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Abstract 23 

Sex differences in the lifetime risk and expression of disease are well-known. Paradoxically, 24 

preclinical research targeted at improving treatment, increasing health span and reducing 25 

the financial burden of health care, has mostly been conducted on male animals and cells. 26 

Females are assumed to be the same or scaled versions of males, yet sex differences in the 27 

allometric relationship between phenotypic traits and body size, needed to evaluate the 28 

validity of this assumption, have not been established. We quantify allometry for 297 29 

phenotypic traits in male and female mice, recorded in >2.1 million measurements from the 30 

International Mouse Phenotyping Consortium. We find sex differences in allometric 31 

parameters (slope, intercept, residual SD) are common. Thus, the allometric relationship 32 

varies between the sexes: females are not scaled males. Our results support a complex, 33 

trait-specific patterning of sex differences in phenotypic traits, promoting case-specific 34 

approaches to therapeutic intervention and drug dosage scaled by body weight. 35 

 36 

 37 

 38 
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Introduction 41 

A historic use of male animals in preclinical research and male participants in clinical trials 42 

has resulted in a significant bias in healthcare systems around the world (Holdcroft, 2007). 43 

The knowledge available on many diseases, their manifestation, time course and the 44 

efficacy of treatment options, is highly skewed in favour of males. The need to reach parity of 45 

the sexes in biomedical research and to conduct sex-specific analysis of research results 46 

has been widely acknowledged (Mogil & Chanda, 2005; Rogers et al., 2008; Kim et al., 47 

2010; Beery & Zucker, 2011; Klein et al., 2015). Efforts to address this issue initially resulted 48 

in legislative changes around clinical research, requiring female participants in government-49 

funded clinical trials (e.g., NIH, 1993; Correa-de-Araujo, 2006; Klinge, 2008). Modest 50 

improvement to rebalancing representation of the sexes in clinical trials (Zucker & Beery, 51 

2010; Mazure & Jones, 2015; Feldman et al., 2019) has been bolstered by recent revisions 52 

to government guidelines in the US for preclinical research, requiring biological sex to be 53 

included as a study variable (Clayton & Collins, 2014). 54 

 55 

Basing healthcare decisions for women based on research conducted on men (and vice 56 

versa, e.g., Wiemann et al., 2007) potentially has profound consequences (Kim et al., 2010; 57 

Oh et al., 2015; Tannenbaum et al., 2019). Studies have established that the nature of 58 

disease experience and benefits of treatment differ between men and women (Rahore et al., 59 

2002; Gandhi et al., 2004; Canto et al., 2007; Whitley et al., 2009; Wallach et al., 2016; 60 

Mauvais-Jarvis et al., 2020). These differences manifest in major pillars of healthcare, 61 

impacting cost associated with care and its quality (Wainer et al., 2020). For example, sex 62 

differences in pharmacokinetics mean that therapeutic decisions based on studies with male 63 

subjects may lead to increased magnitudes of adverse drug reactions in women (Nakagawa 64 

& Kajiwara, 2015, Yu et al. 2016). Similarly, the broadly divergent behaviour of male (anti-65 

inflammatory) and female (pro-inflammatory) immune systems translates to antibody 66 

response variability, with some vaccines resulting in a stronger immune response in males 67 

compared to females (Bouman & Heineman, 2005; Cook, 2008; Klein, 2013; Flanagan, 68 

2014). Moreover, pathophysiological differences between the sexes lead to women being 69 

underdiagnosed or undertreated for leading causes of mortality, such as cardiovascular 70 

disease and Type 2 diabetes (Mauvais-Jarvis et al., 2020).  71 

 72 

With the growing recognition of the importance of sex in biomedicine, a sharper focus on the 73 

topic has revealed that some of the initial assumptions and concerns surrounding use of 74 

female animals in preclinical research, such as their propensity for greater variation 75 

associated with the oestrous cycle (Shansky, 2019), lack empirical support (Mogil & Chanda, 76 

2005; Prendergast et al., 2014; Zajitschek et al. 2020). Nevertheless, questions have been 77 
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raised about the value of including female animals in preclinical research, citing a negative 78 

impact on the burden of evidence for therapeutic interventions (Fields 2014) and a lack of 79 

clarity surrounding the extent to which sex differences may be explained by sex-linked 80 

variables, such body mass index or body weight differences between the sexes (Richardson 81 

2015).  82 

 83 

Building on empirical studies that have sought to establish the nature of sex differences in 84 

biomedicine and to clarify the assumptions surrounding preclinical (Mogil & Chanda, 2005; 85 

