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Abstract 
 
With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing 
technologies, spatial transcriptomics analysis is advancing rapidly.  Spatial transcriptomics provides 
spatial location and pattern information about cells in tissue sections at single cell resolution.  Cell type 
classification of spatially-resolved cells can also be inferred by matching the spatial transcriptomics data 
to reference single cell RNA-sequencing (scRNA-seq) data with cell types determined by their gene 
expression profiles.  However, robust cell type matching of the spatial cells is challenging due to the 
intrinsic differences in resolution between the spatial and scRNA-seq data.  In this study, we 
systematically evaluated six computational algorithms for cell type matching across four spatial 
transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the 
same mouse primary visual cortex (VISp) brain region. We find that while matching results of individual 
algorithms vary to some degree, they also show agreement to some extent.  We present two ensembl 
meta-analysis strategies to combine the individual matching results and share the consensus matching 
results in the Cytosplore Viewer (https://viewer.cytosplore.org) for interactive visualization and data 
exploration.  The consensus matching can also guide spot-based spatial data analysis using SSAM, 
allowing segmentation-free cell type assignment. 
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Introduction 

Characterizing the spatial distributions of molecularly defined cell types is a shared goal of the Human 
Cell Atlas, Brain Initiative Cell Census Network (BICCN), and related collaborative efforts.  The core 
elements in this task include transcriptional classification and spatial assignment of cell types, which 
requires integration of single cell transcriptomics and spatially-resolved transcriptomics to define and 
match cell type spatially through the analysis of combinatorial gene expression patterns in tissue 
sections.  Single cell RNA sequencing (scRNA-seq) has rapidly progressed into a high throughput 
standardized methodology and has been used by many labs as a major workhorse for cell type 
classification in many organs.  In contrast, spatial transcriptomics methods are still evolving, varying 
substantially in methodology, degree of multiplexing, cost, and throughput, lacking consensus data 
standards and analysis methods. 

Characterizing spatially-resolved cell types is essential in the brain in order to study the exceptional 
cellular heterogeneity and functional significance of its spatial organization.  ScRNA-seq has revealed an 
unprecedented granularity of neuronal cell types in mouse and human brains [1-4], providing a 
comprehensive landscape of cell type heterogeneity defined by their transcriptional profiles.  Recently, a 
number of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing methods [5-15] 
have been reported for conducting spatial transcriptomics experiments at the cellular level.  Each 
method is optimized for marker gene panel design, tissue processing, transcript sequencing, and 
imaging steps of the pipeline, requiring different strategies for data processing, quality control, and 
downstream analysis.  The SpaceTx Consortium, an organized effort consisting of both experimental and 
computational working groups, took the lead to evaluate the performance of currently available 
spatially-resolved transcriptomics methods in high quality cortical samples, with the goal of building 
consensus maps of cortical cell type distributions based on combined analysis of single cell and spatially-
resolved transcriptomics.  The overarching effort of the SpaceTx Consortium is summarized in [16]. 

One aim of the SpaceTx Consortium was to make probabilistic assignments of cell types and map their 
spatial distributions.  Here we describe the quantitative meta-analysis of spatial transcriptomics data 
with a focus on assigning spatial cell types using the reference cell types from scRNA-seq.  This is the 
first-time spatial transcriptomics data has been analyzed and compared across spatial and 
computational methods for cell type determination on the same tissue.  Here we present the results of 
these analysis efforts along with strategies for visualization of spatial transcriptomics data.  Four available 
datasets from the SpaceTx Consortium and up to six computational methods are systematically evaluated in 
the following sections.  Available datasets and reproducible work covered in this manuscript are publicly 
available at the SpaceTx website (https://spacetx-website.github.io/index.html). 

