1	LTD-inducing low frequency stimulation enhances p-Tau181 and
2	p-Tau217 in an age-dependent manner in live rats
3	
4	Running head: LTD elevates p-Tau181/217 in aged rats
5	
6	Yangyang Zhang ^{1,#} , Yin Yang ^{1,#} , Zhengtao Hu ^{1,2,#} , Manyi Zhu ¹ , Shuangying Qin ¹ ,
7	Pengpeng Yu ^{1,3} , Bo Li ¹ , Jitian Xu ¹ , Michael J. Rowan ³ and Neng-Wei Hu ^{1,3,*}
8	
9	¹ Department of Physiology and Neurobiology, School of Basic Medical Sciences,
10	Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
11	² Department of Gerontology, The First Affiliated Hospital of Wannan Medical
12	College, Wuhu 241001, China
13	³ Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity
14	College, Dublin 2, Ireland
15	
16	[#] These authors contributed equally to this work.
17	
18	*Correspondence to Neng-Wei Hu, E-mail: <u>hunw@tcd.ie</u>
19	
20	
21	
22	
	1

23 Abbreviations:

- 24 AD: Alzheimer's disease
- 25 A β : amyloid- β protein
- 26 $A\beta_{O:} A\beta$ oligomers
- 27 CSF: cerebrospinal fluid
- 28 Cdk5: cyclin-dependent kinase-5
- 29 DAPI: 4',6-diamidino-2-phenylindole
- 30 DG: dentate gyrus
- 31 DMSO: dimethyl sulfoxide
- 32 EPSP: excitatory postsynaptic potential
- 33 GSK3α: glycogen synthase kinase 3α
- 34 GSK3 β : glycogen synthase kinase 3 β
- 35 HFS: high frequency stimulation
- 36 i.c.v.: intracerebroventricular
- 37 ISR: integrated stress response
- 38 LFS: low frequency stimulation
- 39 LTD: long-term depression
- 40 LTP: long-term potentiation
- 41 mGluR5: metabotropic glutamate receptor subtype 5
- 42 NMDA: N-methyl-D-aspartate
- 43 NMDAR: N-methyl-D-aspartate receptor
- 44 PEG400: polyethylene glycol 400

- 45 PMSF: phenylmethylsulfonyl fluoride
- 46 PrP^C: cellular prion protein
- 47 PVDF: polyvinylidene fluoride
- 48 p-Tau: phosphorylated tau
- 49 SDS: sodium dodecyl sulfate
- 50 TBS-T: tris-buffered saline containing 0.1% Tween 20

52 Abstract

53	The progressive cognitive decline in Alzheimer's disease (AD) patients correlates
54	with the extent of tau pathology, in particular tau hyperphosphorylation, which is
55	strongly age-associated. Although elevation of phosphorylated tau (p-Tau) on residues
56	Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) in cerebrospinal fluid
57	or blood are recently proposed to be particularly sensitive markers of early AD, the
58	generation of p-Tau during brain activity is poorly understood. A major form of
59	synaptic plasticity, long-term depression (LTD), has recently been linked to the
60	enhancement of tau phosphorylation. Here we show that low frequency stimulation
61	(LFS), used to induce LTD, enhances p-Tau181 and p-Tau217 in an age-dependent
62	manner in the hippocampus of live rats. In contrast, phosphorylation at residues
63	Thr231, Ser202/Thr205, and Ser396 is less sensitive to LFS. Pharmacological
64	antagonism of either NMDA or metabotropic glutamate 5 (mGluR5) receptors inhibits
65	the elevation of both p-Tau181 and p-Tau217. Targeting ageing with a small molecule
66	cognitive enhancer ISRIB (trans-isomer) prevents the enhancement of p-Tau by LFS
67	in aged rats. Together, our data provide an in vivo means to uncover brain
68	plasticity-related cellular and molecular processes of tau phosphorylation in health
69	and ageing conditions.
70	
71	Key words:
72	ageing / long-term depression / synaptic plasticity / tau phosphorylation
73	
74	4

75 Introduction

76	Clinical evidence indicates that age-associated progressive cognitive decline in
77	Alzheimer's disease (AD) patients correlates with the extent of tau pathology, in
78	particular the degree and nature of tau phosphorylation (Chang et al, 2021; Nies et al,
79	2021; Wegmann et al, 2019; Wesseling et al, 2020). Among the latter, elevation of
80	phosphorylated tau (p-Tau) on residues of Thr181 (p-Tau181), Thr217 (p-Tau217),
81	and Thr231 (p-Tau231) in cerebrospinal fluid (CSF) or blood were recently proposed
82	to be particularly sensitive markers of early AD, long before the diagnosis of clinical
83	dementia (Barthelemy et al, 2020a; Barthelemy et al, 2020b; Hansson, 2021; Karikari
84	et al, 2020; O'Connor et al, 2020; Palmqvist et al, 2021; Wegmann et al, 2021). P-Tau
85	in the brain and its subsequent release into CSF and blood is a dynamic process that
86	changes during disease evolution. Although reports from various memory clinics
87	indicate that p-Tau181, p-Tau217, and p-Tau231 distinguish AD from controls with
88	high accuracy for very early AD diagnosis, the generation of these p-Tau species in
89	patients' brains, in particular learning and memory processes, is still unclear, mainly
90	due to ethical and technical limitations.
91	The hippocampus is one of the areas that p-Tau first appears during Braak stage II of
92	AD (Braak et al, 2006) and this region of brain is particularly vulnerable to
93	age-related changes (Buss et al, 2021; Driscoll et al, 2003; Ianov et al, 2017;
94	McKiernan & Marrone, 2017; Veldsman et al, 2021). Synaptic plasticity mechanisms
95	at excitatory glutamatergic synapses in hippocampus, including those underlying
96	long-term depression (LTD), are neurophysiological substrates of normal learning and
	5

97	memory function (Connor & Wang, 2016; Magee & Grienberger, 2020). Interestingly,
98	recent studies indicate that LTD induction enhances tau phosphorylation at Ser396
99	(p-Tau396) (Kimura et al, 2014; Regan et al, 2015) and Ser202/Thr205
100	(p-Tau202/205) (Taylor et al, 2021) in hippocampus in vitro. It is still unknown
101	whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can also be
102	enhanced by physiological LTD induction. Whether or not their enhancement is more
103	sensitive compared with other reported residues and the age-dependence of tau
104	phosphorylation remains elusive.
105	Both NMDAR and metabotropic glutamate receptors are required for the induction of
106	most forms of LTD by low frequency conditioning stimulation (LFS) (Collingridge et
107	al, 2010). Recent evidence implicates a particular role for extrasynaptic NMDAR (Liu
108	et al, 2013; Papouin et al, 2012) and metabotropic glutamate receptor subtype 5
109	(mGluR5) (Hu et al, 2014; Li et al, 2009; Luscher & Huber, 2010; O'Riordan et al,
110	2018a), both also involved in tau pathology (Benarroch, 2018; Sun et al, 2016;
111	Tackenberg et al, 2013), in LTD induction.
112	Here we investigated whether p-Tau181, p-Tau217, p-Tau231, p-Tau202/205 and
113	p-Tau396 are affected by the induction of hippocampal LTD by LFS at CA3 to CA1
114	synapses in the hippocampus of live rats (Hu et al., 2014; O'Riordan et al, 2018b;
115	Ondrejcak et al, 2019). We assayed the local expression of p-Tau in different
116	subregions of hippocampus at two different ages (2-3-months and 17-18-months). We
117	found that electrical LFS preferentially enhanced p-Tau181 and p-Tau217 in an
118	age-dependent manner without apparently affecting the levels of p-Tau at other
	6

