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Abstract 48 

Metabolic regulation in skeletal muscle is essential for blood glucose homeostasis. 49 

Obesity causes insulin resistance in skeletal muscle, leading to hyperglycemia and type 2 50 

diabetes. In this study, we performed multiomic analysis of the skeletal muscle of wild-51 

type (WT) and genetically obese (ob/ob) mice, and constructed regulatory transomic 52 

networks for metabolism after oral glucose administration. Our network revealed that 53 

metabolic regulation by glucose-responsive metabolites had a major effect on WT mice, 54 

especially carbohydrate metabolic pathways. By contrast, in ob/ob mice, much of the 55 

metabolic regulation by glucose-responsive metabolites was lost and metabolic regulation 56 

by glucose-responsive genes was largely increased, especially in carbohydrate and lipid 57 

metabolic pathways. We present some characteristic metabolic regulatory pathways 58 

found in central carbon, branched amino acids, and ketone body metabolism. Our 59 

transomic analysis will provide insights into how skeletal muscle responds to changes in 60 

blood glucose and how it fails to respond in obesity. 61 

 62 

Main text:  63 

Introduction 64 

Blood glucose level is regulated by the cooperative function of many tissues. Insulin, 65 

the hormone for lowering blood glucose level, is secreted by pancreatic beta cells when 66 

blood glucose level rises. Insulin lowers blood glucose level by stimulating glucose 67 

disposal in the skeletal muscle and adipose tissue, and inhibits gluconeogenesis in the 68 

liver (Evans et al., 2004). Type 2 diabetes mellitus (T2DM) is one of the most 69 

devastating results of obesity, and is characterized by insulin resistance and 70 

hyperglycemia (Kahn et al., 2006). Reduced responsiveness of skeletal muscle to insulin 71 
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is one of the critical aspects of T2DM development (DeFronzo and Tripathy, 2009). 72 

T2DM is a multifactorial disease involving many complex signaling pathways in 73 

different tissues; thus, a comprehensive analysis might help further our understanding of 74 

the molecular mechanisms of this disease. 75 

 Metabolism is a series of chemical reactions that convert starting materials into 76 

molecules that maintain the living state of cells and organisms. Metabolic reactions, 77 

defined as chemical reactions of metabolism, are regulated by metabolic enzymes and 78 

metabolites. Metabolic enzymes mainly regulate metabolic reactions at the gene 79 

expression level, which is determined by transcription factors; and at the enzyme 80 

activity level, which is regulated by post-translational modifications such as 81 

phosphorylation. Metabolites regulate metabolic reactions through the concentration of 82 

substrates, and also through the allosteric regulation of enzyme activity. 83 

 Integrating multiple omics techniques such as metabolomics, proteomics, and 84 

transcriptomics is useful for understanding the flow of biological information, and has 85 

been applied to a wide range of biological problems (Hasin et al., 2017; Wiley, 2011). 86 

Several groups have used multiomic approaches to study the molecular mechanisms of 87 

insulin resistance. One study integrated epigenomics, transcriptomics, proteomics, and 88 

metabolomics to analyze the liver of mice fed a high-fat diet (Soltis et al., 2017). 89 

Another study used transcriptomics, proteomics, metabolomics, and microbiomics to 90 

analyze blood and stool samples from healthy human participants during weight gain 91 

and weight loss (Piening et al., 2018). A transomic approach, proposed by our group, 92 

connects measurements of multiple omics layers such as proteomics, transcriptomics, 93 

and metabolomics based on direct molecular interactions (Kawata et al., 2018; Yugi and 94 

Kuroda, 2018; Yugi et al., 2014, 2016). This approach provides an understanding of the 95 
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spatiotemporal dynamics of the biochemical network. 96 

 We previously performed a transomic study of glucose-responsive molecules in 97 

the livers of wild-type (WT) and genetically obese mice (ob/ob mice) during oral 98 

glucose administration (Kokaji et al., 2020), and an inter-organ transomic study using 99 

the liver and skeletal muscle of WT and ob/ob mice in the starved state (Egami et al., 100 

2021). In this study, we performed transomic analysis, including transcriptomics and 101 

metabolomics, of glucose-responsive molecules in the skeletal muscle of WT and ob/ob 102 

mice during oral glucose administration. By analyzing time-series data, we identified 103 

pathways that are activated or inhibited by oral glucose administration, and determined 104 

how they are dysregulated in obesity. Our study provides a better understanding of the 105 

mechanism of glucose metabolism in skeletal muscle and T2DM. 106 

 107 

Results 108 

Overview of the study 109 

Metabolic reactions, which are defined as chemical reactions of metabolism, are 110 

regulated by an integrated network of metabolites as allosteric regulators, substrates, 111 

and products; metabolic enzymes; transcription factors; and signaling molecules. To 112 

elucidate the regulatory network controlling glucose-responsive metabolic reactions in 113 

skeletal muscle, we constructed a regulatory transomic network by integrating 114 

metabolic reactions with metabolites, gene expression of metabolic enzymes, and 115 

transcription factors, using skeletal muscle excised from C57BL/6J WT mice or ob/ob 116 

mice at different time points after glucose administration (Fig. S1). The transomic 117 

network of the skeletal muscle was constructed according to our previous study of the 118 

liver (Kokaji et al., 2020). 119 
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 Glucose was administered orally to 16 h-fasted WT and ob/ob mice, and the 120 

gastrocnemius muscle and blood were collected at 0, 20, 60, 120, and 240 min after 121 

glucose administration (Fig. 1A). The ob/ob mice showed elevated levels of blood 122 

glucose and insulin compared to WT mice throughout the study (Fig. S2A). The blood 123 

and skeletal muscle data in the fasting state were obtained from our previous studies 124 

(Egami et al., 2021; Kokaji et al., 2020). The skeletal muscle data after oral glucose 125 

administration were newly obtained in this study (Fig. S2B).  126 

 Using the skeletal muscle data during oral glucose administration, we defined 127 

the features of glucose-responsive molecules according to our previous study (Kokaji et 128 

al., 2020). Molecules that showed statistically significant changes (absolute log2 fold 129 

change ≥ 0.585 [20.585 = 1.5] and a false discovery rate [FDR]-adjusted p value [q value] 130 

≤ 0.1) at any time point compared to the fasting state after glucose administration were 131 

defined as glucose-responsive (Fig. 1B). We also calculated time constants (T1/2) to 132 

study the temporal patterns of glucose-responsive molecules (Fig. 1C). T1/2 was defined 133 

as the amount of time needed for the response to reach half of the minimum (decreasing 134 

molecules) or maximum (increasing molecules) amplitude. According to the blood 135 

insulin concentration, which peaked at about 20 min and decreased to basal level at 136 

about 60 min (Fig. S2A), rapid responses were defined as those with T1/2 values less 137 

than 20 min, and slow responses were defined as those with values longer than 60 min. 138 

 Glucose-responsive molecules were integrated across the omic layers, and the 139 

regulatory transomic network was constructed in WT and ob/ob mice (Fig. 1A). The 140 

transomic networks contained layers of insulin signaling molecules (Insulin signal), 141 

transcription factors (TF), gene expression and phosphorylation of metabolic enzymes 142 

(Enzyme), metabolic reactions (Reaction), and metabolites (Metabolite), and the layers 143 
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Fig 1. Pipeline of the construction of the glucose-responsive transomic network. (A) 145 

We measured the time courses of multiomic data from the skeletal muscles of WT and 146 

ob/ob mice following oral glucose administration and identified the molecules that were 147 

changed by oral glucose administration, which we defined as glucose-responsive 148 

molecules in each layer. We added interlayer regulatory connections between glucose-149 

responsive molecules in different layers using bioinformatics methods and information 150 

in public databases. The result was a glucose-responsive transomic network in the 151 

skeletal muscle of WT and ob/ob mice. (B) Definition of glucose-responsive molecules 152 

using fold change and FDR-adjusted p value. (C) Definition of T1/2, an index of the 153 

temporal rate of response, and rapid and slow glucose-responsive molecules using T1/2.   154 
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were connected when regulations could be speculated. By comparing the regulatory 155 

transomic networks between WT and ob/ob mice, we comprehensively evaluated how 156 

obesity affects the responses to glucose in skeletal muscle.  157 

 158 

Metabolomics 159 

We first performed metabolomics analysis using capillary electrophoresis–mass 160 

spectrometry (CE–MS), liquid chromatography (LC) –MS, and enzyme assays. A total 161 

of 104 water-soluble and ionic metabolites including glucose, amino acids, and nucleic 162 

acids were measured by CE–MS. Statistical tests were performed to identify the 163 

glucose-responsive metabolites in WT and ob/ob mice (Fig. 2A, B; Data File S1). To 164 

define an increase or decrease in time courses with changes in both directions at 165 

different time points, the direction of change compared to time 0 at the earliest time 166 

point that showed a significant change was used. Metabolites that showed statistically 167 

significant increases or decreases in WT or ob/ob mice are shown in Figure 2A. The 168 

responses were categorized into three groups (rapid, intermediate, or slow) according to 169 

their T1/2 values (Fig. 2C). 170 

 Four metabolites (4% of the total quantified metabolites) were significantly 171 

increased only in ob/ob mice, and none were increased in WT mice (Fig. 2B). 172 

Metabolites that were increased only in ob/ob mice included fructose 6-phosphate 173 