Becker et al., 2016; Karp et al., 2017; Zajitschek et al., 2020) and clinical (Campesi et al., 86 

2021) research data collected on males and generalized to females, we here tackle the 87 

extent to which females can be considered ‘small’ males in biomedicine. This is a pervasive 88 

narrative that impacts research design. 89 

 90 

We adopt the framework of static allometry, the measurement of trait covariation among 91 

individuals of different size at the same developmental stage, following Huxley (1924, 1932), 92 

who proposed an equation to model simple allometry. This equation expresses the growth of 93 

two traits, x and y, when regulated by a common growth parameter: y = axb, or equivalently 94 

log y = log(a) + b log (y), where the ratios between the components of the growth rates of y 95 

and x correspond to intercept log(a) and a slope b (Pélabon et al., 2013). We quantify the 96 

relationship between phenotypic trait and body weight in males and females, statistically 97 

evaluating scenarios that describe the magnitude and patterning of sex differences across 98 

297 traits in over 2 million mice from the International Mouse Phenotyping Consortium 99 

(IMPC, www.mousephenotype.org; Dickinson et al., 2016).  100 

 101 

By providing empirical data on static allometry across phenotypic traits that represent 102 

preclinical parameters (e.g., immunology, metabolism, morphology), we aim to clarify if, and 103 

the extent to which, trait values for males may be scaled to match those of females. That is, 104 

we tackle the assumption that females are small males and identify, for the first time, the 105 

trait-specific features of the allometric relationship. We discuss these data considering the 106 

discourse on the generalization of male data in preclinical research (Usui et al. 2021), as 107 

well as their evolutionary implications, leveraging a large, wildtype dataset to illuminate 108 

microevolutionary trends in static allometry. Consideration of the evolutionary context 109 

surrounding sex differences may augment understanding of how disease state phenotypes 110 

emerge or persist in a population (Morrow & Connallon, 2013; Morrow, 2015). Data on 111 

allometric scaling also relate to one of the most salient aspects of sex differences, those 112 

concerning adverse drug reactions (ADRs) and the so far unanswered question of whether 113 
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weight-adjusted doses would suffice to offset the majority of sex-specific ADRs (Zucker & 114 

Prendergast, 2020).  115 

 116 

 117 

Figure 1. Examples of scenarios of sex differences in a trait of interest ~ weight allometric relationship. Top row 118 

shows a hypothetical positive relationship between body weight and eye size and the bottom row negative 119 

relationship between body size and activity. Body weights are scaled and centred so that the intercept is at the 120 

trait mean represented by a grey dashed line. A) Different positive slopes for the sexes, but same intercepts. B) 121 

Same positive slopes for both sexes, but different intercepts. C) Different positive slopes for both sexes, and 122 

different intercepts. D) Different negative slopes for the sexes, but the same intercepts. E) Same negative slopes 123 

for both sexes, but different intercepts. F) Different negative slopes for both sexes and different intercepts. 124 

 125 

Results  126 

Data characteristics 127 

Following initial data cleaning and filtering procedures, the dataset comprised 297 128 

phenotypic traits with a median sample size of 1,585 mice per trait (n = 2,104,527). 129 

Representation of males and females was highly similar across most phenotypic traits, with 130 

fewer than 10% of traits (29/297) displaying greater than 5% difference in sample size 131 

between males and females. The traits were collated into nine functional groupings following 132 

Zajitschek et al. (2020) (see Methods): behaviour (57 traits, n = 484,207), eye (27 traits, n = 133 

10,366), hearing (16 traits, n = 201,220), heart (27 traits, n = 196,777), hematology (25 traits, 134 
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n = 300,699), immunology (79 traits, n = 89,952), metabolism (9 traits, n = 111,659), 135 

morphology (24 traits, n = 364,484), and physiology (33 traits, n = 345,163). 136 

 137 

The 297 phenotypic traits were further filtered for non-independence of traits, so that p 138 

values were merged for traits that were related to one another, resulting in a reduced data 139 

set of 181 traits, with a median sample size of 4,044 individuals per trait.  140 

 141 

Linear mixed-effects models for static allometry 142 

Our linear mixed-effects models indicated that 8 out of 181 traits (4%) (13 / 297 traits for 143 

unmerged p-values) are associated with scenario A (different slope, same intercept, Fig. 1A, 144 

1D); most of these traits belonged to immunology and heart functional groups. Note that the 145 

intercept for each sex was set so that we compared mean values for each sex for a given 146 

trait. Scenario B (same slope, different intercept, Fig. 1B, 1E) was supported for 70 / 181 147 