Results 

Analysis overview 

We explored multiple approaches to assign the spatial data with reference scRNA-seq cell types, and 
developed meta-analysis strategies to combine the cell type assignment results from multiple methods 
to reach consensus assignments (Figure 1).  We evaluated datasets from four image-based spatial 
methods (MERFISH [17, 18], smFISH [5, 19], BaristaSeq [20, 21], and ExSeq [15, 22]) in the mouse 
primary visual cortex brain region (VISp) [1].  All image data (spot-by-gene matrices) were segmented 
using the same segmentation procedure – Baysor [23], which also included consistent quality control 
approaches for doublets and low-quality cell removal.  The segmentation step produced the cell-by-gene 
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matrices that were used to assign the spatially-resolved cell types to scRNA-seq reference cell types 
using cell type matching algorithms.  Teams of the SpaceTx Consortium explored six computational 
algorithms (map.cells* [1], mfishtools [24], fitness landscape model (FLM) [25], FR-Match [26, 27], 
Tangram [28], and pciSeq [29]), which produced individual cell type assignments with various 
probabilistic assignment scores.  To arrive at consensus cell type assignments, two meta-analysis 
strategies were developed to combine the individual assignments more qualitatively (Negative 
Weighting Combining Strategy, hereinafter NWCS), or more quantitatively (Geometric Mean Combining 
Strategy, hereinafter GMCS) (Methods).  In parallel, spot-based cell type assignment was performed by 
SSAM {Park, 2021 #441 using a guided mode, which partially borrows information from the combined 
assignment results.  All spatial data and cell type assignment results were loaded into the Cytosplore 
Viewer (https://viewer.cytosplore.org) for interactive visualization and data exploration, where an 
integrated tSNE {Van der Maaten, 2008 #415} map for all annotated cells in all spatial methods are 
presented together with single method viewers for comparative analysis. 

 
 

Figure 1: Overview of the SpaceTx analysis workflow. The reference scRNA-seq cell types of the 
primary visual cortex (VISp) of mouse brain are from Tasic et al. (2018).  Spatial transcriptomics data 
were generated by four image-based experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq).  
Segmentation and quality control were performed using a common procedure (Baysor).  Six 
computational algorithms (map.cells*, mfishtools, FLM, FR-Match, Tangram, and pciSeq) for cell type 
assignment were applied.  Two meta-analysis strategies were used to combine individual assignments.  
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Spot-based cell type assignment was conducted using SSAM.  All data and matching results can be 
viewed in Cytosplore Viewer (https://viewer.cytosplore.org). 

Reference cell types  

The goal of this study is to produce an initial cell type matching of the spatially-resolved transcriptomics 
data to open access reference scRNA-seq cell type datasets (a.k.a. scRNA-seq-reference-based cell type 
assignment of spatial transcriptomics data).  The reference mouse visual cortex (VISp) scRNA-seq data 
were reported in [1], consisting of 14,249 cells with initial 116 cell types defined for VISp.  With a focus 
on spatial gradients, the SpaceTx Consortium re-clustered the data to arrive at a reference cell type 
taxonomy that contains 191 consensus higher-resolution cell types at the most granular level and 24 cell 
type subclasses at the intermediate level [16].  With fewer cells per study and fewer reads per cell, the 
granularity of spatial data collected in this project is not comparable to these most granular scRNA-seq 
cell types.  Therefore, in this study we assigned the spatial data to the cell type subclasses in the 
reference cell type taxonomy, which distinguishes major GABAergic, glutamatergic, and glial cell types 
with layer-specific laminar patterning (full list of reference cell type subclases in Figure 1). 

Experimental protocols 

As part of the SpaceTx Consortium, tissue sections were successfully collected from mouse VISp and 
evaluated using MERFISH [17, 18], smFISH [5, 19], BaristaSeq [20, 21], and ExSeq [15, 22] imaging-based 
experimental protocols.  In general, the imaging-based protocols use multi-well plates to stain cells in 
parallel, and project transcript abundance on microscope images.  The spatial methods employ the 
fluorescent in situ hybridization (FISH) technique to localize the transcript sequences.  Since each spatial 
method has unique requirements for numbers of genes and expression levels, each experimental 
protocol assembles different probe panels with specific gene sets in their design (Supplementary Table 
S1).  The primary output from the imaging-based protocols is a spot-by-gene matrix, quantifying the 
gene expression intensities in the pixel arrangement of the image. 

Segmentation and quality control 

The segmentation step produces a cell-by-gene expression matrix from the image data (spot-by-gene 
matrix) for downstream analysis.  For this purpose, the Baysor algorithm was used because it has been 
reported to outperform other segmentation tools in terms of yielding better segmentation accuracy, 
increased number of detected cells, and improved molecular resolution by considering joint likelihood of 
transcriptional composition and cell morphology [23].  Baysor was applied to perform cell segmentation 
across all imaging-based protocols to achieve consistent quantification from different protocols.  Low 
quality cells were filtered based on the Baysor cell segmentation statistics, e.g. number of transcripts 
per cell, elongation characteristics, cell area values, and average confidence scores of segmentation.  
Cells not passing the quality control filter and cells located outside of VISp based on expert annotation 
were excluded from further analysis.  The final segmented and filtered data (Table 1) were used as the 
input datasets for downstream cell type assignment analysis. 

