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Abstract.
Objective: Recent advances in intracortical brain machine interfaces (iBMIs) have

demonstrated the feasibility of using our thoughts; by sensing and decoding neural activity,
for communication and cursor control tasks. It is essential that any invasive device is
completely wireless so as to remove percutaneous connections and the associated infection
risks. However, wireless communication consumes signi�cant power and there are strict
heating limits in cortical tissue. Most iBMIs use Multi Unit Activity (MUA) processing,
however the required bandwidth can be excessive for large channel counts in mm or sub-
mm scale implants. As such, some form of data compression for MUA iBMIs is desirable.
Approach: We used a Machine Learning approach to select static Hu�man encoders that
worked together, and investigated a broad range of resulting compression systems. �ey
were implemented in recon�gurable hardware and their power consumption, resource
utilization and compression performance measured. Main Results: Our design results
identi�ed a speci�c system that provided top performance. We tested it on data from 3
datasets, and found that, with less than 1% behavioural decoding performance reduction
from peak, the communication bandwidth was reduced from 1 kb/s/channel to approximately
27 bits/s/channel, using only a Look-Up Table and a 50 ms temporal resolution for threshold
crossings. Relative to raw broadband data, this is a compression ratio of 1700-15,000×
and is over an order of magnitude higher than has achieved before. Assuming 20 nJ per
communicated bit, the total compression and communication power was between 1.37 and
1.52µW/channel, occupying 246 logic cells and 4 kbit RAM supporting up to 512-channels.
Signi�cance: We show that MUA data can be signi�cantly compressed in a hardware e�cient
manner, ‘out of the box’ with no calibration necessary. �is can signi�cantly reduce on-
implant power consumption and enable much larger channel counts in WI-BMIs. All results,
code and hardware designs have been made publicly available.

Keywords: Brain Machine Interfaces, Multi-Unit Activity, Firing Rate Compression, Real-
time Signal Processing, Embedded Systems, Recon�gurable Hardware
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1 Introduction

1.1 Wireless Intracortical Brain-Machine Interfaces

Brain–machine interfaces (BMIs) are electronic devices that measure neural activity, extract
features from that activity, and convert those features into outputs that replace, restore,
enhance, supplement, or improve human functions. �ey can, for example, be used to
treat paraplegia, quadriplegia, movement disorders, Locked-in syndrome and more [1].
Intracortical BMIs (iBMIs) are the most invasive form of BMI, where electrodes are placed
into brain tissue [2]. �ey also provide the highest resolution of BMI data, capable of
measuring the �ring rates of individual neurons in the electrodes’ vicinity.

For iBMIs, wireless communication and powering is becoming increasingly essential.
�is eliminates physical percutaneous connections, e.g. wires breaching the skin, and
associated risks (infection, mechanical damage, etc). �ey also enable chronic powering
without having to replace the implant, as ba�ery life is limited. However, due to heating
constraints in cortical tissue, power is strictly limited in Wireless Intracortical BMIs (WI-
BMIs) to an approximately 1 C temperature increase or 1.6 mW/g of speci�c absorption rate
(SAR) in tissue [2–4]. In the context of heating due to absorption of radio frequencies (RF),
the IEEE standard C95.1-2019 gives limits for SAR heating depending on RF frequency [5].
However, it speci�es that the understood SAR limits in brain tissue are generally derived
from models and lack rigorous studies in live animals or humans, with signi�cant variance
between models [5]. FDA regulations further dictate that the local heat increase of brain
tissue due to intracortical implants should be limited to only 0.5 C [6]. In muscle and lung
tissue, it is understood that up to 40 mW/cm2 heat �ux can be allowed, however the limit is
likely lower in cortical tissue [3]. For this work, we will assume a maximum heat �ux limit
of 10 mW/cm2 to hopefully provide a reasonable safety margin, given the extreme paucity
of data on the e�ects of chronic heat �ux on cortical tissue [3,7]. Even with heating rates for
non-cortical tissue, the heating limitation in WI-BMIs is so severe that methods to reduce
on-implant power use are highly desirable.

�e typical data �ow and power-resource-performance optimisation problem for BMIs
is shown in Fig. 1. In this work, we seek to reduce the on-implant power via data compression
with minimal resources, while maximising the Behavioral Decoding Performance (BDP). �e
communication rate is equal to the temporal resolution of the neural and decoded behavioral
data i.e. Behavioral Data Temporal Resolution (BDTP). As such, it should also be kept in a
practical range (e.g. 1-100 ms). If it is too high, unnecessary detail is communicated; e.g.
decoding the behavior at 1 ns intervals would be unnecessary. If this is however too low, the
decoder will not output at a su�cient temporal resolution.

1.2 Communication Power

�e wireless data communication channels for brain-machine interfaces can be described as
uplink and downlink. �e uplink refers to the data �ow from implants to external devices,
and the downlink is the opposite �ow direction. Usually, the brain-machine interfaces
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require a higher uplink data rate than that of downlink, as uplink needs to transmit a
signi�cant amount of recorded neural data. Due to the strict heat limits, a power-e�cient
data communication scheme is essential to brain-machine interfaces.

Recently, researchers have developed various communication microsystems for brain-
machine interfaces. �e common data communication schemes are implemented using
di�erent shi� keying (amplitude, phase, on-o�) [8–12]. �ey are the most power-e�cient
solutions for implants; however, their Bit Rates (BR), i.e. data rates, are below 20 Mbps. �e
ultra-wideband uplink proposed in [13] achieved 46 Mbps with 118.3 pJ/bit. �e implantable
microsystems that are designed and fabricated based on full-custom application speci�c
integrated (ASIC) are more power-e�cient than microcontroller and �eld-programmable
gate array (FPGA) based solutions.

Table 1: Wireless data communication power consumption comparison

Publication Downlink Uplink
Modulation Bit rate Power Modulation Bit Rate Power

[8] ASK 15 kbps - Backsca�er - -
[9] OOK-PPM 50 kbps 4 nJ/bit OOK 6.78 Mbps 1.34 nJ/bit
[10] OOK 1 Mbps 13 pJ/bit OOK 16 Mbps 50.4 pJ/bit
[11] ASK 11 Kbps 1.25 nJ/bit - - -
[13] - - - UWB 46 Mbps 118.3 pJ/bit
[12] ASK-PWM 1 Mbps - BPSK 10 Mbps -
[14] - - - Backsca�er 0.5 Mbps 240 pJ/bit
[15] Nordic - nRF24L01+ 2 Mbps 16.95 nJ/bit Nordic - nRF24L01+ 2 Mbps 20 nJ/bit
[16] - - - Backsca�er 1.25 Mbps 87 nJ/bit

Figure 1: Data �ow in behavior-decoding BMIs, and optimisation problem of on-implant power, resources and
behavioral decoding performance (BDP). �e communication rate, i.e. the temporal resolution of the neural
and decoded behavioral data, should also be kept in a practical range based on the desired temporal resolution
of the decoded behavioral data.

ASIC designs are optimal in terms of minimising power consumption and chip area.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.25.485863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485863
http://creativecommons.org/licenses/by/4.0/


Hardware-E�cient Compression of Neural Multi-Unit Activity 4

However, the design process of FPGAs is signi�cantly less expensive and easier compared
to that of ASICs. FPGAs also bene�t from increased �exibility for programming, which
accommodates algorithmic changes be�er. As a result, it is typical for researchers to use
FPGAs to validate the ASIC’s performance before full development of the ASIC.

�erefore the system in this work is implemented in recon�gurable hardware (FPGA),
and so the fairest comparison would be to the system in [15] which achieved a 20 nJ/bit
uplink. As such, this work assumes a system communication energy to be 20 nJ/bit. �e
average communication power per channel can then be calculated from the BR, given in
(bits/s/channel):

Comm. power = BR× Comm. energy per bit (1)

For a single channel, the BR is simply given by:

BR =
avlen

BP
(2)

where avlen is the average length of each symbol in a binning period (BP) in bits.

1.3 Data Compression

Raw broadband data is typically sampled at 25-30 kHz and 16 bits/sample [1,17–19], although
resolutions as low as 7 kHz and 6 bits/sample are possible for applications such as spike
detection of large spikes [20]. �is creates very large communication bandwidths, ranging
from 42-480 kb/s/channel. For 20 nJ/bit, this translates into a communication power demand
of 0.84-9.6 mW/channel. Given heat �ux limits, even for that in muscle tissue of 40 mW/cm2,
this severely limits the number of channels.

Millimeter or sub-mm scales are desired for WI-BMIs, mainly due to them reducing the
likelihood of mechanical injury and foreign body response in the brain [2, 21–24]. As such,
this work considered a 2.5 mm × 2.5 mm FPGA chip, discussed further in Section 2.4.

At a heat �ux limit of 10 mW/cm2, such an implant would have a maximum power
budget ofB = 625µW. As such, even a single broadband channel could not be communicated,
as 42 kbits/s/channel × 20 nJ/bit = 840µW/channel which exceeds the total implant power
budget. As such, some form of data compression is necessary. �ere are two main methods
for compressing data: lossless and lossy compression.

1.3.1 Lossless Compression Lossless compression takes advantage of skewed and narrow
histograms in the data to assign shorter codewords to more likely data values, and longer
codewords to less likely data values [25]. On average, this reduces the length of the
communicated data. Many di�erent lossless algorithms have been proposed. �ese include
Hu�man encoding, Arithmetic encoding, Lempel-Ziv, etc.

