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Abstract

The Lagrangian formalism is developed for the population dynamics of interacting species
that are described by several well-known models. The formalism is based on standard
Lagrangians, which represent differences between the physical kinetic and potential energy-
like terms. A method to derive these Lagrangians is presented and applied to selected
theoretical models of the population dynamics. The role of the derived Lagrangians and the
energy-like terms in the population dynamics is investigated and discussed. It is suggested
that the obtained standard Lagrangians can be used to identify physical similarities between
different population models.
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1. Introduction

The astounding progress of modern physics in discovering and understanding the fun-
damental laws of Nature that govern the structure and evolution of nonorganic matter has
been caused by its powerful mathematical-empirical approach. In this approach, physical
theories are formulated using the language of mathematics and their predictions are verified
by experiments. At the same time, life sciences, included biology, remain mainly empirical
and descriptive.

There have been attempts to formulate mathematical models of some biological systems,
and thereby to establish mathematically oriented theoretical biology [1]. Different areas
of mathematics have become increasingly more important in biology in recent decades,
specifically, statistics in experimental design, pattern recognition in bioinformatics, and
mathematical modeling in evolution, ecology and epidemiology [2]; however, it is pointed
out that some of these attempts can be classified as ’uses’ but others must be considered as
’abuses’.

By combining theoretical and empirical biology, the mathematical-empirical approach
may be established with expectations that its description of living organisms reaches the
level of the description given by physics to nonorganic matter. In modern theoretical physics,
all fundamental equations describing matter are derived by using the Lagrangian formalism
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[3-5], which requires a prior knowledge of functions called Lagrangians [6-8]. A number of
different methods have been proposed [9-14] to obtain the Lagrangians for the most basic
equations of modern physics [5].

In theoretical biology, Kerner [15] was first who applied the Lagrangian formalism to
biology and obtained Lagrangians for several selected biological systems described by first-
order ordinary differential equations (ODEs). Later, Paine [16] investigated the existence
and construction of Lagrangians for similar set of ODEs following the original work of
Helmholtz [6]. More recently, Nucci and Tamizhmani [17] derived Lagrangians for some
models representing the population dynamics by using the method based on Jacobi Last
Multiplier [10]. Moreover, Nucci and Sanchini [18] obtained Lagrangian for an Easter Island
population model.

The main goal of this paper is to develop the Lagrangian formalism for biological systems.
The formalism is based on standard Lagrangians, whose main characteristic is the presence
of the difference between the kinetic and potential energy-like terms [5,9,10]. A method
to derive these Lagrangians is presented and applied to selected models of the population
dynamics. The role of the derived Lagrangians and the energy-like terms in these models is
investigated and discussed. It is suggested that the obtained standard Lagrangians can be
used to identify physical similarities between diverse biological systems.

The paper is organized as follows. Section 2 presents a brief overview of the Lagrangian
formalism and standard Lagrangians. Section 3 describes and discusses the models of the
population dynamics, and Section 4 concludes the paper.

2. Lagrangian formalism

2.1. General overview

Preliminary formulation of the Lagrangian formalism was originally done by Euler in
1742, and then it was refined and applied to Newtonian dynamics by Lagrange, who set up its
currently used form in his Analytic Mechanics that first appeared in 1788; however, see [3] for
more recent edition. According to Lagrange, the formalism deals with a functional S[x(t)],
which depends on a continuous and differentiable function x(t) that describes evolution of a
property of any dynamical system (given by x) in time (represented by t). This evolution is
described by an equation of motion, which can be derived from the Lagrangian formalism.

The functional S[x(t)] is called action and is defined by an integral over a scalar function
L that depends on ẋ(t) = dx/dt, x and on t, so L(ẋ, x, t) and it is called the Lagrangian
function or simply Lagrangian. According to the principle of least action, or Hamilton’s
principle [4,5], the functional S[x(t)] must obey the following requirement δS = 0, which says
that the variation represented by δ must be zero to guarantee that the action is stationary (to
have either a minimum, maximum or saddle point). The necessary condition that δS = 0,
is known as the Euler–Lagrange (E–L) equation that can be written as

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0. (1)
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The Euler–Lagrange equation leads to a second-order ordinary differential equation
(ODE) that can be further solved to obtain x(t) that makes the action stationary. The
procedure forms the basis of calculus of variations, and it works well when the Lagrangian
L(ẋ, x, t) is already known. Deriving the second-order ODE from the E–L equation is called
the Lagrangian formalism, and in this paper we deal exclusively with this formalism. It
must be pointed out that the formalism has been extensively used in modern physics and
that all its fundamental equations are derived by using it [5]. In this paper, we develop the
Lagrangian formalism in biology and use it to obtain equations of motions for the selected
models of population dynamics.

