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ABSTRACT 

Transcriptomic analysis in metabolically active tissues allows a systems genetics approach to 

identify causal genes and networks involved in metabolic disease.  Outbred heterogeneous stock 

(HS) rats are used for genetic mapping of complex traits, but to-date, a systems genetics analysis 

of metabolic tissues has not been done.  We investigated whether adiposity-associated genes and 

gene co-expression networks in outbred heterogeneous stock (HS) rats overlap those found in 

humans.  We analyzed RNAseq data from adipose tissue of 415 male HS rats, correlated these 

transcripts with body weight (BW) and compared transcriptome signatures to two human cohorts: 

the African American Genetics of Metabolism and Expression and Metabolic Syndrome in Men.  

We used weighted gene co-expression network analysis to identify adiposity-associated gene 

networks and mediation analysis to identify genes under genetic control whose expression drives 

adiposity.  We identified 554 orthologous “consensus genes” whose expression correlates with 

BW in the rat and with body mass index (BMI) in both human cohorts.  Consensus genes fell 

within eight co-expressed networks and were enriched for genes involved in immune system 

function, cell growth, extracellular matrix organization and lipid metabolic processes.  We 

identified 19 consensus genes for which genetic variation may influence BW via their expression, 

including those involved in lipolysis (e.g., Hcar1), inflammation (e.g., Rgs1), adipogenesis (e.g., 

Tmem120b) or no previously known role in obesity (e.g., St14, Msa4a6).  Strong concordance 

between HS rat and human BW/BMI associated transcripts demonstrates translational utility of 

the rat model, while identification of novel genes expands our knowledge of the genetics 

underlying obesity.   
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INTRODUCTION 

Obesity and overweight are major risk factors for multiple diseases including cardiovascular 

disease, type 2 diabetes and cancer (1).  There has been a steady increase in prevalence of 

overweight and obesity since the 1970’s (2), and by 2030, approximately half of the adults in the 

U.S. are expected to be obese (3).  Obesity is caused by genetic and environmental factors with 

genetic factors accounting for up to 70% of the population variance (4).  To date, human genome 

wide association studies (GWAS) have identified several hundred genomic loci for body mass 

index (BMI) and wait-hip-ratio (WHR), but these loci explain only 6% of the heritable variation 

(5, 6), indicating much is left to be found.  

  

Animal models are routinely used for mechanistic understanding of metabolic disease including 

obesity. We have previously used association analysis in outbred heterogeneous stock (HS) rats to 

identify both novel and known genes involved in adiposity (7, 8) and other metabolic traits (9-11). 

HS rats were created by combining eight inbred founder strains and maintaining the colony in a 

way that minimizes inbreeding (12), thereby mimicking the genetic diversity seen in humans. The 

chromosomes of each HS animal are fine-grained mosaics of the founder haplotypes, allowing 

genetic fine-mapping to Mb-sized intervals (13).  However, evidence that HS rats recapitulate 

human obesity at a molecular level and on a genome-wide scale is lacking. 

 

Transcriptomic analysis in metabolically active tissues can identify both causal and reactive genes 

and networks involved in metabolic disease. Adipose tissue plays a central role in metabolic health 

(14). Although human BMI GWAS genes show strong enrichment in the central nervous system 
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(15), adipose tissue-expressed genes are also enriched in human GWAS for  BMI (16) and to a 

greater extent for WHR (17, 18).  In addition, adipose tissue function is  disrupted under high fat 

diet (HFD) and/or obese conditions (19), making it a highly relevant tissue for the study of obesity. 

Although transcriptome analysis has been conducted in adipose tissue of recombinant inbred 

mouse lines (20), this work has not previously been conducted for HS rats.  Thus, we investigated 

whether adiposity-associated genes and gene co-expression networks in outbred heterogeneous 

stock (HS) rats overlap with those found in humans.  We determined the concordance of body 

weight (BW)/BMI-associated adipose tissue transcripts between HS rats and two human cohorts, 

namely the extensively gluco-metabolically phenotyped human participants in the African 

American Genetics of Metabolism and Expression (AAGMEx) (21) and Metabolic Syndrome in 

Men (METSIM) (22).  

 

Importantly, networks can include both genetically driven causal genes and those that are reactive 

to the phenotype.  By leveraging genetic information and performing mediation analysis in HS 

rats, we further identified a subset of rat/human consensus genes which may be causal for obesity. 

Thus, this work not only sheds light on cross-species gene networks involved in BW/BMI, but also 

employs a complementary approach to human GWAS for identifying novel gene regulators of 

adiposity.    

 

RESEARCH DESIGN AND METHODS 

Animals 
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The HS rat colony was initiated by the NIH in 1984 by breeding together the following eight 

inbred founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N  and WN/N, 

and maintaining the colony in a way that minimizes inbreeding (12).  The HS colony had been 

maintained at the Medical College of Wisconsin (MCW; NMcwi:HS; RGD_2314009) from 2006 

– 2017, after which time a colony was set up at Wake Forest School of Medicine (WFSM; 

NMcwiWFsm:HS; RGD_13673907) (13).  Animals for the current study came from HS rats 

maintained at the MCW colony and were collected from 2006 to 2011.  Animals were housed 2 

per cage in micro-isolation cages in a conventional facility using autoclaved bedding (sani-chips 

from PJ Murphy).  They were given ad libitum access to autoclaved Teklad 5010 diet (Harlan 

Laboratories) and were provided reverse osmosis water chlorinated to 2-3 ppm.  1144 male HS 

rats went through the phenotyping protocol below, running approximately 12 animals/batch with 

a new batch run each week.  Retroperitoneal adipose tissue (RetroFat) from 415 of these rats was 

used for transcriptomic analysis, as described below.  

 

HS rat phenotyping protocol 

As previously described (10), at 16 weeks of age, body weight (BW) was measured after an 

overnight fast (~16 hours), after which time rats underwent an intra-peritoneal glucose tolerance 

test (IPGTT).  The IPGTT was conducted under the hood in the animal room and was conducted 

in the morning from ~9am – 12pm.  Blood and plasma were collected at 0, 15, 30, 60 and 90 

minutes after a 1g/kg BW glucose injection.  Blood glucose was measured using the Ascensia 

Elite system (Bayer, Elkhart, IN) and plasma insulin levels were determined using an 

ultrasensitive ELISA kit (Alpco Diagnostics, Salem, NH).  Using blood glucose and plasma 

insulin levels, we calculated area under the curve for glucose (glucose_AUC) and insulin 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.24.485632doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485632
http://creativecommons.org/licenses/by-nc-nd/4.0/


(insulin_AUC) during the IPGTT as previously described (10).  At 17 weeks of age rats were 

euthanized after an overnight fast.  At the time of euthanasia, BW and body length (BL) were 

measured.  Rats were then euthanized by decapitation and trunk blood was collected.  Fasting 

cholesterol and triglycerides were determined from fasting serum on an ACE Alera autoanalyzer 

using an enzymatic method for detection.  We collected and snap froze several tissues including 

RetroFat and epididymal fat (EpiFat) pads for subsequent expression analysis.  We also stored 

whole pancreas in acid ethanol for subsequent determination of whole pancreas insulin content.  

All protocols were approved by the IACUC committee at MCW.  Phenotyping data has been 

deposited in RGD (www.rgd.mcw.edu; RGD: 151665312). 