(39%) traits (125 / 297 traits for unmerged p-values). For scenario C (different slope, 148 

different intercept, Fig. 1C, 1F), 69 / 181 (38%) traits were categorized as consistent (86 / 149 

297 traits for unmerged p-values), and the remaining 34 / 181 (19%) traits showed no 150 

significant differences in slope and intercept between males and females. Overall, when a 151 

statistically significant difference in allometric pattern was present between the sexes, 152 

intercept differences appeared more common than slope differences (39% compared to 4% 153 

traits), however both slope and intercept differences were also similarly common (38%). Just 154 

under a fifth of traits showed no significant differences between males and females, 155 

indicating that, for most traits, sex differences in allometric patterning represent a significant 156 

source of variation in trait values.  157 

 158 

Taken together, traits in all functional groups showed statistically significant (α = 0.05) sex 159 

differences. Slope differences between the sexes (scenario A) e most common in 160 

immunology and heart groups, while intercept differences (scenario B) were most common 161 

for traits in the behaviour and heart functional groups. Traits exhibiting both slope and 162 

intercept differences between the sexes (scenario C) were most commonly found in the 163 

metabolism and physiology functional groups. Non-significant differences in slope and 164 

intercept were most common among traits in the behaviour and morphology functional 165 

groups. 166 

 167 

Sex bias in allometric parameters 168 

Sex bias in the slope and intercept values, in addition to the magnitude of variance (residual 169 

SD), showed considerable variability across functional groups, suggesting trait-specific 170 

patterning of sex differences. For scenario A, representing traits with significant differences 171 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

in slope, most traits showed greater slope magnitudes for males (n = 6 traits), rather than for 172 

females (n = 4 traits) (Fig. 2A). For scenario B, females showed greater intercept 173 

magnitudes for morphology, immunology, eye and behaviour functional groups (n = 45 174 

traits), whereas males showed greater intercepts for traits in physiology, metabolism, 175 

hematology, heart and hearing functional groups (n = 32 traits) (Fig. 2B). Overall sex bias 176 

(65 male traits: 60 female traits, Fig. 2B) was slightly greater for intercept differences, 177 

compared to slope differences (7 male traits: 6 female traits, Fig. 2A). Scenario C, which 178 

represents significant slope and intercept parameter differences between the sexes, was 179 

predominated by mixed bias across five out of nine functional groups (n = 24 traits), 180 

indicating that most functional groups contained traits that showed a mixture of directional 181 

differences in bias, comprising a combination of male bias in one parameter (slope or 182 

intercept) and female bias in the other parameter (slope or intercept) (Figure 2C). 183 

Immunology-related traits represent an exception under scenario C, whereby traits with 184 

significant differences between the sexes did not show a mixed bias for slope and intercept 185 

values. Across functional groups, male bias is slightly more common (5 groups) than female 186 

bias (4 groups) for statistically significant sex difference in residual SD, indicating that where 187 

traits show differences between the sexes, it is more common for males to be more variable 188 

than females, than vice versa (Figure 2D) (133 male traits: 71 female traits). 189 

 190 
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 191 

Figure 2. Sex biases for mice phenotypic traits arranged in functional groups. Colours represent significant 192 

differences in trait values between the sexes (green – male biased, orange – female biased) for allometric slope 193 

(scenario A), intercept (scenario B) or slope and intercept, including traits with mixed (purple) significant 194 

differences (i.e. male-biased significant slope and female-biased significant intercept, or female-biased significant 195 

slope and male-biased significant intercept) (scenario C), and bias in statistically significant difference in variance 196 

(residual SD) between the sexes (D). The number of traits that are either female biased (relative length of orange 197 

bars) or male biased (relative length of green bars) are expressed as a percentage of the total number of traits in 198 

the corresponding group. Numbers inside the green bars represent the numbers of traits that show female bias 199 

within a given group of traits, values inside the orange bars represent the number of male biased traits, and those 200 

inside the purple bars represent a combination of female bias (for intercept or slope) and male bias (for intercept 201 

or slope).  202 

 203 
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 204 

 205 

Figure 3. Orchard plots illustrating results of multivariate meta-analysis based on differences between male and 206 

female absolute values for allometric intercept (A, D), slope (B, E) and residual variance (SD) (C, F). Plots in 207 

greyscale (top row) show overall differences (A – C), and plots below, in colour, show separate results for each 208 

functional group (D – F). Orchard plots show model point estimate (black open ellipse) and associated 209 

confidence interval (CIs) (thick black horizontal line), 95% prediction intervals (PIs) (thin black horizontal line), 210 

and individual effect sizes (filled ellipses), which are scaled by their precision, defined as: precision = 1 / 211 