119	residues that were investigated. Further, blocking either NMDARs or mGluR5 with
120	their selective antagonists strongly inhibited the elevation of both p-Tau181 and
121	p-Tau217. Finally, targeting ageing with ISRIB (trans-isomer) (Krukowski et al, 2020)
122	prevented the increase of both p-Tau181 and p-Tau217 by LFS in aged rats. Our data
123	provide an in vivo means to uncover brain plasticity-related cellular and molecular
124	processes of tau phosphorylation in health and disease.
125	Results
126	Induction of LTD by LFS enhances p-Tau181, p-Tau217 in an age-dependent
127	manner in live rats
128	Pyramidal neurons in hippocampal CA1 area is one of the fields that p-Tau first
129	appears during Braak stage II of AD (Braak et al., 2006). Although LFS-triggered tau
130	phosphorylation at Ser396 (Kimura et al., 2014; Regan et al., 2015) and
131	Ser202/Thr205 (Taylor et al., 2021) in hippocampal slices has been previously
132	reported, the effects of LTD-inducing LFS on the expression of p-Tau181, p-Tau217,
133	and p-Tau231, recently proposed to be particularly sensitive markers of early AD,
134	have yet to be described. Having developed stimulation protocols to reliably induce
135	LTD at CA3 to CA1 synapses in live rats (Hu et al., 2014; O'Riordan et al., 2018a, b;
136	Ondrejcak et al., 2019), we confirmed (Hu et al., 2014) that this protocol (LFS-900,
137	900 pulses at 1 Hz) triggered a robust persistent form of LTD that, like certain forms
138	of long-term memory formation, is protein synthesis-dependent (Figure S1). We used
139	the same protocol (LFS-900, 900 pulses at 1 Hz) in this study (Figure 1a). To
140	determine the age-dependence of p-Tau enhancement by LFS, we performed our 7

141	experiments in rats at two different ages: 2-3 months and 17-18 months. LFS
142	depressed field EPSPs to 63.8 \pm 7.8% of baseline in 2-3-month-old rats, and 62.4 \pm
143	3.4% in 17-18-month-old rats. The magnitude of LFS-induced synaptic depression is
144	thus comparable at both ages (Figure 1b,c).
145	The rats were sacrificed 30 min post-LFS and immunohistochemically processed for
146	p-Tau181, p-Tau217, p-Tau231, p-Tau202/205, p-Tau396, and total tau analysis (all
147	antibodies used are in Table S1 and in the Methods). The expression level of total tau
148	and p-Tau was measured in whole dorsal hippocampus, CA1, CA3, and the hilus of
149	dentate gyrus (DG in this study) areas. The expression level in the contralateral
150	hemisphere was used as the control. Immunofluorescent staining for antibody Tau46
151	or Tau5 confirmed that application of LFS did not lead to a change in total tau
152	expression level in both age groups (Figure S2). Whereas no difference of p-Tau181
153	level was apparent in 2-3-month-old (Figure 1d), in 17-18-month-old animals tau
154	phosphorylation at Thr181 was obviously enhanced in all three hippocampal fields
155	(Figure 1e). We then assayed the expression level of p-Tau217 in adjacent brain slices
156	from the same animals. Similar to p-Tau181, no difference was observed in
157	2-3-month-old rats (Figure 2a), while an enhancement of p-Tau217 was seen in CA1,
158	CA3, and DG in 17-18-month-old rats (Figure 2b). In contrast, the expression levels
159	
100	of p-Tau231, p-Tau202/205 and p-Tau396 did not appear to change in adjacent brain
160	of p-Tau231, p-Tau202/205 and p-Tau396 did not appear to change in adjacent brain slices from young (Figure S3) or aged rats overall, with the exception of a significant

163	immunohistochemistry referenced to the contralateral hemisphere, we measured the
164	expression level of the same phospho-tau species using western blotting after the
165	same conditioning LFS was applied in another cohort of 17-18-month-old rats
166	(Figure 3a,b). β -actin was used to ensure equal protein loading on gels. The total tau
167	expression level, normalized to β -actin, in either the ipsilateral or contralateral
168	hippocampus did not differ from age-matched naïve control rats (Figure S5).
169	Consistent with the immunohistochemistry, LTD-inducing LFS significantly enhanced
170	p-Tau181 (Figure 3c; Figure S6) and p-Tau217 (Figure 3d; Figure S6) in the
171	ipsilateral hippocampus, while it had no overall significant effect compared with
172	naïve controls on the expression level of p-Tau at the other residues investigated
173	(Figure S7). Western blotting indicated that the expression levels of p-Tau181 and
174	p-Tau217, slightly, although not significantly, also increased in the contralateral
175	hippocampus when compared with naïve controls. This indicates that application of
176	LFS activates the commissural pathway sufficiently to enhance the expression levels
177	of both p-Tau181 and p-Tau217 in parts of the contralateral hippocampus.
178	Enhanced neuronal activity accelerates tauopathy in vivo in tau mouse models (Wu et
179	al, 2016) and mechanical injury of neurons induces tau mislocalization to dendritic
180	spines (Braun et al, 2020). In order to exclude any influence of electrode implantation
181	and baseline recording of evoked field EPSPs on the local expression level of p-Tau,
182	the same experimental processes were performed but no LFS was applied in another
183	cohort of 17-18-month-old rats (Figure S8a,b). The immunofluorescent staining
184	results confirmed that no change of p-Tau181 and p-Tau217 levels were present in

f
s
n

207	Given that neither block of NMDAR with CPP nor block of mGluR5 with MTEP
208	prevented the induction of LTD in aged rats, we hypothesized that neither of these
209	treatments on their own would affect the enhancement of p-Tau181 and p-Tau217 by
210	LFS. To test this, we assessed total tau and p-Tau on both residues in the hippocampus
211	of the rats treated with CPP or MTEP. Immunofluorescent staining for antibody Tau46
212	confirmed that neither agent affected total tau expression level after induction of LTD
213	by LFS in aged rats (Figure S10). Surprisingly, even though neither of these
214	treatments on their own affected the induction of LTD, elevation of p-Tau181 and
215	p-Tau217 by LFS were abolished/inhibited in both CPP and MTEP-treated aged rats.
216	After systemic treatment of CPP, the enhancement of p-Tau181 by LFS was strongly
217	inhibited overall although some enhancement was seen in the CA1 area (Figure 4c),
218	while the elevation of p-Tau217 by LFS was completely abolished (Figure 4d).
219	Somewhat similarly, the elevation of both p-Tau181 and p-Tau217 triggered by LFS
220	was completely prevented by systemic administration of MTEP (Figure 4e,f). CPP is
221	a competitive NMDAR antagonist, so its ability to block NMDARs depends on the
222	magnitude of stimulus-evoked transmitter release during the LFS period. This may
223	help explain why the enhancement of p-Tau181 was resistant to CPP in the CA1 area.
224	Together, these findings indicate that increases of p-Tau181 and p-Tau217 triggered
225	by LFS needs the co-activation of mGluR5 and NMDARs.
226	Targeting ageing with a small molecule cognitive enhancer ISRIB blocks the
227	enhancement of p-Tau181 and p-Tau217 by LFS in aged rats

Given that induction of LTD by LFS enhances p-Tau181 and p-Tau217 in an

229	age-dependent manner and ageing is the greatest risk factor for AD (Hou et al, 2019),
230	we hypothesized that targeting ageing might prevent the elevation of p-Tau181 and
231	p-Tau217 by LFS. Very recently, Krukowski et al. discovered that the small molecule
232	cognitive enhancer ISRIB reverses age-associated changes in hippocampal neuron
233	function (Krukowski et al., 2020). To test this hypothesis, we treated relatively aged
234	(17-18-month-old) rats with the same ISRIB treatment paradigm of daily injections on
235	3 consecutive days as reported (Krukowski et al., 2020), and in vivo
236	electrophysiological experiments were carried out on these animals 18 days after the
237	last injection of ISRIB (Figure 5a). LFS induced stable and robust LTD in all these
238	rats (Figure 5b,c). Immunofluorescent staining for antibody Tau46 confirmed that
239	induction of LTD by LFS did not lead to a change in total tau expression level in
240	ISRIB-treated rats (Figure S11). Intriguingly, neither p-Tau181 (Figure 5d) nor
241	p-Tau217 (Figure 5e) were increased by the same LFS conditioning protocol which
242	triggered enhancement of both p-Tau181 and p-Tau217 in untreated age-matched rats
243	(Figure 1e and Figure 2b).
244	Discussion

This study reveals that ageing enables the elevation of p-Tau181 and p-Tau217

triggered by LTD-inducing conditioning stimulation in live rats. Growing evidence

from many different memory center cohorts indicates that p-Tau181 and p-Tau217

248 distinguish AD from controls with high accuracy very early in the disease process

249 (Hansson, 2021; Teunissen *et al*, 2022). These findings encourage the prospect that

these markers are good enough to become early AD diagnostic tools. Our data provide

a novel *in vivo* means to uncover brain plasticity-related cellular and molecular