 

HS rat Genotyping and Imputation 

We extracted DNA from tail tissue of all 1144 samples using a phenol-chloroform extraction.  

All samples were genotyped by obtaining low coverage whole genome sequence (0.24x, 

performed by Beijing Genomics Institute (BGI)) followed by imputation by STITCH, as 

previously described (23).  Eight founders with high coverage sequence (24-28X) (24) were used 

as the haplotype reference panel in STITCH, yielding imputed single nucleotide polymorphism 

(SNP) calls at approximately 4.7M sites in the HS rats. Quality control for SNP calls included 

retaining SNP calls with imputation info score > 0.4 and Hardy-Weinberg Equilibrium p-value > 

10−6, and removing SNPs with high linkage disequilibrium R2 > 0.95.  After quality control, a 

tagging set of more than 122,000 SNPs were used for further analyses. 

 

HS rat RNAseq analysis 
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We used Trizol to extract RNA from RetroFat of 415 HS rats.  RNA quality was confirmed using 

a Bioanalyzer.  Illumina kits were used to create library preps and RNA-seq was run on the 

Illumina HiSeq 2500 by the Wake Forest University School of Medicine Genomics Core, 

obtaining 75-bp single end reads.  STAR (25) was used to align reads to the rat genome reference 

6.0 and DESeq2 (26) was used to compute gene level expression abundance. We excluded very 

low expressed genes, where the average number of reads per sample < 1. Read coverage for each 

remaining gene was then normalized to account for gene length. A total of 18,357 genes from 

adipose tissue were used for further analyses.  RNAseq data has been submitted to Gene 

Expression Omnibus (GEO); id #GSE196572.     

 

Quality Control and Pre-processing of the HS rat RNAseq data 

We first performed exploratory principal components analysis and determined the mean-variance 

relationship between all genes in the dataset.  Based on this analysis, we visually identified 28 

genes that were considerably more variable than other genes with similar levels of expression 

(mean expression < 100 and variance > 700; see Fig. S1). These 28 genes were significantly 

enriched for Gene Ontology (GO) terms related to muscle cells (see Table S1 and ‘Enrichment 

analysis’ section below) and also included the gene MPZ, which is a marker for nerve cells (27). 

The high variance of these genes suggest tissue heterogeneity across samples, with varying 

proportions of muscle and nerve cells mixed in with adipose tissue. We performed additional 

pre-processing steps on the phenotypes and gene expression data prior to further analysis, as 

described in detail below.  

Phenotypes 
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Each of the phenotypes were pre-processed by removing covariates and transforming the 

residuals to follow an approximately normal distribution.  The traits EpiFat and fasting 

cholesterol and triglyceride were log transformed based on a Box-cox procedure, while all other 

phenotypes were transformed using a rank inverse normal (RINT) transformation. We then 

adjusted the transformed phenotypes for phenotype-specific experimental covariates using linear 

regression with random covariate effects (see Table S2). This is given by  

t(y) ~ 1 + (1|covariate1) + (1|covariate2) + … + ey 

where t(y) is a transformed phenotype, 1 denotes the intercept, (1|covariatei) denotes random 

effects for the i-th covariate, and ey is the residual. We used the residuals of this regression, 

denoted y’=ey, in further analyses.  

Adipose Gene Expression 

We transformed adipose gene expression using RINT. In order to adjust the adipose expression 

for tissue heterogeneity, we created proxy variables for nerve and muscle content. The proxy 

variable for nerve content was the transformed expression of the MPZ gene. The proxy variable 

for muscle content was the first principal component of the transformed expression of the other 

27 genes identified during exploratory analysis. This first principal component explained 57.5% 

of the variation in expression for this subset of muscle-related genes. These proxy variables were 

negatively correlated with several weight-related phenotypes, and most strongly with Retrofat, 

indicating a higher amount of muscle contamination in rats with smaller fat pads, likely due to 

dissection technique (see Fig. S2).  

We then adjusted the transformed gene expression for tissue composition and experimental batch 

using linear regression with fixed tissue-proxy effects and random batch effects. This is given by  
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t(g) ~ 1 + nerve + muscle + (1|batch) + e 

where t(g) is transformed adipose gene expression, ‘nerve’ and ‘muscle’ denote fixed effects for 

the nerve and muscle proxy variables, (1|batch) denotes random effects for RNAseq batches 

(e.g., those samples that were sequenced together), and e is the normally-distributed residual 

error. We used the residuals of this regression, denoted g’=e, in further analyses.  

 

Associations with phenotypes 

After quality control, and for each transformed phenotype, we used linear regression to identify 

genes with significantly associated expression in adipose tissue; significance was defined as 

having a false discovery rate (FDR) of less than 1%, with FDR calculated using the Benjamini and 

Hochberg procedure (B-H) (28). 

 

Weighted Gene Co-expression Network Analysis (WGCNA) 

We identified modules of co-expressed genes that correlated with the metabolic phenotypes (29). 

This was done using the WGCNA R package (30) using the recommended approach for automatic 

network construction and module detection in the WGCNA tutorial. We assumed signed 

correlation networks and computed bi-weight mid-correlations between adipose tissue genes. A 

threshold of 0.9 was used for the scale free topology index to set the soft thresholding power, 

which was set to 5 (see scale free topology and mean connectivity in Fig. S3).  Recommendations 

from the tutorial were used for settings related to dendrogram cutting and module merging.  

Module eigengenes (first principal component of genes included in the module) were then 

correlated with each phenotype using Spearman correlation. The function of each module was 
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characterized using gene ontology (GO) enrichment.  Module membership and intermodular 

connectivity (IMConn) was computed for all genes using the adjacency matrix from the WGCNA 

analysis in order to identify highly-connected hub genes within each module.  We defined hub 

genes within each module using a threshold of IMConn > mean + 2 standard deviations.  Gene 

networks were visualized for selected modules using Cytoscape.  For visualization in Cytoscape, 

we applied a minimum adjacency threshold of 0.03 for including edges between genes, and we 

removed genes that were not connected to the main module network.     

 

Gene Ontology (GO) Enrichment and Pathway analysis 

GO enrichment analysis was performed on genes significantly associated with each phenotype and 

modules of co-expressed genes. We used the ‘anRichment’ R package 

(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/GeneAnnotation/). This performs a 

Fisher’s exact test for enrichment, and we assumed that the background for this test was the 

intersection of all genes analyzed and all genes with GO annotations. FDR was controlled at 5% 

using B-H. For tests of associated genes, FDR was controlled within phenotype, and for tests of 

modules, FDR was controlled across modules.  We also evaluated enrichment of differentially 

expressed genes for KEGG pathways (using the Database for Annotation, Visualization 

and Integrated Discovery/DAVID; https://david.ncifcrf.gov/) and for canonical pathways in 

Ingenuity Pathway Knowledgebase (using Ingenuity Pathway Analysis, IPA). 

 

AAGMEx and METSIM human cohorts 
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In order to identify consensus genes associated with adiposity in both rats and humans, we 

compared the adipose gene expression data in HS rats with adipose expression from two separate 

human cohorts: AAGMEx and METSIM.  The AAGMEx cohort consisted of 256 healthy, self-

reported African American men and women residing in North Carolina, aged 18-60 years, with a 

body mass index (BMI) between 18 and 42 kg/m2,. Participants were unrelated and non-diabetic.  