For dynamical systems whose total energy is conserved, the existence of Lagrangians is
guaranteed by the Helmholtz conditions [6], which can also be used to obtain Lagrangians.
The procedure of finding Lagrangians is called the inverse (or Helmholtz) problem of calculus
of variations [7] and it shows that there are three separate classes of Lagrangians, namely,
standard [3,4], nonstandard [8] and null [9] Lagrangians. Both standard and nonstandard
Lagrangians give the same equations of motion after they are substituted into the E-L
equation. However, null Lagrangians satisfy the E-L equation identically and therefore they
do not give any equation of motion.

Our main goal is to establish the Lagrangian formalism for known ODEs that describe
time evolution of different models of the population dynamics and find their Lagrangians;
in this paper, we concentrate exclusively on standard Lagrangians.

2.2. Standrard Lagrangians

According to Lagrange [3], standard Lagrangians (SLs) are represented by differences
between kinetic and potential energies of dynamical systems. In dynamics, if an oscillatory
system of mass m is displaced by x in time t, then its kinetic energy of oscillations is given
by

Ekin =
1

2
mẋ(t), (2)

where ẋ(t) is the time derivative of the dynamical variable x(t), or otherwise known as
ẋ = dx/dt. The potential energy depends on a spring constant k of the oscillatory system
and it can be written as

Epot = kx2(t). (3)

Thus, the standard Lagrangian for this system is

L(ẋ, x) = Ekin − Epot =
1

2

[
mẋ(t)− kx2(t)

]
. (4)

Substitution of this Lagrangian into the E-L equation (see Eq. 1) gives the following
equation of motion:

mẍ(t) + kx(t) = 0, (5)
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where ẍ(t) is the second derivative of x(t) with respect to time, or ẍ = d2x/dt2.
The presented above form of the SL is characteristic for oscillatory systems that are

not damped and not driven [2]. Obviously, the meaning of the variable x(t) may change
from one physical system to another. Moreover, the meaning of x(t) in biological systems
will be different than in physical systems, so will the meaning of the constants m and k.
Nevertheless, a Lagrangian with a kinetic-like energy term, which contains ẋ2(t), and a
potential-like energy term, which contains x2(t), will be identified as the SL. The main
objective of this paper is to derive SLs for different models of the population dynamics and
discuss the role of these SLs in mathematical description of these models.

The Lagrangian formalism based on standard Lagrangians have been well-established in
most fields of modern physics (e.g., [5] and references therein). Specifically, the formalism is
commonly used to obtain equations of motion for dynamical systems in Classical Mechan-
ics [3,7,8]. More recently, several methods were developed to solve the inverse Helmholtz
problems for physical systems described by ODEs (e.g., [10-14]). Some of these methods
developed for physical systems will be used in this paper to derive Lagrangians for biological
systems.

As already mentioned in the Introduction, there have been several attempts to establish
the Lagrangian formalism in biology [15-18], and different Lagrangians were obtained for
some selected biological systems. In this paper, we concentrate on standard Lagrangians
(SLs) because of their specific physical meaning discussed above. Our goals are to derive
SLs for some of the model for population dynamics, and discuss their meaning and role of
these Lagrangians in biology.

2.3. Method to derive standard Lagrangians

The Lagrangian formalism requires prior knowledge of a Lagrangian. In general, there
are no first principle methods to obtain Lagrangians, which are typically presented without
explaining their origin. In physics, most dynamical equations were established first and only
then their Lagrangians were found, often by guessing. Once the Lagrangians are known,
the process of finding the resulting dynamical equations is straightforward and it requires
substitution of these Lagrangians into the E-L equation. There has been some progress in
deriving Lagrangians for physical systems described by ODEs (e.g., [10-14]), and in this
paper, we develop a new method to obtain standard Lagrangians (SLs) for several models
that describe interacting species of the population dynamics. Let us point out that the
same method can be used in physics and in other natural sciences to obtain Lagrangians for
systems described by second-order ODEs.

The main objective is to solve the inverse (Helmholtz) problem of the calculus of varia-
tions [6,7] and derive the standard Lagrangian for a given second-order ODE. Let us consider
the following ODE

ẍ+ α(x)ẋ2 + β(x)ẋ+ γ(x)x = C0, (6)

where α(x), β(x) and γ(x) are at least twice differentiable functions of the dependent
variable only, and these functions are to be specified by the selected models of the population
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dynamics. In addition, C0 is a constant that may appear in some of these models (see Section
3). From a physical point of view, the above equation of motion describes an oscillatory
system that is affected by two damping terms with α(x) and β(x), and driven by the constant
force C0. In case, α(x) = β(x) = C0 = 0, the equation represents a harmonic oscillator [4,5].

