank sum test for two 
group comparison and Kruskal-
Wallis followed by Wilcoxon rank 
sum test with multiple test correction 
for the multi-group comparison.  
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Using TCGADEPMAP to translate synthetic lethalities in human cancer 

In addition to illuminating lineage and oncogenic dependencies, the DEPMAP has dramatically 
expanded the list of potential synthetic lethalities (i.e., the loss of a gene sensitizes tumor cells 
to inhibition of a functionally redundant gene within the same pathway) (6, 16, 17, 41, 42). 
However, one of the current limitations of the DEPMAP is that the available cancer cell models 
do not yet fully recapitulate the genetic and molecular diversity of TCGA patients (25). Thus, 
we assessed the landscape of predicted synthetic lethalities with LOF events (damaging 
mutations or deletions) in TCGADEPMAP. Lasso regression analysis of gene essentiality profiles 
and 25,026 LOF events detected in TCGADEPMAP yielded 633,232 synthetic lethal candidates 
(FDR<0.01), which were too numerous to experimentally validate by conventional methods. 
To prioritize the synthetic lethal candidates, the gene interaction scores were correlated with 
the mutual exclusivity of corresponding mutations in TCGADEPMAP, which narrowed the list to 
28,609 candidates (FDR<0.01). Multiple additional criteria were then applied to refine the list 
further by enriching for predicted paralogs with close phylogenic distance to prioritize 
candidates with redundant functions due to sequence homology. All told, this approach 
identified many known synthetic lethal pairs (e.g., STAG1/2, SMARCA2/4, and 
EP300/CREBBP) (43–45) and previously untested synthetic lethal candidates, demonstrating 
that TCGADEPMAP is well-powered to predict synthetic lethal relationships with LOF events in 
patient tumor biopsies (Figure S4A-C and Table S8).  

Synthetic lethalities that were predicted with LOF events in the TCGADEPMAP (n = 604 pairs) 
were experimentally tested using a novel multiplexed CRISPR/AsCas12a screening approach 
across representative cell models of five cancer lineages (Figure 5A, B). Additional pairs (n = 
261 controls) were added to the library to control for screen performance, including essential 
paralog pairs and non-essential pairs of TSGs and interacting partners (Table S8). An initial 
pilot screen was performed using five cancer cell models, which experimentally validated 69 
TCGADEPMAP synthetic lethalities in at least one representative cell model (Table S9). As these 
data were being generated, an enhanced AsCas12a (enAsCas12a) enzyme was reported that 
is compatible with CRISPR/AsCas12a libraries (46), enabling replication of the initial pilot 
screens and expansion to a total sixteen total cancer cell models. Notably, the replication of 
the initial screens was highly concordant across the five cell models in common (average r = 
0.69) (Figure S5), as well as detection of increased depletion of essential controls and 
synthetic lethal partners compared with non-essential controls (Figure 4C). In addition to novel 
pairs, multiple known synthetic lethalities (HSP90AA1/B1 (47), DDX19A/B (47), HDAC1/2 (47, 
48), SMARCA2/4 (47, 48), EP300/CREBBP (45), STAG1/2 (44, 48) were replicated across 
multiple cell lines in both cohorts (Table S9), demonstrating the robustness of the multiplex 
CRISPR/Cas12a screening platform to test synthetic lethalities. For example, screening of 
H1299 cells confirmed seventeen synthetic lethalities that were predicted by TCGADEPMAP, 
including multiple known pairs and several novel synthetic lethalities, such as PAPSS1/2 
(Figure 4D). Of the 604 synthetic lethalities predicted by TCGADEPMAP, a total of 78 (13%) were 
experimentally validated in at least one representative cell model (Figure 4E and Table S9). 
Notably, as observed elsewhere (41, 43, 48), the sensitivity to synthetic lethalities  
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Figure 4. Using TCGADEPMAP to translate synthetic lethalities in human cancer. (A) Schematic of the CRISPR/Cas12 library 
multiplexed guide arrays targeting one or two genes per array. (B) Schematic of the synthetic lethality screening approach 
using the CRISPR/Cas12 library. (C) Violin plots of target-level CRISPR of log2 fold-changes for non-targeting guide (Neg 
CTRL), single knockout guides targeting essential genes (Single KO CTRL), double knockout guides targeting essential genes 
(Double KO CTRL), single knockout guides of TCGADEPMAP candidates (Single KO), and double knockout guides of 
TCGADEPMAP candidates (Double KO). (D) Rank plot of target level gene interaction (GI) scores in H1299 cells, including the 
top ten synthetic lethalities (table insert). The novel synthetic lethality, PAPSS1/2, is highlighted in blue. (E) Distribution of 
synthetic lethal candidates from TCGADEPMAP with experimental evidence of synthetic lethality in the CRISPR/Cas12 
multiplexed screening across 14 cancer cell lines. A blue box indicates a GI score < -2. (F) Spheroid size of H1299 cells with 
single or dual PAPSS1 / PAPSS2 knockouts, normalized to non-targeting (NT) control spheroids. (G) Flow cytometry 
histogram overlay plots of viable H1299 cells (DAPI-) showing loss of cell surface sulfonated heparan sulfate proteoglycans 
(HSPGs) as detected by antibody 10E4-GFP in PAPSS1/2-DKO but not control. cells. Percentages shown are frequency of 
parent of positive expression. (H) Flow cytometry plots as in (G). HepIII* indicates that cells were enzymatically treated with 
Heparinase III, an enzyme that specifically cleaves sulfonated HS chains. (I) Bar diagram showing spheroid size of UMUC3 
PAPSS1-KO (yellow) normalized to NT (green), either untreated (Ctrl) or supplemented with 10ug/ml and 50ug/ml of 
exogenous Heparan Sulfate (HS). (J) Diagram showing tumor sizes over time after in vivo implantation of 1e6 UMUC3 NT or 
PAPSS1-KO cells in SCID/Beige mice. Each dot is an individual mouse. (K) Kaplan-Meier plot of TCGADEPMAP patients with a 
predicted PAPSS1/2 synthetic lethality have worse outcome compared with the rest of the cohort, as determined by a Cox 
log-rank test.  
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varied between cell models and lineages, implicating the prevalence of unknown modifiers of 
synthetic lethality that manifest in different cellular contexts and are yet to be fully understood. 