Standard Error (SE) (see Nagakawa et al., 2021). 212 

 213 

Meta-analysis and meta-regression of sex differences in slope, intercept and variance 214 

Multi-level meta-analysis of absolute values in allometric slope and intercept, and variance, 215 

revealed significant differences between the sexes (Fig. 3A – C), with the greatest effect size 216 

evident for intercept value (Fig. 3A). Across functional groups, there was variability in the 217 
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magnitude of absolute difference between the sexes, both within parameters (i.e., intercept) 218 

and across parameters. For absolute differences in intercept, traits within the physiology 219 

functional group showed greatest model point estimate difference between males and 220 

females, whereas those within the hearing group showed the smallest magnitude of 221 

difference (Fig. 3D). For differences in slope, which showed lower inter-trait variability than 222 

differences in intercept, the largest model point estimate difference was observed for eye 223 

traits, and the smallest difference for hearing traits (Fig. 3E).  224 

 225 

Similarly, for relative difference in residual SD, eye traits showed the largest amount of 226 

dimorphism, whereas heart and metabolism traits were most similar in SD values between 227 

the sexes (Fig. 3F). Overall, across all parameters (intercept, slope and SD), confidence 228 

intervals (CIs) for hearing traits were the only ones to consistently overlap with zero, showing 229 

no statistically significant difference between the sexes (Fig. 3D, E, F). For traits within a 230 

given functional group, there was considerable variability in the magnitude of difference 231 

between the sexes. For sex differences in intercept, inter-trait variability was highest for 232 

physiology, morphology and metabolism groups (Fig. 3D), whereas slope differences 233 

showed most inter-trait variability for eye and behaviour traits (Fig. 3E), and relative 234 

difference in SD was also most variable among traits in eye and behaviour groups (Fig. 3F).  235 
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 236 

Figure 4. Bivariate ordinations of log absolute difference between males and females for intercept and residual 237 

SD (A), slope and residual SD (B), and slope and intercept (C), for biological traits collated into nine functional 238 

groups (i.e., Trait types, represented as different circle colours). Individual effect sizes (circles) are scaled by their 239 

precision, defined as: precision = 1 / Standard Error. 240 
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 241 

Relationship between slope/intercept and residual variance  242 

Tri-variate meta-regressions and ordinations of the relationships between slope, intercept 243 

and residual variance (Fig. 4) revealed weak correlations between either slope or intercept 244 

and residual variance (r = 0.07 – 0.19, Fig. 4A – B), indicating that a greater magnitude of 245 

difference between the sexes in either slope or intercept parameter is not strongly 246 

associated with greater trait variance. In contrast, absolute differences between the sexes in 247 

slope and intercept are strongly correlated (r = 0.56, Fig. 4C), indicating that in cases where 248 

there are significant differences in trait values for males and females, should a difference in 249 

intercept be present, this is likely accompanied by a difference in allometric slope. 250 

 251 

Discussion 252 

Most current medical guidelines are not sex-specific, being informed by preclinical studies 253 

that have been conducted only on male animals (Zucker & Beery, 2010; Kim et al., 2010; 254 

Zucker et al., 2021) under the assumption that the results are equally applicable to females, 255 

or that the female phenotype represents a smaller body size version of the male phenotype 256 

(Buch et al., 2019; Campesi et al., 2021). Our study sought to provide comprehensive 257 

assessment of this assumption for a large dataset of phenotypic traits in mice. We did not 258 

recover strong evidence for the validity of this assumption in a preclinical (mouse) model: we 259 

find that females are not ‘small’ males or, more accurately, not ‘scaled’ males.  260 

 261 

In an era where personalised medicine interventions are within reach and patient-specific 262 

solutions represent a realisable frontier in healthcare (e.g., Jackson & Chester, 2014; Javaid 263 

& Haleem, 2018; Heath & Pechlivanoglou, 2022), it is now well recognised that sex-based 264 

data are much needed to advance care in an equitable and effective manner. The historic 265 

neglect of sex as a study variable means that the natural history and trajectory of treatment 266 

response in women remains opaque for many chronic diseases. As studies that illuminate 267 

the presence and importance of sex differences continue to emerge, many experimental set-268 

ups that use both sexes continue to eschew downstream testing for sex differences, in part 269 

due to perceived inflation of sample size required for such analyses (Dayton et al., 2016; 270 