Let us consider a simplified form of this ODE by taking β(x) = 0 and C0 = 0, and obtain

ẍ+ α(x)ẋ2 + γ(x)x = 0. (7)

Despite the presence of the damping-like term α(x)ẋ2, the equation is considered to be
conservative, which means that its standard Lagrangian can be obtained [11,20] and written
as

L(ẋ, x) =
1

2
ẋ2e2I(x) −

x∫
x̃γ(x̃)e2I(x̃)dx̃, (8)

with

I(x) =

x∫
α̃(x̃)dx̃. (9)

The main reason for reducing Eq. (6) to Eq. (7) is that the term β(x)ẋ is by itself a
null Lagrangian that identically satisfies the E-L equation [21-23], therefore, its derivation
from any SL is not possible [11,12]. In the following, we propose to account for this term in
a novel way.

We write Eq. (7) in the following form

ẍ+ α(x)ẋ2 + γ(x)x = F (x, ẋ), (10)

where the force-like term becomes

F (x, ẋ) = C0 − β(x)ẋ. (11)

All population dynamics models considered in this paper (see Section 3) are represented
by second-order ODEs in the form of Eq. (10) with F (x, ẋ) given by Eq. (11).

Our results presented in the Appendix generalize the previous work [20] and demonstrate
that the Lagrangian given by Eq. (8) is also the SL for Eq. (10) if, and only if, this SL is
substituted into the E-L equation

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= F (ẋ, x). (12)

This form of the E-L equation is commonly known in physics, and the presence of the
force-like term on the right-hand side of the equation is justified by F (ẋ, x) being a force
that does not arise from a potential (e.g., [4]); for further discussion of this term, see Section
3.3.
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It is straightforward to verify that substitution of Eq. (8) into Eq. (12) gives the original
equation given by Eq. (10). This makes our method easy to find SLs for any ODEs of
the form of Eq. (10) as it requires identifying the functions α(x), γ(x) and F (ẋ, x), and
evaluating the integral in Eq. (9) as well as the one in the SL given by Eq. (8).

Our method is simple and easy to use for the population dynamics models considered
in this paper. Let us point out that this method can be applied to any dynamical system
that is described by the second-order ODEs of the form of Eq. (10) in any areas of natural
sciences.

3. Applications to models of population dynamics

3.1. Selected models

The models of the population dynamics considered in this paper are listed in Table 1.
Our selection process was guided by the previous work, by Trubatch and Franco[17], and
Nucci and Tamizhmani [18]. Both papers considered the well-known population models
that involve two interacting species described by coupled nonlinear ODEs, namely, the
Lotka-Volterra, Gompertz, Verhulst and Host-Parasite models as shown in Table 1. The
authors of these papers determined Lagrangians corresponding to the ODEs representing
mathematically the models, either ad hoc [19] or using the method of Jacobi Last Multiplier
[17]; the Lagrangians of the same form were obtained, and they were treated as the generating
functions for the ODEs representing the models [17,18].

As it is well-known, Lagrangians can be of different forms and yet they would give
the same equation of motion [5,7]. In most cases, the forms of these Lagrangians do not
resemble the SLs in which the kinetic and potential energy-like terms can be identified [10-
14]. However, the main objective of this paper is to derive the SLs and for some selected
models of the population dynamics and compare the obtained SLs to those previously found
[18,19]. Because of the specific physical meaning of the SLs derived here, we are able to
address the role and meaning of these SLs in the population dynamics.

In selecting models of the population dynamics, we used the four models used in the
previous studies [19,18]. In addition, we selected the SIR model (see Table 1).
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Population models Equations of Motion

Lotka-Volterra Model ẇ1 = w1(a + bw2 )

ẇ2 = w2(A +Bw1)

Verhulst Model ẇ1 = w1(A+ Bw1 + f1w2)

ẇ2 = w2( a+ bw2 + f2w1)

Gompertz Model ẇ1 = w1(A log
(
w1

m1

)
+Bw2)

ẇ2 = w2( a log
(
w2

m2

)
+ bw1)

Host-Parasite Model ẇ1 = w1(a − bw2)

ẇ2 = w2(A−Bw2

w1
)

SIR Model ẇ1 = −bw1w2

ẇ2 = bw1w2 − aw2

The first four models of the population dynamics presented in Table 1 describe two
interacting species (preys and predators) of the respective populations w1(t) and w2(t) that
evolve in time t, which is denoted by the time derivatives ẇ1(t) and ẇ2(t). The coefficients a,
A, b, B f1, f2, m1 and m2 are real and constant parameters that describe the interaction of
the two species. The Lotka-Volterra, Verhulst and Gompertz models are symmetric, which
means that the depedent variables can be replaced if, and only if, the constants are replaced,
a → A, b → B, f1 → f2 and m1 → m2. However, the Host-Parasite model is asymmetric in
the dependent variables.