Hu�man compression is especially interesting for WI-BMIs. Firstly, this is because
Hu�man encoders can be static. Static encoders are pre-trained on representative data and do
not adapt to the data they are compressing. As such, if the histogram of the to-be-compressed
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Table 2: Hu�man encoder example

Hu�man Encoder
Symbol Frequency Codeword

0 0.8 0
1 0.1 10
2 0.07 110
3 0.03 111

data can be accurately estimated a priori, a static encoder can be used. Relative to an adaptive
encoder, this dramatically reduces the required operations and hardware resources because
a static Hu�man encoder can be implemented using only a few Look-Up Tables (LUTs). An
example of Hu�man encoder LUTs given in Table 2, where compression is achieved by giving
shorter codewords to more likely symbols. Given the codeword lengths and frequencies, the
average encoded length of a symbol will be 0.9×1+0.1×2+0.07×3+0.03×3 = 1.4 bits,
instead of the 2 bits that are normal for the binary representation of 4 values (e.g. codewords
of 00, 01, 10, 11).

Secondly, each symbol is represented by a unique, �xed codeword. In particular,
Hu�man coding is a pre�x coding. �is means that no codeword is the pre�x of another
codeword. An advantage of this is that multiplexed channels can use di�erent encoders.
As long as the sequence of channel-encoder pairs is correctly known by the decoder, the
sequence can be fully decoded. Considering that multi-channel neural recordings are o�en
multiplexed and can have di�erently shaped histograms, this can be of great bene�t. For
example, each channel could use its own encoder. Alternatively, a handful of static Hu�man
encoders could be placed on-implant. �e channels could then be assigned to di�erent
encoders based on which o�ered maximum compression.

As such, Hu�man encoders are very simple encoders which o�er a lot of �exibility,
and are generally well-suited to the WI-BMI environment. An example scenario with two
multiplexed Hu�man encoders serving di�erent channels is given in the Supplemental
Material, Table 1.

1.3.2 Lossy Compression �e second form of compression is lossy compression, i.e. feature
extraction. It consists of compressing data by removing or degrading information that
is assumed to not be of interest. For example, downsampling data is a form of lossy
compression. Similarly, reducing the sampling resolution is a form of lossy compression.
Dimensionality reduction, where one transforms the data so as to concentrate the useful
information in a smaller number of channels/inputs and therea�er eliminate redundant
observed inputs, is also a form of lossy compression, e.g. Principal Component Analysis
thresholding.

In the case of broadband data, many informative lossy features have been determined.
�is is because the broadband signal can be split into two major components, the Local Field
Potential (LFP) and the Extracellular Action Potential (EAP), both of which are sparse and
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shown in Fig. 2. LFPs consist of the lowpassed broadband at 100-300 Hz, and are believed
to result from the sum of extracellular currents and spike activity in the vicinity of the
electrode [26, 27]. While low bandwidth, easy to measure and chronically available, it has
not been shown to have as good decoding performance as higher-frequency features such as
those derived from the EAP [28]. In [29], it was found that the LFP signal could be e�ciently
losslessly compressed using static Hu�man encoders, especially if delta-sampling was used.

�e EAP consists of the ∼300 Hz highpassed broadband. It is highly sparse, given the
infrequency of neural spiking events which are believed to contain most of the interesting
information in neural signals. Most of what makes up the EAP signal is spikes of
varying amplitude combined with thermal and electronics noise [20, 30, 31]. To remove the
uninteresting noise, many di�erent EAP compressions have become common, e.g. Single
Unit Activity (SUA), Multi-Unit Activity (MUA) and Entire Spiking Activity (ESA). �ese are
shown in Fig. 2.

SUA consists of measuring the spike �ring times of individual neurons in the vicinity
of the electrode. It is obtained by identifying neurons �ring in the EAP, detectable via a
sudden spike in the signal. �is is o�en done via se�ing a threshold in combination with
a nonlinear energy operator, and if the threshold is exceeded then a spike is considered to
have occurred. �e shape of the spike is then clustered, where similarly shaped spikes are
assumed to originate from the same putative neuron. SUA gives high decoding performance,
however the spike sorting procedure is expensive to perform on-implant [32, 33]. As such,
there has been work to extract and compress the spike shapes to send them o�-implant for
sorting [34, 35].

MUA is similar to SUA, however the spikes are not sorted, and one treats all spike events
on the same electrode as originating from the same putative neuron. Although evidence is
somewhat mixed, it is generally believed that MUA gives very similar decoding performance
to SUA [28, 36–38]. By reducing the broadband to only the spikes in either SUA or MUA,
signi�cant de facto compression is achieved, along with power savings [30, 32].

1 kbps

4 kbps

1.8 kbps

 EAP features

ES
A

SU
A

M
U

A

Binning

320 kbps

Raw broadband

4.8 kbps

200 kbps

Filtered Signals

EA
P

LF
P

 50ms Bin Period

40 bps

160 bps

M
U

A
SU

A

Decompression Behavioral
Decoding~27 bps

Signal
Acquisi�on

Signal
Filtering

Feature 
Extrac�on Compression

Processing node & end devices

Figure 2: Typical BMI data processing and compression �ow, with common extracted features / lossy
compressions of intracortical broadband data. �e numerical values beneath the signals give approximate
BRs per channel for that signal.
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ESA, sometimes also confusingly referred to as MUA, consists of rectifying the EAP
and then lowpass �ltering it at ∼50 Hz. �is gives an envelope of unsorted spiking activity,
and has been found to o�er high decoding performance at low bandwidth [17, 28, 39, 40].
While SUA and MUA involve the detection of binary events, ESA is more analogue. It is
underexplored as a signal, but sampling rates as low as ∼1000 Hz (with a Nyquist rate of
24 Hz) and sampling resolutions of 16 bits/sample o�ered exceptional decoding performance
[28]. It may be that sampling rates as low as 20 Hz and resolutions as low as 5 bits/sample
may o�er good decoding performance, but this is speculation. If so, then the ESA signal
could o�er good decoding at even 100 bits/s/channel. Non-linear quantisation, and lossless
compression oF ESA such as in [29, 41], may o�er further reductions in BR.

While the ESA signal is of signi�cant interest, and will be the subject of future work
by the authors, most modern WI-BMI systems target the MUA signal [30, 38, 42, 43]. �is is
likely due to its well understood and sparse nature, ease of measurement, and high BDP with
a standard BR of at most 1000 bits/s/channel [18, 30, 44, 45]. Recent work from the authors
has also found that the MUA signal can also be reliably extracted using very few hardware
resources and a very small power budget [46]. However, even such a BR is very limiting for
mm or sub-mm scale implants. For the considered power budget B = 625µW, with a BR of
1000 bits/s/channel and 20nJ/bit, and with static FPGA power consumption of 162µW and
a processing power for the 1 ms binner of 0.96µW/channel, discussed later in Section 3.2.2,
this translates into a maximum of 22 channels. It is assumed that the front-end ampli�er and
ADC has a separate footprint and power demand. While 22 channels may be acceptable for
a 2.5 mm × 2.5 mm sized implant plus the front-end footprint, it would be useful to know
if further data compression could enable increased channel counts or reduced implant size,
and what the tradeo�s are.

1.4 Multi-Unit Activity

More speci�cally, MUA consists of measuring how many spikes occur in a time bin, of
pre-determined duration, on each recording channel. Multi-channel MUA is generally
represented by multiplexing the MUA signal from di�erent channels together [30, 44]. E.g.

2, 3, 1

indicates that 2 events occurred on channel 1, 3 occurred on channel 2, and 1 occurred on
channel 3 in the length of the given MUA time bin, i.e. the Binning Period (BP).

�e BP commonly varies from 1-100 ms [18, 30, 42, 44, 45]. �e practical lower limit of
1 ms is because spikes last approximately 2 ms. However, the e�ects of increasing BP beyond
1 ms is an area of active research [30, 47, 48].

�e size of each multiplexed MUA communicated data block is n × m per BP. n is
the number of MUA channels. m is the number of bits required to represent, in binary,
the number of MUA events in a channel in the given BP. m is generally chosen a priori by
researchers, based on their estimation of how many MUA events may occur in a bin.

By increasing BP, the MUA data is lossily compressed, saving on communication
bandwidth [30]. �is is because the BR required to communicate a channel of binned data is
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equal to m/BP (bits/s/channel). �ere is an approximately linear relationship between the
likely maximum number of MUA events in a bin and BP (Fig. 3 (a)). �is produces a positive,
approximately logarithmic e�ect on m from increasing BP (Fig. 3 (b). As such, merely
increasing BP decreases the communication bandwidth, relative to a lower BP (Fig. 3 (c)).
�e cost is reduced temporal resolution of MUA �ring times.

1.5 Prior Work in the Compression of MUA

�e lossy compression of MUA was investigated in [47]. Speci�cally, the e�ect of varying
MUA BP on BMI Behavioral Decoding Performance (BDP) was investigated. It was found
that increasing BP had a slight but statistically signi�cant negative e�ect on BDP: an absolute
reduction of 0.85% per 10 ms BP increase in the mean Pearson correlation coe�cient between
the observed and predicted X and Y axes of a free hand movement, decoded with Long-Short
Term Memory decoders. �is is to be expected, as a lower temporal resolution intuitively
translates into reduced BDP. However, the e�ect of BP on BDP likely varies by decoded
action and decoding algorithm [30], and no e�ect of BP on BDP for SUA was found in [48].