Protocol Quality control filter # cells (before / after 
filtering and annotation) 

# genes 

MERFISH n_transcripts >= 50, elongation < 9, 2000 <= area < 
45000, avg_confidence > 0.8 

6130 / 2150 258 

smFISH n_transcripts >= 50, elongation < 8, 500 <= area < 
40000, avg_confidence > 0.95 

4841 / 2360 22 
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BaristaSeq n_transcripts >= 20, elongation < 8, 10 <= area < 
300, avg_confidence > 0.95 

14095 / 4432 79 

ExSeq n_transcripts >= 20, elongation < 10, 5000 <= area < 
1500000, avg_confidence > 0.8 

1504 / 1271 42 

Table 1: Summary of segmented and filtered data for each experimental protocol. 

Comparison of gene properties across experimental protocols 

The spatial methods use different reagents, tissue processing steps, barcoding approaches, and 
amplification methods, resulting in a very different number of genes included in each experiment and 
different requirements for which genes can be successfully probed (Table 1).  With these constraints in 
mind, gene sets were selected to overlap across experiments to the extent possible to allow comparison 
between studies.  We found that while smFISH and ExSeq had relatively fewer genes per experiment 
(Table 1), the average number of transcript molecules detected per cell tended to be higher than for 
MERFISH or BaristaSeq (Figure 2A), even when considering only common genes among experiments 
(Figure 2B).   

Glutamatergic (and to a lesser extent GABAergic) neurons show strong laminar patterning in mouse 
VISp, and many genes have been well described as showing layer restriction [30], providing a useful 
ground truth for assessing the accuracy of a subset of genes in each experiment.  For all experimental 
protocols, at least one gene marking L2/3 (Cux2, Lamp5, Cxcl14), L4 (Rorb, Rspo1), L5 (Fezf2, Parm1), 
and L6 (Sema3e, Foxp2, Syt6) in mouse VISp were assayed; in all cases these genes showed maximal 
expression at the expected cortical depth (Figure 2C).  Additional computationally-derived genes 
included in the assays showed layer restriction in MERFISH, and to a lesser extent the other 
experimental protocols (Figure 2D).  Together, these results suggest that sufficient information exist 
from the included gene panels to assign segmented cells to reference cell types at some level of 
resolution. 
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Figure 2: Comparison of gene properties across experimental protocols.  (A) Distribution of average 
number of reads in all cells with at least one read for each gene in the experiment.  (B) Distribution of 
average number of reads in all cells with at least one read for the subset of genes in the experiment 
found in at least two other experiments (up to 40 total).  (C) Density plot of spots across the axis 
perpendicular to cortical layers (y-axes) for sets of genes marking L2/3 (Cux2, Lamp5, Cxcl14), L4 (Rorb, 
Rspo1), L5 (Fezf2, Parm1), and L6 (Sema3e, Foxp2, Syt6) in mouse VISp. At least one gene from each 
layer list was assayed in each experiment.  Densities (x-axes) are shown in the same scale across all 
panels in C and D.  (D) Density plot of up to the 15 genes with the highest maximum density and with 
maximum density>=0.0025 (black triangle).  Genes are color-coded as shown. 

Cell-based cell type assignment 

Six cell type matching algorithms (map.cells* [1], mfishtools [24], fitness landscape model (FLM) [25], 
FR-Match [26, 27], Tangram [28], and pciSeq [29]) were applied to assign reference scRNA-seq cell types 
to each segmented cell with an associated confidence score (a.k.a. probabilistic assignment) based on 
the cell-by-gene count matrix (Method) produced for the MERFISH data.  Applying the cell type 
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matching algorithms produces a cell-by-type matching matrix as a primary output, consisting of 
probabilistic assignment of each segmented cell to each of the reference cell types.  For this study, 
reference cell type subclasses were matched due to the granularity of spatial data limited by the 
number of marker genes evaluated. 