The SIR model presented in Table 1 describes the spread of a disease in a population
and the dependent variables w1(t) and w2(t) represent susceptible and infectious popula-
tions, with a and b being the recovery and infection rates, respectively. Similarly to the
Host-Parasite model, the SIR model is also asymmetric but the origin and nature of this
asymmetry in both models is significantly different.

3.2. Steps to derive standard Lagrangians

We solve the inverse (Helmholtz) calculus variational problem and derive standard La-
grangians for all selected models of the population dynamics shown in Table 1. The following
steps must be undertaken to solve the problem:

1. Convert the set of coupled nonlinear ODEs for each model into a second-order nonlinear
ODE for each dependent variable.

2. Cast the derived second-order ODEs into the equation of the same form as Eq. (10).

3. Compare the obtained second-order ODEs to Eq. (10) and identify the functions α(x),
γ(x) and F (x, ẋ) for each variable in each model.

4. Evaluate the integral in Eq. (9) and then determine the exponential factor.

5. Evaluate the integral in Eq. (8).

6. Use the above integrals and Eq. (8) to find the standard Lagrangian for each variable
in each model.
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7. Verify the derived standard Lagrangian by substituting it into the Euler-Lagrange
equation given by Eq. (12).

As pointed out in [19], the choice between the first and second order description of the
population dynamics is typically motivated by the information available. In case only one
population is observed, then the second-order ODE can be solved for this population. To
make it more general, we derive the second-order ODE for each variable in each model,
so both equations can be solved if both populations are observed. For this paper and the
presented results, the second-order ODEs are required because our method to derive the SLs
is valid only for such equations.

Our method to derive the SLs for the selected models is straightforward and the above
steps are easy to perform and they always give the standard Lagrangian for any second-order
ODEs of the same form as Eq. (10). In the following, we present the derived second-order
ODEs for each variable of the model and the resulting SLs.

3.3. Standard Lagrangians for selected models

Our method to derive standard Lagrangians for the models presented in Table 1 requires
that the systems of coupled nonlinear first-order ODEs are cast into one second-order ODE
for each variable. All derived second-order ODEs can be expressed in the same form as Eq.
(10), which can be written as

ẅi + αi(wi)ẇ
2
i + γi(wi)wi = Fi(ẇi, wi), (13)

where i = 1 and 2. Since wi(t) represents the population of species, its derivative with
respect of time ẇi(t) describes the rate with which the population changes, and ẅi(t) its
acceleration. Despite the presence of the damping-like term αi(wi)ẇ

2
i , the LHS of the above

equation is conservative [11,20] and it describes oscillations of the population of species with
respect to its equilibrium. These oscillations are modified by the force-like term on the RHS
of the equation. Let us now describe this term.

Typically, the presence of any term with ẇi(t) corresponds to friction forces in classical
mechanics. In the approach presented in this paper, all friction-like terms that explicitly
depend on ẇi(t) are collected on the RHS of the equation as Fi(ẇi, wi), which becomes the
force-like term. Since Fi(ẇi, wi) arises directly from the friction-like terms, its origin is not
potential, and therefore this force-like term may appear on the RHS of the E-L equation
(see Eq. 12) as it is shown in [4].

In our derivations of the standard Lagrangians for the models of the population dynamics
presented in Table 1, we follow the above steps. As an example, we show the calculations
required for each step for the Lotka-Volterra model. However, for the remaining four models
in Table 1, we only present the final results.

4. Lotka-Volterra Model

The Lotka-Volterra model was developed by chemist Alfred Lotka in 1910 and math-
ematician Vito Volterra in 1926 [24,25], and this model describes the interaction of two
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populations (predator-prey) based on the assumptions that the prey increases exponentially
in time without the predator, and the predator decreases exponentially without the prey
[19]. The model is symmetric and it is represented mathematically by a system of coupled
nonlinear ODEs given in Table 1.