Buch et al., 2019; Arnegard et al., 2020; Woitowich et al., 2020).  271 

 272 

Explicit male-female comparisons are needed to clarify the nature of sex differences (Garcia-273 

Sifuentes & Maney, 2021; Zucker et al., 2021). Here we address this issue through a novel 274 

meta-analytical focus on identifying and characterising allometric scaling relationships for 275 

biological traits on a broad scale. We identify slope parameter (b) differences between the 276 

sexes as being common (Fig. 2C, Fig. 3E) and where present, often associated with 277 
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significant differences in intercept value (Fig. 4C). We therefore demonstrate that the 278 

relationship between trait and body mass in mice differs fundamentally in mode (i.e., change 279 

in inter-trait covariance) between the sexes and that dimorphism cannot be fully explained by 280 

a magnitude shift in intercept value, as would be predicted should female phenotype 281 

represent a scaled version of male phenotype. For traits where there are significant 282 

differences in both slope and intercept between the sexes (Fig. 3C), it is common for a 283 

mixed scenario (male-biased significant slope and female-biased significant intercept, or 284 

female-biased significant slope and male-biased significant intercept; note that intercepts 285 

represent mean values for each sex) to occur. Therefore, for a given trait, a female value 286 

cannot be predicted based on an allometric coefficient extracted from regression data 287 

collected on males. Further, we find a male bias in residual SD for traits in morphology, 288 

immunology, hematology, hearing, and behaviour functional groups (7 out of 9 functional 289 

groups). However, we also find a weak correlation between difference in intercept and 290 

residual SD (Fig. 4A), meaning that allometric scaling differences alone do not explain 291 

increased residual SD in males compared to females. Or, put another way, among traits that 292 

show significant dimorphism in allometric relationships, males do not show greater variance 293 

than females just because they have greater body weights than females. 294 

 295 

Our results complement recent evidence that supports a complex, trait-specific patterning of 296 

sex differences in markers routinely recorded in animal research (Rawlik et al., 2016; Karp et 297 

al., 2017; Zajitschek et al., 2020). Specifically, we build on previous studies using phenotypic 298 

traits from the International Mouse Phenotyping Consortium that have identified that sexual 299 

dimorphism is prevalent among phenotyping parameters (Karp et al., 2017), and moreover 300 

that, contrary to long-held assumption, neither females nor males show greater trait 301 

variability. We here show that the allometric relationship between trait value and body weight 302 

is dimorphic for most traits (75%), and these differences, where present, reflect trait-specific 303 

allometric patterns, involving both slope and intercept changes. As such, for slopes greater 304 

than zero, some trait values increase faster than body weight (positive allometry; b > 1) and 305 

some do not increase at the same rate as body weight (negative allometry; b < 1).  306 

 307 

Sex-based scaling in biomedical studies 308 

Our findings likely have implications for drug therapy, and specifically data surrounding the 309 

efficacy of drug dosing scaled by body weight. There exist known sex differences in drug 310 

prescription prevalence and usage patterns, as well as response to drug therapy (Watson et 311 

al., 2019; Malda et al., 2021). The same therapeutic regimen can elicit different responses 312 

due to sex-specific variance in pharmacokinetics and pharmacodynamics profiles (e.g., Yang 313 

et al., 2012; Zakiniaeiz et al., 2016), arising from underlying physiologic differences. These 314 
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include, for example, significantly dimorphic traits captured among the physiology group in 315 

our analysis, such as iron (Jiang et al., 2019) and body temperature (van Hoof, 2015), 316 

among the morphology group, such as lean mass and fat mass (Madla et al., 2021), and 317 

among the heart functional group, such as QT interval (time between Q wave and T wave) 318 

(Regitz-Zagrosek & Kararigas, 2017). Population studies have revealed that there is a higher 319 

prevalence of use for most therapeutic drugs in women as compared to men (Fernandez-Liz 320 

et al., 2008; Watson et al., 2019). Further, women are 50 – 75% more likely to experience 321 

Adverse Drug Reactions (ADRs) (Rademaker, 2001), although these are not fully explained 322 