Figure 3: (a) A plot of S′, the maximum range of MUA events measured in a bin, as a function of BP;
S′ = max(x) + 1, where the ’+1’ is because we need to encode the case of 0 MUA events occurring in a
bin. (b) �e number of bits ceiling(log2(S′)) required to losslessly represent up to S′ MUA events in a bin,
as a function of BP. (c) �e communication bitrate, in bits/s/channel, required to communicate S′ events per
bin, ceiling(log2(S′))/BP . (a-c) �e analysed MUA data, from which S′ is measured, consists of the �rst 10
recordings in the Flint dataset [18], i.e. the recordings in �les ‘Flint 2012 e1’, ‘Flint 2012 e2’, ‘Flint 2012 e3’
and ‘Flint 2012 e4’. �e recordings from the Brochier dataset [49], Subject N are also included. Finally, the
recordings from Sabes lab [19], Subject ‘̀Indy’ are also used.
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In [29], the lossless compression of various intracortical neural signals with pre-trained
static Hu�man encoders was investigated. �ese included the EAP, ESA, and the LFP, all at
various sampling resolutions.

1.6 �is Work

To the best of the authors’ knowledge, a holistic analysis of the compression of MUA
signals has not been undertaken. As such, in this work we investigated the compression
performance of static Hu�man encoders on MUA data at di�erent BPs. �is involved binning
and then using multiple pre-trained, static Hu�man encoders to losslessly compress the
binned data. Channels were assigned to the static encoders based on an estimate of which
encoders would give the best compression performance, given an on-implant estimation of
the channels’ sample histograms. �is was investigated as a potentially computationally
e�cient but well-performing alternative to having either a single static encoder for all
channels or adaptive encoders for each channel. Additionally, channels’ �ring rates can
change over time, making the semi-adaptivity valuable.

A basic schematic of the data �ow is shown in Fig. 4. �e analysis looked at di�erent
BPs, the number of encoders and the number of on-implant resource budgets for the sample
histograms. A�er determining the e�ect of each parameter on BR, the systems were then
implemented in FPGA and the hardware requirements and processing power consumption
measured. From the communication energy per bit estimates in Section 1.2 and the observed
BR, the communication power was obtained. �e processing power and communication
power were combined into an estimate of the total system power. �e BDP of the data was
then investigated using Wiener Cascaded Filters. As such, a holistic view of BDP, temporal
resolution, hardware resources and on-implant power consumption is given for the di�erent
strategies.

Figure 4: Data �ow with binning and Hu�man compression using multiple pre-trained encoders with
assignment of channels to encoders. If only 1 encoder is used, no assignment of channels to encoders is
necessary. CWx corresponds to the codeword given to the xth channel by its assigned encoder.

2 Materials and Methods

�e public datasets were loaded with Python 3.8 and MATLAB 2020a, the analysis was
performed in Python 3.8, and the FPGA design in Modelsim La�ice Edition and iCEcude2
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Table 3: Dataset summaries.

Dataset Neural
data type

Species, electrode
type and brain region

Details Behaviour

Flint [18] SUA
Rhesus macaque monkey

Utah array
M1

One subject
12 recordings across 5 days
96 channels
Recording lengths
(quartiles, s):
597, 604, 630

Free-reaching hand task
Continuous data stored

Sabes [19] SUA
Rhesus macaque monkeys

Utah array
M1 and S1

Subjects Indy and Loco
37 recordings for Indy
across 10 months
10 recordings for Loco
across a month
96-192 channels
Recording lengths
(quartiles, s):
Indy: 472, 524, 816
Loco: 1771, 1928, 2384

Free-reaching hand task
Continuous data stored

Brochier [49] SUA
Rhesus macaque monkeys

Utah array
M1 and PMv/PMd

Subjects N and L
Single session recordings
96 channels
Recording lengths (s):
N: 1003
L: 709

Hand reaching task
Target stored

2020. �e analysis Python code and FPGA Verilog code and designs have all been made
publicly available at [50]. �e forma�ed data and results have been available at [51].

2.1 Analysed Datasets

To get a broad sample of MUA conditions, three publicly available datasets were used. �ese
are summarised in Table. 3, and further details are given in Supplemental Material, Section 2.

In this work, the X and Y-axis cursor velocities in the hand reaching tasks were used
as the observed behavioral data. �e BDP is de�ned in this work as the across-axes average
Pearson correlation coe�cient r between the predicted and observed X and Y-axis velocities.
In the Brochier et al. dataset, the behavioural data consisted of labelled actions. As these were
not continuous measurements, the behavioral data from the Brochier et al. dataset was not
analysed in this work so as to keep the BDP metric consistent.

�e Flint dataset was split so that the �rst 4 days of recording sessions were included
in the training data, referred to as set A. �is corresponded to 10 out 12 recording sessions.
�e remaining 2, taking place over another day, were used as testing data and included in
set B. �e Brochier dataset was all included in the testing data B. Finally, the Sabes dataset
was split so that data from subject Indy was included in A, and the data from subject Loco
was included in B.

For each dataset, the SUA data was intra-channel collated to MUA, then binned to
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the desired BP. �e behavioral data was resampled to the same BP resolution using linear
interpolation.

2.2 Determining the Impact of Compression on Behavioural Decoding Performance

�e maximum number of MUA events inAwas empirically measured as S ′−1 (Fig. 3 (a)). S ′

is the resulting encoder length, i.e. the number of potential inputs to the Hu�man encoder,
as the case of 0 MUA events also needs to be represented. However, communicating up to S ′

possibilities per bin may be unnecessary. Saturating the range of measurable MUA events
per bin at a lower value would save on hardware resources and reduce the bandwidth. �is
is because more possible symbols requires more, and longer, codewords and histogram bins.
In e�ect, by saturating the data we are limiting the dynamic range. However, this is a form
of lossy compression and may therefore reduce BDP. �erefore, using the A training data,
it was tested whether saturating the range of measurable MUA events per bin at an integer
value S, where 2 ≤ S ≤ S ′, had any negative consequences on BDP. In other words, every
value in the signal above S − 1 was set to S − 1 and the resulting BDP observed.

A Wiener Cascaded Filter (WCF) was used for the decoder, with the binned MUA data
as input and the X and Y-axis cursor velocities as the decoded output. WCFs have been found
to have good decoding neural performance relative to other simple decoders, although they
have generally found to not be as e�ective as deep learning methods [28, 48, 52]. However,
their training times are signi�cantly shorter [52]. As such we used them to investigate the
relationship between S, BP and BDP. In this work, the WCF code from [28] was used. 5-fold
cross-validation (hyper-)parameter optimisation was performed, and the details given in the
Supplemental Material Section 3. Once the parameters were optimised for each S and BP,
the BDP was calculated for each combination using separate testing data.

2.3 Impact of Parameters on Communication Power

In this section, we determined the e�ect of various compression architectures on BR and
therefore communication power. �e role of the number of encoders, S, BP, and histogram
memory size, which is used in assignment of channels to encoders, were investigated.
However, �rstly, not all static Hu�man encoders will be useful for compressing MUA data at
a given BP. As such, to identify the subset of interesting Hu�man encoders, a Machine-
Learning (ML) strategy was adopted. �is is because the subset of interesting Hu�man
encoders, to be implemented on-implant, should be found in a way that is compatible with
real-life application. I.e., the choice of the subset of Hu�man encoders implemented on-
implant should not be in�uenced by the data to be measured on-implant, as this is not known
prior to implantation.

An approach was taken where all possible static Hu�man encoders of length S were
considered. During each training-validation round, the set of Hu�man encoders was reduced
by removing the encoder that contributed the least to the compression. Eventually, only
one encoder, i.e. the ‘best encoder’, was le�, in which case no assignment or histogram
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Table 4: Demonstrating a non-redundant representation of Hu�man encoder codeword lengths, the SCLV. (a)
All Hu�man code combinations for S = 3; (b) Vectors of the lengths of the Hu�man codes, with copies removed.
(c) Sorted Codeword Length Vectors, with copies removed.

(a) (b)
All Hu�man Encoders

of Length S = 3
Non-redundant Codeword

Length Vectors, S = 3

Hu�man code
combination

1st

CW*
2nd

CW
3rd

CW

Hu�man code
length
combination, key

1st CW
length

2nd CW
length

3rd CW
length

1 0 10 11 1 1 2 2
2 0 11 10 2 2 1 2
3 00 1 01 3 2 2 1
4 01 00 1
5 11 0 10 (c)

6 00 01 1 Non-redundant
Sorted Codeword Length Vector (SCLV)

*CW = Codeword SCLV
combination

1st CW
length

2nd CW
length

3rd CW
length

1 1 2 2

were necessary and every channel used the same encoder. �is is discussed further in
Section 2.3.2.1.

As required for a ML approach, a training/validation split was used. �e training data
was used to reduce the set of Hu�man encoders. �e validation data was used to represent
neural data recorded on-implant, on which the quality of the assignment and compression
was measured.

�e training and validation data, from A, were split by taking the full recording from a
channel and assigning it to either training or validation. �e training and validation channels
were randomly selected with a 50/50 split. �e channels from the Flint and Sabes datasets
were split separately, so that both were represented 50/50 in training and validation. All
960 Flint channels in A were considered, and a random 2000 out of 4224 channels in the
Sabes data in A were considered. �e Sabes data was limited so that the contribution of the
Flint data was not overshadowed, and so prevented over�t to the Sabes data. It warrants
mentioning that this training-validation split is distinct from that in Section 2.2, that looked
at the e�ect of BP and S on BDP, although both splits concerned data from A.