Clinical, anthropometric, physiological characteristics, and detail of genomic data processing of 

the AAGMEx cohort have been described previously (21, 31). Subcutaneous adipose tissue 

biopsies were collected by Bergstrom needle from participants after an overnight fast. Genome-

wide expression data of subcutaneous adipose tissue biopsies (submitted to GEO; id 

#GSE95674) in AAGMEx were generated using HumanHT-12 v4 Expression BeadChip 

(Illumina, San Diego, CA) whole-genome gene expression arrays, and Infinium 

HumanOmni5Exome-4 v1.1 DNA Analysis BeadChips (Illumina) were used for genotyping.  

Previously completed statistical analyses on BMI, adipose tissue gene expression, and genotype 

data were used for validation /replication of findings from rat in human.  We also used 

previously published statistical analyses results on BMI and adipose tissue gene expression data 

from the European Ancestry individuals in the METSIM cohort which consisted of 770 male 

individuals from Finland, as previously described (METSIM, Finland; N=770) (32). In the 

METSIM cohort, subcutaneous adipose tissue expression data were generated by Affymetrix 

U219 arrays (GEO id # GSE70353). 

 

Identifying adipose tissue consensus genes associated with BW in rat and BMI in human 

We filtered the 2,419 BW-associated genes from rat adipose tissue to include only genes with 

human orthologues (2,200 genes). For each gene, we checked if adipose tissue expression of its 
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human orthologue was significantly associated (FDR = 1%) with BMI independently in both the 

AAGMEx and METSIM cohorts, with the same direction of effect. Specifically, to test for 

associations between BMI and expression level in the AAGMEx cohort, we computed a linear 

regression model using R(lm) software with the BMI (square root transformed) as the outcome 

and expression level (RMA normalized, batch corrected, and log2 transformed) as the predictor. 

Models included age, gender, and African ancestry proportion (admixture estimates were 

computed using the ADMIXTURE program 

(http://software.genetics.ucla.edu/admixture/index.html) as covariates. Similar regression 

analyses were conducted to evaluate the association between gene expression and cardio-

metabolic-related traits, including BMI in up to 770 METSIM individuals. In METSIM, both BMI 

values and RMA-normalized (non-PEER-corrected) expression levels were adjusted for age before 

a rank inverse normal transformation. These transformed values were used for computing 

association between gene expression and BMI. 

 

Upon identifying genes that were associated with BW in rat and BMI in human with the same 

direction of effect, we ran a chi-square test to determine if the number of consensus genes is higher 

than would be expected by chance.  We then used a Fisher combined p-value with equal weights 

to rank these consensus genes by their significance in all three datasets. We also tested for 

enrichment of these genes in the WGCNA adipose modules using Fisher’s exact test in order to 

identify modules enriched for many consensus genes.   

 

Mediation analysis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.24.485632doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485632
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our consensus gene approach does not distinguish between genes that are either causal or reactive 

to BW. In order to assess evidence in favor of a causal relationship between consensus genes and 

BW, we leveraged SNP information in the rat dataset to identify cis-eQTL for consensus genes.  

We then tested if these cis-eQTL are associated with BW, as part of a formal mediation analysis 

based on (8, 33).   

Typically, mediation analysis is performed by first finding a genetic association with a trait, and 

then testing potential mediators of this relationship. For example, a classic procedure for 

mediation analysis is given by Baron and Kenny (33), which in our context involves sequentially 

testing for the following relationships: 

1. The genetic variant x is associated with the phenotype y’: 

y’ ~ x* 

2. The genetic variant is associated with the mediator gene g’: 

g’ ~ x* 

3. The mediator gene is associated with the phenotype in the presence of the genetic 

variant: 

y’ ~ x + g’* 

4. The genetic variant is not associated with the phenotype in the presence of the mediator 

gene: 

y’ ~ x* + g’ 

In these expressions, the (*) denotes which dependent variable is being tested for association. If 

the tests of association in Steps 1-3 are all significant, then there is evidence for partial mediation 

of the genetic effect through the gene. Additionally, if the test of association in Step 4 is not 

significant, then there is evidence for complete mediation.  
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Our application of mediation analysis is nonstandard, in that we already identified a set of 

consensus genes that are associated with BW/BMI, and we use mediation to establish a link 

between the genetics of these genes and our trait. This is different than a typical application of 

mediation analysis (e.g., (8, 34)), in which Step 1 is already satisfied, perhaps with genome-wide 

significance. Given that we already have a list of candidate genes to assess, and we are only 

interested in their local genetic variation, a genome-wide significance threshold for genetic 

association in either Step 1 or Step 2 is overly conservative. We also note that, prior to performing 

mediation analysis, we did not strictly test Step 3, but our approach for identifying consensus genes 

did test a similar hypothesis (y’ ~ g’*). Given these considerations, we did not use the typical 

sequential approach as described by Baron and Kenny, and instead used the following procedure 

to assess evidence for mediation. 

For each consensus gene, we first performed local cis-eQTL mapping of rat gene expression (Step 

2) using all SNPs within a 1Mb window of the gene start or end. We selected the most significant 

SNP for each gene for further analyses. To assess eQTL significance, we applied a two-stage FDR 

approach to account for testing multiple SNPs per gene across multiple genes. First, we applied a 

B-H correction within gene across all SNPs. Then, we applied a second B-H correction to the 

adjusted p-value of the most significant SNP across all genes. SNPs were deemed significant eQTL 

if their two-stage adjusted p-values were significant (FDR = 5%). Then, for all consensus genes 

with significant eQTL, we tested Steps 1, 3, and 4 using nominal significance thresholds (i.e., no 

multiple testing correction). In the results, we report nominal p-values for Steps 1-4, for all genes 

satisfying Steps 1-3, which are considered partial mediators.  We then used PhenomeXcan 

(http://apps.hakyimlab.org/phenomexcan/) to determine if mediation genes in rat exhibit causal 

gene-trait associations in human (35).  Specifically, for each of the 19 genes, we identified gene-
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trait associations for fat mass related phenotypes (p < 0.01) for both subcutaneous and visceral 

(omental) adipose tissues. 

 

Data and Resource Availability  

All supplemental figures and tables can be accessed using the following figshare link: 

https://figshare.com/s/9bdfdd07d80744382963.  The datasets generated and analyzed during the 

current study are also available on figshare: 

https://figshare.com/articles/dataset/hs_rat_adipose_gene_expression_analysis_zip/16620583/2.  

Phenotype data has been submitted to the Rat Genome Database (https://rgd.mcw.edu/; RGD: 

151665312) and RNAseq data has been submitted to Gene Expression Omnibus GEO (id 

#GSE196572). 

The HS rats used in the current study, now maintained at Wake Forest University School of 

Medicine (WFSM; NMcwiWFsm:HS) are available from the corresponding author upon 

reasonable request and on a cost-recovery basis. 

  

RESULTS 

Analysis framework and key results, including the relationship between correlation analysis, 

WGCNA, enrichment in human cohorts and mediation analysis are shown in Figure 1. 