252 pi	rocesses of tau	phosphorylation	at these key sites in	health and ageing.
--------	-----------------	-----------------	-----------------------	--------------------

- 253 Because LTD induction by LFS at CA3-CA1 synapses in the hippocampus usually
- 254 necessitates transient elevated synaptic glutamate release and subsequent activation of
- 255 NMDARs and/or mGluRs (Collingridge *et al.*, 2010), we wondered if the enhanced
- tau phosphorylation triggered by LFS entails these receptors also. Pretreatment with
- 257 either the NMDAR or mGluR5 antagonist alone completely abrogated the
- 258 LFS-induced tau phosphorylation, indicating that both receptors need to be activated
- to trigger enhanced p-Tau181 and p-Tau217. Although we only examined one time
- 260 point, it is clear that LFS triggers an NMDAR and mGluR5-dependent increase in tau
- 261 phosphorylation that persists for at least 30 min in all hippocampal subfields
- 262 examined. Whereas the induction of *in vivo* LTD is only blocked by combined
- 263 pretreatment with standard doses of CPP and MTEP (O'Riordan et al., 2018b),
- injecting either agent alone (Hu et al., 2014; O'Riordan et al., 2018b) prevented
- 265 LFS-triggered tau phosphorylation. In view of these findings, it seems unlikely that
- 266 enhanced tau phosphorylation at either residues Thr181 or Thr217 is essential for
- 267 LTD at CA3-CA1 synapses. Also, it remains to be determined if the LFS protocol
- 268 used in the present study triggers LTD at CA3 recurrent collaterals or back
- 269 projections as reported previously (Debanne *et al*, 1998). Recent evidence implicates
- a particular role for extrasynaptic NMDAR in LTD induction (Liu *et al.*, 2013;
- 271 Papouin et al., 2012). In the hippocampal CA1 area, mGluR5 is found predominantly
- 272 located perisynaptically and extrasynaptically on postsynaptic spines of pyramidal

273	cells (Lujan et al, 1996; Lujan et al, 1997). Co-activation of mGluR5 with NMDARs
274	located in this vicinity is known to strongly enhance the function of the NMDARs, in
275	particular GluN2B-containing NMDARs (Kotecha et al, 2003; Sarantis et al, 2015).
276	Numerous studies have shown that synaptic NMDARs are mainly involved in normal
277	cognitive function, while extrasynaptic NMDARs are important mediators of
278	neurotoxicity (Vieira et al, 2020). Glutamate-induced excitotoxicity increases tau
279	phosphorylation (Sindou et al, 1994) and more recent evidence indicates the
280	involvement of extrasynaptic NMDARs activation in tau pathology (Sun et al., 2016;
281	Tackenberg et al., 2013). Tau is phosphorylated at many different sites by different
282	protein kinases. Both glycogen synthase kinase 3β (GSK3 β) and cyclin-dependent
283	kinase-5 (Cdk5) can phosphorylate tau at Thr181 and Thr217 (Liu et al, 2002). The
284	activity of GSK3 β is significantly enhanced during hippocampal LTD (Peineau <i>et al</i> ,
285	2007) but very recent evidence indicates the involvement of GSK3 α in both
286	NMDAR-dependent (Draffin et al, 2021) and mGluR5-dependent (McCamphill et al,
287	2020) LTD. Cdk5 activation appears to be required for NMDAR-dependent LTD at
288	CA3-CA1 synapses also (Mishiba et al, 2014).
289	Ageing is the primary risk factor for most neurodegenerative diseases including AD
290	(Hou et al., 2019). Age-related reduction in glutamate uptake is associated with
291	extrasynaptic NMDAR and mGluR activation at hippocampal CA1 synapses (Potier
292	et al, 2010). Very recent evidence indicates that imbalanced synaptic weights undies
293	the aberrant elevated firing characteristics of both CA3 and CA1 pyramidal neurons in

aged, learning impaired rats (Buss *et al.*, 2021). Intriguingly, Krukowski et al.

295	discovered that a small molecule cognitive enhancer ISRIB reverses the aberrantly
296	elevated integrated stress response (ISR) in aged mice brain and restores age-related
297	changes in hippocampal neuron function (Krukowski et al., 2020). In the present
298	study, the same ISRIB treatment paradigm successfully prevented the elevation of
299	both p-Tau181 and p-Tau217 by LFS in aged rats. Although the detailed mechanisms
300	of how ISRIB prevents tau phosphorylation remain to be elucidated, given that ageing
301	is the single strongest risk factor for AD, targeting ageing is likely to provide novel
302	therapeutic avenues for AD (Livingston et al, 2020).
303	Previous reports indicate that p-Tau396 can be enhanced by LFS-900 (1 Hz) in acute
304	hippocampal slices (Kimura et al., 2014; Regan et al., 2015). In contrast, no change in
305	p-Tau202/205 was triggered by LFS except under the extreme condition of 2 hours
306	LTD induction over a period of 7 days in slice cultures (Taylor et al., 2021). The
307	experimental conditions used to detect changes in p-Tau396 in hippocampal slices
308	differ very significantly from our live brain studies, including relatively young age
309	and non-physiological temperature. It is well recognized that p-Tau is
310	developmentally regulated (Bramblett et al, 1993; Brion et al, 1993; Goedert et al,
311	1993; Hefti et al, 2019; Yu et al, 2009) and can be hypothermia-induced (Avila &
312	Diaz-Nido, 2004; Bretteville et al, 2012; Gratuze et al, 2017; Planel et al, 2004).
313	Although not statistically significant, we found slight elevation of p-Tau396 triggered
314	by LFS-900 in vivo in this study. Nevertheless, future studies should elucidate if, like
315	the present in vivo studies, changes in p-Tau181 and p-Tau217 are more sensitive to
316	LTD-inducing LFS in vitro. Phosphorylated tau species have faster tau turnover rates

317	and shorter half-lives in cultured human and rodent neurons compared with that in
318	human and rodent brains (Sato et al, 2018). Thus, our findings in live animals provide
319	a valuable experimental model to directly study the generation of p-Tau during
320	learning and memory-related synaptic plasticity and to help develop clinical
321	biomarkers of AD.
322	Further highlighting that AD is a chronic disease, it is feasible to carry out more
323	detailed time course analysis of phosphorylated tau in our live animal models. To
324	conclude, our data in this study show that, similar to clinical biomarker findings, tau
325	phosphorylation is preferentially triggered at certain sites including Thr181 and
326	Thr217 by LTD-inducing conditioning stimulation in aged brain in live rats. Given
327	current technical and ethical barriers to tau detection in live patient's brain, our
328	experimental models provide a valuable means to (1) directly study the generation of
329	p-Tau during learning and memory-related synaptic plasticity, (2) help optimize the
330	choice of p-Tau as biomarkers, and (3) aid in the selection of p-Tau directed therapies
331	in future clinical trials of AD.

- 332 Materials and Methods
- 333 Animals

334 All experiments were performed following the guidelines of the ARRIVE (Animal

335 Research: Reporting of In Vivo Experiments) guidelines 2.0 (Percie du Sert *et al*,

336 2020) and were approved by the Animal Care and Use Committee of Zhengzhou

337 University, China. All efforts were made to minimize the number of animals used and

their suffering.

339	Young adult (2-3-month-old), and aged (17-18-month-old) male Sprague Dawley rats
340	were provided by the Laboratory Animal Center of Zhengzhou University. The
341	animals were housed under a 12 h light-dark cycle at room temperature (19-22°C)
342	with continuous access to food and water ad libitum. Prior to the acute experiments,
343	animals were anaesthetized with urethane (1.5-1.6 g/kg, i.p.). Lignocaine (10 mg, 1%
344	adrenaline, s.c.) was injected over the area of the skull where electrodes and screws
345	were to be implanted. The body temperature of the rats was maintained at $37-38^{\circ}C$
346	with a feedback-controlled heating blanket during the whole period of surgery and
347	recording.
348	Electrophysiology
349	Electrodes were made and implanted as described previously (Hu et al., 2014). Briefly,
350	monopolar recording electrodes were constructed from Teflon-coated tungsten wires
351	(75 μ m inner core diameter, 112 μ m external diameter) and twisted bipolar
352	stimulating electrodes were constructed from Teflon-coated tungsten wires (50 μ m
353	inner core diameter, 75 μ m external diameter) separately. Field excitatory
354	postsynaptic potentials (EPSPs) were recorded from the stratum radiatum in the CA1
355	area of left or right hippocampus in response to stimulation of the Schaffer
356	collateral-commissural pathway. Electrode implantation sites were identified using
357	stereotaxic coordinates relative to bregma, with the recording site located 3.4 mm
358	posterior to bregma and 2.5 mm lateral to midline, and stimulating site 4.2 mm
359	posterior to bregma and 3.8 mm lateral to midline. The final placement of electrodes
360	was optimized by using electrophysiological criteria and confirmed via postmortem

004	1 .
361	analysis.