One novel discovery using TCGADEPMAP was the prediction of PAPSS1 synthetic lethality with 
deletion of PAPSS2 (Figure S4E), and the neighboring tumor suppressor, PTEN (Figure 
SGB), which are frequently co-deleted in TCGA patient tumors (43% co-incidence) (Figure 
S4H-J). PAPSS1/2 are functionally redundant enzymes essential for synthesis of 3'-
phosphoadenosine 5'-phosphosulfate (PAPS) which is required for all sulfonation reactions 
(49), suggesting that loss of PAPSS1/2 is synthetic lethal due to the inability to sulfonate 
proteins. To test this hypothesis, PAPSS1/2 were targeted in H1299 spheroids by 
ribonucleoprotein (RNP), followed by measurement of spheroid growth and sulfonation levels 
of heparan sulfate proteoglycan (HSPG) chains on the cell surface by flow cytometry. 
Confirming the CRISPR/Cas12 screen data (Figure 4D), dual loss of PAPSS1/2 significantly 
reduced H1299 spheroid growth compared with controls (Figure 4F and S6A-B), which 
coincided with loss of HSPG sulfonation (Figure 4G). Likewise, targeting PAPSS1 by RNP in 
UMUC3 cells, which endogenously lack PAPSS2 and PTEN, also significantly depleted HSPG 
sulfonation and coincided with significant spheroid growth reduction (Figure 4H and S6A-B), 
which could be rescued by addition of exogenous heparan sulfate (Figure 4I). Finally, 
PAPSS1/2 synthetic lethality was confirmed in vivo, as demonstrated by a significant tumor 
growth reduction of UMUC3 tumors without PAPSS1/2 compared with control tumors lacking 
only PAPSS2 (Figure 4J and S6C). Collectively, these data demonstrate that translational 
dependency maps, such as the TCGADEPMAP are powerful tools to uncover previously 
underrepresented synthetic interactions in cancer models that are likely to be patient relevant.  

TCGADEPMAP is unique in its ability to uncover potential synthetic lethalities that can be related 
to patient outcomes, enabling the prioritization of the experimentally validated synthetic 
lethalities that correlate with the worst outcome and therefore likely to have the greatest clinical 
impact if druggable. To test this possibility, a Cox log-rank test was used to assess overall 
survival (OS) of TCGA patients that correlated with predicted gene essentiality by TCGADEPMAP 
and LOF events (mutation, deletion, or both) of the putative synthetic lethal partner. After 
controlling for tumor lineage, PAPSS1 dependency in TCGADEPMAP was correlated with 
significantly worse OS (HR=0.63, p=0.0003) in patients with PAPSS2 deletion (Figure 4K), 
demonstrating that PAPSS1 is a novel synthetic lethality target with potentially high 
translational impact. Collectively, these data demonstrate for the first time that translational 
dependency maps can enable the discovery, validation, and translation of novel synthetic 
lethalities.  

Building a translational dependency map in patient-derived xenografts: PDXEDEPMAP  

In addition to building TCGADEPMAP, a similar approach was applied to generating an orthogonal 
translational dependency map generated using the PDX Encyclopedia (PDXEDEPMAP) (29). As 
outlined in Figure 5A, PDXEDEPMAP was assembled by transferring the cross-validated 1,996 
expression-only models from the DEPMAP to the PDXE (n = 191 tumors) using the aligned 
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genomewide expression profiles from the PDXE (Table S10). Unsupervised clustering of gene 
essentialities across five well-represented lineages in PDXEDEPMAP confirmed that lineage is a   
key driver of gene dependencies (Figure 5B), fitting with the observations made in 
TCGADEPMAP (Figure 2E). PDXEDEPMAP also detected markedly stronger KRAS essentiality in 
KRAS-mutant PDX of PDAC and CRC lineages (Figure 5C, D), while BRAF essentiality was 
strongest in BRAF-mutant PDX of CM (Figure 5E, F). These data collectively demonstrate that 
the PDXEDEPMAP performed comparably to TCGADEPMAP and is well powered to detect gene 
essentiality signals in PDX models. 

In addition to orthogonal validation of TCGADEPMAP, a unique strength of PDXEDEPMAP is the 
ability to assess gene essentiality in the context therapeutic responses across five cancer 
lineages and 15 molecular therapies (29). To test the ability of gene essentiality to predict the 
response to corresponding targeted therapies, the change in PDX burden from baseline to 
experimental endpoint was correlated with target gene essentiality. This revealed that 80% of 
drugs (12 of 15) were significantly correlated (p<0.05) with the predicted essentiality of the  

Figure 5. Building a translational 
dependency map in patient-derived 
xenografts: PDXEDEPMAP. A) 
Schematic of gene essentiality model 
transposition from DEPMAP to PDXE, 
following alignment of genomewide 
expression data to account for 
differences in homogeneous cultured 
cell lines and PDX samples with 
contaminating stroma. (B) 
Unsupervised clustering of predicted 
gene essentiality scores across five 
lineages in PDXEDEPMAP confirmed 
similar lineage drivers of gene 
dependencies, as observed in 
TCGADEPMAP. Blue indicates genes 
with stronger essentiality, and red 
indicates genes with less essentiality. 
(C) KRAS dependency was enriched 
in PDXEDEPMAP lineages with high 
frequency of KRAS gain-of-function 
(GOF) mutations, including colorectal 
carcinoma (CRC) and pancreatic 
ductal carcinoma (PDAC). (D) KRAS 
essentiality correlated with KRAS 
mutations in all PDXEDEPMAP lineages. 
(E) BRAF dependency in PDXEDEPMAP 
was enriched in cutaneous melanoma 
(CM), which has a high frequency of 
GOF mutations in BRAF. (F) BRAF 
essentiality correlated with BRAF 
mutations in all TCGADEPMAP lineages. 
(G) Top correlated gene essentiality 
models that correlate with PDX 
response to erlotinib in PDXEDEPMAP. 
(H) Top correlated gene essentiality 
models that correlate with PDX 
response to cetuximab in PDXEDEPMAP. 
***P < 0.001, as determined by the 
Wilcoxon rank sum test for two group 
comparison and Kruskal-Wallis 
followed by Wilcoxon rank sum test 
with multiple test correction for the 
multi-group comparison.  
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 Table 1. Correlation of gene essentiality and drug response in PDXEDEPMAP 

Drug 
Treatment 

type 
Drug 

Target 

Predicted essentiality 
correlation with drug 
response (p-value) 