(Koren et al., 2012). Women may be at increased risk of ADRs because they are prescribed 323 

more drugs than men, however women are usually prescribed drugs at the same dose as 324 

men, meaning that they receive a higher dose relative to body weight in most cases. Scaling 325 

of doses on a milligram/kilogram body weight basis has been recommended as a pathway to 326 

reducing ADRs (Zucker & Prendergast, 2020), particularly for drugs that exhibit a steep 327 

dose-response curve (Chen et al., 2020). Indeed, sex differences in ADRs have been 328 

argued to be the result of body weight rather than sex, per se (Richardson et al., 2015). For 329 

both assertions to be supported, we would expect to observe a scenario (here, scenario B) 330 

whereby most or all phenotypic traits exhibit a scaled relationship between males and 331 

females, as a function of body weight. Our results do not provide overwhelming support in 332 

favour of scenario B, but rather support a sex- and trait-specific relationship between weight 333 

and phenotypic traits. This aligns more closely with evidence that weight-corrected 334 

pharmacokinetics are not directly comparable in men and women (Fadiran & Zhang, 2015; 335 

Zucker & Prendergast, 2020), and that many sex differences in ADRs persist after body 336 

weight correction (Greenblatt et al., 2014, 2019). Nevertheless, the Food and Drug 337 

Administration (FDA) has recommended dosage changes for women (e.g., sleep drug 338 

zolpidem; Farkas et al., 2013) and weight adjusted dosing of some drugs, such as antifungal 339 

drugs and antihypertensive drugs, appear to ameliorate sex differences in pharmacokinetics 340 

(Guo et al., 2010; Jarugula et al., 2010). As such, we suggest that where there exists an 341 

association between sex and dose, dose-response curves are likely to be sex-specific and 342 

clarification of this relationship would be supported (e.g., using meta-analysis, Zhong et al., 343 

2017) rather than using a scaled male-specific dose response curve for females. Since many 344 

drugs are withdrawn from the market due to risks of ADRs in women, meta-analytic 345 

approaches to illuminating sex-specific dose response curves represents a viable 346 

opportunity to reducing the number of ADRs and reaching an important target set by 347 

precision medicine (Polasek et al., 2018). 348 

 349 

Implications for allometric evolution 350 
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The study of allometry has a long history in evolutionary biology, established as a 351 

foundational descriptor of morphological variation at ontogenetic, population and 352 

evolutionary levels (Cheverud, 1982; Klingenberg, 1998). Allometry may channel phenotypic 353 

variation in fixed directions, defining scaling relationships that persist across large 354 

evolutionary timescales. For example, craniofacial variation among mammals has been 355 

observed to be constrained by allometry, such that small mammals have shorter faces than 356 

do larger ones (Cardini & Polly, 2013; Cardini et al., 2015). Conversely, allometry may 357 

facilitate morphological diversification, acting as a line of ‘evolutionary least resistance’, 358 

allowing for new morphotypes to originate relatively rapidly among closely related species 359 

(Porto et al., 2009; Pélabon et al., 2014). These pathways (allometric constraint vs allometric 360 

facilitation) may be a start point for exploring how sex differences in disease phenotypes 361 

arise, data that have been cited as a potential unexploited resource relevant for the 362 

development of new therapies (Arnold, 2010). Studies of static allometry, as examined 363 

herein, have revealed low levels of intraspecific variation in allometric slope, which explains 364 

only a small proportion of variation in size (Voje et al., 2014), compared to variation in 365 

allometric intercept (Bonduriansky, 2007). Moreover, traits under sexual selection have also 366 

revealed low magnitudes of allometric slope change under artificial selection experiments 367 

(Egset et al., 2012) and in wild populations (Egset et al., 2011), whereas intercept changes 368 

appear clear and heritable. These differences have historically been thought to be due to 369 

underlying features of the developmental system acting as an internal constraint (Huxley 370 

1932; Gould, 1966), whereas more recent interpretations suggest that external constraint 371 

(selection) more likely acts to maintain slope invariance at the static level (Pélabon et al., 372 

2013), which is consistent with data showing that variation occurs instead at the ontogenetic 373 

level, i.e. growth rate and ontogenetic allometric slope are evolvable (e.g., Wilson & 374 

Sánchez-Villagra, 2010; Klingenberg, 2010; Wilson, 2013). Broadly consistent with other 375 

static allometric studies, we find that where differences in allometry are present, significant 376 

intercept shifts alone are more common than are significant slope shifts (Fig. 2A compared 377 

to 2B). We focus explicitly on sex differences and observe that many traits show a 378 

combination of intercept and slope changes, as well as differences in residual variance. 379 

Aside from the evolutionary implications – that allometric slope likely does not have a high 380 

evolvability, or capacity to evolve – many of the traits examined here may show a low level 381 

of sex difference in slope because the sexes are both experiencing the same selective 382 

pressure to maintain functional size relationships across different body sizes.  383 