Step 1: Using the coupled nonlinear ODEs for this model, we convert the equations into
the following second-order ODEs for the variables w1 and w2

ẅ1 −
ẇ2

1

w1

−Bẇ1w1 − Aẇ1 + aBw2
1 + aAw1 = 0, (14a)

and

ẅ2 −
ẇ2

2

w2

− bw2ẇ2 − aẇ2 + Abw2
2 + Aaw2 = 0. (14b)

Step 2: We cast these equations into the form of Eq. (13), and obtain

ẅ1 −
1

w1︸ ︷︷ ︸
α1(w1)

ẇ2
1 + (Bw1 + A)a︸ ︷︷ ︸

γ1(w1)

w1 = (Bw1 + A)ẇ1︸ ︷︷ ︸
F1(ẇ1,w1)

(15a)

and

ẅ2 −
1

w2︸ ︷︷ ︸
α2(w2)

ẇ2
2 + (bw2 + a)A︸ ︷︷ ︸

γ2(w2)

w2 = (bw2 + a)ẇ2︸ ︷︷ ︸
F2(ẇ2,w2)

(15b)

Step 3: Using the above equations, we identify the functions

α1(w1) = − 1
w1

α2(w2) = − 1
w2

γ1(w1) = a (Bw1 + A)

γ2(w2) = A (bw2 + a)

F1(ẇ1, w1) = (Bw1 + A)ẇ1

F2(ẇ2, w2) = ( bw2 + a)ẇ2

Step 4: Having identified α(w1) and α(w2), the intergral given by Eq. (9) can be evalu-
ated, and the result is

I(w1) = −
w̃1∫
dw1

w1

= − ln |w1|, (16a)

and
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I(w2) = −
w̃2∫
dw2

w2

= − ln |w2|. (16b)

Then, the factors e2I(w1) and e2I(w2) become

e2I(w1) = e−2 ln |w1| =
1

w2
1

, (17a)

and

e2I(w2) = e−2 ln |w2| =
1

w2
2

. (17b)

Step 5: Since γ(w1) and γ(w2) are known, the intergral in Eq. (8) can be calculated,
and we find

w1∫
w̃1γ(w̃1)e

2I(w̃1)dw̃1 = a(Bw1 + A ln |w1|), (18a)

and

w2∫
w̃2γ(w̃2)e

2I(w̃2)dw̃2 = A(bw2 + a ln |w2|). (18b)

Step 6: Using the above results and the definition of Lagrangian given by Eq. (8), the
following standard Lagrangians for the two dependent variables of the Lotka-Volterra model
are obtained:

L1(ẇ1, w1) =
1

2

(
ẇ1

w1

)2

︸ ︷︷ ︸
kinetic term

− a
(
Bw1 + A ln |w1|

)︸ ︷︷ ︸
potential term

(19a)

and

L2(ẇ2, w2) =
1

2

(
ẇ2

w2

)2

︸ ︷︷ ︸
kinetic term

−A
(
bw2 + a ln |w2|

)︸ ︷︷ ︸
potential term

(19b)

Step 7: Substituting the derived standard Lagrangians and F (ẇi, wi) into the following
Euler-Lagrange equations

d

dt

(
∂L

∂ẇi

)
− ∂L

∂wi

= F (ẇi, wi)e
2I(wi), (20)

where i = 1 and 2, we obtain Eqs. (15a) and (15b). This verifies that the presented
method to derive the SLs is valid.
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5. Verhulst Model

This logistical (or Verhulst-Pearl) equation was first introduced by the Belgian statis-
tician Pierre Francois Verhulst in 1838 [27]. This model describes the organisms’ growth
dynamics in a habitat of finite resources, which means the population is limited by a carrying
capacity. This model is valueable for optimisation of culture media by developing strategies
and selection of cell lines.

In this paper, the Verhulst model describes the population of interacting species by
considering self-interacting terms that prevent the exponential increase or decrease in the
size in the populations observed in the Lotka-Volterra model [19]. The system of coupled
nonlinear ODEs given in Table 1 shows that this model is symmetric.