BW-associated transcripts in rat adipose tissue are enriched for relevant gene-ontology 

categories and biological pathways 
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We identified 2,419 genes with normalized expression levels significantly associated with rat BW 

after multiple testing correction (FDR = 1%), with 1,277 genes positively and 1,142 genes 

negatively associated. The most positively associated genes were Cpa1 (beta = 0.499, p = 3.2 x 

10-23), Bace2 (beta = 0.411, p = 1.4 x 10-14), and Dclk1 (beta = 0.403, p = 5.1 x 10-14); the most 

negatively associated genes were Fmo1 (beta = -0.411, p = 1.4 x 10-14), Acad8 (beta = -0.400, p 

= 7.5 x10-14) and Cds1 (beta = -0.375, p = 5.8 x10-12) (Table S3). Of the associated genes, 

1,665/2,419 (68.8%) were also associated with at least one other measured metabolic phenotype. 

This is not unexpected given that many of the metabolic phenotypes are correlated (Fig. 2). The 

2,419 BW-associated transcripts were enriched for 106 GO terms at FDR of 5% (Table S4).  

Similar evaluation for the enrichment of KEGG pathway annotations identified 56 pathways, five 

of which survived multiple testing at FDR of 5%.  These include: receptor mediated phagocytosis, 

protein digestion and absorption, chemokine signaling pathway, protein processing in 

endoplasmic reticulum and aldosterone regulated sodium reabsorption (Table S5) which are 

generally supported by canonical pathway enrichment analysis using IPA (Table S6).  

 

Gene co-expression analysis identifies biologically-relevant modules associated with BW in 

rat adipose tissue 

Gene co-expression analysis using WGCNA assigned 11,762 of the 18,357 expressed transcripts 

into 29 modules or sub-networks (Figs. 3 and 4). Eigengenes of 14 of these modules were 

associated with BW (p=0.05) (Table 1).  The modules most strongly positively associated with 

BW include those involved in cell growth and development (LightGreen, LightYellow, 

LightCyan) and immune system processes (DarkRed and Brown); the modules most negatively 
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associated with BW include those involved in lipid metabolic processes or mitochondrion function 

(Green, Blue, Cyan) and circadian rhythms (DarkTurquoise).  

 

The LightGreen module was the most positively associated with BW (r = 0.35, p = 1.6x10-13) and 

was enriched for GO biological pathway (GO.BP) annotations including positive regulation of 

pathway-restricted SMAD protein phosphorylation (p=0.008; see Table S7), which is supported 

by canonical pathway enrichment analysis (Fig. S4).  Hub genes in this module include Adra2c, 

Myo1d, and Bace2 (highest intra-modular connectivity or IMConn, Fig. 5 and Table S3), which 

are the most representative of the module (by correlation with the module eigengene, i.e. highest 

module membership).  The LightGreen module has a strong positive correlation with several other 

metabolic traits including RetroFat, EpiFat, fasting cholesterol, triglycerides, insulin and 

insulin_AUC (Fig. 4).  The LightYellow and LightCyan modules are also positively associated 

with BW (r = 0.33, p = 6.9 x 10-12 and r = 0.23, p = 1.5 x 10-06, respectively).  These modules 

were enriched for GO annotations including extracellular matrix organization (p=.2 x 10-4 1; 

Table S7) and cell cycle process (p = 2.8 x 10-48).  Together, these modules support a role of cell 

growth and development in adiposity.   

 

The DarkRed and Brown modules are involved in immune system function and are strongly 

positively associated with BW (r= 0.22, p = 3.8 x 10-06 and r = 0.20, p= 3.2 x 1005, respectively).  

The DarkRed module is enriched for GO annotations including complement activation, and other 

immune-related terms, and the Brown module (a large network of 1138 genes) is enriched for GO 

annotations, including immune system process (p= 2.8 x 10-48), and many other immune-related 
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terms (Table S7).  KEGG pathway analysis for the DarkRed and Brown modules support a role in 

complement and coagulation cascades (p = 2.5 x 10-10), and chemokine signaling pathway (p = 

1.7 x 10-13), respectively, as well as other immune-related terms (Table S8).  Top hub genes for 

the DarkRed module include Clec10a, Csf1r, C1qc, C1qa and those for the Brown module include 

Syk, Ptprc, Nckap1l, Arhgap30, supporting a role of these modules in inflammatory and immune 

regulation mechanisms (Table S3). 

 

Of those modules whose eigengenes most negatively correlated with BW, the Green module was 

enriched for Cytokine Production (p=4.7 x 10-05) using GO.BP (Table 1 and Table S7), 

implicating immune system processes, which appears anti-intuitive.  In contrast, analysis for 

KEGG pathways suggested enrichment for Metabolic Processes (p = 1.3 x 10-04). Upon closer 

investigation, 71 genes within this module have a strong positive correlation (r ≥ 0.2) with BW 

and were enriched for immune-inflammation related mechanisms (GO:BP 0002376~immune 

system process, 26 genes, FDR-P= 3.03 x10-5), while 111 have a strong negative correlation (r ≤-

0.2) and were enriched for mitochondria (GO:CC 0005739~mitochondrion, 21 genes, FDR-

P=0.014), suggesting a role in inflammation mediated modulation of mitochondrial function.  The 

Blue module (a large network of 1247 genes), is inversely correlated with BW (r= -0.15, p= 0.002), 

and is enriched for mitochondrion organization (p= 3.4 x 10-19) using GO.BP (Table S7) and 

metabolic pathways (p = 1.6 x 10-22) and fatty acid metabolism (2.9 x 10-08) using KEGG 

pathway analysis (Table S8).   
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Although only modestly associated with BW (r = -0.12, p = 0.014), the Cyan module is noteworthy 

for its strong negative correlation with several other traits including RetroFat (r = -0.29, p = 2.4 x 

10-09), EpiFat (r = -0.30, p = 6.3 x 10-10), fasting insulin (r = -0.23, p = 1.3 x 10-6) and fasting 

cholesterol (r = -0.29, p = 3.2 x 10-09) and triglycerides (r = -0.29, p = 1.2 x 10-09) (Table 1 and 

Fig. 4).  The Cyan module is enriched for GO annotations such as regulation of neurotransmitter 

levels (p = 0.004) and lipid metabolic process (p = 0.008; see Table S7), with thyroid hormone 

signaling pathway being significant in KEGG pathway analysis (p = 1.7 x 10-04; Table S8).  Hub 

genes in the Cyan module include Psat1 and Acvr1c (Fig. 6).  Together, these modules implicate 

an inverse relationship between lipid metabolic processes and mitochondrion function with 

adiposity. 

 

The DarkTurquoise module is also highly negatively correlated with BW and is enriched for 

Circadian Rhythm (p=0.007) which is supported by KEGG pathway analysis (p=4.4 x 10-04) with 

hub genes including Prex2 and Gpd1l (Tables S3, S7, S8).   

 

BW associated transcripts in rat adipose often associate with BMI in human adipose  

We identified a sub-set of “consensus” genes whose expression levels were independently and 

significantly associated with BW in HS rat adipose and BMI in human adipose (FDR = 1%) with 

the same direction of effect in both AAGMEx (662/4669 BMI associated genes) and METSIM 

(896/6058 BMI associated genes) cohorts.  There is substantial overlap between the three cohorts 

as shown in Table S9.  In total, 554 consensus genes were correlated in all three data-sets with the 

same direction of effect -- an overlap between studies that is significantly higher than expected by 
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chance (chi-squared p < 0.00001).  Ranking genes by their Fisher combined p-value across all 

three datasets, the most significantly associated genes were Spx, Hadh, Slc27a2, Cmtm3, Ccn5, 

Htra1, Slc4a4, Letmd1, Echdc3, Crls1 (Table S10).   