(F6P), tartrate, lactate, and isoamylamine (Fig. 2D). Twenty-one metabolites (20%) 174 

were significantly decreased only in WT mice, and four metabolites (4%) were 175 

significantly decreased only in ob/ob mice (Fig. 2B). It is noteworthy that no common 176 

metabolites were increased or decreased in WT and ob/ob mice. Metabolites decreased 177 

in WT mice included those that play a role in the tricarboxylic acid (TCA) cycle, such  178 
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Fig. 2. Identification of glucose-responsive metabolites. (A) Left: Heat map of the 180 

time courses of 29 glucose-responsive metabolites from the skeletal muscles of WT and 181 

ob/ob mice following oral glucose administration. Right: The bars in the heat map are 182 

colored according to the extent of glucose responsiveness, meaning the change from 183 

fasting state (0 min) in WT and ob/ob mice: increased (orange), decreased (purple), or 184 

were unchanged (white). Metabolites written in blue text indicate glucose-responsive 185 

metabolites specific to WT mice; red text, specific to ob/ob mice. (B) Increased and 186 

decreased metabolites in the skeletal muscles of WT mice and ob/ob mice. Blue, WT 187 

specific; red, ob/ob specific. (C) Rapid, intermediate, and slow responses in glucose-188 

responsive metabolites. (D) Graphs showing the metabolites with responses that were 189 

specific to WT mice (blue boxes) and specific to ob/ob mice (red boxes).   190 
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as citrate, cis-aconitate, succinate, and malate (Fig. 2D). The ketone body 3-191 

hydroxybutylate (3-OH-butylate) was also decreased in WT mice. Metabolites that were 192 

decreased in ob/ob mice included valine, aspartic acid, choline, and 3-methylhistidine. 193 

Most of the decreased metabolites showed rapid responses in both WT and ob/ob mice 194 

(Fig. 2C). Hierarchical clustering analysis of the metabolites is shown in Figure S3. 195 

LC–MS did not detect significant responses of 14 lipids after oral glucose 196 

administration (Data File S2). 197 

 Our metabolomic analysis revealed that the number of glucose-responsive 198 

metabolites specific to WT mice (21: 0 increased + 21 decreased) was larger than that 199 

specific to ob/ob mice (8: 4 increased + 4 decreased), and no responses were common to 200 

both mice. These results indicate that there is a substantial difference in the mechanism 201 

of glucose metabolism in skeletal muscle between WT and ob/ob mice.  202 

 Next, we compared the metabolomic changes in the skeletal muscle and blood. 203 

The amount of metabolites was regulated not only within each organ but in the blood 204 

circulatory system (Katz and Tayek, 1998). For each metabolite that was measurable in 205 

both skeletal muscle and blood (61 metabolites), we calculated the correlation between 206 

the time course of the metabolites in the skeletal muscle and that in the blood (Fig. 207 

S4A). The blood data were obtained from our previous study (Kokaji et al., 2020). The 208 

decreases in 3-OH-butyrate, isoleucine, and leucine were highly correlated between the 209 

blood and muscle in WT mice; and the decreases in 3-OH-butyrate and increases in 210 

lactate were highly correlated between the blood and muscle in ob/ob mice (Fig. S4A, 211 

B). Our previous study showed that 3-OH-butyrate, isoleucine, and leucine also 212 

exhibited a high correlation between the blood and liver in the same mouse (Kokaji et 213 
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al., 2020). These results suggest that metabolites regulated in the bloodstream are 214 

regulated similarly in skeletal muscle and liver.    215 

 216 

Transcriptomics 217 

To elucidate the transcriptional changes and controls in the skeletal muscle of WT and 218 

ob/ob mice after glucose administration, we performed transcriptomic analysis using 219 

RNA sequencing. Of the 14,978 genes analyzed, 4,264 that were significantly changed 220 

after oral glucose administration were identified as glucose-responsive genes (Fig. 3A, 221 

B; Data File S3). A heatmap of the glucose-responsive genes is shown in Figure 3A. 222 

The responses were categorized into three groups (rapid, intermediate, or slow) 223 

according to their T1/2s as in the analysis of the metabolites (Fig. 3C, D). Pathway 224 

enrichment analysis was also performed for each type of response (Table 1 and Data 225 

File S4). We assigned glucose-responsive genes encoding metabolic enzymes to the 226 

Enzyme layer of the transomic network, and glucose-responsive genes encoding 227 

transcription factors to the TF layer of the transomic network (Figs. 1 and 5). 228 

 The number of upregulated and downregulated genes in WT and ob/ob mice is 229 

shown in Figure 3B. The number of glucose-responsive genes specific to ob/ob mice 230 

(1,414 upregulated, 995 downregulated) was larger than that specific to WT mice (624 231 

upregulated, 472 downregulated). A total of 637 common genes were upregulated and 232 

264 were downregulated in WT and ob/ob mice. The calculation of time constants 233 

revealed that the number of rapidly responding glucose-responsive genes was larger in 234 

ob/ob mice than in WT mice (Fig. 3C). Genes upregulated in both WT and ob/ob mice 235 

included those involved in central carbon metabolism, such as hexokinase 2 (Hk2), fatty 236 

acid synthase (Fasn), and stearoyl-coenzyme A (CoA) desaturase 1(Scd1), and the  237 
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Fig. 3. Identification of glucose-responsive genes. (A) Left: Heat map of the time 239 

courses of transcript abundance for 4,264 glucose-responsive genes in the skeletal 240 

muscles of WT and ob/ob mice. Right: The bars in the heat map are colored according 241 

to glucose responsiveness: upregulated (orange) and downregulated (purple). (B) 242 

Increased and decreased genes in the skeletal muscle of WT mice and ob/ob mice. Blue, 243 

WT specific; red, ob/ob specific; green, glucose-responsive genes common to both. (C 244 

and D) Rapid, intermediate, and slow responses in glucose-responsive genes. (E) 245 

Graphs showing the gene expression time courses for the indicated genes. The inferred 246 

regulatory connections are shown as arrows from transcription factors to genes.  247 

248 
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Table 1. Pathway enrichment analysis of the glucose-responsive genes.  249 

Pathways with p value < 0.05 are shown. 250 

  
Upregulated  

gene in WT 

Downregulated  

gene in WT 

Unchanged  

gene in WT 

  activity p value activity p value activity p value activity p value 

Upregulated 

 gene in ob/ob 

Adherens 

junction 
8.1×10-3     Gap junction 1.1×10-3 Focal adhesion 8.8×10-3 

Butirosin and 

neomycin 

biosynthesis 

9.4×10-3   Adherens junction 2.8×10-3 
Regulation of actin 

cytoskeleton 
1.2×10-2 

    

Glycosaminoglycan 

biosynthesis - 

heparan sulfate / 

heparin 

5.6×10-3 

Glycosaminoglycan 

biosynthesis - 

chondroitin sulfate 

/ dermatan sulfate 

2.0×10-2 

    

Signaling pathways 

regulating 

pluripotency of 

stem cells 

6.3×10-3   

Downregulated  

gene in ob/ob 

    
Histidine 

metabolism 
3.6×10-2 Proteasome 2.7×10-3 Mismatch repair 3.7×10-2 

    Ribosome 1.0×10-2 Retinol metabolism 4.3×10-2 

    Arachidonic acid 

metabolism 
2.5×10-2 

Drug metabolism - 

other enzymes 
4.9×10-2 

    Non-homologous 

end-joining 
3.0×10-2   

Unchanged 

 gene in ob/ob 

Histidine 

metabolism 
3.0×10-3 

Taurine and 

hypotaurine 

metabolism 

1.3×10-2 

  Phenylalanine 

metabolism 
1.2×10-2 

Drug 

metabolism - 

other enzymes 

2.4×10-2 

beta-Alanine 

metabolism 
1.4×10-2     

  251 
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responses in ob/ob mice were larger than those in WT mice (Fig. 3E). Some genes 252 

involved in the insulin signaling pathway also showed upregulation common to both 253 

WT and ob/ob mice, such as insulin receptor substrate 1 (Irs1) and nitric oxide synthase 254 

3 (Nos3) (Fig. 3E). Genes downregulated in both WT and ob/ob mice included those 255 

involved in oxidative phosphorylation such as NADH dehydrogenase (ubiquinone) iron-256 

sulfur protein 4 (Ndufs4) (Fig. 3E). Genes specifically downregulated in WT mice 257 

contained pyruvate dehydrogenase kinase 4 (Pdk4) (Fig. 3E). Genes specifically 258 

upregulated in ob/ob mice were relatively enriched in pathways related to cell adhesion 259 

(Table 1). The gene 3-hydroxybutyrate dehydrogenase 1 (Bdh1), which is involved in 260 

ketone body metabolism, was also specifically upregulated in ob/ob mice. Genes 261 

specifically downregulated in ob/ob mice included those involved in the TCA cycle 262 

such as succinyl-CoA synthetase beta subunit (Suclg2), and those involved in branched-263 

chain amino acid (BCAA) degradation such as 2-oxoisovalerate dehydrogenase beta 264 

subunit (Bckdhb) (Fig. 3E). Genes specifically downregulated in ob/ob mice were 265 

relatively enriched in the proteasome pathway and ribosomal proteins (Table 1). 266 

 Next, we performed hierarchical clustering analysis of transcriptome data and 267 

bioinformatics analysis of the binding motifs of gene clusters using the transcription 268 

factor database TRANSFAC (Figs. 3E and S5A, B; Data Files S5 and S6) to estimate 269 

the regulatory connections between transcription factors and genes (Kel et al., 2003; 270 