These cell type assignment methods each have different advantages and experimental biases, and often 
produce different cell type calls, especially in cells with fewer total transcripts or less confidence 
segmentation boundaries.  To address this, we designed and implemented two combining strategies, 
each producing a re-calculated confidence score matrix for determining the consensus cell type 
assignment.  The NWCS combined matching is a weighted average of the confidence scores from each 
individual matching method using only the highest score for each cell (Methods).  The GMCS combined 
matching considers each individual matching result as the vertex of a polygon whose geometric median, 
the point with minimum average Euclidean distance from these vertices, serves as the combined result 
(Methods). 

For all matching results, deterministic cell type assignment is defined as the cell type with the highest 
confidence score within a given cell.  In the results shown below, matching results of individual 
algorithms are referred to as “Individual Matching #1-6” and the consensus matching results as 
“Combined Matching #1-2”.  Name key is in figure legend (Figure 3). 

Individual matchings  

In the following two sections, we look at the MERFISH data to elaborate the details of the cell type 
matching challenge.  A key challenge for the deterministic assignment of cell types was the extensive 
differences observed among the individual matching results without the availability of a gold standard 
result to compare against.  Confidence scores are defined differently in each matching method and 
showed very different distributional properties (Figure 3A). Even though all confidence scores are in the 
range of [0,1], these scores are not directly comparable across individual matching results because they 
are very different metrics, for example, correlation or bootstrap probability or p-value, with different 
distributional properties between the different algorithms.  As such, the ranks (i.e., ordered statistics) of 
the scores are pragmatically more useful, with deterministic cell type assignment using the top-ranked 
confidence score.  The deterministic cell type assignment for the L2/3 IT subclass, for example, further 
revealed the difference in the number of matched cells (Figure 3B) and the spatial distribution of the 
cells matched to the same subclass in individual matching results (Figure 3C).  The differences among 
individual matching results were also reflected in the substantial amount of disagreements of cells 
matched to the same subclass (Figure 3D).  

Individual Matching #2 gives the smallest number of cells matched to the L2/3 IT subclass, but most of 
its matched cells are common cells found in all other matchings, which may suggest that the method for 
Individual Matching #2 has high precision (a.k.a. positive predictive value) for this subclass though its 
detection rate is low.  Similarly, Individual Matching #1 has the second smallest number of cells matched 
with high precision.  We may regard the non-common cells in the venn diagram (Figure 3D) as the cells 
that have weaker signal and more noise in their combinatorial marker gene expression pattern; these 
noisy cells appear to form the major source of the observed spillover effect of Individual Matchings #3-6 
in their layer distributions (Figure 3C), as Individual Matchings #1-2 are very layer-specific.  

That being said, we are not able to conclude that Individual Matchings #1-2 are better than the others, 
as all cells are assigned a subclass in each matching and the noisy cells might be accidentally assigned to 
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other subclasses with Individual Matchings #1-2 but not the one in this example.  Spatial coordinate 
plots with confidence score intensities for each individual matching are available in Supplementary 
Figures S1-S6.   

Combined matchings  

Assuming that the majority of individual methods would produce some level of accurate cell type 
matching/assignment, combining their results using an ensemble approach may provide the best 
classification result.  We used two different strategies to combine all individual matching results in the 
ensemble meta-analysis - NWCS and GMCS.  Using the L2/3 IT subclass as an example, the combined 
matchings are more stable in the number of cells matched to the subclass (Figure 3B) and more 
consistent in the spatial distribution of the matched cells (Figure 3C). Between the two combined 
matchings, the vast majority of the cells matched to the same subclass (Figure 3E), indicating strong 
agreement between the two combined matchings. The Combined Matching #1 and #2 assigned 31% and 
37% of all MERFISH cells to the L2/3 IT subclass, respectively, though there is still some spillover of the 
matched cells in the layer distribution.  Considering all cells, the two combined matchings produced 
highly consistent cell type assignment overcoming the large differences among individual matching 
results, which resulted in 83% (= number of cells assigned the same subclass / total number of cells) of 
cells being assigned to the same subclass.  The combined confidence score intensity matching plots for 
all cells are available in Supplementary Figures S7-S8; and distribution of all cells in cortical layers by 
each combined matching are in Supplementary Figure S9.  Though the distributions of matched cells in 
cortical layers are very similar for the abundant GABAergic and glutamatergic subclasses between the 
two combined matchings (Supplementary Figure S9), they differ in rare and non-neuronal subclasses 
(e.g., Meis2, Endothelial, and Macrophage), suggesting the increased difficulty for detecting and 
matching rare cell types in spatial transcriptomics. Overall, these results suggest that, while individual 
matching algorithms may have different strengths and biases leading to somewhat different results, 
combined methods via the meta-analysis ensembling approach provide a more robust cell type calling 
for the spatial cells. 
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Figure 3: Cell type matching performance comparison on the L2/3 IT subclass of MERFISH data.  Six 
individual teams worked on the cell type matching/assignment task of the MERFISH data, each resulting 
in a matching with cell-to-type confidence scores ranging from [0,1].  (A) The confidence scores from 
each individual matching show very different distributional properties.  Combined Matching #1 and 
Combined Matching #2 integrate all six individual matching results and also show very different 
distributions.  (B) Number of cells matched to the L2/3 IT subclass in each matching.  (C) Spatial 
distribution of the cells matched to the L2/3 IT subclass in each matching.  X-axis is the spatial axis 
perpendicular to cortical layers (left end: upper layer, right end: deeper layer).  (D) Overlapping of cells 
matched to the L2/3 IT subclass in the individual matchings.  (E) Overlapping of cells matched to the 
L2/3 IT subclass in the combined matchings.  Name key: Individual Matching #1=FLM, #2=Tangram, 
#3=pciSeq, #4=FR-Match, #5=mfishtools, #6=map.cells*; Combined Matching #1=NWCS, #2=GMCS. 