AUC 

erlotinib 
Single 
target 

EGFR 0.4937 (0.01213) ** 
0.787879 

trastuzumab Single 
target 

ERBB2 0.4849 (0.002351) *** 0.75 

BYL719 
Single 
target 

PIK3CA 0.3627 (9.881e-06) *** 
0.73913 

tamoxifen 
Single 
target 

ESR1 0.2839 (0.0841)  
0.841667 

cetuximab 
Single 
target 

EGFR 0.2293 (0.064) * 
0.830688 

figitumumab 
Single 
target 

IGF1R 0.2288 (0.1731) 
0.777778 

HDM201 
Single 
target 

MDM2 0.1995 (0.01942) ** 
0.783582 

LEE011 + 
everolimus 

Multi-target CDK4 0.6038 (7.59e-05) *** 
0.77451 

BKM120 + 
binimetinib 

Multi-target PIK3CA 0.4357 (5.02e-4) *** 
0.734 

LJM716 + 
trastuzumab 

Multi-target ERBB2 0.4665 (3.61e-3) *** 
0.82381 

CLR457 Multi-target PIK3CA 0.2018 (0.0107) ** 0.698718 

BYL719 + LJM716 Multi-target PIK3CA 0.215018 (0.0126) ** 0.643766 

LEE011 + 
encorafenib 

Multi-target CDK6 0.370181 (0.0370) * 
0.777778 

BKM120 Multi-target PIK3CA 0.155772 (0.0425) * 0.804391 

LEE011 Multi-target CDK4 0.149998 (0.0495) * 
0.776415 

 m*FDR<0.2, **FDR<0.1, ***FDR<0.05 
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target gene (Table 1). For example, trastuzumab response in the PDXEDEPMAP was strongly 
predicted by HER2 dependency (R=0.4849, p=0.002, AUC=0.75), in line with the predictive 
power of HER2 dependency on trastuzumab responsiveness in patients with HER2-amplified 
breast cancer (Figure 3E, F). Other examples, such as erlotinib (R=0.4937, p=0.01, 
AUC=0.78) and cetuximab (R=0.2293, p=0.06, AUC=0.83), target the same gene (EGFR), 
providing the opportunity to explore dependency mechanisms of therapeutic resistance across 
modalities. Comparisons of PDX responses to erlotinib or cetuximab revealed dependencies 
within two common pathways: the SWI/SNF complex (SMARCA2 and SMARCAD1) and 
protein trafficking (EMC4, EMC6, VPS39, and MAPK14) (Figure 4G, H). Notably, components  
of both pathways have been implicated in resistance to EGFR inhibitors (50, 51), suggesting 
that targeting these dependencies would likely improve patient outcomes. Taken together, 
these data demonstrate the ability of gene essentiality to predict therapeutic response and 
highlight the translatability of PDX modeling to patient-relevant clinical outcomes. 

Building a translational dependency map in normal tissues: GTEXDEPMAP  

A final objective of this study was to define gene essentiality in the context of normal tissues, 
which would provide a novel resource for prioritizing tumor dependencies with the best 
predicted tolerability. To achieve this objective, the expression-based dependency models 
from the DEPMAP were transposed using the aligned expression data from GTEX 
(GTEXDEPMAP), a compendium of deeply-phenotyped normal tissues collected from postmortem 
healthy donors (n=948) (31) (Figure 6A and Table S11). To assess the sensitivity of 
GTEXDEPMAP to dependencies with low tolerability, the molecular targets of drugs with reported 
toxicities in the liver and blood (n=241) were compared across GTEXDEPMAP (Table S12). This 
revealed that the average essentiality was significantly higher in liver and blood than other 
normal tissues. (Figure 6B). Likewise, unsupervised clustering of the 1,996 cross-validated 
gene essentiality models revealed strong tissue-of-origin dependencies in normal organs 
(Figure 6B), suggesting that tissue-specific biological context also contributes to gene 
essentiality in normal physiological settings. Taken together, these data demonstrate that 
GTEXDEPMAP is sensitive to known toxicities, which cluster around different normal organ types. 

Comparing essentiality scores of known druggable oncogenes in TCGADEPMAP with 
GTEXDEPMAP revealed greater dependency in malignant tissues versus the normal tissue-of-
origin. For example, KRAS and BRAF essentialities appear to be concomitantly dependent on 
lineage and genetic drivers, as the normal tissues-of-origin were predicted to be significantly 
less affected in the GTEXDEPMAP compared with TCGADEPMAP (Figure 6D, E). Likewise, similar 
observations were made for other oncogenic drivers that are approved therapeutic targets in 
cancer patients, such as HER2 amplified breast cancer (Figure S7). In contrast, there was 
markedly less separation in the predicted essentialities of malignant tumors and normal 
tissues-of-origin for molecular therapies that have yet to be successful in clinical trials (Table 
S13). To refine the list of oncogenic pathways with significant differences in tumor efficacy and 
normal tissue-of-origin tolerability, we compared dependency (TCGADEPMAP) and tolerability 
(GTEXDEPMAP) scores across all genes and tissues (Figure 6F). Pathway analysis of the 
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strongest tumor dependencies with the least tissue-of-origin toxicity revealed enrichment of 
multiple oncogenic pathways and pathophysiological processes (Table S14, including 
dysregulation of oxidative phosphorylation (p=5.8x10-11) and mitochondrial translation 
(p=2.9x10-20) pathways that were enriched in LUAD compared with normal lung (Figure 6G 
and S8). Combined, these observations suggest that predicted gene essentiality in the context 
of a driver mutation and correspondingly low essentiality within the normal tissue-of-origin is 
likely to identify efficacious drug targets with acceptable tolerability. 

Figure 6. Building a translational dependency map in normal tissues: GTEXDEPMAP. (A) Schematic of gene essentiality model 
transposition from DEPMAP to GTEX, following alignment of genomewide expression data to account for differences in 
homogeneous cultured cell lines and normal tissue biopsies. (B) Average gene essentiality profile across normal tissues of 
GTEXDEPMAP for molecular targets with known liver and blood toxicities (in blue). (C) Unsupervised clustering of predicted 
gene essentiality scores across normal tissues. Blue indicates genes with stronger essentiality, and red indicates genes 
with less essentiality. (D) KRAS essentiality is significantly higher in PAAD with GOF mutations compared with normal 
pancreas in GTEXDEPMAP. (E) BRAF essentiality is significantly higher in SKCM with GOF mutations compared with normal 
skin GTEXDEPMAP. (F) Global differences between the predicted target efficacy score (TCGADEPMAP) and the normal tissue-
of-origin tolerability score (GTEXDEPMAP). (G) STRING network analysis of the top 100 LUAD targets with the greatest 
predicted tolerability in normal lung reveals significant connectivity (p<1x10-16) and gene ontology enrichment oxidative 
phosphorylation (blue colored spheres; p=5.8x10-11) and mitochondrial translation (red colored spheres; p=2.9x10-20). ***P 
< 0.001, as determined by the Wilcoxon rank sum test for two group comparison and Kruskal-Wallis followed by Wilcoxon 
rank sum test with multiple test correction for the multi-group comparison. 
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DISCUSSION 

This study addresses the significant challenge of translating gene essentiality from cell-based 
dependency maps to the rapidly expanding catalogue of patient-relevant datasets. The 
translational dependency maps (TCGADEPMAP, PDXEDEPMAP, and GTEXDEPMAP) were built using 
expression-based predictive models of gene essentiality, because expression-only models 
performed comparably to multi-omics models that included genomic features (e.g., somatic 
mutations and copy number), as was reported elsewhere (26, 27). Another strength of 
expression-based predictive modeling is that it can be applied to the transcriptomic profiles of 
normal tissues (e.g., GTEXDEPMAP) that do not have appreciable levels of the somatic alterations 
that are observed in malignant tissues (31). Moreover, transcriptomics is frequently the most 
widely captured dataset for many largescale clinical studies (52), suggesting that the methods 
used here will be widely applicably across many studies. Indeed, the same expression-based 
predictive models recapitulated a similar dependency profile in TCGADEPMAP and PDXEDEPMAP 
across different cancer lineages and genetic drivers. Both maps also accurately predicted 
therapy-relevant molecular subtypes, therapeutic responses, and disease outcomes, whereas 
GTEXDEPMAP provided novel insights to normal tissue-of-origin tolerability. Collectively, these 
translational dependency maps offer clinically relevant aspects to gene essentiality that are not 
currently accessible in the traditional cell-based dependency maps. 