Matys et al., 2006). We predicted the regulatory connections between a transcription 271 

factor and a gene if the binding motifs of the transcription factor were enriched in the 272 

promoter regions of the genes in a cluster. For example, we inferred that early growth 273 

response protein 1 (Egr1) is a transcription factor that regulates some of the genes 274 

upregulated in WT and ob/ob mice (Fig. 3E). A comparison of the estimated regulatory 275 
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connections with those predicted from chromatin immunoprecipitation (ChIP) 276 

experimental data from the ChIP-Atlas database (http://chip-atlas.org/) (Oki et al., 2018) 277 

showed that the results from the two methods mostly overlapped (Fig. S5C; Data File 278 

S7). The estimated regulatory connections between the transcription factors and the 279 

genes encoding metabolic enzymes acted as connections between the TF layer and the 280 

Enzyme layer in the transomic network. 281 

 282 

Phosphorylation of insulin signaling molecules  283 

Phosphorylation is an important factor for regulating metabolic reactions. Direct 284 

phosphorylation of an enzyme can regulate its activity, and phosphorylation of a 285 

transcription factor can regulate the expression level of downstream enzymes. 286 

Therefore, we measured the phosphorylation of 10 enzymes, transcription factors, and 287 

signaling molecules in the insulin pathway by performing western blot analysis of 288 

protein samples prepared from the skeletal muscle of WT and ob/ob mice during oral 289 

glucose administration (Fig. S6; Data File S8). The band intensities were quantified, and 290 

the results were used to determine if the phosphorylation was glucose-responsive. 291 

 We were able to detect many glucose-responsive phosphorylated proteins from 292 

the analysis (Fig. 4). The level of phosphorylated ribosomal protein S6 was increased in 293 

both WT and ob/ob mice. The phosphorylation of Akt was specifically increased in WT 294 

mice, and the phosphorylation of glycogen phosphorylase was specifically decreased in 295 

WT mice. Glycogen synthase kinase 3 β (Gsk3β) and cAMP response element-binding 296 

protein (Creb) were specifically increased in ob/ob mice. Some molecules showed the 297 

opposite responses in WT and ob/ob mice. For example, the phosphorylation of 298 

forkhead box protein 1 (Foxo1) was transiently increased in WT mice but decreased in  299 
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Fig. 4. Identification of glucose-responsive phosphorylation of insulin signaling 301 

molecules. Time courses of the phosphorylation of the indicated insulin signaling 302 

molecules in the skeletal muscle of WT mice (blue lines) and ob/ob mice (red lines) 303 

following oral glucose administration. Phosphorylated proteins are indicated by the 304 

prefix “p.” The time course graphs are presented in the context of the insulin signaling 305 

pathway from the KEGG database (Kanehisa et al., 2012, 2017). The colors of the 306 

boxes around each graph indicate the change in phosphorylation specific to WT (blue), 307 

specific to ob/ob (red), common to both (green), opposite between WT and ob/ob mice 308 

(pink). Proteins that did not exhibit a change in phosphorylation are outlined in gray. 309 

Glucose-responsive molecules in the TF and Enzyme layers are enclosed in dashed 310 

boxes.   311 
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ob/ob mice; the phosphorylation of glycogen synthase (Gs) was decreased in WT mice 312 

and increased in ob/ob mice. The phosphorylation of extracellular signal-related kinase 313 

(Erk) and AMP-activated protein kinase α (Ampkα) was not affected by glucose 314 

administration in both WT and ob/ob mice. In the subsequent transomic analysis, 315 

metabolic enzymes with glucose-responsive phosphorylation were assigned to the 316 

Enzyme layer, and transcription factors with glucose-responsive phosphorylation were 317 

assigned to the TF layer. 318 

 319 

Regulatory glucose-responsive transomic network 320 

A regulatory transomic network of glucose-responsive molecules in the skeletal muscle 321 

was constructed with five layers: Insulin signal, TF, Enzyme, Reaction, and Metabolite 322 

(Fig. 5; Data File S9). We constructed the transomic network in the skeletal muscle 323 

using a method we previously developed for the transomic network in the liver (Kokaji 324 

et al., 2020). Briefly, glucose-responsive molecules were assigned to the corresponding 325 

layers as nodes, and the edges between the nodes were drawn to show the interlayer 326 

regulatory connections of glucose-responsive molecules retrieved from pathway 327 

databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) and 328 

Braunschweig Enzyme Database (BRENDA) (Kanehisa et al., 2012, 2017; Schomburg 329 

et al., 2013) (Fig. 5A).  330 

 By constructing regulatory transomic networks in WT and ob/ob mice, we were 331 

able to identify WT specific, ob/ob specific, and common responses of molecules and 332 

interlayer regulatory connections to glucose administration (Fig. 5B; green, common; 333 

blue, WT specific; red, ob/ob specific). In the Metabolite layer, the number of WT mice 334 

specific glucose-responsive molecules was larger than ob/ob mice specific glucose- 335 
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Fig. 5. Construction of a regulatory transomic network for glucose-responsive 337 

metabolic reactions. (A) The procedure for constructing the regulatory transomic 338 

network for glucose-responsive metabolic reactions. The databases used to identify the 339 

interlayer regulatory connections are shown by arrows. (B) The regulatory transomic 340 

network for glucose-responsive metabolic reactions. (C) The number of glucose-341 

responsive metabolic reactions regulated by glucose-responsive molecules in the 342 

Enzyme layer, Metabolite layer, or both. (D) The number of glucose-responsive 343 

metabolic reactions regulated by glucose-responsive metabolites and genes with the 344 

indicated time constants T1/2 in WT mice and ob/ob mice. (E) The number of glucose-345 

responsive metabolic reactions regulated by the indicated glucose-responsive molecules 346 

in WT mice (upper, blue) and ob/ob mice (lower, red). The colors of the names of 347 

molecules indicate the type of glucose-responsive molecules as described in (B).   348 
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responsive molecules, and no molecules responded commonly in WT and ob/ob mice. 349 

Therefore, most of the interlayer regulatory connections between the Metabolite layer 350 

and the Reaction layer were specific to WT mice, suggesting that metabolic regulation 351 

by a metabolite itself after glucose administration is impaired in obesity. By contrast, 352 

approximately 55% of glucose-responsive genes in the Enzyme layer and the interlayer 353 

regulatory connections between the Enzyme layer and the Reaction layer were classified 354 

as ob/ob specific, suggesting that transcriptional regulation compensated for the 355 

regulation by metabolites that was lost in obese mice. The number of common glucose-356 

responsive genes in the Enzyme layer and its regulatory connections was approximately 357 

40% of the ob/ob specific ones. 358 

 The numbers of glucose-responsive metabolic reactions regulated by 359 

metabolites (Metabolite layer), genes (Enzyme layer), or both were calculated (Fig. 5C). 360 

The results suggested that the metabolic reactions in WT mice were mainly regulated by 361 

metabolites, and those in ob/ob mice were mainly regulated through gene expression. 362 

We also classified the regulators of metabolic reactions according to their time constants 363 

(T1/2), and revealed that a large number of metabolic reactions was affected by the 364 

rapidly responding (<20 min) metabolites and genes in both the WT and ob/ob networks 365 

(Fig. 5D). Glucose-responsive metabolites specific to WT mice included cofactors such 366 

as ATP, AMP, and UDP, which could have a large effect on the Reaction layer (Fig. 5E).  367 

 368 

Comparison of the regulatory transomic networks of WT and ob/ob mice 369 

To analyze how each metabolic pathway was regulated in the regulatory transomic 370 

networks of WT and ob/ob mice, we constructed a simplified transomic network using a 371 

method that we previously developed (Kokaji et al., 2020) (Fig. 6A, B; Data File S10).  372 
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Fig. 6. Condensed regulatory transomic networks for glucose-responsive metabolic 374 

reactions. (A, B) The condensed regulatory transomic network of the response to 375 

glucose in WT and ob/ob mice. The color of nodes (glucose-responsive molecules) and 376 

edges (interlayer regulatory connections) indicate the type of molecules and regulation 377 

as described in Figure 5B. The size of the nodes and width of the edges indicate the 378 

relative number of the regulated metabolic reactions. (C) For each metabolic pathway 379 

node, the percentage of regulated metabolic reactions by glucose-responsive metabolites 380 

(x-axis) and glucose-responsive genes encoding metabolic enzymes (y-axis) was plotted 381 

for WT and ob/ob mice.   382 
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Briefly, we converted the Reaction layer into the Pathway layer by placing metabolic 383 

reactions in a specific metabolic pathway into a single metabolic pathway node, 384 

according to the KEGG metabolic pathway.  385 

   In WT mice, various metabolic pathways were regulated by metabolites (Fig. 386 

6A). In particular, carbohydrate metabolic pathways were regulated by WT specific 387 

glucose-responsive metabolites such as ATP, citrate, and phosphoenolpyruvate (PEP) 388 

(Fig. S7). Although the effects of glucose-responsive genes encoding metabolic 389 

enzymes were smaller than the metabolites, some lipid metabolic pathways such as 390 

glycerolipid and glycerophospholipid metabolisms were more strongly regulated by 391 

glucose-responsive genes than others (Fig. 6C). In ob/ob mice, the regulation of 392 

glucose-responsive metabolites was decreased and that of glucose-responsive genes 393 

encoding metabolic enzymes was increased (Fig. 6B). The decreased regulation by 394 

metabolites was particularly large in carbohydrate metabolic pathways (Fig. 6C). 395 