Spot-based cell type assignment 

Working directly on the spot-by-gene matrices, the SSAM [31] framework was used to perform and 
visualize segmentation-free spatial cell type assignments.  Unlike the cell segmentation-based cell type 
matching/assignment methods, SSAM performs pixel-wise cell assignment which does not require prior 
cell segmentation, thus independent from the accuracy of cell segmentation.  Here, SSAM guided-mode 
was demonstrated to create cell type assignments, which were guided by the mean log-normalized gene 
expression of the combined cell type matching results (NWCS and GMCS) (Supplementary Figures S10-
S17).  In general, the resulting SSAM cell type assignments and the segmented cells with cell type 
assignments from combined matching results showed visual similarity in both meta-analysis combining 
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strategies for all spatial experimental methods (Figure 4).  One exception was the GMCS-based cell type 
assignment of BaristaSeq.  This was due to the low quality of the consensus matching; both the 
segmentation and the SSAM results did not match the  previously known layer structure of the visual 
cortex. 

However, detailed comparison revealed that some cell types were mapped to some area that was not 
identified as segments in the cell-based approach, especially the VLMC subclass in the multiplexed 
smFISH dataset (Figure 4).  The marker gene of the VLMC subclass showed a more similar gene 
expression pattern as SSAM identified, which strongly assumes the existence of cells in the region.  This 
observation demonstrates that SSAM could be used as a complementary method to quickly visualize 
spatial cell types which were possibly missed by prior cell segmentation.  Indeed, these results could be 
used to improve segmentation algorithms.  Also, due to the lower density of mRNAs captured by 
BaristaSeq compared to other FISH methods, the SSAM cell type assignment of BaristaSeq was noisy.  
Overall, the SSAM analysis shows that a spot-based approach, such as SSAM, is equally capable of 
revealing good-quality segmentation-free cell type assignment for spatial transcriptomics pixel data, 
especially using the guided mode analysis when precise gene signatures are given. 

Another major difference was that SSAM introduced a spatial pattern of CR subclass in NWCS-guided 
smFISH data (bright green cells pointed by an arrow in Figure 4).  This pattern was derived from one CR 
cell in the NWCS matching, which is actually not CR cell type but more likely to be a new Layer 4 IT cell 
type (or cell state) which was reported previously [31], this possibly confused the matching algorithms 
to match the cell type differently.  Although there was only one cell having the CR cell type in the lower 
layer 4, SSAM successfully assigned the cells having similar gene expression patterns in the cell type 
assignments.  In the case of GMCS, since the consensus matching does not discriminate any cells in layer 
4, all cells were then matched to layer 4 which is the closest one.  
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Figure 4: Side-by-side comparison between the segmentation and the SSAM result.  The side-by-side 
comparison between the segmentation and SSAM results show laminar pattern visual similarity in 
general, which demonstrates SSAM can be used to quickly visualize the spatial cell type distribution 
without a segmentation step.  The colors of each cell type can be found in Figure 1.  The scale bars 
represent 100 μm in all panels.  Arrow points to CR cells in bright green color. 
 