362	Test EPSPs were evoked by a single square wave pulse (0.2 ms duration) at a
363	frequency of 0.033 Hz and an intensity that triggered a 50% maximum EPSP response.
364	LTD was induced using 1 Hz low frequency stimulation (LFS) consisting of 900
365	pulses (0.2 ms duration). During the LFS the intensity was raised to trigger EPSPs of
366	95% maximum amplitude. LTP was induced using 200 Hz high frequency stimulation
367	(HFS) consisting of one set of 10 trains of 20 pulses (inter-train interval of 2 s). The
368	stimulation intensity was raised to trigger EPSPs of 75% maximum during the HFS.
369	None of the conditioning stimulation protocols elicited any detectible abnormal
370	changes in background EEG, which was recorded from the hippocampus throughout
371	the experiments.
372	Immunofluorescent staining
373	After electrophysiological recording under anesthesia of urethane, rats were
374	transcardially perfused with pre-warmed normal saline followed by cold 4%
375	paraformaldehyde in PBS at pH 7.4. Brains were carefully removed and post-fixed in
376	4% paraformaldehyde for 6 h. Brains were dehydrated in 20% sucrose followed by 30%
377	sucrose. Tissues were rapidly frozen and cut coronally (50 μ m). Sections near the
378	stimulating and recording electrodes were reserved and stored in cryoprotective
379	solution (150 mM ethylene, 100 mM glycerol, 250 mM PBS) at -20°C. For total tau
380	and phosphorylated-tau staining, sections were washed three times with PBS for 5
381	min and then permeabilized with 0.1% Triton X-100 diluted in PBS for 30 min at
382	room temperature. Then sections were blocked in a PBS solution containing 10%
	18

383 normal goat serum, 3% BSA, 0.1% Triton X-100 for 1 h at room temperatu	383	normal goat serum,	3% BSA, 0.1%	Triton X-100 for	1 h at room temperature.
--	-----	--------------------	--------------	------------------	--------------------------

- 384 Sections were incubated respectively with the primary antibodies (Table S1) (Tau5,
- Cell Signaling Technology, 46687S, 1:200; Tau46, Cell Signaling Technology, 4019S,
- 386 1:200; Phospho-Tau (Thr181), Cell Signaling Technology, 12885S, 1:200;
- 387 Phospho-Tau (Thr217), ThermoFisher, 44-744, 1:200; Phospho-Tau (Thr231), Abcam,
- 388 ab151559, 1:200; Phospho-Tau (Ser202, Thr205), ThermoFisher, MN1020, 1:200;
- 389 Phospho-Tau (Ser396), Affinty, AF3148, 1:200) in a humidified chamber overnight at
- 390 4°C. After 24 h, sections were washed three times with PBS for 5 min, followed by
- incubation with species-specific secondary antibodies conjugated to 488 nm or 568
- nm fluorophores (Alexa Fluor® 488, Abcam, 150113, 1:500; Alexa Fluor® 568,
- Abcam, 175471, 1;500) for 1 h at room temperature. Sections were subsequently
- 394 washed and stained with DAPI solution (Solarbio, C0065) for 10 min at room
- temperature. After washing with PBS, sections were mounted on the glass slide with
- antifade mountant (Southern Biotech, 0100-20) and then processed for imaging using
- an Olympus fluorescent microscope (BX5WI, Olympus, Japan). ImageJ version 1.52a
- 398 software (National Institute of Mental Health, Bethesda, Maryland, USA) was used to
- analyze the intensity of total tau, p-Tau of immunofluorescent staining.
- 400 Western blot
- 401 The rats were sacrificed 30 min post-LFS in the LFS-treated group or the same
- 402 timeline under urethane anaesthesia in the naïve control group. The whole brain was
- 403 taken out and the hippocampus from both sides was separated. Approximately
- 404 2-mm-thick hippocampal tissue surrounding the sites of electrodes was kept and

405	frozen immediately in liquid nitrogen and stored at -80°C. The tissues were
406	homogenized in lysis buffer (10mM Tris-HCl, pH 7.5, 150mM NaCl, and 0.5% Triton
407	X-100, 0.1mM PMSF) containing 1% protease inhibitor Cocktail (Sigma-Aldrich,
408	CW2200S) and 1% phosphatase inhibitor Cocktail (Sigma-Aldrich, CW2383S). The
409	protein concentrations were determined by the BCA Protein Assay Kit (Glpbio,
410	GK10009), and samples were separated by 10% Tris-glycine SDS-PAGE. The
411	proteins were transferred onto polyvinylidene fluoride (PVDF) membranes
412	(Millipore, IPVH00010). Then the membranes were blocked with 5% non-fat milk for
413	1 h at room temperature. After blocking, the membranes were incubated respectively
414	with the primary antibodies (Table S1) overnight at 4°C. After primary antibody
415	incubation, the membranes were washed three times in TBST and then incubated with
416	HRP-conjugated goat anti-rabbit IgG (ZSGB-BIO, ZB-2301, 1:25000) for 2 h at room
417	temperature. Finally, the target protein bands were visualized with
418	chemiluminescence reagents (Shanghai Willget Biotech, F03) and then detected with
419	ProteinSimple System (Hybrid HY8300, FluorChem E system, USA). Quantification
420	of the protein expression was calculated with ImageJ (version 1.52a).
421	Pharmacological agents
422	(R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ((±)-CPP, Alomone,
423	C-175) and 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTEP

424 hydrochloride, Abcam, ab120035) were prepared in distilled water and diluted with

425 saline to the required concentration.

426 Trans-N,N'-(Cyclohexane-1,4-diyl)bis(2-(4-chlorophenoxy) acetamide (ISRIB,

427	Sigma, SML0843) was dissolved in dimethyl sulfoxide (DMSO) with gentle warming
428	in a 40°C water bath and vortexed until the solution became clear. Then the solution
429	was diluted in polyethylene glycol 400 (PEG400) with gentle warming in a 40° C
430	water bath and vortexed. The solution was prepared freshly and diluted in warm saline
431	(37°C) before injection. 1:1 DMSO and PEG400 in saline was used as vehicle control.
432	The choice of dose and timing of ISRIB administration was based on previous reports
433	(Krukowski et al., 2020) and our study of the pharmacokinetics of ISRIB in live rats
434	(Hu et al, 2022). Four pair-housed relatively aged (17-18-month-old) rats received a
435	single daily injection of ISRIB (2.5 mg/kg, i.p.) on 3 consecutive days. Then the rats
436	stayed pair-housed for 18 days after the third injection of ISRIB.
437	Data analysis
437 438	Data analysis Values are expressed as the mean \pm s.e.m. For the electrophysiology experiments, the
	-
438	Values are expressed as the mean \pm s.e.m. For the electrophysiology experiments, the
438 439	Values are expressed as the mean \pm s.e.m. For the electrophysiology experiments, the last 10 min prior to LFS was used to calculate the "Pre" -induction EPSP amplitude.
438 439 440	Values are expressed as the mean \pm s.e.m. For the electrophysiology experiments, the last 10 min prior to LFS was used to calculate the "Pre" -induction EPSP amplitude. Unless otherwise stated the magnitude of LTD was measured over the last 10 min at
438 439 440 441	Values are expressed as the mean ± s.e.m. For the electrophysiology experiments, the last 10 min prior to LFS was used to calculate the "Pre" -induction EPSP amplitude. Unless otherwise stated the magnitude of LTD was measured over the last 10 min at the end of recording after ("Post") LFS. To compare between two group, repeated
438 439 440 441 442	Values are expressed as the mean ± s.e.m. For the electrophysiology experiments, the last 10 min prior to LFS was used to calculate the "Pre" -induction EPSP amplitude. Unless otherwise stated the magnitude of LTD was measured over the last 10 min at the end of recording after ("Post") LFS. To compare between two group, repeated measures two-way ANOVA with Bonferroni <i>post hoc</i> test was used. To compare
438 439 440 441 442 443	Values are expressed as the mean ± s.e.m. For the electrophysiology experiments, the last 10 min prior to LFS was used to calculate the "Pre" -induction EPSP amplitude. Unless otherwise stated the magnitude of LTD was measured over the last 10 min at the end of recording after ("Post") LFS. To compare between two group, repeated measures two-way ANOVA with Bonferroni <i>post hoc</i> test was used. To compare between groups of three or more, one-way ANOVA with Bonferroni multiple
438 439 440 441 442 443 444	Values are expressed as the mean \pm s.e.m. For the electrophysiology experiments, the last 10 min prior to LFS was used to calculate the "Pre" -induction EPSP amplitude. Unless otherwise stated the magnitude of LTD was measured over the last 10 min at the end of recording after ("Post") LFS. To compare between two group, repeated measures two-way ANOVA with Bonferroni <i>post hoc</i> test was used. To compare between groups of three or more, one-way ANOVA with Bonferroni multiple comparisons was used. A two-tailed paired Student's <i>t</i> -test (paired <i>t</i>) was used to