2.3.1 SCLV representation We wanted to determine how the best k (k ∈ Z, 1 ≤ k ≤ h)
Hu�man encoders, from the set of all possible h Hu�man encoders with S �elds, would
perform in compressing MUA data from multiple channels where each channel was assigned
to its ideal encoder. As such, all possible Hu�man encoders of length S were produced with
arbitrary keys. For example, for S = 3, all possible Hu�man encoder codeword combination
are given in Table 4 (a).

�ere are many redundant con�gurations of Hu�man encoders, assuming the order of
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Table 5: Taking the dot product between the SCLVs (a) and example Channel Sorted Histograms (b) to obtain
the size of the compressed data blocks (c). From (c), we can determine the best SCLV-channel pairs. In (d), the
channel-average length avlen in bits of the encoded symbols a�er each channel is compressed using its ideal
encoder is obtained, with L = 1000.

(a) (b)
SCLVs Channel Sorted Histograms (SH)

SCLV \Symbol 0 1 2 3 4 Symbol \Chan. 1 2 3 4
1 1 2 3 4 4 0 650 500 300 950
2 2 2 2 3 3 1 200 200 300 5
3 1 3 3 3 3 2 100 120 200 31

3 50 100 100 7
(c) 4 0 80 100 7

Dot Product of Channel SHs and SCLVs
SCLV \Chan. 1 2 3 4 (d)

1 1550 1980 2300 1109
avlen =

1

n
Σn

i=1

min(dotprod[: , i])

L2 2050 2180 2200 2014
3 1700 2000 2400 1100

avlen =
1

4

1550 + 1980 + 2200 + 1100

1000
= 1.7075 bitsBest SCLV 1 1 2 3

the symbols in unimportant. �e only constraint is that, in a Hu�man encoder, the shortest
codeword should represent the most likely symbol in the data, the 2nd shortest should match
the 2nd most likely, etc. As such, the Hu�man encoders were reduced down to a Sorted
Codeword Length Vector (SCLV) representation, which consisted of the ascending sorted
vector of codeword lengths. �is process is shown in Table 4 (a-c). In the case of S = 3, it
can also be observed in Table 4 (c) that all h = 6 encoders reduce down to a single SCLV.
Taking the dot product of the SCLV and Sorted Histogram (SH), where the histogram is
sorted in descending order, gives the length of the data, in bits, a�er compression by a
Hu�man encoder with the same SCLV as shown in Table 5 (c). Dividing the dot product by
the number of samples gives avlen from Equation 2, where dividing further by BP gives the
BR. �is enables us to assign encoders to channels based on which encoder gives the smallest
BR (Table 5 (d)). It warrants mentioning that, to actually compress the data, a Hu�man
encoder is required. However the BR can be obtained from the SCLV via its dot product
with the SH.

Based on the BDP vs. S results that will be shown in Section 3.1, and our knowledge
of the hardware costs of large S values that will be shown in Section 3.2, we opted to
examine S values between 2 and 9 for our set of BPs. �is allowed relatively good BDP
values, as discussed later, while minimising the resources. �erefore, for each integer value
of S {S ∈ Z, 2 ≤ S ≤ 9}, the full set of SCLVs was produced. �e details are given in the
Supplemental Material, Section 4.

2.3.2 ML process
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Figure 5: Training-validation process. Italics represent data dimensions. First, all possible SCLVs are produced
(as shown in (a)). �en, each round selects an increasingly smaller subset of SCLVs based on which give the
best compression in the training set (as represented in (b)). At each round, i.e. with di�erent numbers of SCLVs,
the compression is tested on the validation dataset for di�erent on-implant histogram sizes (as represented in
(c)).

2.3.2.1 Training

�e system was trained by assigning the SCLVs to the training channels based on which
SCLV gave the best BR for each channel. Multiple channels could be assigned the same
SCLV, and all of the data in each channel was used.

To identify interesting SCLVs, i.e. train the system, the following strategy was used.
Firstly, each training channel’s SH was obtained. Secondly, one by one, with replacement,
each SCLV was removed. �e average BR across channels was then measured a�er each
channel was assigned to its best remaining SCLV, e.g. as in Table 5. Channels could be
assigned to any SCLV, except the missing one. A�er the total BR had been obtained for each
missing SCLV, the SCLV that was found to be the least e�ective SCLV for compressing the
training data, in concert with the other SCLVs, was removed. As such, at the end of the
training round, one SCLV had been removed. �is process is represented in Fig. 5 (b).

2.3.2.2 Validation

Between each training round, validation was performed. �e purpose of validation was to
measure the BR when each ‘on-implant’ channel was assigned to its ideal encoder from
the selection of encoders available during the current training round. In other words, it
was tested what the on-implant BR would be given the selection of encoders found during
that training round. �e method of assigning on-implant MUA channels to encoders should
be realistic to implement in hardware. In this work, the assignment was done by using
a segment from the beginning of each on-implant channel recording to produce a sample
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histogram. Each channel was then assigned to an encoder based on which encoder gave its
histogram the smallest BR. �is is represented in Fig. 5 (c).

How much of the beginning of the ‘on-implant’ validation recording was used to
calculate the sample histogram depended on the size of the histogram. �e considered
histogram sizes were S × 2d − 1 samples, where d ∈ [2, 3, 4, ..., 9, 10]. Each histogram
bin, of which there were S, was given a size of 2d − 1 maximum samples, i.e. of d bits.
Once 2d − 1 samples had been measured across all bins, the histogram growth ended, the
histogram was sorted, and the channel was assigned to an encoder.

A�er assignment, the resulting BR was calculated. �is was done for each channel by
taking the rest of the validation data, that which had not been used for assignment, and
calculating its BR a�er compression. In particular, only a segment of the remaining data was
used, where the segment was always equal in length to half of the total recording length.
�is was so that the amount of compressed data was the same across all histogram sizes.
�is is shown in Fig. 6, where the beginning of the recording is used for assignment, and a
segment of the rest for calculating the BR. �e average BR across validation channels was
then stored for each histogram size.

Figure 6: Single-channel split of assignment (for sample histogram) and to-be-compressed validation data,
based on histogram memory size d and total recording length.

We then moved to the next training-validation round. At each round, the least useful
SCLV was removed based on the training data. �e validation channels were then assigned
to the remaining SCLVs, and the average BR for each histogram memory size stored. �e
process continued until only 1 encoder (i.e. the best encoder for the training data) was le�,
where all validation channels were automatically assigned to the last encoder. As such, for
each round (i.e. number of non-redundant SCLVs), the mean BR, ideal set of encoders, and
e�ect of histogram size on BR were all determined. 30 di�erent cross-validation iterations
of this process were run in parallel, with di�erent training-validation channel splits, and the
results were combined.

It is important to mention that, for any channel, the compressed on-implant data should
be sorted the same way its histogram was sorted. For example, if a �ring rate of 3 MUA
events per bin is found to be the most common �ring rate in the sample histogram, the
occurrence of 3 MUA events in a bin in the remaining to-be-compressed data should be
given the shortest codeword during compression. �is is because the sorted ordering in the
compressed data has to be determined somehow, and so is approximated using the sample
histogram for each channel. As such, the histogram serves to not only get an idea of the
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Table 6: Required modules for each system con�guration. �e histogram is used for assignment of encoders to
channels, and can be the subject of both assignment sorting and mapping, which is sorting but applied to the
to-be-compressed data. �e system con�gurations vary if assignment is required or not, e.g. if only 1 encoder is
considered, or if the histogram is to be sorted or not. �e con�guration also varies if no Hu�man compression
is considered, in which case only a binner is required.

With Hu�man encoding
With Sort Logic Without Sort Logic

#enc >1 #enc = 1 #enc >1 #enc=1 Without Hu�man encoding /
Only Binning

Binner True True True True Binner True
Histogram True True True False Histogram False
Selector True False True False Selector False
Encoder(s) True True True True Encoder(s) False
Sorting and
Mapping

True True False False Sorting and
Mapping

False

shape of the channel’s histogram, used to �nd the ideal encoder for compression, but also to
�nd the sorting order of the to-be-compressed data, as the most common �ring rates should
be assigned the shortest codewords within each encoder. We refer to this assignment of
to-be-compressed �ring rates to encoder �elds, based on the sample histogram, as mapping
(e.g. mapping the symbols to the encoder �elds). As such, the size of the histogram a�ects
the quality of both the assignment and the mapping, both which impact the BR. �e sorting
and mapping implementation is discussed further in Section 2.4.

2.3.3 Di�erent system con�gurations Finally, it was tested whether certain modules could
be removed, saving on power and resources. Firstly, the e�ect of removing the sorting and
mapping modules was investigated. �is is because the histogram of MUA events in a BP ≤
100 ms tends to follow a decaying exponential, where having fewer events is more common
than having more. As such, sorting can be redundant, and in the case of small histogram
sizes, counterproductive. �is is because if the sampled histogram is unrepresentative of the
rest of the compressed data, the nth most common value in the to-be-compressed data may
not be assigned to nth shortest codeword. As such, if the data generally follows a decaying
exponential, the compression would be undermined by the sorting with an inaccurate sample
histogram, where the mapping would have been correct if not for our sorting and mapping.
Sorting also requires extra FPGA resources and processing power.