Regulation by glucose-responsive genes was increased in most carbohydrate and lipid 396 

metabolic pathways, with the exception of glycerolipid metabolism. Amino acid 397 

metabolic pathways showed relatively small changes in the percentage of metabolic 398 

reactions regulated by glucose-responsive metabolites and genes. 399 

 400 

Glycolysis, TCA cycle, BCAA degradation, and ketone body metabolism 401 

Finally, we focused on metabolic pathways and their regulatory networks related to 402 

glucose (Fig. 7). 403 

 404 

 405 

 406 
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Fig. 7. Regulatory transomic network for glucose-responsive metabolic reactions in 408 

glycolysis, TCA cycle, BCAA degradation, and ketone body metabolism. The 409 

regulatory transomic network for glucose-responsive metabolic reactions in glycolysis 410 

(A), TCA cycle (B), BCAA degradation (C), and ketone body metabolism (D) in the 411 

skeletal muscle of WT mice and ob/ob mice. Graphs of the time courses of measured 412 

molecules are shown for corresponding nodes as the means and SEMs. The colors of the 413 

frames and edges indicate WT mice-specific glucose-responsive molecules and 414 

regulatory connections (blue), ob/ob mice-specific glucose-responsive molecules and 415 

regulatory connections (red), and common glucose-responsive molecules and regulatory 416 

connections and regulatory connections (green). Diamond nodes indicate metabolic 417 

reactions.   418 
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Glycolysis 419 

In WT mice, although blood glucose levels increased after glucose administration, most 420 

metabolites in glycolysis were not defined as “glucose-responsive.” The glycolysis 421 

network contained many allosterically regulated WT-specific glucose-responsive 422 

metabolites. The decrease in allosteric inhibitors such as ATP and citrate could 423 

contribute to the activation of glycolysis in WT mice. We also found upregulation in 424 

some glycolytic genes such as Hk2, and downregulation in Pdk4, which inhibits 425 

pyruvate dehydrogenase by phosphorylation (Furuyama et al., 2003). This activation of 426 

glycolysis by glucose-responsive molecules might account for the increased influx of 427 

glucose from the blood. 428 

 In ob/ob mice, most allosteric regulation was lost, and Hk2 showed a larger 429 

increase than in WT mice, suggesting that the lack of allosteric regulation may be 430 

compensated for by gene expression. Because the increase in blood glucose levels was 431 

greater than that in WT mice, the increase in F6P and lactate might be caused by an 432 

imbalance between increased glucose uptake and activation of glycolytic flux. Glucose 433 

6-phosphate (G6P) was not defined as a glucose-responsive molecule (q value at 60 min 434 

= 0.14), but its time series was highly correlated with F6P (Pearson’s r = 0.99). The 435 

results are shown in Figure 7A. 436 

 437 

TCA cycle 438 

In WT mice, four metabolites in the TCA cycle decreased after oral glucose 439 

administration (citrate, cis-aconitate, succinate, malate). Although fumarate was not 440 

defined as a glucose-responsive molecule (q value at 60 min = 0.13), its time series was 441 

highly correlated with malate (Pearson’s r = 0.96). The responses might have caused a 442 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.27.486003doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.27.486003


24 
 
 

decrease in TCA cycle flux and ATP production. The decrease in metabolites in the TCA 443 

cycle may be the result of decreased acetyl CoA production derived from β oxidation 444 

and ketone body degradation, as well as decreased amino acid degradation and 445 

anaplerosis (Dimitriadis et al., 2011a; Furuyama et al., 2003; Puchalska and Crawford, 446 

2017; Saxton and Sabatini, 2017). In ob/ob mice, the abundance of some metabolites 447 

was smaller than that in WT mice before glucose administration, and the metabolites did 448 

not show a large response to glucose. The results are shown in Figure 7B. Some studies 449 

have reported a decrease in intermediates of the TCA cycle in the skeletal muscle of 450 

obese mice (Koves et al., 2008; Wong et al., 2015). 451 

 452 

BCAA degradation 453 

BCAA degradation pathway and its regulatory network included some glucose-454 

responsive molecules in ob/ob mice. Valine showed a rapid decrease after oral glucose 455 

administration. Leucine and isoleucine were not defined as glucose-responsive 456 

molecules (q value at 20 min = 0.15, 0.16), but their time series were highly correlated 457 

with valine (Pearson’s r = 0.98 for leucine, 0.98 for isoleucine). The responses may be 458 

due to the inhibition of protein degradation by insulin stimulation (Dimitriadis et al., 459 

2011b; Saxton and Sabatini, 2017). Some genes involved in BCAA degradation, such as 460 

Bckdhb, showed a rapid downregulation. Bckdh kinase (Bckdk) inhibits Bckdh by 461 

phosphorylation (Lynch and Adams, 2014), which was not defined as a glucose-462 

responsive molecule (q value at 60 min = 0.11), but its time series was negatively 463 

correlated with Bckdhb expression (Pearson’s r = -0.96). The transcriptional responses, 464 

as well as the decrease in BCAA abundance, might suppress BCAA degradation. We 465 

found a similar decrease in Suclg2 in the TCA cycle, which metabolizes succinyl CoA, 466 
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one of the BCAA degradation products (Fig. 7B). In WT mice, BCAAs were not 467 

defined as glucose-responsive molecules (q value at 20 min = 0.15 to 0.23), but their 468 

time series showed a positive correlation with those in ob/ob mice (Pearson’s r = 0.77 to 469 

0.90) (Fig. 7c). 470 

 471 

Ketone body metabolism 472 

In WT mice, 3-OH butyrate, a ketone body, showed a rapid and strong decrease (0.13-473 

fold at 20 min). The decrease in metabolites in the TCA cycle, which allosterically 474 

inhibit the metabolic enzyme that degrades acetoacetate, might contribute to the 475 

degradation of ketone bodies in the skeletal muscle. In ob/ob mice, 3-OH butyrate did 476 

not show a significant decrease (q value at 60 min = 0.12), but Bdh1 was rapidly 477 

upregulated (Fig. 7D). 478 

 479 

Discussion 480 

In this study, we performed transomic analysis of the skeletal muscles obtained from 481 

WT and ob/ob mice after the oral glucose tolerance test to construct a large-scale 482 

glucose-responsive regulatory network of metabolism. In WT mice, the number of 483 

glucose-responsive metabolites was about 2.5-fold larger than that in ob/ob mice, and 484 

many metabolic reactions were affected by these glucose-responsive metabolites. In 485 

particular, the responses of cofactors such as ATP, and TCA cycle intermediates such as 486 

citrate and succinate, might affect carbohydrate and amino acid metabolism. By 487 

contrast, the number of glucose-responsive genes encoding metabolic enzymes in ob/ob 488 

mice was about 1.8-fold larger than that in WT mice, and the genes were mainly related 489 

to carbohydrate and lipid metabolism. 490 
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 We also found some characteristic glucose-responsive regulatory pathways in 491 

central carbon, branched amino acids, and ketone body metabolism. The WT mice 492 

showed few significant changes in the metabolites of glycolysis despite the 493 

administration of glucose. A recent study showed that the influx of orally administered 494 

glucose into the glycolysis of gastrocnemius muscle (white muscle), which was used in 495 

this study, is much smaller than that of soleus muscle (red muscle) (Lopes et al., 2021). 496 

The decrease in ATP and TCA cycle intermediates also suggested a decrease in TCA 497 

cycle flux. Because blood lactate increased (Fig. S4B), much of the glucose imported 498 

into the skeletal muscle might be released into the blood as lactate (Brooks, 2020; Hui 499 

et al., 2020). In ob/ob mice, the increase in Hk2 and F6P indicated an increase in 500 

glycolytic flux. In addition, blood lactate increased and TCA cycle intermediates did not 501 

respond, suggesting that the conversion of imported glucose to lactate might also occur 502 

in ob/ob mice. 503 

   In this study, some amino acids including BCAA in the blood and skeletal 504 

muscle were decreased after glucose administration similar to the effect on the liver 505 

(Kokaji et al., 2020), suggesting suppression of protein degradation and promotion of 506 

protein synthesis in the insulin target organs (Dimitriadis et al., 2011b; Ruvinsky and 507 

Meyuhas, 2006). In addition, we found the transcriptional activation of Bckdk, a known 508 

regulator of the BCAA degradation pathway, and transcriptional repression of the 509 

metabolic enzymes, including Bckdhb, in ob/ob mice. These responses might suppress 510 

the degradation of amino acids in the skeletal muscle. The blood level of a ketone body, 511 

an alternative energy source in the fasting state, was decreased in both WT and ob/ob 512 

mice after glucose administration. We also found that ketone levels in skeletal muscle 513 

showed a similar time series as those in the blood, suggesting that intramuscular ketone 514 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.27.486003doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.27.486003


27 
 
 

utilization was also reduced. Decreased degradation of these metabolites could 515 

contribute to a decrease in TCA cycle intermediates, but further research is needed to 516 

understand why the reduction was specific to WT mice. 517 

 We previously constructed a glucose-responsive transomic network in the liver 518 

of WT and ob/ob mice (Kokaji et al., 2020). The liver network contained more glucose-519 

responsive molecules and regulatory connections than the skeletal muscle network, but 520 

the differences between WT and ob/ob mice were similar between the liver and skeletal 521 

muscle. In both organs, many metabolic reactions in the WT networks were regulated 522 

by metabolites, whereas in the ob/ob networks, much of the regulation by metabolites 523 

was lost and metabolic regulation by gene expression was activated. There were also 524 

similarities in the regulation of the metabolic pathway, such as the regulation of 525 

carbohydrate metabolism by metabolites and the regulation of lipid metabolism by gene 526 

expression. We are currently performing a detailed comparative analysis between the 527 

liver network and skeletal muscle network. 528 

 To construct a comprehensive glucose-responsive network, it was necessary to 529 

integrate more omics data into our network. Because the Insulin signal layer was 530 

determined by western blot analysis, the numbers of glucose-responsive molecules and 531 

regulatory connections of the layer were very limited compared to those of the other 532 

layers. Integration of phosphoproteomic data and kinase-substrate interactions will 533 

facilitate a more extensive evaluation of the effects from the Insulin signal layer to the 534 