448 hippocampi and the contralateral one from the same animals. The average of the

- 449 contralateral control was standardized to 1. A two-tailed paired Student's *t*-test was
- 450 used to compare between ipsilateral and contralateral. Data of western blotting
- 451 between conditions were compared using one-way ANOVA with Bonferroni multiple
- 452 comparisons. A value of P < 0.05 was considered statistically significant (*P < 0.05,
- 453 **P < 0.01, ***P < 0.001, ****P < 0.0001). All data were evaluated and graphed
- 454 using Prism 9.0 (GraphPad Inc, San Diego, CA, USA).

455 Data availability

- 456 All raw data supporting the findings of this study are available from the
- 457 corresponding author upon reasonable request.

458 Acknowledgments

- 459 This study has been funded by National Natural Science Foundation of China
- 460 (U2004134) and Zhengzhou University (140/32310295) to NWH, and by Science
- 461 Foundation Ireland (19/FFP/6437 and 14/IA/2571) to MJR. The funders had no role
- 462 in study design, data collection and analysis, decision to publish, or preparation of the
- 463 manuscript. We thank Professor Seán Kennelly (Tallaght University Hospital, Trinity
- 464 College Dublin) and Professor Tim Lynch (Mater Misericordiae University Hospital,
- 465 University College Dublin) for advice.

466 Author contributions

- 467 NWH and MJR jointly conceptualized the study and NWH directed experiments; YZ,
- 468 ZH, and PY conducted the electrophysiological experiments; YZ, YY, MZ, and SQ
- 469 performed immunofluorescent staining; YZ, YY, MZ, and SQ performed Western blot;
- 470 BL and JX assisted with Western blot and immunofluorescent staining; All authors

471	contributed to preparing figures and data analysis; NWH wrote the first draft of the
472	manuscript; All authors contributed to reviewing and editing the manuscript, and
473	approved its final version.
474	Conflict of interest
475	The authors have no competing interests to declare that are relevant to the content of
476	this article.
477	Ethics approval
478	All experiments were performed following the guidelines of the ARRIVE (Animal
479	Research: Reporting of In Vivo Experiments) guidelines 2.0 (Percie du Sert et al.,
480	2020) and were approved by the Animal Care and Use Committee of Zhengzhou
481	University, China. All efforts were made to minimize the number of animals used and
482	their suffering.
483	
484	References
485	Avila J, Diaz-Nido J (2004) Tangling with hypothermia. Nat Med 10: 460-461
486 487 488	Barthelemy NR, Horie K, Sato C, Bateman RJ (2020a) Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. <i>J Exp Med</i> 217
489 490 491 492	Barthelemy NR, Li Y, Joseph-Mathurin N, Gordon BA, Hassenstab J, Benzinger TLS, Buckles V, Fagan AM, Perrin RJ, Goate AM <i>et al</i> (2020b) A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer's disease. <i>Nat Med</i> 26: 398-407

- 493 Benarroch EE (2018) Glutamatergic synaptic plasticity and dysfunction in Alzheimer
 494 disease: Emerging mechanisms. *Neurology* 91: 125-132
- Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of
 Alzheimer disease-associated neurofibrillary pathology using paraffin sections and
 immunocytochemistry. *Acta Neuropathol* 112: 389-404

498	Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993)
499	Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates
500	development and contributes to reduced microtubule binding. <i>Neuron</i> 10:
501	1089-1099
502	Braun NJ, Yao KR, Alford PW, Liao D (2020) Mechanical injuries of neurons induce
503	tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction.
504	<i>Proc Natl Acad Sci U S A</i> 117: 29069-29079
505	Bretteville A, Marcouiller F, Julien C, El Khoury NB, Petry FR, Poitras I, Mouginot D,
506	Levesque G, Hebert SS, Planel E (2012) Hypothermia-induced
507	hyperphosphorylation: a new model to study tau kinase inhibitors. <i>Sci Rep</i> 2: 480
508 509 510 511	Brion JP, Smith C, Couck AM, Gallo JM, Anderton BH (1993) Developmental changes in tau phosphorylation: fetal tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer's disease. <i>J Neurochem</i> 61: 2071-2080
512 513 514 515	Buss EW, Corbett NJ, Roberts JG, Ybarra N, Musial TF, Simkin D, Molina-Campos E, Oh KJ, Nielsen LL, Ayala GD <i>et al</i> (2021) Cognitive aging is associated with redistribution of synaptic weights in the hippocampus. <i>Proc Natl Acad Sci U S A</i> 118
516	Busse CS, Brodkin J, Tattersall D, Anderson JJ, Warren N, Tehrani L, Bristow LJ,
517	Varney MA, Cosford ND (2004) The behavioral profile of the potent and selective
518	mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP)
519	in rodent models of anxiety. <i>Neuropsychopharmacology</i> 29: 1971-1979
520 521	Chang CW, Shao E, Mucke L (2021) Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. <i>Science</i> 371
522 523	Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. <i>Nat Rev Neurosci</i> 11: 459-473
524 525	Connor SA, Wang YT (2016) A Place at the Table: LTD as a Mediator of Memory Genesis. <i>Neuroscientist</i> 22: 359-371
526	Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity
527	between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures.
528	<i>J Physiol</i> 507 (Pt 1): 237-247
529	Draffin JE, Sanchez-Castillo C, Fernandez-Rodrigo A, Sanchez-Saez X, Avila J,
530	Wagner FF, Esteban JA (2021) GSK3alpha, not GSK3beta, drives hippocampal
531	NMDAR-dependent LTD via tau-mediated spine anchoring. <i>EMBO J</i> 40: e105513
532	Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN,
533	Sutherland RJ (2003) The aging hippocampus: cognitive, biochemical and
534	structural findings. <i>Cereb Cortex</i> 13: 1344-1351
535	Goedert M, Jakes R, Crowther RA, Six J, Lubke U, Vandermeeren M, Cras P,

536 537 538	Trojanowski JQ, Lee VM (1993) The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. <i>Proc Natl Acad Sci U S A</i> 90: 5066-5070
539 540 541 542	Gratuze M, El Khoury NB, Turgeon A, Julien C, Marcouiller F, Morin F, Whittington RA, Marette A, Calon F, Planel E (2017) Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease. <i>Neurobiol Dis</i> 98: 1-8
543	Hansson O (2021) Biomarkers for neurodegenerative diseases. Nat Med 27: 954-963
544 545 546	Hefti MM, Kim S, Bell AJ, Betters RK, Fiock KL, Iida MA, Smalley ME, Farrell K, Fowkes ME, Crary JF (2019) Tau Phosphorylation and Aggregation in the Developing Human Brain. <i>J Neuropathol Exp Neurol</i> 78: 930-938
547 548	Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. <i>Nat Rev Neurol</i> 15: 565-581
549 550 551 552	Hu NW, Nicoll AJ, Zhang D, Mably AJ, O'Malley T, Purro SA, Terry C, Collinge J, Walsh DM, Rowan MJ (2014) mGlu5 receptors and cellular prion protein mediate amyloid-beta-facilitated synaptic long-term depression in vivo. <i>Nat Commun</i> 5: 3374
553 554 555 556	Hu Z, Yu P, Zhang Y, Yang Y, Zhu M, Qin S, Xu JT, Duan D, Wu Y, Wang D <i>et al</i> (2022) Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease. <i>Transl Psychiatry</i> 12: 96
557 558 559	Ianov L, De Both M, Chawla MK, Rani A, Kennedy AJ, Piras I, Day JJ, Siniard A, Kumar A, Sweatt JD <i>et al</i> (2017) Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment. <i>Front Aging Neurosci</i> 9: 383
560 561 562 563 564	Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, Chamoun M, Savard M, Kang MS, Therriault J <i>et al</i> (2020) Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. <i>Lancet</i> <i>Neurol</i> 19: 422-433
565 566 567 568	Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, Brown C, Hashikawa T, Murayama M, Seok H <i>et al</i> (2014) Microtubule-associated protein tau is essential for long-term depression in the hippocampus. <i>Philos Trans R Soc Lond B Biol Sci</i> 369: 20130144
569 570 571 572	Kotecha SA, Jackson MF, Al-Mahrouki A, Roder JC, Orser BA, MacDonald JF (2003) Co-stimulation of mGluR5 and N-methyl-D-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons. <i>J Biol</i> <i>Chem</i> 278: 27742-27749
573	Krukowski K, Nolan A, Frias ES, Boone M, Ureta G, Grue K, Paladini MS,