Translating tumor dependencies using TCGADEPMAP and PDXEDEPMAP 

A challenge of cell-based dependency maps (e.g., DEPMAP) is the inability to fully recapitulate 
patient genomics, therapeutic responses, and many aspects of disease outcomes and patient 
survival (36). Using TCGADEPMAP to survey the landscape of translational dependencies in 
cancer patients, we observed a strong correlation between patient tumor type and 
corresponding cancer cell line lineages (Figure 2C-E). A comparison of predictive dependency 
models across TCGADEPMAP (Figure 2E) and PDXEDEPMAP (Figure 5B) revealed that 
dependencies accurately predict tumor lineages (AUC=0.75), fitting with observations made in 
TCGA that tissue-of-origin dominates the molecular landscape of cancer (53). In addition to 
lineage dependencies, TCGADEPMAP and PDXEDEPMAP also demonstrated the abilities of 
predicted dependencies to define therapy relevant molecular subtypes, including the ER-
positive luminal breast cancer (Figure 3A-C) and HER2-amplified breast cancer (Figure 3A-
B, D). Fitting with these observations, the response to trastuzumab and post-treatment HER2 
expression in patients with HER2-amplified breast cancer was significantly associated with 
predicted HER2 essentiality (Figure 3E, F), as was the ability to predict trastuzumab response 
in PDXEDEPMAP (Table 1). In total, PDXEDEPMAP showed that the essentiality of a molecular 
target could be associated with the molecular therapy in 12 out of 15 cases (Table 1), as well 
as the ability to correlate dependencies with intrinsic resistance to therapeutic responses 
(Figure 5G, H). However, despite the novel findings, power analyses using these data also 
suggest that increased cohort sizes will be required to replicate and expand these findings. 
Thus, translational dependency maps combined with the expanding catalogue of patient 
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genomics and PDX modeling (3, 28) are expected to provide novel molecular targets for 
patient-relevant therapies.  

In addition to cancer lineage and subtype dependencies, TCGADEPMAP provided novel 
molecular insight to the genetic drivers of gene essentiality in patient populations. Notably, 
well-defined oncogenic drivers of tumor dependencies (e.g., KRAS and BRAF) were highly 
predictable in TCGADEPMAP and PDXEDEPMAP (Figure 2F-I and 5C-F), as would be expected 
based on the predictive response rates for molecular therapeutics targeting oncogenic drivers 
in patients (54). However, despite most SSDs correlating between TCGADEPMAP and DEPMAP, 
several notable dependencies showed different selectivity profiles between patients and cell 
models, including FLT3, ATPV6V0E1, and PTPN11. Some of these discrepancies appear to 
be attributed to cohort-specific distributions of the underlying drivers of SSDs (e.g., FLT3 and 
ATPV6V0E1) (Figure S3A-D), whereas others were likely attributable to different 
pathophysiological contexts, such as the 3D contexts of intact tumors versus the 2D contexts 
of cultured cells (e.g., PTPN11) (Figure S3E-H). Importantly, TCGADEPMAP and PDXEDEPMAP 
also enabled the association of tumor dependencies with clinical outcomes, including 
predicting therapeutic responses (Figures 3E-F, 5G-H, and Table 1) and patient survival 
(Figure 3G-H). Taken together, these data demonstrate the value of translational dependency 
maps to interpret gene essentiality in patient-relevant contexts and extending these findings to 
predicting novel tumor dependencies that impact patient outcomes.  

Multiple known synthetic lethalities were also detected in TCGADEPMAP (STAG1/2, SMARCA2/4, 
and EP300/CREBBP) (44, 45, 47, 48), as well as previously unappreciated candidate pairs 
that have not been reported elsewhere (e.g., PAPSS1/2). Intriguingly, PAPSS2 deletion is 
prevalent in the TCGA, yet deletions of this genetic loci were mostly absent from DEPMAP cell 
lines. We hypothesize that loss of PAPSS2 is likely driven by its proximity to PTEN and is an 
example of collateral deletion in patient tumors (55). Since PTEN is largely silenced by LOF 
mutations in cancer cell lines and not deletion, a synthetic lethality between PAPSS1 and 
endogenous collateral deletion of PAPSS2 with PTEN is likely undetectable in cell-based 
dependency maps. Nonetheless, increased dependency on PAPSS1 was observed in one of 
the few DEPMAP cell models with endogenous PAPSS2 and PTEN collateral deletion, UMUC3 
(Figure 4I, J), which could be attributed to the inability of these cells to sulfonate proteins 
(Figure 4H). Importantly, the unique ability of TCGADEPMAP to associate synthetic lethal 
mechanisms with patient outcomes revealed a worse overall survival of patients with an 
endogenous loss of PAPSS2 and a predicted synthetic lethality with PAPSS1 dependency 
(Figure 4K). Thus, these data collectively highlight the benefits of translational dependency 
maps that closely match the pathophysiological contexts of intact patient tumors and the 
diversity of patient genomic datasets to identify clinically-relevant mechanisms (1, 28).  