After performing steps 1 through 3, the following functions for this model are obtained:

α1(w1) = −(1 + b ) 1
w1

α2(w2) = −(1 +B) 1
w2

γ1(w1) =
(
f2 − b

)
Bw2

1+
(
Af2 − 2Ab− a)w1 + A

(
a− Ab

)
γ2(w2) =

(
f1 −B

)
Bw2

2+
(
af1 − 2ab− A)w1 + a

(
A− aB

)
F1(ẇ1, w1) = −ẇ1

[
(2b− 1)Bw1 − f2w

2
1 + (2Ab− a) + (f2 − b)B

]
F2(ẇ2, w2) = −ẇ2

[
(2B − 1)bw2 − f1w

2
2 + (2aB − A) + (f1 −B)b

]
Substitution of these functions into Eq. (13) gives the second-order ODEs for the vari-

ables w1 and w2.
Then, we implement steps 4 through 6 and the resulting standard Lagrangians for the

variables w1 and w2 of the Verhulst model are

L(ẇ1, w1) =
1
2

[(
ẇ1

w1

)2

− (f2−b)B
(1−b)

w2
1 −

2(Af2−2Ab−a)
(1−2b)

w1 +
A(a−Ab)

b

]
w−2b

1 (21a)

and

L(ẇ2, w2) =
1
2

[(
ẇ2

w2

)2

− (f1−B)b
(1−B)

w2
2 −

2(af1−2aB−A)
(1−2B)

w2 +
a(A−aB)

B

]
w−2B

2 (21b)

The kinetic and potential energy-like terms are easy to recognize, and the functions
F1(ẇ1, w1) and F2(ẇ2, w2) are given above. Substitution of these Lagrangians into the E-L
equations (see Eq. 20) validates the method.
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6. Gompertz Model

English economist Benjamin Gompertz proposed a model to describe the relationship
between increasing death rate and age in 1825. This model is useful in describing the rapid
growth of a certain population of organisms such as the growth of tumors [28]. As well as,
modelling the amount of medicine in the bloodstream.

Here, we follow [17,19] and consider the Gompertz model for the population dynamics
This model generalizes the Lotka-Volterra model by including self-interaction terms that
prevent an unbounded increase of any isolated population [19]; the self-interacting terms
in the Gompertz model are different than those in the Verhulst model. The mathematical
representation of this model given by the coupled and nonlinear ODEs in Table 1 shows that
the model is symmetric.

The steps 1 through 3 allow us to identify the following functions in Eq. (13)

α1(w1) = − 1
w1

α2(w2) = − 1
w2

γ1(w1) =
[
A log

(
w1

m1

)]
w1

γ2(w2) =
[
a log

(
w2

m2

)]
w2

F1(ẇ1, w1) = [Am1 + bw1 + g1(ẇ1, w1)]ẇ1 − g1(ẇ1, w1)Aw1

F2(ẇ2, w2) = [ am2 +Bw2 + g2(ẇ2, w2)]ẇ2 − g2(ẇ2, w2)aw2

where

g1(ẇ1, w1) = a log

[
1

m2B

(
ẇ1

w1

− A log

(
w1

m1

))]
, (22a)

and

g2(ẇ2, w2) = A log

[
1

m1b

(
ẇ2

w2

− a log

(
w2

m2

))]
. (22b)

Then, the remaining steps result in the following standard Lagrangians for the two
dependent variables of the Gompertz model

L1(ẇ1, w1) =
1

2

(
ẇ1

w1

)2

− A

[
log

(
w1

m1

)
− 1

]
w1 (23a)

and

L2(ẇ2, w2) =
1

2

(
ẇ2

w2

)2

− a

[
log

(
w2

m2

)
− 1

]
w2. (23b)

In both Lagrangians the kinetic and potential energy-like terms are seen, and the forcing
functions F1(ẇ1, w1) and F2(ẇ2, w2) are given above. If we substitute these Lagrangians into
Eq. (20), the second-order ODEs for the variables w1 and w2 are obtained.
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7. Host-Parasite Model

This model describes the interaction between a host and its parasite. The model takes
into account nonlinear effects of the host population size on the growth rate of the parasite
population [19]. The system of coupled nonlinear ODEs (see Table 1) is asymmetric in the
dependent variables w1 and w2.

Using steps 1 through 3, we find

α1(w1) = − 1
w1

(
1 + B

bw1

)
α2(w2) = − 2

w2

γ1(w1) = aA

γ2(w2) = A(bw2 − a)

F1(ẇ1, w1) = B a2

b
+
(
A− 2aB

bw1

)
ẇ1

F2(ẇ2, w2) = (bw2 − a− A)ẇ2

After substituting these functions into Eq. (13), the second-order ODEs for the variables
w1 and w2 are obtained, and the equations are asymmetric, which means that the remaining
steps 4 through 6 must be applied to each dependent variable (w1 or w2) separately.