574 575	Elizarraras E, Delgado L, Bernales S <i>et al</i> (2020) Small molecule cognitive enhancer reverses age-related memory decline in mice. <i>Elife</i> 9
576 577 578	Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. <i>Neuron</i> 62: 788-801
579 580	Liu DD, Yang Q, Li ST (2013) Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. <i>Brain Res Bull</i> 93: 10-16
581 582 583	Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. <i>FEBS Lett</i> 530: 209-214
584 585 586 587	Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C <i>et al</i> (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. <i>Lancet</i> 396: 413-446
588 589 590	Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. <i>Eur J Neurosci</i> 8: 1488-1500
591 592 593 594	Lujan R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. <i>J Chem Neuroanat</i> 13: 219-241
595 596 597	Luscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. <i>Neuron</i> 65: 445-459
598 599	Magee JC, Grienberger C (2020) Synaptic Plasticity Forms and Functions. <i>Annu Rev</i> <i>Neurosci</i> 43: 95-117
600 601 602 603	McCamphill PK, Stoppel LJ, Senter RK, Lewis MC, Heynen AJ, Stoppel DC, Sridhar V, Collins KA, Shi X, Pan JQ <i>et al</i> (2020) Selective inhibition of glycogen synthase kinase 3alpha corrects pathophysiology in a mouse model of fragile X syndrome. <i>Sci Transl Med</i> 12
604 605	McKiernan EC, Marrone DF (2017) CA1 pyramidal cells have diverse biophysical properties, affected by development, experience, and aging. <i>PeerJ</i> 5: e3836
606 607 608	Mishiba T, Tanaka M, Mita N, He X, Sasamoto K, Itohara S, Ohshima T (2014) Cdk5/p35 functions as a crucial regulator of spatial learning and memory. <i>Mol</i> <i>Brain</i> 7: 82
609 610 611	Nies SH, Takahashi H, Herber CS, Huttner A, Chase A, Strittmatter SM (2021) Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-beta. <i>J Biol Chem</i> 297: 101159

612 613 614 615	O'Connor A, Karikari TK, Poole T, Ashton NJ, Lantero Rodriguez J, Khatun A, Swift I, Heslegrave AJ, Abel E, Chung E <i>et al</i> (2020) Plasma phospho-tau181 in presymptomatic and symptomatic familial Alzheimer's disease: a longitudinal cohort study. <i>Mol Psychiatry</i>
616	O'Riordan KJ, Hu NW, Rowan MJ (2018a) Ass Facilitates LTD at Schaffer Collateral
617	Synapses Preferentially in the Left Hippocampus. <i>Cell Rep</i> 22: 2053-2065
618	O'Riordan KJ, Hu NW, Rowan MJ (2018b) Physiological activation of mGlu5
619	receptors supports the ion channel function of NMDA receptors in hippocampal
620	LTD induction in vivo. <i>Sci Rep</i> 8: 4391
621 622 623 624	Ondrejcak T, Hu NW, Qi Y, Klyubin I, Corbett GT, Fraser G, Perkinton MS, Walsh DM, Billinton A, Rowan MJ (2019) Soluble tau aggregates inhibit synaptic long-term depression and amyloid beta-facilitated LTD in vivo. <i>Neurobiol Dis</i> 127: 582-590
625	 Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Alzheimer's Disease
626	Neuroimaging I, Dage JL, Stomrud E, Janelidze S, Mattsson-Carlgren N <i>et al</i>
627	(2021) Prediction of future Alzheimer's disease dementia using plasma
628	phospho-tau combined with other accessible measures. <i>Nat Med</i> 27: 1034-1042
629 630 631	Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. <i>Cell</i> 150: 633-646
632	Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E,
633	Bouschet T <i>et al</i> (2007) LTP inhibits LTD in the hippocampus via regulation of
634	GSK3beta. <i>Neuron</i> 53: 703-717
635	Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ,
636	Clark A, Cuthill IC, Dirnagl U <i>et al</i> (2020) The ARRIVE guidelines 2.0: Updated
637	guidelines for reporting animal research. <i>PLoS Biol</i> 18: e3000410
638	Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O,
639	Ishiguro K, Tatebayashi Y, Takashima A (2004) Alterations in glucose metabolism
640	induce hypothermia leading to tau hyperphosphorylation through differential
641	inhibition of kinase and phosphatase activities: implications for Alzheimer's
642	disease. <i>J Neurosci</i> 24: 2401-2411
643	Potier B, Billard JM, Riviere S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B,
644	Jouvenceau A, Kollen M, Dutar P (2010) Reduction in glutamate uptake is
645	associated with extrasynaptic NMDA and metabotropic glutamate receptor
646	activation at the hippocampal CA1 synapse of aged rats. <i>Aging Cell</i> 9: 722-735
647 648 649	Regan P, Piers T, Yi JH, Kim DH, Huh S, Park SJ, Ryu JH, Whitcomb DJ, Cho K (2015) Tau phosphorylation at serine 396 residue is required for hippocampal LTD. <i>J Neurosci</i> 35: 4804-4812

650 651 652 653	 Sarantis K, Tsiamaki E, Kouvaros S, Papatheodoropoulos C, Angelatou F (2015) Adenosine A(2)A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. <i>J Neurochem</i> 135: 714-726
654 655 656 657	Sato C, Barthelemy NR, Mawuenyega KG, Patterson BW, Gordon BA, Jockel-Balsarotti J, Sullivan M, Crisp MJ, Kasten T, Kirmess KM <i>et al</i> (2018) Tau Kinetics in Neurons and the Human Central Nervous System. <i>Neuron</i> 97: 1284-1298 e1287
658 659 660	Sindou P, Lesort M, Couratier P, Yardin C, Esclaire F, Hugon J (1994) Glutamate increases tau phosphorylation in primary neuronal cultures from fetal rat cerebral cortex. <i>Brain Res</i> 646: 124-128
661 662 663 664	Sun XY, Tuo QZ, Liuyang ZY, Xie AJ, Feng XL, Yan X, Qiu M, Li S, Wang XL, Cao FY <i>et al</i> (2016) Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation. <i>Cell Death Dis</i> 7: e2449
665 666 667 668	Tackenberg C, Grinschgl S, Trutzel A, Santuccione AC, Frey MC, Konietzko U, Grimm J, Brandt R, Nitsch RM (2013) NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. <i>Cell Death</i> <i>Dis</i> 4: e608
669 670	Taylor HBC, Emptage NJ, Jeans AF (2021) Long-term depression links amyloid-beta to the pathological hyperphosphorylation of tau. <i>Cell Rep</i> 36: 109638
671 672 673	Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M (2022) Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. <i>Lancet Neurol</i> 21: 66-77
674 675 676	Veldsman M, Nobis L, Alfaro-Almagro F, Manohar S, Husain M (2021) The human hippocampus and its subfield volumes across age, sex and APOE e4 status. <i>Brain Commun</i> 3: fcaa219
677 678	Vieira M, Yong XLH, Roche KW, Anggono V (2020) Regulation of NMDA glutamate receptor functions by the GluN2 subunits. <i>J Neurochem</i>
679 680 681	Wegmann S, Bennett RE, Delorme L, Robbins AB, Hu M, McKenzie D, Kirk MJ, Schiantarelli J, Tunio N, Amaral AC <i>et al</i> (2019) Experimental evidence for the age dependence of tau protein spread in the brain. <i>Sci Adv</i> 5: eaaw6404
682 683	Wegmann S, Biernat J, Mandelkow E (2021) A current view on Tau protein phosphorylation in Alzheimer's disease. <i>Curr Opin Neurobiol</i> 69: 131-138
684 685 686	Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, Fatou B, Guise AJ, Cheng L, Takeda S <i>et al</i> (2020) Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer's Disease. <i>Cell</i> 183: 1699-1713 e1613
687	Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, Sanders DW,