Translating tolerability of dependencies using TCGADEPMAP and GTEXDEPMAP 

As the landscape of gene essentiality continues to expand, a better understanding of the 
impact on normal tissues to predict tolerability is needed. To address this challenge, we applied 
the expression-based dependency models to GTEX, a compendium of deeply-phenotyped 
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normal tissues collected from postmortem healthy donors (31). This novel map of gene 
essentiality in the context of normal tissues (i.e., GTEXDEPMAP) was able to predict greater gene 
essentiality in normal blood and liver for the molecular targets of multiple drugs with observed 
toxicities in those organs (Figure 6B). Thus, these data support that GTEXDEPMAP is also well-
powered to detect other genes with potential liabilities in other organs. Strikingly, unsupervised 
clustering of the predicted gene essentialities across 17,382 normal tissues in the GTEXDEPMAP 
also demonstrated a significant impact of tissue-of-origin on gene essentiality (Figure 6C). 
One potential reason is that pathways required for maintaining normal tissue homeostasis are 
frequently co-opted for oncogenesis (56) and several such pathways serve as key therapeutic 
targets for cancer (57). In addition to lineage pathways, most successful cancer therapeutics 
are also targeted towards somatic drivers, which are absent from normal tissues and therefore 
likely to be more tolerable (56, 57). A unique aspect of this study was the ability to 
systematically compare gene essentiality associated with somatic mutations in TCGADEPMAP 
with the normal tissue-of-origin tolerability profiles in GTEXDEPMAP. Strong oncogenic 
dependencies with acceptable tolerability (e.g., KRAS and BRAF) (56, 57) revealed marked 
differences between predicted gene essentiality in malignant and normal tissues, and this 
therapeutic window was further widened in the presence of the oncogenic mutation (Figure 
6D-E). Systematically expanding this analysis across all gene essentiality models in 
TCGADEPMAP and GTEXDEPMAP revealed wide variability in the predicted tolerability windows, 
implicating the existence of other dependencies with strong genetic drivers that are likely to be 
more tolerable as therapeutic targets. However, when interpreting these data we also 
recommend exercising caution, as the tolerability windows predicted by comparing tissue-of-
origin gene essentiality between TCGADEPMAP and GTEXDEPMAP likely does not yet fully capture 
the other dose-limiting toxicities that pose challenges to clinical drug development (58). As 
such, future efforts to model gene essentiality in normal tissues should expand to incorporate 
systems approaches to integrating tolerability signals across multi-organ physiological 
pathways and systems. 

Comparison of TCGADEPMAP with other translational dependency maps  

During the completion of this study, Chiu et al (27) took a complimentary approach to building 
a translational dependency map (DeepDEP) using deep learning (DL) from the integrative 
genomic, epigenomic, and transcriptomic profiles of TCGA patients and DEPMAP cell lines. 
Here, we used elastic-net regularized regression models of expression data for predicting 
gene essentiality and tolerability, as these expression-based models performed 
comparably to multi-omics models and can be applied to malignant tissue (TCGADEPMAP 
and PDXEDEPMAP) and nonmalignant tissues (GTEXDEPMAP). The DeepDEP authors also 
highlighted that a simplified DL model using expression only (Exp-DeepDEP) performed 
comparably well to DeepDEP (27), suggesting that both approaches are dominated by 
expression data (27). For lack of other ground truths, we compared the predicted tumor 
dependencies of TCGADEPMAP and DeepDEP by pan-cancer lineage and breast cancer 
subtypes, as these were annotated by TCGA and DEPMAP. Compared with DeepDEP, the 
predicted dependencies by TCGADEPMAP were more accurate in identifying cancer lineages and 
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breast cancer subtypes (Figure S9A-B). Moreover, TCGADEPMAP was able to accurately cluster 
tumors and cell models of the same cancer lineage, whereas DeepDEP was comparably less 
able cluster tumors and cell lines by t-SNE, despite the dominance of expression in the 
DeepDEP dependency models (27). One potential explanation is the liability of DL models to 
overfit highly dimensional data (e.g., transcriptomics) (59), which was potentially compounded 
by the unlabeled pretraining stage of DeepDEP with TCGA expression data that included 
expression profiles of nonmalignant stroma (27). Indeed, adopting the approach by Warren et 
al (60) to remove the confounding effects of stromal signatures and tumor purity in patient 
biopsies resulted in more accurate transposition of the dependency models. Thus, the 
collective data demonstrated that the elastic-net models underlying TCGADEPMAP, PDXEDEPMAP, 
and GTEXDEPMAP performed well compared to DeepDEP, which is to our knowledge the only 
other translational dependency map to date. As additional studies become available, a more 
in-depth benchmarking of approaches for translating dependencies is warranted, including the 
ability to detect genetic drivers, synthetic lethalities, and other patient-relevant features.  

Future considerations for translational dependency maps 

The translational dependency maps presented in this study (TCGADEPMAP, PDXEDEPMAP, and 
GTEXDEPMAP) provide novel insights to gene essentiality and tolerability in the clinical context 
of patient tumors and normal tissues. The ability of these maps to accurately translate 
dependencies to patients is reliant on the ability to build predictive models from cell-based 
mapping, which is still at the early stages (~1,000 mapped cell lines) and is expected to require 
20X more data (~20,000 mapped cell lines) to fully predict gene essentiality (7). Similar needs 
exist to expand and incorporate translational dependency maps to include compound 
screening efforts across large number of cell models, such as the PRISM 
(https://depmap.org/portal/) and GDSC initiatives (https://www.cancerrxgene.org/). Further, 
the observations that cell-based dependencies vary between 2D and 3D settings (61) and are 
impacted by crosstalk with the TME (62), suggests that gene essentiality is contextual and 
requires models with greater relevance to intact tumors, such as organoids. Likewise, it is 
equally plausible that accurately interpreting translational dependencies will require a deeper 
understanding of clonal heterogeneity with patient tumors that is lacking from homogenous 
cancer cell lines. To reach the full potential of translational dependency mapping, the catalog 
of patient genomic datasets will also likely require expansion to capture various stages of 
disease progression,  including tumorigenesis (2), metastasis (3, 63), and therapeutic 
resistance (3, 4, 63). Furthermore, as precision cancer clinical trials continue to expand (e.g., 
MSK-IMPACT) (4), it will be increasingly possible to refine translational dependency maps by 
testing outcomes of molecular therapeutics with predicted target essentiality. The utility of 
translational “tolerability” maps in normal tissues (e.g., GTEXDEPMAP) remains to be fully 
explored and will likely benefit from further refinements to better capture aspects of dose-
limiting toxicities (DLT) that impact drug development. To this end, we postulate that modeling 
gene tolerability could be best assessed in normal cell types by pairing CRISPR perturbations 
with single-cell RNA sequencing (64, 65) to broadly capture the alterations of pathways 
required for normal tissue homeostasis. Ultimately, we postulate that predictive modeling of 
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dependency and tolerability in patients will increase the success of drug discovery by 
preemptively prioritizing targets with the best therapeutic index (i.e., high dependency and 
tolerability). 
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MATERIALS AND METHODS 

Predictive modelling of gene essentiality using DEPMAP data 

Two sets of elastic-net regression models were generated to predict gene essentiality from the 
DEPMAP (n = 897 cell lines) with RNA alone (i.e., expression-only) or combined with mutation 
and copy number profiles (i.e., multi-omics). Gene effect scores were estimated by CERES 
(24), which measures the dependency probability of each gene relative to the distribution of 
effect sizes for common essential and nonessential genes within each cell line (25). Because 
many genes do not impact cell viability (CERES<-0.5), elastic-net models were attempted only 
for genes with at least five dependent and non-dependent cell lines, which included 7,260 out 
of 18,119 genes (40%) with effects scores in the DEPMAP (1Q21 release). Genomewide 
datasets (19,005 genes) for RNAseq, mutations, and copy number variants (log2 relative to 
ploidy + 1) for the 897 cell lines were downloaded directly from the DEPMAP (1Q21, 
https://depmap.org/portal/). The ‘glmnet' package (version 4.1.3) (23) was used to build elastic-
net regularized regression models with balanced weights for L1 and L2 norm regularization. 
The alpha values were kept constant at 0.5 for all models. Models were 10-fold cross-validated 
using “lambda.min” from cv.glmnet from the glmnet R package (100 lambdas tested per model 
by default) to select the lambda showing the minimum error balanced with the prediction 
performance and the number of features selected, as described previously (66). The 
performance of the optimal model per was then assessed by Pearson’s correlation coefficient 
(R), with a “pass” threshold of R>0.2 and FDR<0.001 to correct for multiple hypothesis testing. 
Cross-validation confirmed 1,996 expression-only models and 2,045 multi-omics models, of 
which the majority of cross-validated models overlapped (n=1,797) between the two datasets 
(Table S3). 