The standard Lagrangian for the variable w1 is

L1(ẇ1, w1) =
1

2

(
ẇ1

w1

)2

e2B/bw1 + aAEi

(
2B

bw1

)
, (24a)

where the exponential integral Ei(2B/bw1) is a special function defined as

Ei(z) =

∫ z

∞

ez̃

z̃
dz̃, (25)

with z = 2B/bw1. It must be noted that Ei(z) is not an elementary function. Now, the
standard Lagrangian for the variable w2 is given by

L2(ẇ2, w2) =
1

2

(
ẇ2

w2

)2
1

w2
2

− A

[
1

2

a

w2

− b

]
1

w2

. (26a)

It is seen that there are significant differences between the Lagrangian for w2 and that
for w1 in both the kinetic and potential energy-like terms. The differences are especially
prominent in the potential energy-like terms, whose explicit dependence on the exponential
integral Ei(2B/bw1) is a new phenomenon. The differences are caused by the asymmetry
between the dependent variables in the original equations (see Table 1), which makes this
model different than the fully symmetric Lotka-Volterra, Verhulst and Gompertz models,
whose standard Lagrangians are also fully symmetric.
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g1(ẇ1, w1) = a log

[
1

m2B

(
ẇ1

w1

− A log

(
w1

m1

))]
, (27a)

and

g2(ẇ2, w2) = A log

[
1

m1b

(
ẇ2

w2

− a log

(
w2

m2

))]
. (27b)

8. SIR Model

Kermack and McKendrick in 1927 derived the system of the first ODEs (see Table 1)
describing the spread of a disease in a population [29]. It is the one of the simplest model,
dividing the population into three distinct sub-populations: a susceptible population denoted
by w1(t), the infectious population represented by w2(t), and a recovered population, we
denote as w3(t).

It is seen that the dependent variable w3(t) does not appear explicitly in the set of ODEs
given in Table 1 because it is related to w1(t) and w2(t) through the following population
conservation law: d/dt(w1+w2+w3) = 0, which means that the sum of the three populations
must remain constant in time. Moreover, a > 0 is the recovery rate and b > 0 is the rate
of infection, which means that the terms −bw1w2 and −aw2 represent newly infected and
recovered individuals, respectively.

After performing steps 1 through 3, we obtain

α1(w1) = − 1
w1

α2(w2) = − 1
w2

γ1(w1) = 0

γ2(w2) = abw2

F1(ẇ1, w1) = (bw1 − a)ẇ1

F2(ẇ2, w2) = −bw2ẇ2

Then, steps 4 through 6 give the following standard Lagrangians

L1(ẇ1, w1) =
1

2

(
ẇ1

w1

)2

, (28a)

and

L2(ẇ2, w2) =
1

2

(
ẇ2

w2

)2

− abw2. (28b)

The fact that the SIR model is asymmetric is shown the lack of the potential energy-like
term in L1(ẇ1, w1) and its presence in L2(ẇ2, w2). However, the kinetic energy-like terms
are the same for the SLs for both variables, and they are also similar to such terms in the
SLs obtained for the other population dynamics models.
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8.1. Comparisons of Lagrangians and models

The derived standard Lagrangians for the considered models of the population dynamics
are characterized by the terms corresponding to the kinetic and potential energy as well as
to the forcing function. These terms are easy to identify (see Eqs. 19a and 19b) and they
can be used to make comparisons between the Lagrangians and models they represent. The
models considered in this paper can be divided into two families, namely, symmetric (Lotka-
Volterra, Verhulst and Gompertz) and asymmetric (Host-Parasite and SIR) models. The
SLs derived for these models are different than the Lagrangians previously obtained [19,17];
the main difference is the explicit time-dependence of those Lagrangians as compared to the
SLs derived in this paper. In the following, we describe the general characteristics of the
derived SLs and comment on their explicit time-independence.

The kinetic energy-like terms in all four models have the same factor (ẇi/wi)
2/2, where i

= 1 and 2, which represents the ratio at which the population changes to its value at a given
time. For the Verhulst and Host-Parasite models, this ratio is modified by the other factors
that depend on the concentration of species at a given time. It is interesting that the kine
tic energy-like terms in the Lotka-Volterra, Gompertz and SIR models are independent from
any constant parameters but for the other two models they are; in case of the Host-Parasite
models only the variable w1 shows such a dependence.

The potential energy-like terms of the Lotka-Volterra model depends linearly on the
concentration of species; however, the Verhulst, Gompertz and Host-Parasite models also
have nonlinear (second-order) terms in the concentration of species. The SIR model is
exceptional as its SL for the variable w1 does not depend on any potential energy-like term.
On the other hand, the SL for the variable w2 does depend on the potential energy-like term
that is linear in this variable. In all models, the potential energy-like terms depend on the
constant parameters that appear in the derived second-order ODEs for these models. An
interesting result is the presence of logarithmic terms in the Lotka-Volterra and Gompertz
models, and the exponential integral Ei for the variable w1 for the Host-Parasite model. It
must be also noted that the form of the potential energy-like term for the SIR model is the
simplest among all the models considered here.