- 688 Cook C, Fu H, Boonen RA *et al* (2016) Neuronal activity enhances tau propagation
- and tau pathology in vivo. *Nat Neurosci* 19: 1085-1092
- 690 Yu Y, Run X, Liang Z, Li Y, Liu F, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009)
- 691 Developmental regulation of tau phosphorylation, tau kinases, and tau
- 692 phosphatases. *J Neurochem* 108: 1480-1494
- 693

695 Supporting Information Listing

- 696 Table S1: Antibodies used in this study
- 697 Figure S1-11 and legends

699 Figure legends

700	Figure 1 LFS promotes p-Tau181 in an age-dependent manner in live rats. (a)
701	Schematic of the field EPSPs recording configuration in CA1 stratum radiatum (REC)
702	overlaid with a schematic of a bipolar stimulation electrode (STIM) for Schaffer
703	collateral axon fibers (black) in ipsilateral hemisphere. Additional excitatory
704	projections from CA3 include local recurrent connections (blue) of CA3 pyramidal
705	cells onto other CA3 pyramidal cells, and the back projection (pink) of CA3
706	pyramidal neurons to the dentate gyrus (DG). (b) Application of LFS (horizontal bar,
707	LFS-900; 900 pulses at 1Hz) induced robust LTD at CA3-CA1 synapses in
708	anaesthetized rats at two different ages (2-3-month, and 17-18-month). Calibration
709	bars: vertical, 2 mV; horizontal, 10 ms. (c) Summarized EPSP amplitude 30 min post
710	LFS. The EPSP decreased to $63.8 \pm 7.8\%$ in 2-3-month-old rats (n = 5, P = 0.0147
711	compared with Pre), and $62.4 \pm 3.4\%$ in 17-18-month-old rats (n = 7, P < 0.0001
712	compared with Pre) respectively; paired t test. The amplitude of LTD is comparable in
713	both groups (two-way ANOVA, age, $F(1, 10) = 0.09427$, $P = 0.7651$). (d) The upper
714	panel shows p-Tau181 (red) immunofluorescent staining in dorsal hippocampus
715	(Scale bar: 200 μm), CA1, CA3, and hilus of DG (scale bars: 50 μm) from
716	2-3-month-old rats. The corresponding statistical results compared with contralateral
717	side are displayed in the lower panel. The expression level of p-Tau181 was not
718	affected by LFS in dorsal hippocampus ($P = 0.4611$), CA1 ($P = 0.3792$), CA3 ($P =$
719	0.6842), and DG ($P = 0.1953$); paired t test. (e) Immunofluorescent staining of

720	p-Tau181 (red) in ipsilateral dorsal hippocampus, CA1, CA3, and DG from
721	17-18-month-old rats. LTD induction by LFS significantly enhanced the level of
722	p-Tau181 in dorsal hippocampus ($P < 0.0001$), CA1 ($P = 0.0220$), CA3 ($P = 0.0059$),
723	and DG ($P = 0.0202$); paired t test. Values are mean \pm s.e.m.
724	Figure 2 LFS promotes p-Tau217 in an age-dependent manner in live rats. (a)
725	The upper panel shows immunofluorescent staining of p-Tau217 (red) in dorsal
726	hippocampus (Scale bar: 200 μm), CA1, CA3, and DG (scale bars: 50 μm) from
727	2-3-month-old rats. The corresponding mean fluorescence intensities were
728	summarized in the lower panel. LFS did not affect the expression level of p-Tau217 in
729	dorsal hippocampus ($P = 0.3820$), CA1 ($P = 0.4488$), CA3 ($P = 0.3409$), and DG ($P = 0.3409$)
730	0.1567); paired t test. (b) Immunofluorescent staining of p-Tau217 (red) in dorsal
731	hippocampus, CA1, CA3, and DG from 17-18-month-old rats. LFS ipsilaterally
732	enhanced the level of p-Tau217 in dorsal hippocampus ($P < 0.0019$), CA1 ($P =$
733	0.0153), CA3 ($P = 0.0003$), and DG ($P = 0.0251$); paired t test. Values are mean ±
734	s.e.m.

735 Figure 3 LFS enhances p-Tau181 and p-Tau217 in aged rats. (a) Application of

- 736 LFS-900 induced robust LTD at CA3-CA1 synapses in anaesthetized
- 737 17-18-month-old rats. Calibration bars: vertical, 2 mV; horizontal, 10 ms. (b)
- Summarized EPSP amplitude 30 min post LFS. The EPSP decreased to $54.8 \pm 10.2\%$
- 739 (n = 5, P = 0.0110 compared with Pre, paired t). (c) Left panels show representative
- blotting band of p-Tau181 and total tau (Tau5) in the hippocampus of age-matched

741	naïve control group and the experimental group either contralateral or ipsilateral to
742	LFS. Statistical results of p-Tau181 over total tau was quantified and normalized to
743	naïve control (n = 5 per group, ipsilateral vs naïve, $P = 0.0292$; contralateral vs naïve,
744	P = 0.5075; contralateral vs ipsilateral, $P = 0.4022$; one-way ANOVA-Bonferroni). (d)
745	Left panels show representative blotting band of p-Tau217 and total tau (tau5) in
746	age-matched naïve control group, contralateral hippocampus, and ipsilaterally
747	stimulated hippocampus. Statistical results of p-Tau217 over total tau was quantified
748	and normalized to naïve control (n = 5 per group, ipsilateral vs naïve, $P = 0.0049$;
749	contralateral vs naïve, $P = 0.0979$; contralateral vs ipsilateral, $P = 0.3905$; one-way
750	ANOVA-Bonferroni). Values are mean \pm s.e.m.

751 Figure 4 Antagonists of either NMDA receptors or mGluR5 prevent the elevation

752 of both p-Tau181 and p-Tau217 induced by LFS in aged rats. (a) Systemic

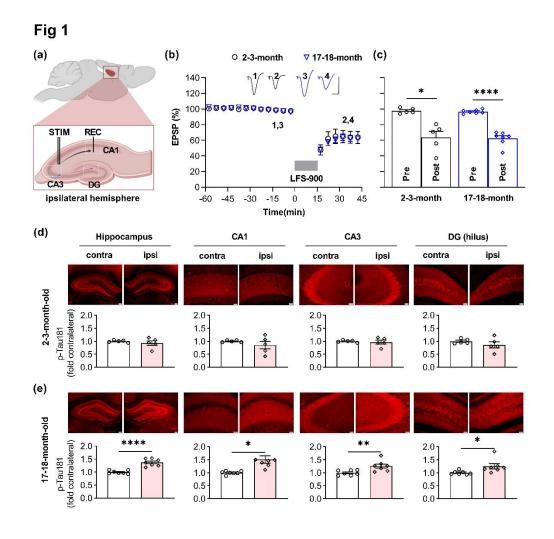
injection of competitive NMDAR antagonist CPP (10 mg/kg, i.p.) alone 1 h prior to

the application of LFS did not affect LTD induction in 17-18-month-old rats.