Secondly, it was investigated whether only using binning, without any Hu�man
encoding, could give e�ective compression. Each symbol is given a codeword of the same
length , i.e. ceiling(log2(S). No lossless compression is used in this con�guration, giving
a useful benchmark as to the e�ect of Hu�man compression in our system. �e modules
included in each system con�guration are given in Table 6.
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2.4 FPGA realisation

We simulated the presented architectures on an FPGA target, La�ice ice40LP, in order to
assess the overhead on power and resources brought by compression so as to guide our
con�guration selection. Such a low-power, high-performance FPGA with 40nm technology
and small BGA package is ideal for the thinnest devices like implantable BMIs. All programs
are wri�en in Verilog, simulated on Mentor Modelsim La�ice Edition and synthesised with
iCECube 2020.12.

La�ice ice40LP1K is an ultra-low-power FPGA board with 1280 logic cells and sixteen
4kbit memory blocks (bRAMs). �e architecture of the FPGA implementation is shown in
Fig. 7, including the Binner, Histogram counter, Sorter, Mapper, Encoder selector, Encoders
and Memory. Referring to Table 6, di�erent con�gurations can be achieved by bypassing
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Figure 7: A). �e FPGA implementation includes Binner, Histogram, Sorter, Mapper, Encoder selector, Encoders
and Memory. For conciseness, several circuits are not shown: Clock generator for memory clock and processing
clock, reset and re-calibration logic, clip for New spike rate and MUXs selecting Minimum length encoder out,
Sorted indices out as the input to the RAM a�er calibration. B). State transition diagram of the �nate state
machine in Histogram module. C). Clock timing diagram of the system clock (CLK), Memory clock (MCLK)
and Processing clock (PCLK). MCLK drives the RAM, it is read at the posedge (R) and wri�en at the negedge
(W). PCLK trigers the Binner and Histogram at its posedge (P). It also synchronise the detected signal at its
negedge (L). �e update of channel number is also happened at the negedge of PCLK (L).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.25.485863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485863
http://creativecommons.org/licenses/by/4.0/


Hardware-E�cient Compression of Neural Multi-Unit Activity 18

some of the components. In the ‘one encoder’ version, there is only one encoder in Encoders
and therefore no need for the Encoder selector module. In the ‘without sort’ con�guration,
we assume the events in the histogram are already sorted and the sorter and mapper are
bypassed. �e Spike rate freq is connected with the Sorted freq in the encoder selector, and
the New spike rate is connected with the Mapped spike rate in Encoders. Similarly, in the ‘just
binning’ version, only the Binner module is implemented. A detailed breakdown of Fig. 7 is
given below.

2.4.1 Binner A timer and a recurrent spike rate counter is used for the Binner, which
counts the number of in-coming spike numbers in a given BP. �e multiplexer (MUX) a�er
the spike rate counter is used to clip the spike rate within the preset range and reset the
spike rates stored in memory when a BP is over.

2.4.2 Histogram �e Histogram is implemented using a Finite State Machine. �e state
transition diagram is shown in Fig. 7 (B). It accumulates the number of MUA events according
to the Bin �nished and new spike rate signals. When the histogram over�ows, a �nish signal
is issued and the histogram is emptied for the next channel. As the maximum spike rate is
clipped at S − 1, the number of registers required for storing the di�erent MUA frequencies
is highly reduced. �e index of the maximum value in the MUA histogram is recorded in the
histogram counter, to be used in the Sorter.

2.4.3 Sorter and mapper Sorting the spike rate frequency in order can be resource-hungry
or time-consuming in hardware. �e resources used for implementing a sorting algorithm
such as merge sort or quick sort can overwhelm the whole system. For sorting MUA
histograms, we can take advantage of the fact that the MUA histogram, even if it does
not follow a decaying exponential, is almost always expected to follow a unimodal peak
distribution. As such, the Sorted Histogram (SH) can be easily estimated by se�ing the index
0 at the index of the histogram maximum, and the index number will increment by iterating
on both sides of the histogram peak. For example, values to the le� of the peak will take odd
index numbers of 1, 3, 5, etc., while values to the right of the peak will take even numbers.
When indices can no longer be assigned on one side, the rest are assigned serially to the
other side. An example is illustrated in Fig. 8 A. Using such an estimation, we can reduce
both the sorting space and time complexity to O(n).

From a hardware perspective, this estimated sort algorithm can be implemented with
a �nite state machine (FSM). However, in Fig. 7, we show a combinatorial implementation.
As the estimated sort order is only a�ected by the most frequent spike rate index, we can
easily create a LUT that de�nes the sorting order based on the measured maximum index.
�e spike rate Mapper can also be implemented using an identical LUT. A demo of the sorted
indices LUT when S = 5 is given in Fig. 8. We also implemented two other sort algorithms:
a swapping sort and estimation sort with sequential logic, which are given in Supplemental
Material Section 5.
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Figure 8: A). A demo for the estimated sort algorithm. Index 0 of the sorted histogram will be the maximum
of the unsorted histogram. Odd indices will be placed on the le� while the even indices will be placed on the
right. �e rest of the indices will be placed serially on the unsorted side. B). A demo of the sorted indices when
S = 5. Max indicates the index of the peak value in the histogram, and Index is the histogram �eld. Based on
the peak value, the indices in the table are given to the histogram �elds.

2.4.4 Encoder Selector �e encoder selector assigns encoders to channels. For the given
channel, it selects the encoder that gives the minimum encoded data length, determined
by taking the dot product of the SH with the SCLVs. �e SCLVs are stored on-implant
for each encoder. Since multiplications are resource-hungry in hardware, we replace the
multiplications with bit shi�s. �e number of bits to shi� for di�erent encoders and
codewords are stored on board.

2.4.5 Encoders A Hu�man encoder, in hardware, is a big LUT. Multiple encoders have
been implemented on board. Di�erent encoders are selected according to the encoder
selector. �e selected set of Hu�man codewords and codeword length are then set as the
outputs of this channel.

2.4.6 Memory unit �e Memory unit consists �rstly of a channel counter that counts the
processed channels to schedule the data �ow among channels. Secondly it consists of RAM
that stores each channels’ current number of MUA events, their sample histogram largest
value’s index during calibration (used for mapping during regular encoding operation)
and their assigned encoders. Instead of using registers for each channel, utilising RAM
increases the scalability, making it possible to upscale to thousands of channels within only
hundreds of logic cells. However, the clock speed needs to be doubled to maintain the
same data throughput. As the resources are highly constrained in la�ice iCE40LP, the RAM
implementation is preferred over using registers.

Fig. 7 (c) shows the timing of the clocks. CLK is the system clock and a clock generator is
used to generate MCLK for memory and PCLK for di�erent processing units. �e detection
signal will be loaded at the negedge of the PCLK. �e RAM will provide the stored parameters
for di�erent processing units at MCLK posedge. All processing happens on PCLK posedge
and the results are stored back at the MCLK negedge. �ese modules work together to
compress the MUA data of each channel. �e histogram counter, sorter and encoder selector
are used at the start of implant operation for encoder selection as a calibration process.
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During the calibration, for each channel, the sample histogram largest value’s index and
encoder assignment will be determined and stored into RAM. One can also periodically
recalibrate each channel when the brain environment changes, or at some de�ned interval.
A�er the calibration, the spike detection signal of di�erent channels will �ow through the
binner, mapper, encoder and RAM interchangeably for compression.

3 Results

3.1 Impact of compression on Behavioural Decoding Performance

To determine the e�ect of S on each BP, as far as BDP is concerned, the procedure from
Section 2.2 was carried out. Fig. 9 (a) shows the results averaged across the Flint and Sabes
datasets, averaged because we wanted the results to be robust across di�erent recording
conditions. Examples of observed and predicted behavioral data are shown in Fig. 9 (b-d).

Figure 9: (a) Behavioral decoding performance (BDP) as a function of BP and S. Each S/BP combination
was parameter optimised on 5-fold CV, with the results averaged from the Sabes lab and Flint datasets. (b-d)
Example observed vs. predicted X-axis velocities from 5-fold CV, with corresponding BDP (r) for random Flint
recording and parameter combinations during parameter optimisation at a BP of 5 ms.

We observe that BDP increases as a function of BP, which is somewhat contrary to
other studies [30, 47]. However, it is also expected that results vary by decoded behavior
and decoding algorithm [30]. As such, the results in Fig. 9 are not unexpected. It is also
positive that BPs as high as 100 ms can achieve relatively high BDPs (e.g. ∼80%) using simple
WCF decoders. Further discussion and more detailed results, e.g. boxplots, are given in the
Supplemental Material, Section 6.

It warrants mentioning that BDTP = BP in our system. �is is because the temporal
resolution of the decoded behavior is equal to the binning period of the neural data, as all
communication and other processing is relatively instantaneous.
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Table 7: Logic cells were used in two di�erent se�ings for three sort implementations.

Swapping sort Estimation sort - Seq Estimation sort - Comb

S = 5, hist size = 4 480 239 75
S = 9, hist size = 6 682 355 260

3.2 FPGA resources and processing power

To assess how di�erent con�gurations a�ect the processing resources and power
consumption, we implemented all di�erent se�ings of the compression algorithm with
Verilog. �e resource occupation can be obtained from the Placing Summary of ICEcube2,
which is indicated as the number of LUTs and Flip-Flops (FF) used. To get the power
consumption, it is not practical, given the massive parameter space, to download all
the di�erent con�gurations to the FPGA board and measure their power consumption
individually. We used the iCEcube2 power estimator to estimate the processing power to
reduce the assessment load. Although the estimation is not the real power consumption,
it is accurate enough for estimating the e�ect of di�erent con�gurations and guiding the
selection process.