 

These 554 consensus genes are enriched in 8 of the 29 rat adipose co-expression modules identified 

by WGCNA (Table 1), comprising 341 of the 554 (61.5%) consensus genes. These 8 modules 

include those whose module eigengene was highly correlated with BW in the rat as described 

above and in Table 1.   

 

Consensus genes may have a causal genetic effect on rat BW via expression levels 

Of the 554 consensus genes, 548 had SNPs within 1 Mb of the gene in the rat, 149 of which also 

had a cis-eQTL (Table S11). We applied mediation analysis to those 149 genes and identified 19 

whose adipose expression may mediate a genetic effect on BW in rat (Table 2).  Of these, 14 show 

evidence for complete mediation (ie, the effect of the cis-eQTL’s top SNP on BW is entirely 

mediated through expression of the gene) and 5 have evidence for partial mediation. The gene 

St14, a known cancer gene (36), has the most significant association (p=0.002) between BW and 

its lead cis-eQTL SNP among all candidate mediators and is a complete mediator of this 

association. The gene Htra1, a negative regulator of adipogenesis (37), was among the most 

significant consensus genes by Fisher combined p-value (across all three datasets), and its lead cis-

eQTL SNP is nominally associated (p<0.05) with BW.  Two mediators act as hub genes: Hcar1 in 

the Cyan module and Ms4a6a in the Green module.  Three of the mediators play a role in 

inflammation (Rgs1, Vcam1, St3gal5), and several genes play a role in adipogenesis (Fzd7, 
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Tmem120b, Atl2, Htra1, St3gal5).  Other mediators are involved in lipolysis (Hcar1), fatty acid 

oxidation (Mlycd), cell-cell interactions (Cpxm2), oxidative stress (Cisd2) or weight maintenance 

(Pros1). Seven genes have no previously known role in obesity (St14, Ms4a6a, Ostc, Ung, 

Tspan33, Tigd2, Mocos; Table 2).  Using PhenomeXcan, we found that six of the 19 genes (Fzd7, 

Hcar1, Ms4a6a, Htra1, Tigd2, Cpxm2) exhibit potential causal relationships with adiposity related 

traits in human, with three genes (Cisd2, Ms4a6a, St3gal5) showing associations with monocyte 

count or percentage, with the same direction of effect as seen in the rat (Table 2; details are in 

Table S12).   

 

DISCUSSION 

We found functional concordance between BW associated adipose tissue transcripts in the HS rat 

and their human BMI-associated orthologues.  This work replicates previous findings in human 

(38) and mouse (20), and establishes the utility of the HS rat, an outbred model previously used 

for the genetic mapping of complex traits (8-11, 34, 39), as a model to understand the systems 

genetics of human obesity. Specifically, we observed many more orthologous genes with the same 

pattern of correlation with rat BW or human BMI than would be expected by chance, confirming 

that the systems genetics of these traits are at least partially evolutionarily conserved between 

humans and rodents despite 90- to 100 million years of evolutionary divergence.  The human/rat 

concordant genes cluster into rat gene networks involved in cell growth and development and 

immune system function (positive associations) and lipid metabolic processes and circadian 

rhythms (negative associations).  Although network analysis alone cannot determine whether 

modules are causal or reactive to the obesity state, by integrating genotype data, we identified 19 

genes whose expression levels are genetically regulated and which appear to mediate the genetic 
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effects on BW, suggesting a causal role for these genes.  Although several of these genes have 

previously been implicated in obesity, many are novel, opening up new targets to understand the 

mechanistic underpinnings of obesity.   

 

Several BW-associated co-expression modules are involved in immune system function (Brown, 

DarkRed, Green).  This is not surprising as obesity is known to activate the immune system (40, 

41) and previous work has shown similar findings in both human (38) and mouse adipose tissue 

(20).  The current work specifically suggests involvement of genes involved in Fc-gamma 

receptor-mediated phagocytosis, the chemokine signaling pathway and complement activation.   

For example, the Brown module was enriched for the chemokine signaling pathway and cytokine-

cytokine receptor interaction. Among the top hub genes in this module, Rho GTPase Activating 

Protein 30 (Arhgap30) is a hub gene in human adipose tissue co-expression modules associated 

with triglyceride level (42), as well as BMI and insulin resistance (21). The DarkRed module was 

enriched for complement and coagulation cascades and top hub genes in this module include 

complement C1q C chain and A chain (C1qc and C1qa), as well as C-type lectin domain containing 

10A (Clec10a) and Colony stimulating factor 1 receptor (Csf1r). Clec10a has previously been 

identified as playing a causal role in insulin resistance in African Americans via adipose tissue 

expression levels (21), while blockade of Csf1r depletes macrophages and prevents fat storage and 

adipocyte hypertrophy in high-fat diet-fed and hyperphagic mice (43).  The immune modules were 

also strongly enriched for consensus genes, implying conservation of obesity-associated immune-

inflammation pathways between rats and humans.   
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Other BW-associated modules that are enriched for consensus genes are involved in cellular 

growth and development including the LightGreen (regulation of pathway-restricted SMAD 

protein phosphorylation) and LightYellow (extracellular matrix (ECM) organization) modules.  

Phosphorylation of SMAD proteins leads to cell cycle inhibition (44).  In addition to their roles in 

cell proliferation and differentiation, SMAD proteins are involved in extracellular matrix (ECM) 

remodeling and immune function (45).  Excessive ECM protein deposition, followed by fibrosis 

in adipose tissue, is considered a pathological consequence of long-term obesity and has been 

observed in rodents and humans (40).   Consistent with our findings, adipose tissue TGFbeta 

signaling is upregulated in obesity in mice (46) and humans (47) and these changes are associated 

with decreased adipogenesis (46) as well as collagen expression and fibrosis (47).   In addition, 

SMAD3 knock-out mice exhibit decreased white adipose tissue mass with improved glucose 

tolerance and insulin sensitivity (48, 49).  Thus, increased TGFbeta signaling and SMAD 

phosphorylation in obesity likely decreases cell differentiation and increases fibrosis.   

 

Consensus enriched modules that were most negatively associated with BW are involved in lipid 

metabolic processes (Cyan), mitochondria organization (Green, Blue) and circadian rhythms 

(DarkTurquoise).  Each of these processes are often disrupted in obesity and play an important 

role in disease process (50, 51).  Specifically, the Cyan module is enriched for GO terms including 

regulation of neurotransmitters and lipid catabolic processes.  Catecholamines are activated during 

fasting or stress and lead to beta-adrenergic signaling in adipose tissue to mobilize stored energy 

through lipolysis and/or thermogenesis.  Although basal lipolysis has been shown to be 

upregulated in obesity (52), catecholamine stimulated lipolysis is decreased, and may play a role 

in further exacerbating the obese condition (53).  Our work shows a negative relationship between 
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obesity and catecholamine signaling and/or lipolysis, further supporting this finding.  