Reaction layer (Humphrey et al., 2013; Krycer et al., 2017; Ohno et al., 2020). The 535 

transcription factors of the glucose-responsive genes were determined based on the 536 

binding motifs in the promoter sequences and the temporal patterns. Because not all 537 

motifs are bound by transcription factors, direct measurements of transcription factor 538 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.27.486003doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.27.486003


28 
 
 

binding using ChIP sequencing analysis will identify a more accurate and extensive 539 

regulatory network of glucose-responsive genes (Chèneby et al., 2018; Oki et al., 2018; 540 

Yevshin et al., 2019). Although our transomic network was not comprehensive, we 541 

revealed several important features of metabolic regulation in the skeletal muscle after 542 

glucose administration. An extension of this in vivo transomic analysis will lead to a 543 

better understanding of glucose homeostasis at the whole-body level and its 544 

dysregulation in obesity. 545 

 546 

Materials and Methods 547 

Animals and sample preparation 548 

Animal experiments were performed as previously described (Kokaji et al., 2020). 549 

C57BL/6 WT mice or ob/ob mice at ten weeks of age were purchased from Japan SLC 550 

Inc. (Shizuoka, Japan). Animal experiments were approved by the animal ethics 551 

committee of The University of Tokyo. Overnight-fasted mice were administered an 552 

oral glucose load of 2 g/kg body weight. To measure blood glucose and insulin levels, 553 

15 μL blood was collected from the tail veins at 0, 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 554 

180, and 240 min after glucose administration (n = 5). We used the blood glucose and 555 

insulin levels measured in our previous study (Kokaji et al., 2020) (Fig. S2). For the 556 

metabolome and transcriptome studies, mice were sacrificed at 0, 20, 60, 120, and 240 557 

min after glucose administration, and the gastrocnemius muscle was excised. Muscle 558 

samples were frozen immediately in liquid nitrogen and homogenized with dry ice. The 559 

powdered samples were divided and used for metabolomics, lipidomics, 560 

transcriptomics, a glycogen assay, and western blotting.  561 

 562 
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Metabolomics  563 

Metabolomic analysis was performed as previously described (Kokaji et al., 2020). 564 

Total metabolites and proteins were extracted from the skeletal muscle with 565 

methanol:chloroform:water (2.5:2.5:1) extraction. Approximately 40 mg of the skeletal 566 

muscle was suspended in 500 μL ice-cold methanol containing internal standards (20 567 

μM L-methionine sulfone [Wako, Osaka, Japan], 2-morpholinoethanesulfonic acid, 568 

monohydrate [Dojindo, Kumamoto, Japan], and D-camphor-10-sulfonic acid [Wako]) 569 

for normalization of MS peak intensities across runs, followed by suspension in 500 μL 570 

chloroform, and finally in 200 μL water. After centrifugation at 4,600 × g for 15 min at 571 

4ºC, the aqueous layer was filtered through a 5 kDa molecular weight cutoff filter 572 

(Millipore, Burlington, MA, USA) to remove protein contamination. The filtrate (320 573 

μL) was lyophilized and, prior to MS analysis, dissolved in 50 μL water containing 574 

reference compounds (200 μM each of trimesate [Wako] and 3-aminopyrrolidine 575 

[Sigma-Aldrich, St. Louis, MO, USA]). Proteins were precipitated by adding 800 μL 576 

ice-cold methanol to the interphase and organic layers and centrifuged at 12,000 × g for 577 

15 min at 4ºC. The pellet was washed with 1 mL ice-cold 80% (v/v) methanol and 578 

resuspended in 1 mL sample buffer containing 1% sodium dodecyl sulfate (SDS) and 50 579 

mM Tris-Cl pH8.8, followed by sonication. The total protein concentration was 580 

determined by the bicinchoninic acid (BCA) assay and was used for the normalization 581 

of metabolite concentration among samples. 582 

 All CE–MS experiments were performed using the Agilent 1600 Capillary 583 

Electrophoresis system (Agilent Technologies Santa Clara, CA, USA), the G1603A 584 

Agilent CE-MS adapter kit, and the G1607A Agilent CE electrospray ionization (ESI) –585 

MS sprayer kit. Briefly, to analyze the cationic compounds, a fused silica capillary (50 586 
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µm internal diameter [i.d.] × 100 cm) was used with 1 M formic acid as the electrolyte 587 

(Soga and Heiger, 2000). Methanol/water (50% v/v) containing 0.01 µM hexakis(2,2-588 

difluoroethoxy)phosphazene was delivered as the sheath liquid at 10 µL/min. ESI-time-589 

of-flight (TOF) MS was performed in the positive ion mode, and the capillary voltage 590 

was set to 4 kV. Automatic recalibration of each acquired spectrum was achieved using 591 

the masses of the reference standards ([13C isotopic ion of a protonated methanol dimer 592 

(2 MeOH+H)]+, m/z 66.0631 and [hexakis(2,2-difluoroethoxy)phosphazene +H]+, m/z 593 

622.0290). To identify the metabolites, the relative migration times of all peaks were 594 

calculated by normalization to the reference compound 3-aminopyrrolidine. The 595 

metabolites were identified by comparing their m/z values and relative migration times 596 

to the metabolite standards. Quantification was performed by comparing peak areas to 597 

calibration curves generated using internal standardization techniques with methionine 598 

sulfone. The other conditions were identical to those previously described (Soga et al., 599 

2006). To analyze anionic metabolites, a commercially available COSMO(+) 600 

(chemically coated with cationic polymer) capillary (50 µm i.d. x 105 cm) (Nacalai 601 

Tesque, Kyoto, Japan) was used with a 50 mM ammonium acetate solution (pH 8.5) as 602 

the electrolyte. Methanol/5 mM ammonium acetate (50% v/v) containing 0.01 µM 603 

hexakis(2,2-difluoroethoxy)phosphazene was delivered as the sheath liquid at 10 604 

µL/min. ESI-TOF MS was performed in the negative ion mode, and the capillary 605 

voltage was set to 3.5 kV. For anion analysis, trimesate and D-camphor-10-sulfonic acid 606 

were used as the reference and internal standard, respectively. The other conditions 607 

were identical to those described previously (Soga et al., 2009). Agilent MassHunter 608 

software (Agilent technologies) was used for data analysis (Ishii et al., 2007; Soga et al., 609 

2006, 2009). 610 
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 We used the blood metabolome data obtained in our previous study (Kokaji et 611 

al., 2020). 612 

 613 

Lipidomics 614 

Lipidomic analysis was performed as previously described (Egami et al., 2021). 615 

Lipidomic profiling of the skeletal muscle was performed by Metabolon, Inc. 616 

(Morrisville, NC, USA). Lipids were extracted from samples with dichloromethane and 617 

methanol using the modified Bligh and Dyer procedure in the presence of internal 618 

standards, with the lower organic phase used for analysis. The extracts were 619 

concentrated under nitrogen and reconstituted in 0.25 mL dichloromethane:methanol 620 

(50:50) containing 10 mM ammonium acetate. The extracts were placed in vials for 621 

infusion–MS analyses, which were performed on the SelexION equipped Sciex 5500 622 

QTRAP mass spectrometer using both the positive and negative ion modes. Each 623 

sample was subjected to two analyses, with ion mobility spectrometry–MS conditions 624 

optimized for lipid classes monitored in each analysis. The 5500 QTRAP was operated 625 

in the multiple reaction monitoring mode to monitor the transitions for more than 1,100 626 

lipids from up to 14 lipid classes. Individual lipid species were quantified based on the 627 

ratio of the signal intensity for target compounds to the signal intensity for an assigned 628 

internal standard of known concentration. Fourteen lipid class concentrations were 629 

calculated from the sum of all molecular species within a class. 630 

 631 

Glycogen assay 632 

Glycogen content was determined as previously described with some modifications 633 

(Noguchi et al., 2013). Approximately 20 mg of the skeletal muscle was digested with 634 
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1.2 mL of 30% (w/v) potassium hydroxide solution for 1 h at 95ºC and neutralized with 635 

61.2 μL glacial acetic acid. The total protein concentration of the muscle digest was 636 

determined by the BCA assay and adjusted to 1 μg protein/μL. Glycogen was extracted 637 

from the digested skeletal muscle using Bligh and Dyer method to remove lipids (Von 638 

Wilamowitz-Moellendorff et al., 2013). The digested skeletal muscle (50 μL) was 639 

mixed with 120 μL ice-cold methanol, 50 μL chloroform, 10 μL of 1% (w/v) linear 640 

polyacrylamide, and 70 μL water. After incubation on ice for 30 min, the mixture was 641 

centrifuged at 12,000 × g to remove the separated aqueous layer. The glycogen was 642 

precipitated by the addition of 200 μL methanol and centrifugation at 12,000 × g for 30 643 

min at 4ºC, washed with ice-cold 80% (v/v) methanol, and dried completely. Glycogen 644 

pellets were suspended in 20 μL of 0.1 mg/mL amyloglucosidase (Sigma-Aldrich) in 50 645 

mM sodium acetate buffer and incubated for 2 h at 55ºC to digest the glycogen. The 646 

concentration of the glucose produced from the glycogen was determined using the 647 