Model transposition following transcriptional alignment of DEPMAP to TCGA, PDXE, 
and GTEX datasets to build TCGADEPMAP, PDXEDEPMAP, and GTEXDEPMAP	

The translational dependency maps TCGADEPMAP, PDXEDEPMAP, and GTEXDEPMAP were built 
using expression-only models of gene essentiality, based on relatively marginal performance 
gains in the multi-omics models of gene essentiality, as reported elsewhere (26, 27).  To enable 
transposition of the cross-validated expression-only models (n=1,996) from the DEPMAP to 
TCGA (N = 9,596 tumors), PDXE (N=191 tumors), and GTEX (N=17,382 tissues across 54 
tissues and 948 donors), the genomewide gene expression data sets were downloaded for 
TCGA (https://xenabrowser.net/datapages/), PDXE (29), and GTEX 
(https://gtexportal.org/home/datasets). For TCGA data, if multiple samples were collected from 
the same patient, only the primary tumor biopsy was included in TCGADEPMAP. For GTEX, the 
potential biases introduced by sampling multiple organ tissues from each individual was 
assessed by UMAP analysis of the gene expression profiles across GTEX samples, which 
revealed that GTEX samples are clustered by tissue types rather than by individuals. Likewise, 
no evidence of clustering was observed based on other patient-specific clinical variables (e.g., 
cause of death, age, etc.), suggesting that the tissue-specific effects are the predominant 
drivers of gene expression in normal tissues.  
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Unsupervised cluster analyses by UMAP dimension reduction were used to evaluate the 
similarities in expression profiles of the DEPMAP cell lines compared with the tissue biopsies 
from TCGA, PDXE, and GTEX. As reportedly previously (60), the DEPMAP and TCGA 
expression profiles do not cluster well by UMAP alignment due to contaminating transcriptional 
profiles of stromal and immune cells, which would impact expression-based predictive 
modeling of gene essentiality. Likewise, UMAP clustering of expression profiles from DEPMAP 
cell line data compared with PDXE and GTEX samples revealed that transcriptional alignment 
of these data were equally problematic. To overcome this issue, expression data from 
DEPMAP and TCGA were quantile normalized and transformed by contrastive principal 
component analysis (cPCA) to identify misaligned components derived from the stromal 
contamination in TCGA. The top contrastive principal components (cPC1-4) were removed, 
followed by multiple-batch correction to normalize the expression data by matching the 
corresponding clusters in TCGA and DEPMAP. To assess transcriptional alignment on model 
transposition, the pre- and post-aligned TCGADEPMAP models were compared with tumor purity, 
which revealed a strong correlation between gene essentiality and tumor purity that was 
removed by transcriptional alignment (Figure 2B). An identical approach was utilized for 
aligning PDXE expression data, with the slight modification that only cPC1-3 required removal, 
as PDX models grown in immunocompromised mice lack the adaptive immune system and 
typically have lower stromal contamination. For aligning DEPMAP and GTEX data, a slightly 
different approach was used to combine quantile normalization and ComBat (67) to remove 
potential batch effects without using cPCA, as GTEX data only includes nonmalignant tissue. 

Characterization of TCGADEPMAP  

The distribution of the cross-validated expression-only models of gene essentiality (n=1,996) 
across lineages was assessed by unsupervised cluster analysis (Ward.D2 method) and 
visualized using the ComplexHeatmap R package (version 2.6.2). A similar approach was used 
for unsupervised cluster analysis and heatmap visualization for molecular subtyping of the 
breast cancer (BRCA) cohort of TCGADEPMAP using the top 100 most variable dependencies 
(DEP100) across BRCA cohort only. For lack of other ground truths, the performance of 
TCGADEPMAP to classify molecular subtypes of BRCA was benchmarked using a linear 
discriminant analysis (LDA) with leave-one-out cross-validation performed using the MASS 
package (version 7.3.51.4) for R and the CV=TRUE option in the function. Predictions for each 
cancer type and subtype was evaluated separately and the AUC values were determined using 
the function "roc” from the pROC (version 1.18.0) package for R and compared with the 
molecular typing and subtyping reported by the TCGA (https://www.cbioportal.org/) (68). In 
addition to BRCA molecular subtypes, a distinct subset of the 100 most variable dependencies 
from the pan-cancer TCGADEPMAP dataset was used to benchmark TCGADEPMAP more broadly, 
using an identical LDA with leave-one-out cross-validation, as described above. Finally, both 
analyses were repeated with the DeepDEP gene essentiality values reported by Chiu et al (27) 
and the receiver operating characteristic (ROC)–area under the curve (AUC) values were 
compared between TCGADEPMAP and DeepDEP predictions of cancer lineages and BRCA 
cancer subtypes (Figure S9).  
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Associations of dependencies with genomic features (somatic mutations and copy number 
variants) in TCGADEPMAP were assess using a Wilcoxon Rank Sum differential test as 
implemented using stat_compare_means function of ggpubr R package (version 0.4.0). The 
ability of expression features to predict essentiality and mutational status of same gene by 
elastic-net modeling was compared using the glmnet R package (version 4.1) with the same 
parameters for both model sets. The elastic-net models were allowed to select the most 
informative predictive features for mutation and essentiality for each gene, as the best 
predictors for essentiality may not be the best features to predict mutation. For AUC evaluation, 
we used -0.5 as cutoff for gene essentiality scores to determine sensitive and resistant cells 
for gene models. The AUC values are calculated using pROC R package (version 1.16.2). To 
characterize strongly selectivity dependencies (SSD), a normality likelihood ratio test 
(NormLRT) (32) was performed  with slight modifications to rescale the larger NormLRT values 
observed in TCGADEPMAP due to a 10-fold larger cohort size (n=9,596)  compared with DEPMAP 
(n=897). A bootstrapping of the DEPMAP gene effect scores was performed to estimate how 
the NormLRT scores change when scaling up from the DEPMAP cohort size (n=897 cell 
models) to the cohort size of TCGA (9,596). A linear fitting was performed to estimate the slope 
between DEPMAP and bootstrapped equivalent, which was as a scaling factor (0.07) to rescale 
TCGA NormLRT scores. Notably, outliers were identified based on the ranking NormLRT 
scores within each cohort, which therefore was not affected by the rescaling TCGA NormLRT 
scores. For TCGA breast cancer patients (n=765), we divided the patients into PTPN11 
dependent and non-dependent groups. The PTPN11 dependent patients (77 patients) are 
selected as top 10% breast patients with lowest PTPN11 essentiality scores. Among all the 
variants, we applied Fisher’s exact test for mutations with more than 5% frequency (12 
mutations), deletions with more than 10% frequency (4,891 deletions) and amplifications with 
more than 10% frequency (4,831 amplifications). The test was performed using the fisher.test 
function in stats (version 4.0.3) R package with options ‘alternative=greater’ to calculate p-
values for enrichment of variants for PTPN11 dependent and non-dependent groups. The gene 
models (890 models) used for mutation predictions are selected from 1,996 cross-validated 
expression only essentiality model with mutation frequency over 2%.  