Hydroxycarboxylic Acid Receptor 1 (Hcar1), a hub gene in this module and one of the genes 

identified through mediation analysis, is regulated by PPARgamma (54) to mediate anti-lypolitic 

events (55).  Our data indicates that increased expression of Hcar1 drives up lipolysis resulting in 

decreased fat pad size. 

 

In addition to identifying functionally relevant pathways for obesity between the HS rat and 

humans, we identified consensus genes that may play a causal role in obesity via genetic variants 

that drive transcript expression.  These include genes involved in adipogenesis (Fzd7, Tmem120b, 

Atl2, Htra1, St3gal5) and inflammation (Rgs1, Vcam1, St3gal5), among others (see Table 2).  

Although inflammation is generally thought to be responsive to obesity and over-nutrition, this 

work, along with findings from human GWAS (15), indicates that inflammation may also play a 

causal role.  We also identified several genes with no previously known connections to obesity 

(St14, Ms4a6a, Ostc, Ung, Tspan33, Tigd2, Mocos), opening up new avenues of research to 

explore novel mechanistic underpinnings of obesity.  For example, St14 is a serine protease 

involved in cancer metastasis (36) that has not previously been linked to obesity.  Using 

PhenomeXcan (35), we found that eight of the 19 genes exhibit a potential causal gene-trait 

relationship with adiposity or immune phenotypes in human, including Ms4a6a and Tigd2, two 

genes with no known previous role in adiposity.  Ms4a6a is also a hub gene in the Green module, 

is expressed in the hematopoietic system and has previously been associated with Alzheimer’s 

disease (56), making it a particularly attractive candidate for obesity.  Importantly, because 

environmental conditions likely differ significantly between rat (chow, non-obesogenic diet) and 

human (uncontrolled diet, likely Western, obesogenic), we do not believe that these findings rule 
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out the possibility that these other genes also play a role in human adiposity.  A potential role of 

the 19 mediator genes in human obesity is supported by the fact that each of the mediators have 

an orthologous cis-eQTL in the METSIM human cohort.   

   

In summary, we have shown that many BW associated genes, as well as their associated networks 

and pathways, in the HS rat are conserved in humans, indicating similar pathways regulate obesity 

in both species.  We identified a sub-set of genes that may play a causal role in obesity, and these 

genes encompass mechanisms involved in adipocyte differentiation and inflammation, with 

several genes being novel.  These findings support the HS rat as a model to study the systems 

genetics of obesity and identifies novel biological targets for future functional testing.   
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FIGURE LEGENDS 

Figure 1 – Analysis framework and key results 

Figure depicts the connection between correlation analysis (adipose tissue transcript and HS rat 

body weight) and WGCNA networks.  Correlation analysis was followed by identification of 

human/rat BMI/BW consensus genes and then mediation analysis.  The number of genes or 

modules at each step are shown in parentheses.  Horizontal arrows depict how and where 

correlation and consensus analysis feed into WGCNA modules. 

 

Figure 2 – Correlations between metabolic phenotypes in HS rats 

Pearson correlations between multiple metabolic phenotypes in 1144 HS male rats. Darker color 

indicate a higher correlation.  Positive correlations are shown in blue.  All metabolic phenotypes 

are positively correlated.  Adiposity traits are highly correlated with each other and with insulin 

traits.  BWg – bodyweight (g); BLcm – body length (cm); EpiFatg – epididymal fat pad weight 

(g); RetroFatg – retroperitoneal fat pad weight (g); Ins0 – fasting insulin (ng/ml); InsAUC – insulin 

area under the curve after glucose challenge; Gluc0 – fasting glucose (mg/dL); GlucAUC – glucose 

area under the curve after glucose challenge; Chol – fasting total cholesterol (mg/dL); Trig – 

fasting triglycerides (mg/DL).  

Figure 3 – Cluster Dendogram for WGCNA analysis of HS rat adipose gene expression 

Adipose gene expression was measured in 415 male HS rats.  WGCNA analysis assigned 11,762 

of 18,357 transcripts to 29 modules, ranging in size from 31 to 2,095 transcripts. Unassigned 

transcripts are shown in the ‘grey’ module.  
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Figure 4 - Correlations between WGCNA adipose tissue module eigengenes and metabolic 

phenotypes 

Spearman correlations between measured metabolic phenotypes and module eigengenes from 

WGCNA analysis of adipose gene expression in 415 male HS rats. Eigengenes are the first 

principal component of gene expression for the genes included in each module. Several modules 

are significantly correlated with body weight (BWg) and other metabolic phenotypes. In particular, 

the ‘LightGreen’ and ‘LightYellow’ modules are most positively correlated with bodyweight, and 

the ‘Green’ module is most negatively correlated with bodyweight, while he ‘Cyan’ module is 

most negatively correlated with EpiFat and RetroFat. The strongest correlation of a module with 

any metabolic phenotype is between the ‘LightGreen’ module and RetroFatg.   

BWg – bodyweight (g); BLcm – body length (cm); EpiFatg – epididymal fat pad weight (g); 

RetroFatg – retroperitoneal fat pad weight (g); Ins0 – fasting insulin (ng/ml); InsAUC – insulin 

area under the curve after glucose challenge; Gluc0 – fasting glucose (mg/dL); GlucAUC – glucose 

area under the curve after glucose challenge; Chol – fasting total cholesterol (mg/dL); Trig – 

fasting triglycerides (mg/DL).  

  

Figure 5 - Network visualization of the LightGreen (SMAD Phosphorylation) module 

Network visualization of the ‘LightGreen’ module from WGNCA analysis of adipose gene 

expression in HS rats. Edges are included if the adjacency between genes is greater than 0.03. 

Genes not connected to the main module networking have been removed. Edge width is scaled by 

adjaceny. The background of each node is colored by gene intramodular connectivity (IMConn). 

The border of each node is colored by the correlation between each gene and bodyweight (BWg). 
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The label of each node is colored red if the gene is a consensus gene. Several genes are highly 

connected in the ‘LightGreen’ network, including Adra2c, Bace2 and Myo1d, all of which are 

highly positively correlated with bodyweight, with Bace2 and Myo1d being consensus genes. 

Figure 6 – Network visualization of the Cyan (Regulation of neurotransmitter levels and lipid 

metabolic process) module 

Network visualization of the ‘Cyan’ module from WGNCA analysis of adipose gene expression 

in HS rats. Edges are included if the adjacency between genes is greater than 0.03. Genes not 

connected to the main module networking have been removed. Edge width is scaled by adjaceny. 