Amplex Red Glucose/Glucose Oxidase Assay kit (Thermo Fisher Scientific, Waltham, 648 

MA, USA), according to the manufacturer’s instructions. 649 

 650 

Transcriptomics 651 

Transcriptomic analysis was performed as previously described (Kokaji et al., 652 

2020). Total RNA was extracted from the skeletal muscle using the RNeasy Mini Kit 653 

(QIAGEN, Hilden, Germany) and QIAshredder (QIAGEN); the quantity was assessed 654 

using the Nanodrop (Thermo Fisher Scientific) and the quality was assessed using the 655 

2100 Bioanalyzer (Agilent Technologies). cDNA libraries were prepared using the 656 

SureSelect strand-specific RNA library preparation kit (Agilent Technologies). The 657 

resulting cDNAs were subjected to 100 base paired-end sequencing on the Illumina 658 
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HiSeq2500 Platform (Illumina, San Diego, CA, USA) (Matsumoto et al., 2014). 659 

Sequences were aligned to the mouse reference genome obtained from the Ensembl 660 

database (Cunningham et al., 2015; Flicek et al., 2014) (GRCm38/mm10, Ensembl 661 

release 97) using the STAR software package (v.2.5.3a) with the parameters “--662 

quantMode TranscriptomeSAM --outFilterMultimapScoreRange 1 --663 

outFilterMultimapNmax 20 --outFilterMismatchNmax 10 --alignIntronMax 500000 --664 

alignMatesGapMax 100000 --sjdbScore 2 --alignSJDBoverhangMin 1 --genomeLoad 665 

NoSharedMemory --outFilterMatchNminOverLread 0.33 --666 

outFilterScoreMinOverLread 0.33 --sjdbOverhang 100 --outSAMattributes NH HI NM 667 

MD AS XS --outSAMunmapped Within --outSAMtype BAM SortedByCoordinate -- 668 

outSAMheaderHD @HD VN:1.4 --limitBAMsortRAM 103079215104 --669 

outSAMstrandField intronMotif” (Dobin et al., 2013). The RSEM tool (v.1.3.0) was 670 

used to assemble transcript models (Ensembl release 97) from aligned sequences and to 671 

estimate gene expression level with the parameters “--estimate-rspd --forward-prob 0.5 -672 

p 12” (Li and Dewey, 2011). Gene expression level was shown as fragments per 673 

kilobase of exon per million mapped fragments (FPKM). 674 

 675 

Western blot analysis 676 

Total proteins were extracted from the skeletal muscle with methanol:chloroform:water 677 

(2.5:2.5:1). Ice-cold methanol was added to the skeletal muscle at a concentration of 678 

100 mg/mL of the weight of the skeletal muscle, and the suspension (400 μL) was 679 

mixed with chloroform (400 μL) and water (160 μL), followed by centrifugation at 680 

4,600 × g for 10 min at 4ºC. The aqueous and organic phases were removed and 800 μL 681 

ice-cold methanol was added to the interphase to precipitate proteins. The resulting 682 
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pellet was suspended with 400 μL lysis buffer (10 mM Tris-HCl [pH 6.8] in 1% SDS) 683 

and incubated for 15 min at 65ºC, followed by sonication. The protein lysate was 684 

centrifuged at 12,000 × g for 3 min at 4ºC to remove debris. The total protein 685 

concentration of the resulting supernatant was determined by the BCA assay. The 686 

following primary antibodies were purchased from Cell Signaling Technology 687 

(Danvers, MA, USA): phosphorylated Erk1/2 (p-Erk1/2, Thr202/Tyr204; #9101), pCreb 688 

(Ser133; #9198), pAkt (Ser473; #9271), pS6 (Ser235/Ser236; #2211), pGsk3β (Ser9; #9336), 689 

pGs (Ser641; #3891), pFoxo1 (Ser256; #9461), pp38 (Thr180/Tyr182; #9211), and pAmpkα 690 

(Thr172; #2531); pGp (Ser15) was made in house as previously described (Noguchi et al., 691 

2013). The proteins (10 μg) were resolved by SDS-PAGE, electrotransferred to 692 

nitrocellulose membranes, and incubated with the appropriate antibodies. 693 

Immunodetection was performed using the Immobilon Western Chemiluminescent HRP 694 

Substrate (Millipore) or SuperSignal West Pico PLUS Chemiluminescent Substrate 695 

(Thermo Fisher Scientific), and the Western blot signals were detected using a 696 

luminoimage analyzer (LAS-4000; Fujifilm) and quantified with ImageJ software. 697 

 698 

Identification of glucose-responsive molecules 699 

Glucose-responsive molecules were determined as previously described (Kokaji et al., 700 

2020). Molecules that were detected in less than half of the replicates in either WT or 701 

ob/ob mice at any time point after oral glucose administration were removed from the 702 

analysis. A molecule with a statistically significant change in response to oral glucose 703 

administration was defined as a glucose-responsive molecule according to the following 704 

criteria. The fold change of the mean amount at each time point over the mean amount 705 

at fasting state (0 min) was calculated for each molecule. The significance of change at 706 
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each time point was tested by the two-tailed Welch’s t-test for each metabolite and 707 

phosphorylation, and by the edgeR package (version 3.26.8) of the R language (version 708 

3.6.1) with the default parameters for each gene (Robinson et al., 2009). Metabolite, 709 

gene, and phosphorylation that showed an absolute log2 fold change ≥ 0.585 (20.585 = 710 

1.5) and an FDR-adjusted p value (q value) ≤ 0.1 at any time point were defined as a 711 

glucose-responsive metabolite (Fig. 2A, B), gene (Fig. 3A, B), and phosphorylation 712 

(Fig. 4). The q values were calculated by Storey’s procedure (Storey, 2002). To define 713 

an increase or decrease in time courses with changes in both directions at different 714 

times, we used the direction of change compared to time 0 at the earliest time point that 715 

showed a significant change. 716 

 717 

Clustering analysis 718 

Time courses for each metabolite of WT mice and ob/ob mice were normalized by 719 

dividing by the geometric mean of the values of WT mice and ob/ob mice in the fasting 720 

state (0 min) followed by log2 transformation. We combined the two time courses of 721 

WT and ob/ob mice for each metabolite and performed hierarchical clustering of the 722 

combined time courses using Euclidean distance and Ward’s method (Fig. S3). Based 723 

on the clustering tree, we defined eight different clusters of metabolites, showing 724 

similar or different responses between WT and ob/ob mice. 725 

   Clustering analysis of gene expression was performed as previously described 726 

with some modifications (Kokaji et al., 2020). Time courses for the expression of each 727 

gene of WT and ob/ob mice were normalized by subtracting the average expression 728 

values of the time courses of both mice and then dividing the resulting values by the 729 
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standard deviation (Z-score normalization). We combined the two time courses of WT 730 

and ob/ob mice for each gene and performed hierarchical clustering of the combined 731 

time courses using Euclidean distance and Ward’s method (Fig. S7A). The genes with 732 

significant differences between WT and ob/ob mice before glucose administration (0 733 

min) (q value < 0.1) or a significant response at any time point in either WT or ob/ob 734 

mice (q value < 0.1) were selected for the clustering analysis (12301 genes). For the 735 

selection, the p value was calculated using the edgeR package (version 3.26.8) of the R 736 

language (version 3.6.1) with the default parameters (Robinson et al., 2009), and the q 737 

value was calculated by Storey’s procedure (Storey, 2002). 738 

 739 

Pathway enrichment analysis 740 

We performed pathway enrichment analysis of glucose-responsive genes (Table 1; Data 741 

File S4). The enrichment of the genes in each pathway was determined using the one-742 

tailed Fisher’s exact test. We used the genes detected in more than half of the replicates 743 

in WT and ob/ob mice at all time points as background. We used the pathways in 744 

Metabolism, Genetic Information Processing, and Cellular Processes from the KEGG 745 

database (Kanehisa et al., 2012, 2017). 746 

 747 

Prediction of the transcription factor binding motif and inference of regulatory 748 

connections between transcription factors and genes 749 

Analysis of transcription factors was performed as previously described (Kokaji et al., 750 

2020). The flanking regions around the major transcription start site of genes were 751 

extracted from GRCm38/mm10 (Ensembl, release 97) using Ensembl BioMart 752 

(Kinsella et al., 2011). The region from -300 bp to +100 bp of the major transcription 753 
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start site was defined as the flanking region, according to FANTOM5 analysis of the 754 

time course (Arner et al., 2015). The transcription factor binding motifs in each flanking 755 

region (fig. S5B) were predicted using TRANSFAC Pro, a transcription factor database, 756 

and Match, a transcription factor binding motif prediction tool (Kel et al., 2003; Matys 757 

et al., 2006). The threshold for each transcription factor binding motif prediction was set 758 

using extended vertebrate_non_redundant_min_FP.prf, a parameter set in TRANSFAC 759 

Pro (Kokaji et al., 2020).  760 

 For the inference of regulatory connections between transcription factors and 761 

genes, we performed transcription factor motif enrichment analysis of the genes in each 762 

cluster (Fig. S5B). The enrichment of transcription factor binding motif in the flanking 763 

regions of genes in each cluster was determined by the one-tailed Fisher’s exact test, 764 

and transcription factor binding motifs with q value ≤ 0.1 were defined as significantly 765 

enriched. The q values were calculated by the Benjamini–Hochberg procedure (Yoav 766 