 384 

Our meta-analytic results build a narrative of complexity in sex-based trait interactions and 385 

promote a case-specific approach to preclinical research that seeks to inform drug 386 

discovery, development and dosage. That females are not ‘small’ or ‘scaled’ males in a 387 
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preclinical mouse model underscores the need to include female data from the earliest 388 

experimental stages. Our results evidence the plasticity of allometry at a microevolutionary 389 

scale, revealing a pathway for sex variation in phenotypic traits, which may influence study 390 

outcomes in biomedicine.  391 

 392 

Methods 393 

Data compilation and filtering 394 

We conducted all data procedures, along with statistical analyses, in the R environment v. 395 

4.1.1 (R Development Core Team, 2021). We compiled our data set from the International 396 

Mouse Phenotyping Consortium (IMPC) (www.mousephenotype.org, IMPC data release 397 

10.1 June 2019), accessed in October 2019. These represent traits recorded in a high-398 

throughput phenotyping setting whereby standard operating procedures (SOPs) are 399 

implemented in a pipeline concept. The phenotypic traits represent biomarkers used for the 400 

study of disease phenotypes (see Karp et al., 2017), collated into the following nine 401 

functional groups: behaviour, eye, hearing, heart, hematology, immunology, metabolism, 402 

morphology, and physiology, which are the IMPC’s original categorization (also previously 403 

used in Zajitschek et al., 2020). These groupings were assigned in relation to the description 404 

of the procedure undertaken for data point collection and following the categorisation of 405 

pipeline events at adult stage, detailed in the International Mouse Phenotyping Resource of 406 

Standardised Screens (IMPReSS, https://www.mousephenotype.org/impress/index). 407 

 408 

For the initial dataset, data points were collated for adult wildtype mice only, filtering to 409 

include non-categorical phenotypic trait values for which covariate information on sex and 410 

body weight were available. This initial dataset comprised of 2,866,345 data points for 419 411 

traits. A series of data cleaning procedures were implemented to remove data points with 412 

missing body weight, zero values for a phenotypic trait and duplicated specimen IDs. Data 413 

filtering was conducted using the R package dplyr v.1.0.7 (Wickham et al., 2021). The 414 

resulting data set comprised 2,104,497 data points for 297 phenotypic traits, all of which had 415 

corresponding body weight data, enabling us to estimate an allometric relationship between 416 

a trait of interest and body weight. For each phenotypic trait, we had the following variables 417 

(covariates): phenotyping center name (location where experimental data were collected), 418 

external sample ID (animal ID), metadata group (identifier for experimental conditions in 419 

place during the experiment), sex (male / female), weight (body weight in grams), weight 420 

days old (day on which weight was recorded), procedure name (description of the 421 

experimental procedure as in IMPReSS), parameter name (description of the recorded 422 

parameter as in IMPReSS), and data point (phenotypic trait measurement – response 423 

variable).  424 
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 425 

Linear mixed-effects model for static allometry 426 

The static form of allometry, the covariation of a trait with size as measured across a 427 

population of adults within a single species (Klingenberg, 1998), was quantified using a 428 

linear mixed-effects model approach (Laird & Ware, 1982). Within this framework, the 429 

relationship between phenotypic trait value and body weight, accounting for random effects 430 

associated with assignment to a metadata group and batch (defined as the date when the 431 

measurements are collected), was quantified for each of the 297 traits. Models were 432 

constructed using the function lme in the R package nlme v. 3.1-153 (Pinheiro et al., 2021) 433 

and applied to each phenotypic trait separately. We used the approach described by 434 

Nakagawa et al. (2017) that uses within-group centring (wgc) of the continuous predictor 435 

(i.e., weight); in this way, the intercepts (x = 0) for each sex represents the population mean 436 

for that specific sex. Also, we calculated z-scores (z) from the response (y) so that all 437 

regression coefficients are directly comparable across different traits. The applied model 438 

was: 439 

 440 

z(log (data point)) ~ wgc(log (weight)) * sex + (1 | batch) + (weight | metadata group) 441 

 442 

The random factor ‘batch’ labelled a cohort of mice that went through a procedure on the 443 

same day (see Karp et al., 2017), whereas ‘metadata group’ represented occasions when 444 

procedural parameters were changed (e.g., different instruments, different observers and 445 

different settings). These two random factors along with the ‘weight’ random slopes would 446 

reduce Type I errors due to clustering (Schielzeth & Forstmeier, 2009). Also, to estimate 447 

different residual variances between the two sexes, we modelled group-wise 448 

heteroscedasticity structure, which was defined using the lme function’s argument weights = 449 

varIdent (form = ~1 | sex). 450 

 451 

For each phenotypic trait, model parameters (regression coefficients and variance 452 

components) were extracted, using R package broom.mixed v.0.2.7 (Bolker & Robinson 453 