The background of each node is colored by gene intramodular connectivity (IMConn). The border 

of each node is colored by the correlation between each gene and bodyweight (BWg).  The label 

of each node is colored red if the gene is a consensus gene. Several genes are highly connected in 

the ‘Cyan’ network, including Acvr1c, Slc1a3, Lgals12, and Hcar1, all of which are negatively 

correlated with bodyweight and with the latter three being consensus genes and Hcar1 showing 

evidence of mediation. 
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Table 1.  Adipose tissue WGCNA modules associated with body weight and other metabolic traits 

Module Color 
[Total gene # 
(# of genes most 
positively/inversely 
correlated with 
BWg at |r|≥0.2)] 

Biological pathway  
Top GO.BP*  

(FDR-P) 

Body Weight 
(p-value) † 

RetroFat 
(p-value) † 

EpiFat 
(p-value) † 

Fasting 
Insulin 

(p-value) † 

Fasting 
Cholesterol 
(p-value) † 

Fasting 
Triglycerides 

(p-value) † 

# of consensus gene 
enriched in module 
(percent; padj for 

enrichment) 

Positive Associations        
Light Green 
[141 (60/10)] 

Regulation of pathway-restricted 
SMAD protein phosphorylation 

(0.008) 

0.35 
(1.6x10-13) 

0.54 
(4.8x10-33) 

0.46 
(9.5x10-23) 

0.34 
(1.7x10-12) 

0.31 
(6.4x10-11) 

0.35 
(1.3x10-13) 

22 
(15.6%; 1.9x10-09) 

LightYellow 
[139 (62/7)] 

Extracellular matrix organization 
(4.2x10-4) 

0.33 
(6.9x10-12) 

0.15 
(0.002) 

0.19 
(1.2x10-04) 

-0.03 
(NS) 

0.01 
(NS) 

-0.03 
(NS) 

11 
(13.7%; 2.4x10-07) 

LighyCyan 
[148 (27/0)] 

Cell Cycle Process 
(2.8x10-48) 

0.23 
(1.5x10-06) 

0.14 
(0.005) 

0.17 
(7.3x10-04) 

0.05 
(NS) 

0.02 
(NS) 

-0.02 
(NS) 

8 
(5.4%; 0.266) 

Dark Red 
[107 (23/1)] 

Complement Activation 
(2.7x10-08)  

0.22 
(3.8x10-06) 

0.11 
(0.028) 

0.11 
(0.029) 

0.10 
(0.053) 

0.07 
(NS) 

-0.05 
(NS) 

21 
(19.6%; 7.2x10-11) 

Brown 
[1138 (109/49)] 

Immune system process (2.8x10-
48) 

0.20 
(3.2x10-05) 

0.14 
(0.005) 

0.18 
(2.6x10-04) 

0.036 
(NS) 

0.12 
(0.011) 

0.04 
(NS) 

113 
(9.9%; 7.9x10-29) 

Magenta 
[472 (26/19)] 

Golgi vesicle transport 
(0.046) 

0.18 
(1.9x10-04) 

0.26 
(7.5x10-09) 

0.17 
(3.5x10-04) 

0.22 
(6.4x10-06) 

0.12 
(0.017) 

0.11 
(0.024) 

16 
(3.4%; 0.962) 

DarkGreen 
[98 (6/0)] 

Response to Virus 
(5.3x10-35) 

0.16 
(0.001) 

-0.04 
(NS) 

-0.02 
(NS) 

-0.06 
(NS) 

-0.00  
(NS) 

-0.13 
(0.008) 

4 
(4.0%, 0.962) 

Purple 
[445 (20/4)] 

Extracellular matrix organization 
(1.9x10-12) 

0.13 
(0.007) 

0.02 
(NS) 

0.02 
(NS) 

-0.08 
(NS) 

0.03 
(NS) 

-0.07 
(NS) 

10 
(2.2%; 1) 

Grey60 
[142 (7/1)] 

tRNA aminoacylation for protein 
translation 

(0.007) 

0.11 
(0.026) 

0.33 
(9.8x10-12) 

0.20 
(2.7x10-05) 

0.27 
(2.00x10-

08) 

0.10 
(0.038) 

.20 
(3.5x10-05) 

4 
(2.8%; 1) 

Negative Associations     
Green 
[668 (71/111)] 

Cytokine Production 
(4.7x10-05) 

-0.31 
(2.2x10-10) 

-0.23 
(1.4x10-06) 

-0.23 
(3.3x10-06) 

-0.13 
(0.008) 

-0.16  
(0.001) 

-0.03 
(NS) 

78 
(11.6%; 4.6x10-24) 

DarkTurquoise 
[90 (3/1)] 

Circadian Rhythm 
(0.007) 

-0.21 
(1.3x10-05) 

-0.06 
(NS) 

-0.04 
(NS) 

0.15 
(0.002) 

0.04 
(NS) 

0.09 
(NS) 

9 
(10%; 0.006) 

Blue 
[1247 (23/71)] 

Mitochondrion organization 
(3.4x10-19) 

-0.15 
(0.002) 

-0.04 
(NS) 

-0.13 
(0.010) 

0.09 
(NS) 

-0.07 
(NS) 

-0.02 
(NS) 

66 
(5.2%; 2.8x10-05) 

Cyan 
[203 (1/20)] 

Regulation of Neurotransmitter 
Levels 

(0.004),  
Lipid Metabolic Process 

(0.008) 

-0.12 
(0.014) 

-0.29 
(2.4x10-09) 

-0.30 
(6.3x10-10) 

-0.23 
(1.3x10-06) 

-0.29 
(3.2x10-09) 

-0.29 
(1.2x10-09) 

13 
(6.4%; 0.033) 

Yellow 
[750 (11/18)] 

Nucleic Acid Metabolic Process 
(4.7x10-10) 

-0.10 
(0.046) 

-0.17 
(7.0x10-04) 

-0.14 
(0.004) 

-0.14 
(0.003) 

-0.01  
(NS) 

-0.11 
(0.023) 

20 
(2.7%; 1) 

*Top most enriched gene ontology terms among gene members of each module are shown;  †correlation and p-value of module Eigengene with each trait are shown.  Those that 
reach statistical significance are in bold.  Modules enriched for consensus genes are highlighted in grey. 
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    Table 2.  Genes identified through mediation analysis that may play a causal role in obesity 

Gene 
Name 

Gene  
Description 
[RGD Acc#] 

SNP 
basepair 

Model 1: 
(y ~ x') 

Model 2:  
(m ~ x') 

Model 3:  
(y ~ m' + x) 

Model 4:  
(y ~ m + x') 

Support 
(PMID) 

Entrezgene 
ID 

Module/ 
Hub (y/n) 

Association 
in Phenome 

Xcan 

St14 
suppression of 
tumorigenicity 
14 [Acc:69288] 

chr8 
32379011 0.002045 3.00E-13 5.98E-05 0.156456 none 114093 Brown/No No 

Fzd7 
frizzled class 
receptor 7 
[Acc:2321905] 

chr9 
67275996 0.003163 2.06E-07 0.014260 0.027514 

25871514   
23861788  
21354690 

100360552 Green/No Yes 

Hcar1 
hydroxycarboxyl
ic acid receptor 1 
[Acc:1586364] 

chr12 
38233140 0.003572 2.44E-05 0.020101 0.017515 

33284607  
31999787  
22842580  
20374963   
19633298 

689936 Cyan/Yes Yes 

Cisd2 
CDGSH iron 
sulfur domain 2 
[Acc:1566242] 

chr2 
240335511 0.004145 5.69E-08 0.000962 0.056948 

29556009  
25448035   
33610659 

295457 Light 
Green/No Yes 

Ms4a6a 

membrane 
spanning 4-
domains A6A 
[Acc:1305800] 

chr1 
227335280 0.009635 7.03E-07 0.001267 0.079024 none 361735 Green/Yes Yes 

Ostc 

oligosaccharyltra
nsferase complex 
non-catalytic 
subunit 
[Acc:1560708] 

chr2 
235860726 0.015812 1.24E-06 3.47E-05 0.000744 none 362040 Turquoise

/No No 

Rgs1 
regulator of G-
protein signaling 
1 [Acc:3561] 