Benjamini, 1995). We used the genes analyzed in the hierarchical clustering as 767 

background. To reduce the number of statistical tests, the clusters that contained ≥ 100 768 

genes were analyzed. If a transcription factor binding motif was enriched in the 769 

promoter regions of the genes in a cluster, we inferred the regulatory connections 770 

between the corresponding transcription factor and the genes in the cluster. To avoid 771 

overestimation, we excluded a cluster from the inference if the transcription factor 772 

binding motif was more enriched in the children clusters that contained ≥ 100 genes. To 773 

compare the enrichment of transcription factor binding motifs between clusters, we 774 

calculated the odds ratio of the transcription factor binding motifs for each cluster.   775 

 For validation of the inferred regulatory connections, we examined the overlap 776 

between the inferred genes of each transcription factor and those predicted from 777 
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experimental ChIP data from the ChIP-Atlas database (Oki et al., 2018) (Fig. S5C). The 778 

genes for which ChIP sequencing peaks of a transcription factor were detected in the 779 

flanking region around the transcription start sites were obtained using “Target Genes,” 780 

a prediction tool in the ChIP-Atlas. We used the flanking regions from -1000 bp to 781 

+1000 bp of the transcription start sites in Target Genes. The overlap between the 782 

inferred genes and genes from ChIP data was determined by the one-tailed Fisher’s 783 

exact test, and those with q value ≤ 0.1 were defined as significant. The q values were 784 

calculated by the Benjamini–Hochberg procedure (Yoav Benjamini, 1995). 785 

 786 

Insulin signaling pathway 787 

The insulin signaling pathway in Figure 4 is a subset of the nodes of the insulin 788 

signaling pathway in the KEGG database (mmu04910) (Kanehisa et al., 2012, 2017). 789 

We added regulatory input to Creb from the PI3K-Akt signaling pathway (mmu04151), 790 

MAPK signaling pathway (mmu04010), and AMPK signaling pathway (mmu04152), 791 

and regulatory input to FoxO1 from the FoxO signaling pathway (mmu04068) in the 792 

KEGG database. The edges from Akt to Ampk and from p38 to insulin receptor 793 

substrate were added according to previous studies (Archuleta et al., 2009; Jaiswal et 794 

al., 2019). 795 

 796 

Construction of the regulatory glucose-responsive transomic network 797 

The transomic network was constructed as previously described with some 798 

modifications (Kokaji et al., 2020). The regulatory glucose-responsive transomic 799 

networks consisted of five layers, namely Insulin signal, TF, Enzyme, Reaction, and 800 

Metabolite, with interlayer regulatory connections (Fig. 5A, B). The Insulin signal layer 801 
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is the insulin signaling pathway constructed in our previous phosphoproteomic study 802 

(Kawata et al., 2018). We included in the Insulin signal layer signaling molecules that 803 

we analyzed by western blotting; we did not include transcription factors such as Foxo1, 804 

or metabolic enzymes such as Gs in this layer. The TF layer consisted of all 805 

transcription factors with an inferred regulatory connection (Fig. S7B). The Enzyme 806 

layer consisted of all metabolic enzymes in the pathways in Metabolism obtained from 807 

the KEGG database (Kanehisa et al., 2012, 2017). The Reaction layer consisted of the 808 

metabolic reactions (based on EC number) corresponding to the metabolic enzymes in 809 

the Enzyme layer. The Metabolite layer consisted of all metabolites analyzed by CE–810 

MS. Only the molecules and reactions corresponding to genes that were expressed in at 811 

least one sample were included in the Insulin signal, TF, Enzyme, and Reaction layers. 812 

Not all 15,608 genes were included in the network. 813 

 Glucose-responsive molecules were assigned to the corresponding layers as 814 

nodes. The Insulin signal layer consisted of insulin signaling molecules with glucose-815 

responsive phosphorylation. The TF layer consisted of transcription factors encoded by 816 

glucose-responsive genes or those with glucose-responsive phosphorylation. The 817 

Enzyme layer consisted of metabolic enzymes encoded by glucose-responsive genes or 818 

those with glucose-responsive phosphorylation. The Reaction layer consisted of 819 

“glucose-responsive metabolic reactions,” which were defined as metabolic reactions 820 

regulated by glucose-responsive molecules. The Metabolite layer consisted of glucose-821 

responsive metabolites. We also determined the direction of glucose responsiveness. To 822 

determine a direction for time courses with both increased and decreased time points, 823 

we used the direction of change at the earliest time point with a significant difference 824 
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from time 0 (fasting state). We did not determine a direction (increase or decrease) for 825 

metabolic reactions because we did not measure metabolic reaction activity.  826 

 To determine regulatory connections from the Enzyme and Metabolite layers to 827 

the Reaction layer, both the target of the regulatory connection (a metabolic reaction) 828 

and the regulating molecule (enzyme or metabolite) had to be glucose-responsive. 829 

Among the Insulin signal, TF, and Enzyme layers, the interlayer regulatory connections 830 

were determined using the directions of glucose responsiveness of the regulating 831 

molecule and the regulated molecules, and the types of interlayer regulatory 832 

connections, which were designated as either positive or negative. We defined positive 833 

interlayer regulatory connections as when both the regulating molecule and regulated 834 

molecule showed the same direction of change, namely, both increased or both 835 

decreased. We defined negative interlayer regulatory connections as when the 836 

regulating molecule and regulated molecule showed responses in the opposite direction, 837 

namely, one increased and the other decreased. 838 

 The interlayer regulatory connections between glucose-responsive molecules 839 

were determined according to databases. The interlayer connections from the Insulin 840 

signal layer to the TF layer were determined by the regulation of transcription factors by 841 

kinases retrieved from the KEGG database (Kanehisa et al., 2012, 2017). The interlayer 842 

connections from the TF layer to the Enzyme layer were determined from inferred 843 

regulatory connections between transcription factors and genes (Fig. 3E). The interlayer 844 

connections from the Enzyme layer to the Reaction layer were determined by 845 

connecting metabolic reactions to their corresponding metabolic enzymes according to 846 

the KEGG database (Kanehisa et al., 2012, 2017). The interlayer connections from the 847 

Metabolite layer to the Reaction layer comprised two types of regulatory connections: 848 
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those mediated by allosteric regulators, which were retrieved from the BRENDA 849 

database (Schomburg et al., 2013), and those mediated by the substrate or product of the 850 

reaction, which were retrieved from the KEGG database (Kanehisa et al., 2012, 2017). 851 

The types of regulatory connections made by glucose-responsive transcription factors 852 

were defined according to the Gene Ontology (GO) annotations obtained from the 853 

Mouse Genome Database (Bult et al., 2008) (Data File S6). The transcription factors 854 

that were included in the list of DNA-binding transcription repressors (GO:0001227) 855 

and not in the list of DNA-binding transcription activators (GO:0001228) were defined 856 

as transcription repressors. Foxo1 was added to the list of transcription activators based 857 

on previous studies of gluconeogenesis (Barthel et al., 2005; Nakae et al., 2001). The 858 

effects of the phosphorylation of transcription factors on the types of regulatory 859 

connections were defined according to the KEGG database (Kanehisa et al., 2012, 860 

2017). We used the allosteric regulation reported for mammals (Bos taurus, Felis catus, 861 

Homo sapiens, “Macaca,” “Mammalia,” “Monkey,” Mus booduga, Mus musculus, 862 

Rattus norvegicus, Rattus rattus, Rattus sp., Sus scrofa, “dolphin,” and “hamster”) 863 

according to the BRENDA database (Schomburg et al., 2013). Because the reversibility 864 

of metabolic reactions was not determined, metabolic reactions were assumed to be 865 

regulated by both the substrate and product. 866 

 867 

Generation of a condensed transomic network based on metabolic pathway 868 

information 869 

We condensed the regulatory transomic networks as previously described with some 870 

modifications (Kokaji et al., 2020). First, we grouped the related metabolic reactions in 871 

a specific metabolic pathway into one “metabolic pathway node” (Pathway layer), and 872 
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classified the metabolic pathway nodes into three classes—carbohydrate, lipid, and 873 

amino acid—according to the KEGG database (Kanehisa et al., 2012, 2017). Second, 874 

we selected two types of metabolic pathway nodes: one was a pathway that exhibited 875 

significant associations with any glucose-responsive metabolites or transcription 876 

factors; the other was a pathway whose percentage of regulated reactions was in the top 877 

10% either by glucose-responsive metabolites or by glucose-responsive genes encoding 878 

metabolic enzymes (Fig. 6C). The association between the metabolic reactions in a 879 

metabolic pathway and those regulated by a glucose-responsive molecule was 880 

determined by the one-tailed Fisher’s exact test, and associations with a q value ≤ 0.01 881 

were defined as significant. The q values were calculated by the Benjamini–Hochberg 882 

procedure (Yoav Benjamini, 1995). We also selected glucose-responsive metabolites 883 

that exhibited significant associations with any metabolic pathway nodes and glucose-884 

responsive transcription factors that regulate five or more metabolic enzymes. Third, we 885 

reduced the interlayer regulatory connections from the Metabolite layer to the Pathway 886 

layer by removing the interlayer regulatory connections that regulated fewer than five 887 

metabolic reactions. 888 

 889 

Implementation 890 

Statistical tests, clustering analysis, enrichment analysis, and transomic network 891 

analysis were done using MATLAB 2020a (The Mathworks Inc.). Visualization of 892 

transomic network in the Graph Modeling Language formats was done using Python 2.7 893 

and VANTED (Junker et al., 2006). 894 

 895 
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Supplementary Materials: 896 