Since the kinetic and potential energy-like terms depend on the square of the rate with
which the populations change and the square of their concentration, respectively, one may
conclude that the derived SLs describe oscillatory systems. The fact that none of the ob-
tained SLs depends explicitly on time indicates that the considered models oscillate in time
with certain frequencies around the equilibrium, and that these oscillations are not directly
affected by any ’physical damping’ associated with the presence of terms that depend on
ẇi, which are absent in derived the SLs; this is the main difference between the SLs of this
paper and those previously obtained [19,17].

However, we must keep in mind that all damping terms represented by ẇi(t) have been
moved to the force-like functions denoted by Fi(ẇi, wi), which significantly vary for different
models. First, let us point out that the force-like functions become null Lagrangians [21-23],
which means that they identically satisfy the E-L equation, and therefore they cannot con-
tribute to any equation of motion. As a result, no standard Lagrangian can properly account
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for them [11,12] because the presented Lagrangian formalism is valid only for conservative
systems.

Second, the force-like functions may depend only on ẇi(t) and on ẇi(t)wi(t), and the
constant parameters, or may depend on higher powers of thess variables that are arguments
of the logarithmic functions. As the presented results demonstrate, the forms of the force-
like functions significantly differ for different models, with the simplest being for the SIR
and Lotka-Volterra models, and then the increasing complexity for the Host-Parasite and
Verhulst models. The most complex form of Fi(ẇi, wi) is found for the Gompertz model.

Third, the observed increase in complexity of the force-like function is caused by the
role played by the terms that depend on ẇi as well as on the combination of terms with
ẇiwi. In other words, the forms of Fi(ẇi, wi) significantly affect the oscillatory behavior
of the systems represented by the SLs (see discussion above). The force-like function may
modify this behavior by causing the systems to reach the equilibrium faster or diverge from
it; detailed analysis requires solutions to the ODEs representing the considered systems,
which is out of the scope of this paper.

Finally, let us point out that since the energy-like terms in the SLs have specific meanings
for the models, we suggest that they may be used to identify physical similarities between
different models as well as they may be utilized to classify the models into categories that
have similar biological characteristics. Despite the fact that the SLs were derived only for
the population dynamics models, the developed method and the above discussion can be
easily applied to a broad range of biological systems, which will be explored in succeeding
papers.

9. Conclusions

We developed Lagrangian formalism for the following population dynamics models:
Lotka-Volterra, Verhulst, Gompertz, Host-Parasite and SIR models. For ODEs that rep-
resent these models, we solved the inverse (Helmholtz) variational calculus problem and
derived standard Lagrangians for the models. The main characteristic of these Lagrangians
is that their kinetic and potential energy-like terms are identified and that they can be used
to make comparisons between the obtained Lagrangians as well as the models.

The comparison demonstrates the role of these terms in the population dynamics models
and gives new insights into the models by showing their similarities and differences. More-
over, the analogy between the derived standard Lagrangians and that known for a harmonic
oscillator in physics is used to discuss the oscillatory behavior of the models with respect to
their equilibrium. In our approach, we collected the terms with the first-order derivatives
in time and identified them as the force-like functions, which happened to be significantly
different for each model and strongly depend on the parameters of each model. By separat-
ing the force-like functions, we were able to see the effects of these functions on the model’s
oscillatory behavior.

Our method of solving the inverse calculus of variation problem and deriving standard
Lagrangians is applied to the models of population dynamics. However, the presented results

16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.25.485848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485848
http://creativecommons.org/licenses/by/4.0/


show that the method can be easily extended to other biological systems whose equations
of motion are known.
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mathématique et physique 10, 113–21, 1838.
[27] B. Gompertz, ”On the nature of the function expressive of the law of human mortality, and on a new

method of determining the value of life contingencies”, Phil Trans Roy Soc. 27, 513–85, 1825.
[28] V.P. Collins, R.K. Loeffler, H. Tivey, ”Observations on growth rates of human tumors”, Am J

Roentgenol Radium Ther Nuc Med. 78, 988–1000, 1956.
[29] W.O. Kermack and A.G. McKendrick, ”A contribution to the mathematical theory of Epidemics”,

Proc. Roy. Soc. Lond. A, 115, 700-721, 1927.

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.25.485848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485848
http://creativecommons.org/licenses/by/4.0/