3.2.1 Resource usage Resources usage re�ects the area occupation of the implementation.
�e full results are given in Supplemental Material 2 as an excel spreadsheet, and the same
is available on the Github at [50]. �e histogram and encoder selector are two resource-
hungry modules. �e amount of resources required by the histogram is mostly dependent
on increased histogram size, but the S values also have a signi�cant but smaller impact. �e
resource usage of the encoder selector can exceed that of the histogram when S is larger
than 7 because of the dot product (implemented with bit shi�ing) between two vectors with
length S. Alternatively, all possible multiplication results could be pre-calculated and stored
in a RAM. �e selector logic would be simpli�ed, however this would sacri�ce the processing
speed as the results would need to be fetched from RAM one by one and summed together.
As a result, the calibration time would be increased. Such an alternative approach could
be useful if the limitation of the resources is extreme or the con�guration requires a large
S, histogram size or number of encoders. It would be less e�ective when these values are
small. Aiming at �nding the most compact compression scheme, we opted to use the bit-shi�
implementation discussed in Section 2.4.

For the sorter, we have compared three di�erent approaches: Swapping sort, and
estimation sort with sequential and combinatorial implementations. A summary of the
resources needed for the three implementations is given in Table 7.

One can notice that compared to the Swapping sort, the sequential estimation sort
reduced the required resources by half, which makes it possible to do on-implant sorting with
limited resources available. More noticeable, when S = 5, histogram size = 4, the resources
of the combinatorial implementation is only one-third of the sequential implementation,
making the sorting no longer the bo�leneck for resource usage. �is advantage is lessened
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when the se�ings are extreme. However, even when S = 9 and histogram size = 6, in
which case the whole system can require too many logic cells to be implemented within
our resources budget, the combinatorial one still uses fewer logic cells than the sequential
version.

�e remaining two modules, i.e. the Binner and Encoders, use few resources. �ese are
normally below 100 LUTs+FFs each.

To guide the con�guration selection, using only one encoder without sorting would
be preferred because it can get rid of the histogram, sorter, mapper and encoder selector. If
one has a histogram, increasing S would be preferred over increasing histogram size because
increased histogram size has a large e�ect on both the selector and histogram counter, which
are the two resource-dominating modules. �ese �ndings are purely from the resource
perspective, the selection should also be guided jointly on the resultant total power and
BDP.

3.2.2 Power consumption Power consumption is another aspect of concern. We should
guarantee that the added processing power does not exceed the reduced communication
power. However, the estimated power indicates that the processing power consumption per
channel is consistent among di�erent con�gurations. As the histogram counter, sorter and
encoder selector are only used during calibration, the Binner, Mapper, RAM and Encoder
continuously consume energy. �e binner and RAM tick at the processing clock/memory
clock speed, but the input of the encoders only changes at 1

BP
Hz, which is much lower than

the clock speed. �erefore the power of the Binner and RAM dominate the FPGA dynamic
power, which is around 0.96µW per channel. �e power of the encoder is negligible at 1
to 20 nW, the binner consumes about 0.46µW per channel and RAM shares the remaining
0.5µW per channel. For the remainder of this work, the combined compression/processing
and communication power is referred to as the dynamic power. �e board static power is
162µW.

As all con�gurations use the binner and RAM, the processing power of di�erent
architectures is similar whether we encode the �ring rate or not. �erefore the total power
reduction we gain from the compression is proportional to the BR reduction.

Bases on the exploration of resources and power, we can conclude that it is the resources
that constrain the algorithm complexity for the on-implant Hu�man encoding.

3.3 System con�guration selection and considerations

In this work, we had 7 inputs into our system: S, BP, histogram size, number of encoders,
the communication energy per bit, whether to sort the sample histograms or not in case of
assignment, and whether to use a binning-only architecture without Hu�man encoding.
�ese in�uenced the 4 outputs: the (communication + processing) power, the required
resources, the BDP and the temporal resolution of the decoded behavioral data (BDTP, equal
to BP).

In Section 3.1, we obtained the BDP and BDTP as a function of S and BP, which are the

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.25.485863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485863
http://creativecommons.org/licenses/by/4.0/


Hardware-E�cient Compression of Neural Multi-Unit Activity 23

Table 8: Considered subset of analysed parameter space.

Subset of parameter space
BP (ms) 1, 5, 10, 20, 50, 100

S 3, 5, 7, 9
Hist size (bits per bin) 2, 4, 6

#Enc 1 ,2, 3, 5, 7, 10, 15, 20

only impactors. In Section 2.3, we measured the communication power as a function of S,
BP, number of encoders, histogram memory size, communication energy per bit, whether
to sort the histogram and whether to use a binning-only architecture. In Section 3.2 we
measured the processing power and resources as a function of the same system parameters.
As such, we can now make a complete comparison of power, resources, BDP and BDTP as
a function of the system parameters and transmission energy per bit. �e integrated results
are shown in Fig. 10, where each analysed combination of inputs is plo�ed in terms of its
produced outputs. �e hardware static power of 162µW is not included, as it is independent
of channel count. Due to the non-automatability of the hardware optimisation for di�erent
parameter combinations, only a subset of the parameter space was sampled, given in Table 8.

Figure 10: (a) Integrated results: BDP and BDTP values for di�erent resources and power consumption levels.
(b) Sample of integrated results, with BP/BDTP = 50 ms, resources < 260, dynamic power < 2.2µW/chan
for our 128 channel system. �e outlined triangle represents the chosen system con�guration for our tested
system. Note that the color bars for (a) and (b) are distinct. Total power indicates total dynamic power per
channel.

Ideally, one would consume few resources, li�le power, have a low BDTP and have a
high BDP. However, it can be seen in Fig. 10 (a) that there is a negative relationship between
the dynamic power and BDTP. �is makes sense, as a lower BDTP means data is being sent
out more o�en which translates into a higher data rate as given by Fig. 3, and therefore higher
communication and dynamic power. As such, there is an unfortunate tradeo� between
behavioral data temporal resolution and dynamic power consumption on-implant: a be�er
temporal resolution means more power.
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What is more positive is that the total consumed resources has close to no e�ect on
either BDP, BDTP, or power consumption. Based on our results, this is for multiple reasons.

Firstly, having more of fewer encoders generally has li�le impact on BR, but has
a large e�ect on the required resources. O�en, having a single encoder is su�cient to
dramatically reduce the BR. �is is because the MUA histograms consistently follow a
decaying exponential, especially if they have been sorted. �erefore, the same encoder
that gave shorter codewords to smaller �ring rates o�en gave the best compression from
amongst all encoders. �e addition of other encoders signi�cantly increased the required
resources while only marginally decreasing the BR. Secondly, increasing S signi�cantly
increases resources but only marginally increases BDP as seen in Fig. 9, and increases BR
and so the dynamic power. �irdly, it was observed that increasing the histogram size
did generally decrease the BR. �is makes sense, as a larger sample histogram means the
sorting and mapping is likely to be more representative of the observed data, o�ering be�er
assignment and mapping, both positively impacting the BR. However the e�ect was small,
e.g. ≤ 1 bit/s/channel when going from 2 to 6 bits/bin. Generally, increasing the amount of
resources (e.g. S, number of encoders, histogram size) had li�le noticeable e�ect on both the
dynamic power and BDP, and could not have an impact on BDTP. As such, the considered
low-resource architectures performed largely as well as the high-resource architectures.

However, there is an exception. �ere was a noticeable e�ect of having very few
resources on the dynamic power. �is is because various architectures were considered, i.e.
the ‘full’, ‘just-binning’, and ‘no-sort’ architectures as in Table 6, the full results for which
are given as an excel spreadsheet along with the analysis code at [50]. �e ‘just-binning’
architecture used very few resources, but had a signi�cantly higher communication power
due to an increased BR, since no lossless compression was integrated into the system. �e
‘just-binning’ architectures are noticeable as outliers with high power and low resources in
Fig. 10 (a), where they are like the bo�om segment of an L shape in the overall data.

Ultimately, to select our parameters, we chose to concentrate on the ‘upper right’ of
Fig. 10 (a), in the zone of low resources and power, and high BDP. In [53], the human reaction
speed for visual and auditory stimulus was tested in 120 healthy medical students between
18–20 years old. It was found that the mean reaction time was above 220 ms for both stimuli.
As such, a BP of ∼50 ms BP is unlikely to cause any signi�cant delay in user experience, as
the communication and any additional data processing is practically instantaneous relative
to human reaction time. �is is supported by the fact that it is common for researchers to
use a BP of 100 ms for decoding motor actions [18, 45, 48]. 50 ms BP also had the second
highest BDP amongst all BPs (Fig. 9 (a)) and very low communication power. As such, we
opted for a BP of 50 ms for our tested system. Fig. 10 (b) presents a subset of the results, with
low resources, power, and a BP of 50 ms. A�er some consideration, for the testing of our
system on the testing dataB, we opted for the combination shown by the triangular marker
in Fig. 10 (b). �e results and system parameters are given in Table 9.

�is con�guration was principally because it scales well with channel count. �e
amount of required FPGA resources, excepting the RAM, does not increase much with
channel count, as the data is multiplexed. �e dynamic power of the implant increases
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Table 9: Chosen system parameters and encoder for testing and associated training (A) and testing (B) results.
For the training and testing results, all data in A and B were respectively used.