Fig. S1. The regulatory network for metabolic reactions. A generic metabolic 898 

reaction (R) is catalyzed by a metabolic enzyme (E) and involves metabolites that 899 

function as the substrate (S), product (P), or allosteric regulator (A). For reversible 900 

reactions, the product is also a substrate and the substrate is also a product (not shown). 901 

Positive and negative signs indicate positive and negative regulation, respectively. 902 

Regulation of a metabolic reaction by a metabolic enzyme consists of regulation by 903 

changing the amount of enzyme through gene expression and regulation by changing 904 

enzyme activity through posttranslational modifications, in particular phosphorylation. 905 

Gene expression is regulated by one or more transcription factors (TFs) and signaling 906 

molecules (Signals) regulate both transcription factor activity and metabolic enzyme 907 

activity by changing the phosphorylation status. This figure was modified from 908 

Supplementary Figure 1 of Kokaji et al. (2020). 909 

  910 
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Fig. S2. Oral glucose administration and multiomic measurements. (A) Blood 912 

glucose and blood insulin of WT mice (blue) and ob/ob mice (red) during oral glucose 913 

administration. The data of blood glucose and insulin levels measured in our previous 914 

study are shown (Kokaji et al., 2020).The means and SEMs of five mice per genotype 915 

are shown. (B) We orally administered glucose to 16 h-fasting WT and ob/ob mice, and 916 

collected the skeletal muscle at 0, 20, 60, 120, and 240 min after administration. We 917 

performed metabolomics, transcriptomics, and Western blotting for the phosphorylation 918 

of insulin signaling molecules in the skeletal muscle. The number of mice per genotype 919 

in each measurement is shown at each time point. This figure was modified from 920 

Supplementary Figure 2 of Kokaji et al. (2020). 921 

  922 
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Fig. S3. Hierarchical clustering of time courses of metabolites in the skeletal 924 

muscle. (A) The heat map and hierarchical clustering of the time courses of metabolites 925 

in the skeletal muscles of WT and ob/ob mice following oral glucose administration. 926 

The colors of and numbers on tree diagram indicate the cluster of each metabolite. To 927 
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investigate the changes from fasting state, two time courses of each metabolite were 928 

divided by the geometric mean of the values of WT mice and ob/ob mice in fasting state 929 

(0 min), and then log2-transformed. The colors of the names of metabolites indicate WT 930 

mice-specific glucose-responsive metabolites (blue), ob/ob mice-specific glucose-931 

responsive metabolites (red), and metabolites that are not glucose-responsive (black). 932 

(B) Averaged time courses of the metabolites for all eight clusters. Left panel shows 933 

averaged time courses of the metabolites as the mean and standard deviation in a cluster 934 

for WT mice (blue) and ob/ob mice (red). Middle panel (WT mice) and right panel 935 

(ob/ob mice) show average (thick line) and individual (thin line) time courses of the 936 

metabolites in a cluster in WT or ob/ob mice. 937 

  Clusters 1, 2, and 3 was comprised of metabolites which were decreased in both WT 938 

and ob/ob mice, and the responses in cluster 1 were largest of the three clusters. 939 

Orotidine 5'-monophosphate and 3-OH-butyrate was classified in this cluster. The 940 

responses in cluster 2 were larger than those in cluster 3. Cluster 2 consisted of three 941 

amino acids; valine, leucine, and glutamate. Other amino acids (aspartate, valine, 942 

alanine, and tryptophan), downstream metabolites of the glycolytic pathway (3-943 

phosphoglyceric acid [3PG] and phosphoenolpyruvate [PEP]) and metabolites of the 944 

TCA cycle (fumarate and malate) were classified into cluster 3. Cluster 4 included 945 

metabolites that were more abundant in WT mice at all timepoints. This cluster mainly 946 

comprised β-alanine, carnosine, a dipeptide of β-alanine and histidine, and β-alanine-947 

lysine. Metabolites in cluster 5 were also more abundant in WT mice; however, the 948 

difference was smaller compared to cluster 4. This cluster mainly comprised amino 949 

acids such as lysine, arginine, threonine, and ornithine. Fructose 1,6-bisphosphate 950 

(F1,6BP) and glycogen was also classified into cluster 5. Metabolites in cluster 6 were 951 
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observed at slightly higher levels in ob/ob mice, and showed almost no changes by 952 

glucose administration. Many amino acids, metabolites of the central carbon 953 

metabolism, and nucleic acids were classified into this cluster. Metabolites of the 954 

glycolytic pathway, such as glucose-1-phosphate (G1P), glucose-6-phosphate (G6P), 955 

fructose 6-phosphate (F6P), and lactate were also included. Among these, F6P and 956 

lactate were significantly increased only in ob/ob mice. Metabolites in cluster 7 tended 957 

to decrease specifically in WT mice (14/24 metabolites showed significant decreases). 958 

Metabolites of the TCA cycle, such as citrate, isocitrate, and cis-aconitate, and nucleic 959 

acids (adenosine monophosphate [AMP], guanosine monophosphate [GMP], and 960 

adenosine) were included in this cluster. Metabolites in cluster 8 (inosine 961 

monophosphate, pantothenate, and trimethylamine N-oxide) were abundant in ob/ob 962 

mice compared to WT mice, and the difference was quite large.  963 

  964 
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Fig. S4. Time courses of metabolite changes in the skeletal muscle and in the blood. 966 

(A) Histograms and scatter plot of Pearson’s correlation coefficients between the time 967 

courses of changes in metabolites measured in skeletal muscle and blood in WT mice 968 

and ob/ob mice. Red dots indicate 19 proteogenic amino acids measured in both skeletal 969 

muscle and blood. (B) Time courses of changes in the indicated metabolites in the 970 

skeletal muscle and blood of WT mice (blue) and ob/ob mice (red) following oral 971 

glucose administration. The means and SEMs of five mice per genotype are shown. The 972 

colors of the frames indicate common glucose-responsive metabolites (green), WT-973 

specific glucose-responsive metabolites (blue), ob/ob-specific glucose-responsive 974 
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metabolites (red), and not glucose-responsive metabolites either in WT mice or in ob/ob 975 

mice (gray). *q value < 0.1 and absolute log2 fold change > 0.585. 976 
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Fig. S5. Hierarchical clustering of the time courses of gene expression in the 979 

skeletal muscle and inference of regulatory connections between transcription 980 

factors and genes. (A) The heat map and hierarchical clustering of the Z-score 981 

normalized time courses of gene expressions in the skeletal muscle of WT and ob/ob 982 
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mice following oral glucose administration. The hierarchical clustering was performed 983 

using Euclidean distance and Ward’s method. The numbers on the tree diagram 984 

indicates the cluster identity. Each cluster includes only the genes that show a 985 

significant response at any time point either in WT mice or ob/ob mice or significant 986 

differences between WT mice and ob/ob mice before glucose administration (0 min). 987 

(B) The averaged time courses of the gene expression for each cluster of WT mice 988 

(blue) and ob/ob mice (red). The mean and standard deviation of the time courses of 989 

gene expressions in the cluster are shown. The time courses are presented on the tree 990 

diagram of hierarchical clustering. Significantly enriched transcription factor motifs (q 991 

value < 0.1) in the cluster are described with the time courses. According to the 992 

enriched transcription factor motifs, we defined the regulatory connections between the 993 

transcription factors and the genes in the cluster. To avoid overestimation, we excluded 994 

a cluster from the inference if the transcription factor binding motif was more enriched 995 

in the children clusters. The remaining transcription factor motifs, but not the excluded 996 

transcription factor motifs, are described here. The transcription factor motifs enriched 997 

in the upstream clusters are not described in the downstream clusters. (C) The 998 

histogram of the q values for the overlaps between the inferred genes of the 999 

transcription factors and those predicted from ChIP data. The ChIP data were obtained 1000 

from the ChIP-Atlas database (Oki et al., 2018). The q values were calculated by the 1001 

one-tailed Fisher’s exact test and Benjamini–Hochberg procedure (Yoav Benjamini, 1002 

1995). 1003 
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Fig. S6. Western blotting for insulin signaling molecules. The phosphorylation of the 1006 

indicated insulin signaling molecules in the skeletal muscle of WT and ob/ob mice at 1007 

the indicated time point after oral glucose administration. Residues in parentheses 1008 

indicate the phosphorylation site(s) (human sequence numbering) recognized by the 1009 

antibodies. Western blot data for all mice are shown (n = 5 mice per genotype for 1010 

glucose administration). 1011 
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Fig. S7. Metabolic reactions regulated by glucose-responsive molecules in each 1014 

metabolic pathway node. Heat maps showing the number of regulated metabolic 1015 

reactions in each metabolic pathway node (rows) by each glucose-responsive metabolite 1016 

(left columns) and each transcription factor-dependent glucose-responsive genes of 1017 

metabolic enzymes (right columns) in WT and ob/ob mice. The * symbols indicate 1018 

significant associations (q value < 0.01) between metabolic reactions in the metabolic 1019 

pathway node and those regulated by glucose-responsive molecules (Data File S10). 1020 

The q values were calculated by the one-tailed Fisher’s exact test and Benjamini–1021 

Hochberg procedure (Yoav Benjamini, 1995). Only metabolic pathway nodes with 1022 

significant associations with any glucose-responsive molecule are shown. Only glucose-1023 

responsive metabolites with significant associations with any metabolic pathway node 1024 

are shown.  1025 
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