Associating clinical outcomes with tumor dependencies in TCGADEPMAP 

Due to the limited accessibility of therapeutic response data in TCGA (36), the association of 
HER2 essentiality with response to trastuzumab (anti-HER2 antibody) was tested in a recent 
trastuzumab clinical trial of 50 HER2+ breast cancer patients with pre- and post-treatment 
biopsies that were analyzed by microarray (37), The microarray expression data were 
downloaded from NCBI GEO (accession # GSE76360) and the patient responses were defined 
by the study authors (37). Differences in predicted HER2 essentiality in patients with different 
clinical responses was tested using ggpubr R package (version 0.4.0), followed by a Wilcoxon 
Rank Sum Test using stat_compare_means function in the package. Correlation of HER2 
essentiality and HER2 expression post treatment was tested by Pearson’s correlation, as 
calculated by stat_cor function ggpubr R package (version 0.4.0). Additionally, the correlation 
of TCGADEPMAP dependencies with the progression free interval (PFI) of TCGA patients was 
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performed, excluding the LAML, DLBC, KICH, and PCPG cohorts based on the 
recommendations of Liu et al (36). The PFI data were directly downloaded from Liu et al (36) 
and the maximally selected rank statistics from the ‘maxstat’ R package was used to determine 
the optimal cut-point for dichotomization (high vs. low) of dependency scores (n=1,996 cross-
validated models). The prognostic value of the resulting dichotomized dependency scores was 
evaluated using the log-rank test with FDR correction (Benjamini-Hochberg adjusted) to 
account for multiple hypothesis testing. The data were visualized by Kaplan–Meier curves and 
are interpreted as a hazard ratio (HR) > 1 indicated a worse expected outcome in patients with 
a higher dependency score at an FDR < 0.2.  

Predicting synthetic lethality relationships in TCGADEPMAP 

Multiple approaches were integrated to predict and prioritize synthetic lethality relationships 
with loss-of-function (LOF) events (defined as a predicted copy number loss or damaging 
mutation) in TCGADEPMAP. Lasso regression was used to identify gene essentialities (n = 7,260 
expression-only models) with increased dependencies associated with 25,026 LOF events in 
TCGA, as annotated by Bailey et al  (69). For each model, the lambda value was selected as 
the lowest error by 5-fold cross-validation and the resulting models with coefficients >0.3 were 
further evaluated by t-test. The lasso regression analysis identified 633,232 predicted synthetic 
lethal candidates (FDR<0.01), which were too numerous to experimentally validate and 
required further prioritization. First, UNCOVER (70) was used to prioritize synthetic lethal 
candidates predicted by TCGADEPMAP that correlated with endogenous mutual exclusivity of 
LOF mutations (3% to 70% prevalence) in TCGA, with the hypothesis that these candidates 
would have greater translational relevance. UNCOVER was ran in greedy mode 
(UNCOVER_greedyv2.py) to identify negative association with a mutated gene sets of 
maximum 10 genes. To evaluate the confidence of association, we set the number of 
permutations as 100 to compute p-values and applied a threshold of p<0.01. Of the 633,232 
predicted synthetic lethal candidates predicted by TCGADEPMAP, 28,609 pairs also had evidence 
of mutually exclusive mutation rates in TCGA. The candidate list was then refined further by 
prioritizing paralogs using the biomaRt paralog database (version 2.28.0) R package. We 
additionally included pairs characterized by phylogenetic distance  with threshold less than 1.5, 
as described previously (71, 72). The candidate list received a final filtering based on overall 
patient prevalence of LOF events, protein-protein interactions with TSG (73, 74), prior 
experimental evidence of gene-gene interactions (6, 16, 17, 41, 42), and manual curation to 
include essential and non-essential controls. The final list of gene pairs that were prioritized for 
experimental validation included 601 synthetic lethality candidates from the original lasso 
regression of TCGADEPMAP and an additional 264 pairs that were retained as library controls 
(Table S8). 

Multiplexed screening synthetic lethalities using AsCas12a (AsCpf1) and enAsCas12a 
(enAsCpf1) 

Guides were designed using the TTTV PAM for AsCas12a and synthesized into 4-guide arrays 
with direct repeats (DR)-1, -2, -3, and -4 preceding each guide, followed by cloning into a guide-
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only lentiviral vector (pRDA_052), as described previously (47, 48). A double knockout 
construct was designed with 2 guides x 2 genes (n = 4 guides total per construct) for each pair 
of synthetic lethal candidates. Single knockout constructs were also designed 2 guides x 1 
gene + 2 non-targeting guides (n= 4 guides total per construct) for each pair of synthetic lethal 
candidates. For some pairs, multiple single knockouts were used to assess overall library 
variance and were collapsed to the median values for downstream gene interaction analysis. 
A total of 500 constructs with 4 non-targeting guides were also included in the library as 
negative controls. An initial set of pilot screens were performed in triplicate using A549, NCI-
H1299, MDA-MB-231, PC3M, and DETROIT562 that stably express AsCas12a, as described 
previously (48). An enhanced AsCas12a (enAsCas12a) enzyme was recently reported that is 
compatible with CRISPR/AsCas12a libraries (46), enabling an independent replication of the 
initial pilot screens and expansion to a total 14 total cancer cell models. The subsequent 
screens using enAsCas12a were performed in triplicate using A549, NCI-H1299, MDA-MB-
231, NCI-H1703, PC3M, DETROIT562, HT29, HCT116, PANC1, MIAPACA2, SNU1, HSC2, 
HSC3, and FADU. For all screens, cells were infected at a multiplicity of infection (MOI) = 0.3 
and cultured for 14 days while continuously maintaining 500X coverage, followed by DNA 
extraction and PCR-barcoding using the p5 Agon and p7 Kermit primers (48). The PCR-
barcoded libraries were single-end sequenced using an Illumina HiSeq4000 (300X cycle), 
followed by demultiplexing of sequencing reads (bcl2fastq, Illumina) and quantification of guide 
array abundance across all samples was done with a custom Perl script. Sequences between 
the flanking sequences or by location were extracted and compared to a database of sgRNA 
for each library. Only perfectly matched sgRNA sequences were kept and used in the 
generation of count matrix. Normalization between all samples was done using the “TMM” 
method (75) implemented in the edgeR R Bioconductor package.  Log2 fold-changes (L2FC) 
of guide array abundance were calculated by comparing day 14 libraries with the plasmid 
library using limma-voom (76). Genetic interactions (GI) were calculated by comparing the 
expected and observed L2FC of double and single knockout constructs, as described 
previously (41, 47). Briefly, the expected L2FC for double knockout constructs is calculated as 
a sum (LF2C) of the individual knockout (sgRNA + Nontargeting). Synthetic lethal and buffering 
interactions are defined for double knockout in which the observed double knockout L2FC is 
significantly greater or less than that of the expected L2FC, respectively.  