Cytosplore Viewer for comparative visualization of spatial protocols 
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ScRNA-seq based gene imputation for data visualization 

To compare the different spatial transcriptomics protocols, a combined embedding was generated.  A 
major challenge is that each protocol measures a different set of genes, and the number of shared genes 
is very small.  The four protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) share only six common 
genes, while the number of genes measured per dataset varies from 22 to 253 genes, where the union 
of these measured genes contains a set of 314 union genes (Supplementary Table S1).  To solve this, we 
applied SpaGE [32] to impute the expression of the missing genes in each dataset separately and obtain 
a total of 314 genes per dataset.  For each spatial dataset, SpaGE integrates the spatial data with a 
reference scRNA-seq data measured from the same tissue, and provides prediction for the expression of 
the missing genes.  For example, the MERFISH dataset has 253 measured genes, SpaGE was applied to 
impute the expression of the 61 remaining genes.  Additionally, to reduce batch effects in the joint 
multi-protocol embedding, we used SpaGE to re-impute the expression of the measured genes in each 
spatial dataset separately, using a leave-one-gene-out scheme.  Taking the MERFISH dataset as an 
example, SpaGE uses 252 genes for integration with the reference scRNA-seq dataset and provides 
predicted expression, for the left-out gene, imputed from the scRNA-seq data.  This process is applied 
for all measured genes in each spatial datasets to ensure that all spatial datasets are aligned to the 
reference scRNA-seq data, and that the expression of all genes is obtained from the same (scRNA-seq) 
domain.  Finally, we generated a combined tSNE embedding for all four spatial datasets using the 
imputed expression matrix of all 314 genes. 

Comparative visualization between protocols 

For comparative visualization of the different spatial protocols, Cytosplore Viewer 
(https://viewer.cytosplore.org) was extended with functionality for side-by-side visualization of multiple 
spatial data sets, in combination with the consensus clustering described above.  A comparative view 
was developed that enables interactive selection from the consensus clustering hierarchy (Figure 5A), or 
from the joint tSNE embedding combining cells from all spatial protocols.  Also, either the measured and 
imputed expression values can be painted on the spatial and tSNE maps enabling comparison of spatial 
expression patterns across spatial protocols.  Finally, functionality for differential expression (DE) 
analysis between two manual selections (drawn either in the spatial maps or the tSNE maps) was 
implemented, enabling quick retrieval of differentially expressed genes between regions or cell types.  
Comparing cell selections within one protocol returns DE of the measured genes for that protocol.  
Manual selection of cells in the combined tSNE map returns DE of the imputed gene sets.  

Single protocol and SSAM visualization 

Apart from the comparative visualization, functionality for visualizing individual protocols was 
developed, consisting of a linked spatial and tSNE map (Figure 5B).  The tSNE maps were computed on 
the measured cell-by-gene expression matrices of the individual spatial datasets.  Since SSAM omits the 
step of direct cell segmentation, estimating local correlation between SSAM Kernel Density Estimate 
profiles and the cluster prototypes, direct comparison between cell-segmented and estimated local 
correlation maxima was not possible.  As such, the individual SSAM local maxima-by-gene matrices were 
included in the single protocol visualizations.  
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Figure 5: Cytosplore Viewer enables comparative visualization of the SpaceTx data and methods, 
enabling cell selection from cluster taxonomies (cluster panel), tSNE of single cells based on 
expression profiles (tSNE panel) and spatial coordinates of cells / local maxima (spatial panels).  (A) 
Cross-protocol comparison view: an integrated tSNE map of all cells enables side-by-side comparison of 
spatial patterning of both consensus matchings on smFish (i), MERFISH (ii), BaristaSeq (iii) and ExSeq (iv), 
as well as differential expression analysis of cell selections (DE gene panel).  (B) Single protocol 
comparison view enables comparing the consensus matchings in the segmentation-based methods (v) 
and segmentation-free SSAM results (vi) for the individual spatial protocols.  Viewing panels are 
highlighted on the top; data and method selection panel is highlighted to the right of the figure.  The 
NWCS results are shown in both A and B; MERFISH data and results are shown in B.  Data and methods 
can be selected in the data and method selection panel. 