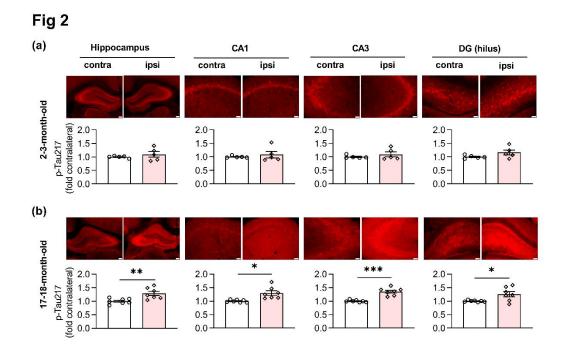
Similarly, intraperitoneal injection of the mGluR5 negative allosteric modulator

756 MTEP (3 mg/kg) alone 1 h did not affect LTD induction by LFS 1 h later in 17-18m

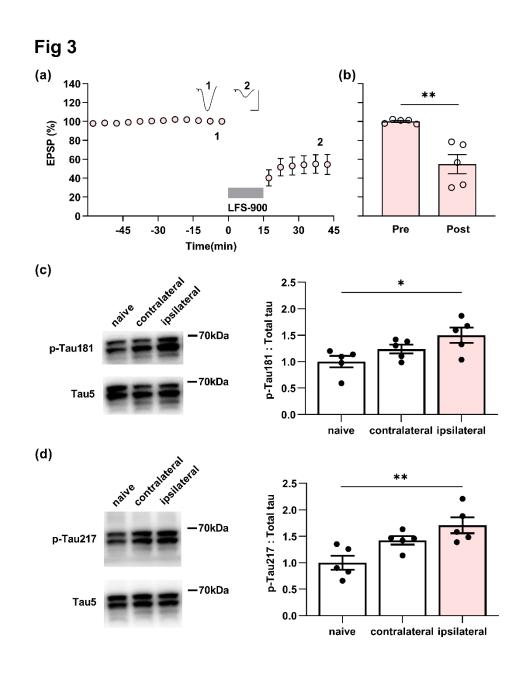
757 old rats. Calibration bars: vertical, 2 mV; horizontal, 10 ms. (b) Summary of the mean

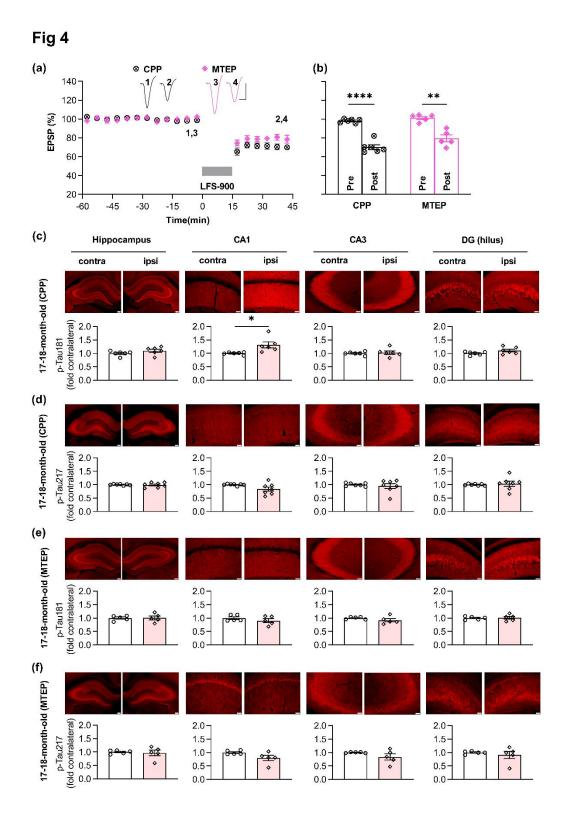

- EPSP amplitude pre and post -LFS. The EPSP decreased to $70.2 \pm 2.5\%$ (n = 6, P <
- 759 0.0001 compared with pre, paired t test) and 79.6 \pm 3.7% (n = 5, P = 0.0068 compared
- with pre, paired t test) 30 min post-LFS in CPP or MTEP treated rats respectively
- 761 (two-way RM ANOVA, Treatment $F_{1,9} = 6.999$, P = 0.0267). (c) The upper panel

762	shows the fluorescent images of p-Tau181 labeling (red) and the lower panel displays
763	the corresponding statistical results in CPP-treated 17-18-month-old rats (Scale bar =
764	200 μ m in dorsal hippocampus; scale bars = 50 μ m in CA1, CA3 and DG regions).
765	LTD induction by LFS did not affect the level of p-Tau181 in dorsal dorsal
766	hippocampus ($P = 0.1218$), CA3 ($P = 0.6147$), and DG ($P = 0.0578$) except for CA1
767	region ($P = 0.0353$); paired t test. (d) The upper panel shows the fluorescent images
768	of p-Tau217 labeling (red) and the corresponding statistical results are displayed in
769	the lower panel in CPP-treated 17-18-month-old rats. No significant difference was
770	found in p-Tau217 level compared with that in contralateral dorsal hippocampus ($P =$
771	0.8075), CA1 (<i>P</i> = 0.0920), CA3 (<i>P</i> = 0.5811), and DG (<i>P</i> = 0.7041); paired <i>t</i> test. (e)
772	In MTEP-treated aged rats, LFS failed to promote the level of p-Tau181 (red as
773	showed in the upper panel). Summarized mean fluorescence intensities (fold to
774	contralateral) in dorsal hippocampus ($P = 0.9154$), CA1 ($P = 0.3161$), CA3 ($P =$
775	0.1839), and DG ($P = 0.8417$); paired t test. (f) MTEP treatment also prevented the
776	enhancement of p-Tau217 by LFS in aged rats. The upper panel showed the
777	fluorescent images of p-Tau217 (red). The corresponding statistical results were
778	displayed in the lower panel and no significant difference was found in dorsal
779	hippocampus (<i>P</i> = 0.7702), CA1 (<i>P</i> = 0.1598), CA3 (<i>P</i> = 0.2262), and DG (<i>P</i> =
780	0.5311); paired t test. Values are mean \pm s.e.m.

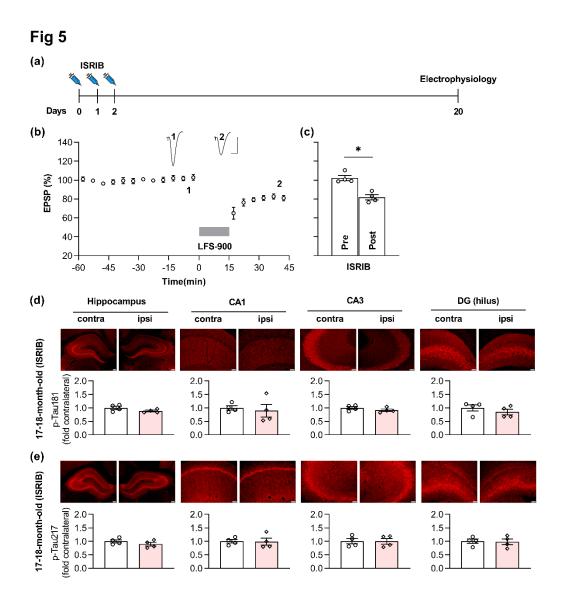

Figure 5 ISRIB blocks LFS-induced enhancement of p-Tau181 and p-Tau217 in aged rats. (a) Experimental paradigm for ISRIB injection and electrophysiology

783	experiments. ISRIB (2.5 mg/kg, i.p.) was systemically injected for 3 days and in vivo
784	electrophysiology experiments were performed 18 days after the last injection. (b)
785	LFS induced robust LTD in ISRIB-treated aged rats. Calibration bars: vertical, 2 mV;
786	horizontal, 10 ms. (c) The EPSP decreased to $81.8 \pm 2.7\%$ at 30 min post LFS (n = 4,
787	P = 0.0211 compared with pre, paired t test). (d) Treatment of ISRIB completely
788	prevented the increase of p-Tau181 induced by LFS in aged rats. The upper panel
789	showed the fluorescent images of p-Tau181 labeling (red). As summarized in the
790	lower panel, no significant difference was found in the dorsal hippocampus ($P =$
791	0.0579), CA1 ($P = 0.7006$), CA3 ($P = 0.0715$), and DG ($P = 0.2696$); paired t test. (e)
792	Treatment of ISRIB also successfully blocked the enhancement of p-Tau217 induced
793	by LFS in aged rats. The upper panel showed the fluorescent images of p-Tau217
794	labeling (red). Summarized statistic results in the lower panel displayed no significant
795	difference in all regions including dorsal hippocampus ($P = 0.1185$), CA1 ($P =$
796	0.9049), CA3 ($P = 0.9172$), and DG ($P = 0.6636$); paired t test. Scale bar = 200 µm in
797	hippocampus, scale bar = 50 μm in CA1, CA3 and DG regions. Values are mean \pm
798	s.e.m.


800 Figures



801



803

807