Chosen parameters Training Results
(Flint, Sabes)

Testing Results
(Flint, Sabes, Brochier)

Architecture Full system Resources 246 246
BP (ms) 50 BR (bits/s/chan) 26, 28 27, 28, 21

S 3 Dynamic Power
(uW/chan.)

1.49, 1.52 1.49, 1.52, 1.37

#Enc 1 BDP
78%, 78%

(1% and 0% reductions
from S = max(x))

72%, 62%, null
(1% and 0% reductions

from S = max(x))
Histogram size 6 bits/bin

Encoder (Symbol→ Codeword)
0→ 0; 1→ 01; 2→ 11

roughly linearly, as more channels mean more communication power. Additionally, the
processing power increases as the clock cycle needs to be increased. Finally, the BDP
probably increases logarithmically, as the inclusion of more channels in decoding has been
generally shown to do via neuron dropping curves [54, 55]. �e BDTP is una�ected by
channel count. As such, when increasing channel count, it is perhaps best to prioritise low
power architectures, as power is the value that scales the least well with increased channel
count. We therefore opted for the lowest power con�guration for 50 ms BP, which is that
given in Table 9 and indicated with the triangular marker in Fig. 10 (b).

It was veri�ed, in both Python and Verilog, that inpu�ing samples of the analysed neural
data resulted in the desired encoded output and BR, with the correct selection of encoders,
sorting, mapping, etc. As such, the system operated as expected.

3.4 Testing data results

Next, we looked at testing our chosen system on data it had not seen yet. Given our chosen
system parameters, summarised in Table 9, we determined the BR and BDP on the testing
data B, also shown in Table 9.

For the Flint, Sabes and Brochier data in B, the across-channel-and-recording average
BRs were 26.5, 27.8, and 20.6 bits/s/channel respectively, corresponding to dynamic
power/chan values of 1.49, 1.52 and 1.37 µW respectively. �ese are highly similar to those
in the training data, where the averages for the Flint and Sabes data were 26.4 and 27.8
bits/s/chan and 1.49 and 1.52 µW respectively.

�e BDP was measured for the Sabes and Flint datasets using the testing data in B.
Each channel was split 90-10% into training and testing sets. S and the BP were �xed at 3
at 50 ms respectively, and as in Section 2.2 the WCF hyper-parameters and pre-processing
parameters were 5-fold cross-validated on the training set. �e best parameters for each
BP/S combination were taken, and the BDP measured on the testing set. �e average BDP for
the Flint dataset was 0.724, and for the Sabes data it was 0.616. While these are relatively low,
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it warrants mentioning that the best performance in the datasets for a BP of 50 ms were 0.731
and 0.619 respectively, which means that reducing S to 3 had an absolute negative impact
of 0.07% and 0.03% respectively, which we deemed acceptable in exchange for signi�cant
power and resource reductions.

�ese BDP values are however lower than in the training data, seemingly because the
recordings had less behavioral information in them. �is seems apparent from comparison
of Fig. 3 and 6 in the Supplemental Material. It is important to note that the results from the
training data are not over��ed relative to the testing results: each BP/S combination was
cross-validated and then tested on separate data withinA andB individually. �eA/B split
was mainly to test the compression, where over�t would have been a real concern if only
data in A had been considered. �e main takeaway for the BDP results is that reducing S
to 3 had no signi�cant negative e�ect on BDP. It is expected that if the recording quality is
similar to that in the training data, higher BDPs will result. It is also likely that using more
advanced deep learning decoders would result in higher BDPs [28].

4 Discussion

As discussed in Section 1.3, wirelessly transmi�ing even a single channel of broadband is
infeasible for a 2.5 mm× 2.5 mm scale FPGA implant. Communication broadband consumes
a minimum of 42 kbit/s/channel. At a 20 nJ/bit communication energy, this consumes
840µW/channel, exceeding the power budget of B = 625µW. Transmi�ing uncompressed
MUA signals is be�er: 1 kbit/s/channel consumes 20µW/channel. With a static FPGA power
of 162µW, negligible spike detection power [46] and a processing power for the 1 ms binner
of 0.96µW/channel, a maximum of 22 channels could be measured on-implant.

However, our system’s power consumption depends on variable-length codewords. �e
system is non-adaptive for single-encoder con�gurations, and only semi-adaptive when
multiple encoders are used. �erefore, there is a risk that the BRs will be higher than the
expected ∼27 bits/s/channel as given in Table 9. For example, one might measure a handful
of particularly active channels, and this may increase the BR. If one chooses the number of
channels on-implant so as to be close to the permi�ed power budget, and the channels are
more active than expected, this may produce more heat than desired. As such, it warrants
choosing the number of channels based on a statistical understanding of the worst case
scenarios.

As such, we took random samples of the channels. For sample size z ∈ Z+, we
took 100,000 samplings of z random channels. For each random sampling Y , from the
channels’ summed BRs we obtained the resulting total system power P using the estimates
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in Equation 3:

PY =
z∑

i=1

(BRi)× Comm.Energy + z × Processing Power + Static FPGA Power

PY =
z∑

i=1

(BRi)× 20 nJ/bit + z × 0.96µW/channel + 162µW

(3)

where BRi is the BR of the ith channel in sampling Y , where 1 ≤ i ≤ z, i ∈ Z+.
It was then determined, for each number of channels z, what percentage of random

channel combinations exceeded the desired power budget B:

p(z) =
1

105

105∑
Y=1

(PY > B) (4)

where (PY > B) is a boolean value equal to 1 if PY > B and 0 otherwise. As such, p(z)

gave a permutation derived p-value for each number of channels z not exceeding the power
budget.

Using our chosen architecture and power budget of B = 625µW and averaged across
our 30 CV runs, it was found that from the training data results that having up to 304
channels never exceeded the power budget. Having 305 channels had a p-value of ∼5e-4
of not exceeding the power budget with p(305) = 55/105, and 306 channels or higher had
signi�cant chances of exceeding the power budget of p(z > 305) > 0.05. As such, we think
having approximately 300 channels or fewer for our FPGA hardware is ideal assuming the
given power estimates hold true, while staying within a conservative heating safety margin.
As such, by compressing the MUA data one can send out over 13 times as many channels
as when sending out the raw MUA data for a similarly sized FPGA device. In ASIC, this
di�erence would likely be far more pronounced, given the reductions in dynamic and static
power. However, the contribution of the front-end ampli�er and ADC would need to be
included as they would likely be integrated. Given that ADCs with power consumption as
low as 0.87µW/channel have been achieved [56], there is reason to believe that impressive
channel counts could be obtained at mm-scale in ASIC.

�e bene�t is derived from the simplicity of our tested system: a binner at 50 ms BP, a
dynamic range limited to 3 possible values, and losslessly compressing the resulting signal
with a pre-trained static Hu�man encoder. Our results across 2 datasets and 3 subjects
suggest that the lossy aspects of the compression do not present signi�cant obstacles for
behavioral decoding, and in the case of the BP may even improve the results over using
smaller BPs, although low-BP data could of course be further binned o�-implant prior to
decoding. All results and hardware designs are made publicly available, and researchers are
free to select from them for their own system designs.

It warrants mentioning that 100 ms BPs for behavioral decoding are common in the
literature [18,30,45]. �erefore, a > 50 ms BP system could also be of interest. Additionally,
if increased BDP is an absolute priority, then a con�guration with a higher S may be
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appropriate. However, one should consider that if increased power is required as a result,
this can reduce the amount of allowable channels for an implant of the same size, perhaps
reducing the �nal BDP.

4.1 Robustness of Di�erent Architectures

It warrants mentioning that, in theory, the ‘no sort’ con�guration is more vulnerable than
the others to unusual histograms, e.g. if there is consistent pathological activity. �e ‘just
binning’ architecture is the most robust, and the ‘full’ system is robust if the data used
for assignment is well-representative of the compressed data, e.g. if the histogram size is
su�cient.

To give some integrated context, the ‘no sort’ architecture is based on the assumption
that zero is the most frequent MUA �ring rate. Our sorting procedure’s purpose is to shi�
the distribution to whatever the peak is, always assuming a unimodal peak. Each encoder
represents a di�erent sorted MUA distribution. �e closer the distribution of the MUA data
is to that of the encoder, the be�er the compression will be. For the multiple encoder version,
there are multiple possible distributions to be selected from, making it more adaptive. �e
training process consists of pruning distributions in the encoders that are unlikely to occur
in real MUA data.

4.2 Fixed Length vs. Variable Length Codewords and Bit-Flip Errors

It warrants mentioning that lossless compression works by giving variable length codewords
to symbols. Due to the multiplexed encoding of MUA, this makes losslessly compressed
MUA data more vulnerable to bit �ip errors making the multiplexed communicated data
block undecodable. As such, some noisy channel encoding or decreasing the BP may be
necessary, assuming the bit �ip error rate is su�cient to warrant it. �is would increase the
BR marginally, and is discussed further in the Supplemental Material, Section 7.

4.3 Future Work

Future work will consider compressing the entire MUA signal across channels, whereas
this work looked at compressing intra-channel MUA. It may be that some dimensionality
reduction is possible, or that correlations between adjacent channels can be taken advantage
of as in [57] to further compress the data without reducing BDP or other metric of interest.