Experimental validation of PAPSS1/2 synthetic lethality 

CRISPR/Cas12 knockouts of PAPSS1 and/or PAPSS2 were performed with Integrated DNA 
Technologies (IDT) Cas12 Ultra according to manufacturer’s instructions by Neon 
electroporation of RNPs (Invitrogen). Guides were designed using the Broad Institute 
CRISPick algorithm and the two best performing guides for each gene were used in 
combination; PAPSS1_guide#1 AGGATCGCAACAATGCAAGGCAA, PAPSS1_guide#2 
TCTTCATGAGTCGCAGTCAGAAC, PAPSS2_guide#1 AGAACATTGTACCCTATACTATA, 
PAPSS2_guide#2 GAGGTGCATCTACAAATATTTCA. Protein expression was quantified by 
Simple Western (ProteinSimple, BioTechne) using the following antibodies; PAPSS1 clone 
1F4 (Abnova, H00009061-M05) at 1:100, PAPSS2 (Cell Signaling Technology (CST), #70638) 
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at 1:50, PTEN (CST, #9552) at 1:100 with beta-Actin clone 8H10D10 (CST, #3700) and Gapdh 
clone 14C10 (CST, #2118) as loading controls. Flow cytometry analysis of sulfonated HSPGs 
was performed with 10E4 antibody conjugated to FITC and used at 1:200 (USBiological Life 
Sciences, #H1890-10). Bacteroides Heparinase III was obtained from New England Biolabs 
(NEB, P0737L) and used as per manufacturer’s protocol by treating cells for 1hr in reaction 
buffer at 30oC before FACS analysis. Spheroid cultures were performed on Ultra-low 
attachment 96-well plates (Corning, #7007), growth was tracked on Incucyte S3 (Sartorius) 
and CellTiterGlo (CTG) readouts were performed for viability measurements (Promega, Cat# 
G9681). For rescue experiments, Heparan Sulfate (HS) was used at 10 to 50ug/mL (Sigma, 
H7640). For in vivo experiments, 1e6 UMUC3 cells were reconstituted in Hanks Balanced Salt 
Solution (HBSS), mixed 1:1 with Matrigel (Corning, 356235) and 200ul inoculated in the right 
flank (n=5 SCID/Beige mice per condition). Tumors were extracted at day 22, mechanically 
dissociated with scalpels and single-cell suspensions were made using Liberase and DNAseI 
(Millipore Sigma, Cat 05401127001 and 11284932001) incubated at 37oC for 1hr and mouse 
cells were magnetically depleted on LS columns using mouse cell depletion cocktail (Miltenyi, 
130-104-694 and 130-042-401).  

Characterization of PDXEDEPMAP 

The distribution of the cross-validated expression-only models of gene essentiality (n=1,996) 
across lineages was assessed by unsupervised cluster analysis (Ward.D2 method) and 
visualized using the ComplexHeatmap R package (version 2.6.2). Associations of 
dependencies with genomic features were assess using a Wilcoxon Rank Sum differential test 
as implemented using stat_compare_means function of ggpubr R package (version 0.4.0). To 
test the ability of gene essentiality to predict the response to corresponding targeted therapies, 
the change in PDX burden from baseline to experimental endpoint was correlated with target 
gene essentiality in PDXEDEPMAP using a Pearson’s correlation test and FDR correction of p-
values for multiple hypothesis testing. Receiver operating characteristic (ROC)–area under the 
curve (AUC) analysis was performed using the pROC R package (version 1.18.0) to assess 
the accuracy of drug responses predicted by the target gene essentiality scores. Only drugs 
with at least 20 treated PDX models were evaluated, and the metrics are reported in Table 1. 

Characterization of GTEXDEPMAP 

The distribution of the cross-validated expression-only models of gene essentiality (n=1,996) 
across normal tissues was assessed by unsupervised cluster analysis (Ward.D2 method) and 
visualized using the ComplexHeatmap R package (version 2.6.2). Differences in gene 
essentiality in normal and malignant tissues, as well as malignant tissues with genomic 
features, were assessed using a Wilcoxon Rank Sum differential test as implemented using 
stat_compare_means function of ggpubr R package (version 0.4.0). To evaluate the sensitivity 
and specificity of GTEXDEPMAP to genes associated with tissue-specific toxicities, we profiled 
GTEXDEPMAP genes associated with both blood disorders and drug-induced liver toxicity using 
the Cortellis OFF-X database (https://targetsafety.info/). The OFF-X database is a drug and 
target safety intelligence database that predicts potential associations based off both 
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preclinical and clinical safety data alerts from peer-reviewed journals, company 
communications, clinical trials, and regulatory agency communications. These blood and liver 
toxicity associations were further evaluated to identify overlapping or unique genes to each 
toxicity and annotated with the frequency of associated safety alerts. In total, the Cortellis OFF-
X database identified for drug targets associated with potential toxicities in blood (n=82), liver 
(n=85), or blood and liver (n=74), which were then compared across normal tissue lineages in 
GTEXDEPMAP. To compare gene essentiality between malignant and normal tissues, 
TCGADEPMAP and GTEXDEPMAP samples were matched based on the tissue-of-origin and a 
student’s t-test was applied to differential analysis between the dependency profiles of tumor 
and normal tissue of the same lineages. The t-statistic was used to characterize the 
dependency difference between the tumor and corresponding normal tissue with a negative t-
statistic value corresponding to a higher dependency in tumor as compared with the normal 
tissue. Gene ontology enrichment analysis (GSEA) was performed across all paired malignant 
and normal tissue-of-origin. The list of genes for the lung network was generated using the top 
100 genes showing the largest differentiation in gene essentiality between cancer compared 
to normal tissue in lung based on the negative t-statistic values. Network connectivity and the 
gene ontology enrichment were calculated using STRING (https://string-db.org/), as described 
previously (77). 
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