chr13 
61138665 0.016762 3.16E-11 0.000989 0.219277 25744306  

27561966 54289 Brown/No No 

Ung 
uracil-DNA 
glycosylase 
[Acc:1307200] 

chr12 
48223578 0.017222 3.04E-06 0.007930 0.091762 none 304577 

Light 
Yellow/ 
No 

No 

Tmem120
b 

transmembrane 
protein 120B 
[Acc:1584031] 

chr12 
39084074 0.017389 1.64E-06 0.018515 0.076418  26024229 690137 Brown/No No 

Atl2 atlastin GTPase 
2 [Acc:1305125] 

chr6 
2465360 0.022600 1.41E-05 1.08E-07 0.251464  32349335 298757 Blue/No No 
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Tspan33 tetraspanin 33 
[Acc:1560915] 

chr4 
57238350 0.037508 3.08E-12 0.003185 0.327096 none 500065 none No 

Htra1 
HtrA serine 
peptidase 1 
[Acc:69235] 

chr1 
201245066 0.038328 5.86E-16 1.78E-05 0.819508 26864869   

31517621 65164 Turquoise
/No Yes 

Vcam1 

vascular cell 
adhesion 
molecule 1 
[Acc:3952] 

chr2 
219251193 0.040169 2.69E-09 5.11E-08 0.697793 253 pubmed 

refs 25361 Green/No No 

Mlycd 
malonyl-CoA 
decarboxylase 
[Acc:620234] 

chr19 
53006509 0.041178 0.000129 0.000585 0.170482 25016691   

30481042 85239 Blue/No No 

Tigd2 

tigger 
transposable 
element derived 
2 [Acc:1559612] 

chr4 
90047090 0.047026 7.04E-15 0.009026 0.379197 none 100912924 none Yes 

Mocos 

molybdenum 
cofactor 
sulfurase 
[Acc:1308496] 

chr18 
15927958 0.047739 9.96E-15 1.41E-05 0.000372 none 361300 

Dark 
Turquoise
/No 

No 

Cpxm2 

carboxypeptidase 
X (M14 family), 
member 2 
[Acc:1310955] 

chr1 
204245737 0.049090 2.78E-37 7.60E-08 0.112586   24685769 293566 none Yes 

Pros1 protein S 
[Acc:620971] 

chr7 
1206510 0.049665 2.25E-10 0.001241 0.003590  21957032 81750 Turquoise

/No No 

St3gal5 

ST3 beta-
galactoside 
alpha-2,3-
sialyltransferase 
5 [Acc:620875] 

chr4 
99943651 0.049891 1.38E-10 0.001547 0.373870 26499445   

34125497 83505 none Yes 

     Genes highlighted in gray under model 4 show evidence for paritial mediation.  All others show evidence for complete mediation. 
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Figure 1.  Analysis Framework and Key Results.  

18,357 HS rat Adipose Tissue Transcripts 

Correlation with BW in HS rat
(2,419 genes)

Enrichment in human cohorts: 
AAGMEx and METSIM

(554 Consensus Genes;
149 genes with cis-eQTL)

Mediation analysis
(19 genes with potential causal effects in rat;

8 genes also found in PhenomeXcan)

WGCNA
(11,762 genes in 29 modules)

14 modules correlate with rat BW
(5,788 genes, 1,568 of which correlate with rat BW)

8 modules enriched for consensus genes
(341 of 554 consensus genes)

262 hub genes in these 8 modules 
(81 consensus genes)

2 genes identified via mediation analysis are 
also hub genes
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Figure 2 – Correlations between metabolic phenotypes in HS rats

Pearson correlations are shown, with darker color indicating a higher 

correlation.  Positive correlations are shown in blue.  All metabolic 

phenotypes are positively correlated.  Adiposity traits are highly 

correlated with each other and with insulin traits.  BWg – bodyweight 

(g); BLcm – body length (cm); EpiFatg – epididymal fat pad weight 

(g); RetroFatg – retroperitoneal fat pad weight (g); Ins0 – fasting 

insulin (ng/ml); InsAUC – insulin area under the curve after glucose 

challenge; Gluc0 – fasting glucose (mg/dL); GlucAUC – glucose 

area under the curve after glucose challenge; Chol – fasting total 

cholesterol (mg/dL); Trig – fasting triglycerides (mg/DL). 
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Figure 3 – Cluster Dendogram for WGCNA analysis of HS rat adipose gene expression

WGCNA analysis assigned 11,762 of 18,353 transcripts to 29 modules, ranging in size from 31 to 2,095 transcripts. Unassigned transcripts are shown

in the ‘grey’module.
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Figure 4 - Correlations between WGCNA adipose tissue module eigengenes and metabolic phenotypes. Spearman correlations between measured metabolic phenotypes and module

eigengenes from WGCNA analysis of adipose gene expression in HS rats. Positive correlations are shown in red and negative correlations are shown in blue. Eigengenes are the first

principal component of gene expression for the genes included in each module. Several modules are significantly correlated with body weight (BWg) and other metabolic phenotypes. In

particular, the ‘LightGreen’ and ‘LightYellow’modules are most positively correlated with BWg, and the ‘Green’module is most negatively correlated with BWg, while the ‘Cyan’ module

is most negatively correlated with EpiFat and RetroFat. The strongest correlation of a module with any metabolic phenotype is between the ‘LightGreen’ module and RetroFatg.

BWg – bodyweight (g); BLcm – body length (cm); EpiFatg – epididymal fat pad weight (g); RetroFatg – retroperitoneal fat pad weight (g); Ins0 – fasting insulin (ng/ml); InsAUC – insulin

area under the curve after glucose challenge; Gluc0 – fasting glucose (mg/dL); GlucAUC – glucose area under the curve after glucose challenge; Chol – fasting total cholesterol (mg/dL);

Trig – fasting triglycerides (mg/DL).
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Figure 4 - Network visualization of the LightGreen (SMAD Phosphorylation) module
Network visualization of the ‘LightGreen’ module from WGNCA analysis of adipose gene expression in HS rats. Edges are included if the adjacency between genes is greater than 0.03. Genes not connected to the main module networking have been removed. Edge width is scaled by adjaceny. The background of each node is colored by gene intramodular connectivity (IMConn). The border of each node is colored by the correlation between each gene and bodyweight (BWg). The label of each node is colored red if the gene is a consensus gene. Several genes are highly connected in the ‘LightGreen’ network, including Adra2c, Bace2 and Myo1d, all of which are highly positively correlated with bodyweight, with Bace2 and Myo1d being consensus genes.
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Figure 5 – Network visualization of the Cyan (Regulation of neurotransmitter levels and lipid metabolic process) module
Network visualization of the ‘Cyan’ module from WGNCA analysis of adipose gene expression in HS rats. Edges are included if the adjacency between genes is greater than 0.03. Genes not connected to the main module networking have been removed. Edge width is scaled by adjaceny. The background of each node is colored by gene intramodular connectivity (IMConn). The border of each node is colored by the correlation between each gene and bodyweight (BWg).  The label of each node is colored red if the gene is a consensus gene. Several genes are highly connected in the ‘Cyan’ network, including Acvr1c, Slc1a3, Lgals12, and Hcar1, all of which are negatively correlated with bodyweight and with the latter three being consensus genes and Hcar1 showing evidence of mediation.
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