On-going work is looking at methods to compress the MUA in ‘asynchronous’
architectures, where the MUA �ring rate is only communicated for a channel if it is larger
than 0 for the given time period. Preliminary results show that, for BPs higher than or equal
to 10 ms, the methods in this paper are superior. For BPs lower than 10 ms, asynchronous
methods seems to perform best even for larger numbers of channels, e.g. 10,000.
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5 Conclusion

In conclusion, our objective was to reduce MUA-based WI-BMI power consumption so as
to prevent tissue heating and damage. To do so, we explored the use of ML-selected static
Hu�man encoders for the compression of MUA signals in a hardware and power e�cient
way. We developed a wide range of FPGA designs, made them publicly available, and tested
our chosen con�guration on 3 datasets where it consumed exceptionally li�le power and
few resources. Main techniques involved the use of saturation of measurable MUA events
at a maximum S value, varying the binning period, the use of hardware e�cient techniques
such as estimation sorting and bit shi�ing, and the coordination of multiple encoders via
ML-selection. We �nd that MUA data can be reliably and signi�cantly compressed, giving
signi�cant power-saving opportunities for wireless intracortical BMIs. For example, with
a BP of 50 ms, S = 3 and the resulting bitrate of 27 bits/s/channel, a 1 Mbps wireless
communication channel could support up to 37 thousand MUA channels.

Acknowledgement

O.W.S. is supported through an Physical Sciences Research Council (EPSRC) Doctoral
Training Partnership (DTP) award (EP/N509486/1). P.F. was partly supported by the
Engineering and EPSRC grant (EP/M020975/1, EP/R024642/1). �is work was supported by
the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the
UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK.

O.W.S. and Z.Z. contributed equally to the study design and considered compression
schemes and algorithms. Compression and behavioral decoding work was carried out by
O.W.S., and hardware design and optimisation work was done by Z.Z. P.F. contributed the
communication energy review. T.G.C. supervised the work, and directed and edited the
manuscript.

Con�ict of interest

We declare that we do not have any commercial or associative interests representing a
con�ict of interest in connection with the work submi�ed.

References

[1] Chethan Pandarinath, Paul Nuyujukian, Christine H Blabe, Bri�any L Sorice, Jad Saab, Francis R Wille�,
Leigh R Hochberg, Krishna V Shenoy, and Jaimie M Henderson. High performance communication by
people with paralysis using an intracortical brain-computer interface. Elife, 6:e18554, 2017.

[2] Adrien B Rapeaux and Timothy G Constandinou. Implantable brain machine interfaces: �rst-in-human
studies, technology challenges and trends. Current Opinion in Biotechnology, 72:102–111, 2021. Tissue,
Cell and Pathway Engineering.

[3] Patrick D Wolf and WM Reichert. �ermal considerations for the design of an implanted cortical
brain–machine interface (BMI). Indwelling Neural Implants: Strategies for Contending with the In Vivo
Environment, pages 33–38, 2008.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.25.485863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485863
http://creativecommons.org/licenses/by/4.0/


Hardware-E�cient Compression of Neural Multi-Unit Activity 30

[4] Joseph C LaManna, Kimberly A McCracken, Madhavi Patil, and O�o J Prohaska. Stimulus-activated
changes in brain tissue temperature in the anesthetized rat. Metabolic brain disease, 4(4):225–237, 1989.

[5] IEEE C95. 1. Ieee standard for safety levels with respect to human exposure to electric, magnetic, and
electromagnetic �elds, 0 hz to 300 ghz. �e Institute of Electrical and Electronics Engineers New York,
NY, 2019.

[6] Arto Nurmikko. Challenges for large-scale cortical interfaces. Neuron, 108(2):259–269, 2020.
[7] Pavel S Yarmolenko, Eui Jung Moon, Chelsea Landon, Ashley Manzoor, Daryl W Hochman, Benjamin L

Viglianti, and Mark W Dewhirst. �resholds for thermal damage to normal tissues: an update.
International Journal of Hyperthermia, 27(4):320–343, 2011.

[8] Chul Kim, Jiwoong Park, Sohmyung Ha, Abraham Akinin, Rajkumar Kubendran, Patrick P. Mercier, and
Gert Cauwenberghs. A 3 mm × 3 mm fully integrated wireless power receiver and neural interface
system-on-chip. IEEE Transactions on Biomedical Circuits and Systems, 13(6):1736–1746, 2019.

[9] Yaoyao Jia, Ulkuhan Guler, Yen-Pang Lai, Yan Gong, Arthur Weber, Wen Li, and Maysam Ghovanloo.
A trimodal wireless implantable neural interface system-on-chip. IEEE Transactions on Biomedical
Circuits and Systems, 14(6):1207–1217, 2020.

[10] Shuenn-Yuh Lee, Chieh Tsou, Peng-Wei Huang, Po-Hao Cheng, Chi-Chung Liao, Zhan-Xien Liao, Hao-
Yun Lee, Chou-Ching Lin, and Chia-Hsiang Hsieh. 22.7 a programmable wireless eeg monitoring
soc with open/closed-loop optogenetic and electrical stimulation for epilepsy control. In 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), pages 372–374, 2019.

[11] Jayant Charthad, Ting Chia Chang, Zhaokai Liu, Ahmed Sawaby, Marcus J. Weber, Sam Baker, Felicity
Gore, Stephen A. Felt, and Amin Arbabian. A mm-sized wireless implantable device for electrical
stimulation of peripheral nerves. IEEE Transactions on Biomedical Circuits and Systems, 12(2):257–270,
2018.

[12] Jihun Lee, Vincent Leung, Ah-Hyoung Lee, Jiannan Huang, Peter Asbeck, Patrick P. Mercier, Stephen
Shellhammer, Lawrence Larson, Farah Laiwalla, and Arto Nurmikko. Neural recording and stimulation
using wireless networks of microimplants. Nature Electronics, 4(8):604–614, Aug 2021.

[13] Hossein Kassiri, Muhammad Tariqus Salam, Mohammad Reza Pazhouhandeh, Nima Soltani, Jose Luis
Perez Velazquez, Peter Carlen, and Roman Genov. Rail-to-rail-input dual-radio 64-channel closed-loop
neurostimulator. IEEE Journal of Solid-State Circuits, 52(11):2793–2810, 2017.

[14] Dongjin Seo, Ryan M. Neely, Konlin Shen, Utkarsh Singhal, Elad Alon, Jan M. Rabaey, Jose M. Carmena,
and Michel M. Maharbiz. Wireless recording in the peripheral nervous system with ultrasonic neural
dust. Neuron, 91(3):529–539, 2016.

[15] Gabriel Gagnon-Turco�e, Mehdi Noormohammadi Khiarak, Christian Ethier, Yves De Koninck, and
Benoit Gosselin. A 0.13-µm cmos soc for simultaneous multichannel optogenetics and neural
recording. IEEE Journal of Solid-State Circuits, 53(11):3087–3100, 2018.

[16] Peilong Feng, Michal Maslik, and Timothy G. Constandinou. Em-lens enhanced power transfer and multi-
node data transmission for implantable medical devices. In 2019 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pages 1–4, 2019.

[17] Eran Stark and Moshe Abeles. Predicting movement from multiunit activity. Journal of Neuroscience,
27(31):8387–8394, 2007.

[18] Robert D Flint, Eric W Lindberg, Luke R Jordan, Lee E Miller, and Marc W Slutzky. Accurate decoding
of reaching movements from �eld potentials in the absence of spikes. Journal of neural engineering,
9(4):046006, 2012.

[19] Joseph E. O’Doherty, Mariana M. B. Cardoso, Joseph G. Makin, and Philip N. Sabes. Nonhuman primate
reaching with multichannel sensorimotor cortex electrophysiology, May 2017.

[20] Joaquin Navajas, Deren Y Barsakcioglu, Amir E�ekhar, Andrew Jackson, Timothy G Constandinou, and
Rodrigo �ian �iroga. Minimum requirements for accurate and e�cient real-time on-chip spike
sorting. Journal of neuroscience methods, 230:51–64, 2014.

[21] Dongjin Seo, Ryan M Neely, Konlin Shen, Utkarsh Singhal, Elad Alon, Jan M Rabaey, Jose M Carmena,
and Michel M Maharbiz. Wireless recording in the peripheral nervous system with ultrasonic neural
dust. Neuron, 91(3):529–539, 2016.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.25.485863doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485863
http://creativecommons.org/licenses/by/4.0/


Hardware-E�cient Compression of Neural Multi-Unit Activity 31

[22] Pyungwoo Yeon, Muhannad S Bakir, and Maysam Ghovanloo. Towards a 1.1 mm 2 free-�oating wireless
implantable neural recording soc. In 2018 IEEE Custom Integrated Circuits Conference (CICC), pages
1–4. IEEE, 2018.

[23] Nur Ahmadi, Ma�hew L Cavuto, Peilong Feng, Lieuwe B Leene, Michal Maslik, Federico Mazza, Oscar
Savolainen, Katarzyna M Szostak, Christos-Savvas Bouganis, Jinendra Ekanayake, et al. Towards a
distributed, chronically-implantable neural interface. In 2019 9th International IEEE/EMBS Conference
on Neural Engineering (NER), pages 719–724. IEEE, 2019.

[24] Jihun Lee, Vincent Leung, Ah-Hyoung Lee, Jiannan Huang, Peter Asbeck, Patrick P Mercier, Stephen
Shellhammer, Lawrence Larson, Farah Laiwalla, and Arto Nurmikko. Wireless ensembles of sub-mm
microimplants communicating as a network near 1 ghz in a neural application. bioRxiv, 2020.

[25] Claude Elwood Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–423,
1948.
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