Discussion 

This manuscript focused on the meta-analysis of cell type matching between spatial transcriptomics 
data and scRNA-seq reference cell types.  The spatial transcriptomics methods are fast evolving, which 
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requires up-to-speed development of data analysis pipelines.  Significant emphasis has been devoted to 
computational algorithms focused on the segmentation step of the imaging-based spatial 
transcriptomics analysis pipeline [9, 19, 23, 33, 34]; however, limited focus has been on investigating the 
performance of spatial cell type matching in downstream analyses.  This work is the first-time evaluation 
of scRNA-seq-reference-based cell type matching performance across spatial transcriptomics 
experimental methods and cell type matching computational methods on the same tissue section. 

We first compared gene detection sensitivity and gene expression patterning across spatial 
experimental methods, which revealed high variability and very different dynamic range in the in situ 
hybridization data across different experimental protocols.  We also presented a systematic evaluation 
of the individual cell type matching algorithms and the combined matching strategies using the MERFISH 
dataset as an example.  The cell-based cell type matching algorithms were applied following the same 
segmentation step on the image data.  Individual matching results varied largely in their metrics of 
matching confidence as well as their deterministic cell type assignments, among which no overall 
“winner” could be claimed.  Given the variable performance of individual matching results, we used 
ensemble meta-analysis approaches to combine these individual matchings to form consensus results.  
The meta-analysis approaches largely improved the agreement between the consensus matchings, 
where the majority of the cells have the same cell type assignment by the two combined matching 
strategies.  Using the spot-based cell type matching algorithm, similar results as the consensus results 
could be efficiently obtained without explicit segmentation, given precise gene signatures are available.   

A Cytosplore Viewer compilation allows all spatial cells from all evaluated experimental protocols to be 
viewed in an integrated tSNE map based on the SpaGE-imputed expression scores from scRNA-seq 
reference data.  This enables interactive selection of cells (either through free-form selection or per cell 
type subclasses), confirming the consistency of the layer patterns across spatial protocols.  Differential 
analysis between free-form cell selections proved particularly useful for identifying gene expression 
gradients across cortical layers and confirming them across protocols.  A side-by-side comparison 
between the segmentation-based workflow and SSAM revealed a larger density of local maxima 
detected by SSAM compared to the segmentation-based analysis, however the spatial patterning of cell 
type subclasses was highly conserved between both methods.  Finally, a direct comparison between 
both combining strategies revealed similar cell type matching results for smFISH, MERFISH and ExSeq.  
For BaristaSeq, the combined matching by GMCS resulted in inconclusive results, whereas the NWCS 
matching still performed reasonably well.   

The spatial transcriptomics community is growing rapidly with advancements in both experimental and 
computational methods.  For downstream cell type analysis, challenges and opportunities co-exist as 
well-benchmarked analysis pipelines are lacking.  A major goal of the future work would be to promote 
standardization in data formats and computational methods, including methods for marker selection, 
probe design, cell segmentation, cell nuclei and boundary delineation, cell type matching, spatial pattern 
recognition, etc.  It will need the community to provide public access to large, high-quality, uniformly 
collected datasets from all current spatial transcriptomics methods, in common standard file formats, to 
accelerate innovation in the computational analysis of such data.  

Methods 

Cell-based cell type matching algorithms 
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We evaluated six computational cell type matching algorithms, namely map.cells* [1], mfishtools [24], 
fitness landscape model (FLM) [25], FR-Match [26, 27], Tangram [28], and pciSeq [29]. 

The map.cells* algorithm uses a derivative from the map.cells function in “scratch.hicat” R package [1] 
(https://github.com/AllenInstitute/scrattch.hicat) that was altered to make it more suitable for smaller 
gene panels.  It is a bootstrap-based method that uses Pearson correlation to assess the similarities 
between cells and cell type clusters. 

The mfishtools algorithm [24] (https://github.com/AllenInstitute/mfishtools) also uses Pearson 
correlation to match cells from spatial transcriptomics method to cell type cluster medians in a scRNA-
seq reference dataset.  This algorithm first applies filtering and scaling strategies to the mFISH and 
scRNA-seq datasets, and then uses correlation-based assessment to find the best fitting cell type cluster.  
There are several parameters allowing flexibility in filtering and analysis.  Probabilities for cell type 
assignment were approximated using the following: 

scaledCorrelation = pmax(y-(max(y)/2),0)^2 
probability = scaledCorrelation/sum(scaledCorrelation) 

where y is the vector of correlations between a given spatial transcriptomics cell and the median 
expression of each scRNA-seq cell type cluster.  Finally, several functions for visualization of matching 
results and assessment of matching accuracy are included in the mfishtools R package and were applied 
in this study.  A vignette for application of this method is available as part of the “mfishtools” R library. 

The FR-Match algorithm [27] (https://github.com/JCVenterInstitute/FRmatch) requires an initial de novo 
clustering of the spatial transcriptomics data, which provides a supervised mode for the algorithm.  Both 
the candidate spatial cell clusters and the scRNA-seq reference cell types were input to the algorithm, 
and the best-matched reference cell types for each spatial cell were obtained using the cell-to-cluster 
function (FRmatch_cell2cluster) implemented in the “FR-Match” R package [26]. 

Probabilistic Cell typing by In situ Sequencing (pciSeq) [29] (https://github.com/acycliq/pciSeq) is a 
Python package for probabilistic cell typing by in situ sequencing.  It uses a Bayesian algorithm, 
leveraging scRNA-seq data to first estimate the probability of each spot belonging to a cell and then 
each cell to a scRNA-seq cluster.  Spots dataframe, segmentation image labels, and scRNA-seq data are 
required inputs to the algorithm. 
 
Combining strategies for consensus matching 

Negative Weighting Combining Strategy (NWCS) 

A weighting approach was designed to combine the six individual cell type matching results.  An 
evaluation of the individual matching results revealed that:  1) The probabilistic assignments (a.k.a. 
confidence scores) that reflect the confidence of matching for each spatial cell to each reference cell 
type showed very different distributions from method to method; some were more binary as either 0 or 
1 and others showed more plateau distributions (Results). 2) Despite the distributional difference, some 
cells were assigned to the same cell type with the highest confidence score by all of the methods (i.e., 
well-matched cells), whereas other cells were only matched to a cell type with a high score by only one 
method (i.e., poorly-matched cells).  In order to avoid the bias introduced by the accidental assignment 
of those poorly-matched cells, we designed a negative weighting scheme to borrow the best-matched 
confidence score among all methods.  NWCS performs the following steps to combine the individual 
matching results: 1) Find the best-matched cell types of each cell by keeping the cell-wise highest 
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confidence score. 2) Assign a negative weight (-1) to all other cell types for each cell. 3) The combined 
confidence score matrix is the sum of all negatively weighted confidence score matrices of each 
individual method. 4) The NWCS cell type deterministic assignment is the cell type with the maximum 
confidence score for each cell in the combined matrix. 

Geometric Median Combining Strategy (GMCS) 

Given the above combining strategy weighing certain matchings over others, we also introduce an 
independently-developed combining strategy using a geometric median approach that considers each 
matching equally.  Given 𝑚 matchings, each matching 𝑐 cells to a probability distribution over 𝑛 
potential cell types, we create a 𝑚-gon (polygon with 𝑚 vertices) with vertices in the 𝑛-dimensional 
space (𝑅!).  For each of these polygons, we then find the geometric median, i.e., the point 𝑝 ∈ 𝑅! at 
which the sum of the 𝐿" norms from 𝑝 to each vertex in the polygon is minimized.  Intuitively, such a 
point considers each of the individual matchings equally, as having a point 𝑝 closer to one individual 
matching's vertex than another would not minimize the sum of the 𝐿" norms.  The confidence with 
which this matching assigns cell types is consequently a function of how similar or disparate constituent 
matchings are.  Accordingly, certain data modalities for which the individual matching results largely 
disagree with one another, e.g., BaristaSeq, resulted in not-as-well-classified cells, whereas data 
modalities in which each cell's corresponding polygon is of relatively small area, e.g., MERFISH, yielded 
very well-defined consensus matching (Results). 

Spot-based cell type analysis method 

SSAM (Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation) [19] analysis 
is a method that uses the guided mode to generate segmentation-free cell type assignments of the 
NWCS and GMCS consensus cell types.  For all datasets (MERFISH, smFISH, BaristaSeq, and ExSeq), the 
kernel density estimation (KDE) was performed with the location of mRNAs of each gene with the 
bandwidth 2.5μm.  The resulting vector field was normalized by a library size of 10, and then log-
transformed.  The mRNA count of each cell type cluster was normalized to a library size of 10 per cell, 
and then log-transformed.  The gene expression signature of each consensus cell type was computed by 
taking the mean of all normalized cells in the same cluster.  The resulting signatures were then mapped 
to the vector field, by computing Pearson’s correlations between each consensus signature to all pixels 
in the vector field.  The resulting cell types were filtered with the minimum correlation threshold 0.6. 
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