2021), for males and females (slope, intercept, standard error, SE of slope, SE of intercept 454 

and residual variance) and corresponding p values for regression coefficients were extracted 455 

to assess the significance of sex differences in slope and intercept. Because the lme 456 

function did not provide statistical significance for differences in residual variances (standard 457 

deviations, SDs), we used the method developed by Nakagawa et al (2015) or the logarithm 458 

of variability ratio, which compares the difference in SDs between two groups to obtain p 459 

values for residual SD differences (see also Senior et al., 2020).  460 

 461 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

We were aware that some of the 297 studied traits were strongly correlated (i.e., non-462 

independent: e.g., traits from left and right eyes and immunological assays with 463 

hierarchically clustering and overlapping cell types). Therefore, we collapsed p values of 464 

these related traits into 181 p values, using the procedure (grouping related traits or trait 465 

grouping) performed by Zajitschek et al. (2020). We employed Fisher’s method with the 466 

adjustment proposed by Li and Ji (2005) implemented in the R package, poolr (Cinar & 467 

Viechtbauer, 2021), which modelled the correlation between traits; we set this correlation to 468 

0.8.  469 

 470 

Static allometry hypotheses and Sex-bias in allometric parameters 471 

Using parameters extracted from the above models, three scenarios were assessed (see Fig 472 

1), describing the form of sex differences in the static allometric relationship between 473 

phenotypic trait value and body weight. For a given trait, these were: a) males and females 474 

have significantly different slopes but share a similar intercept (Fig. 1A, 1D), b) males and 475 

females have significantly different intercepts but share a similar slope (Fig. 1B, 1E), c) 476 

males and females have significantly different slopes and intercepts (Fig. 1C, 1F). In 477 

addition, we assessed how many traits were significantly different in residuals SDs between 478 

the sexes. For these classifications, we used both p values from 297 traits and 181 merged 479 

trait groups.  480 

 481 

For scenarios A – C, which represent significant differences between male and female 482 

regression slope and / or intercept parameters and cases where sex differences in SDs were 483 

significant, data were collated into functional groupings (as listed above) to assess whether, 484 

and to what extent, sex bias in parameter values and variance was present across 485 

phenotypic trait values. That is, when males and females differed significantly, we counted 486 

which sex displayed the greater parameter value (intercept, slope) and, separately, we also 487 

tallied the sex with the higher magnitude of variance. Results were pooled for phenotypic 488 

traits within a functional group and visualised using R package ggplot 2 v. 3.3.5 (Wickham 489 

2016) for scenarios A – C, resulting in one set of comparisons for parameter values, and one 490 

for variance (SD) values. We should highlight that we only used the data set with 297 traits 491 

because the directionality of some trait values became meaningless once traits were 492 

merged, although merged p values were meaningful as p values are not directional (e.g., 493 

spending time in light side or dark side).  494 

 495 

Meta-analysis of differences in slopes, intercepts and residual SDs 496 

We were aware that our classification approach using p values are akin to vote counting, 497 

which has limitations (Gurevitch et al., 2018). Therefore, we conduced formal meta-analyses 498 
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using the following effect sizes: 1) difference between intercepts (traits mean for males and 499 

females), 2) difference between slopes and 3) differences between residuals SDs. We used 500 

corresponding SE or, more precisely, the square of SE as sampling variance. We were not 501 

able to compare the directionality of effect sizes among traits (e.g., latencies and body 502 

sizes), however our main interest in this study was whether males and females were 503 

different in intercepts, slopes and residuals SDs irrespective of directionalities. Therefore, we 504 

conducted meta-analyses of magnitudes applying the transformation to the mean and 505 

sampling variance, which assumes to follow folded normal distribution (Morrissey, 2016, eq. 506 

8), by using the formulas below: 507 

ES������ � SE�2� exp� ES�2SE�� � ES �1 
 2� �
 ES

SE

� 

SE������
� � ES� � SE� 
 ES������

�  

Where Φ is the standard normal cumulative distribution function and ESfolded and SEfolded are, 508 

respectively, transformed effect size (point estimate) and sampling variance, while ES and 509 

SE are corresponding point estimate and sampling variance before transformation. 510 

Morrissey (2016) has shown that meta-analytic means using such a folding transformation 511 

are hardly biased. Therefore, these transformed variables were directly meta-analysed using 512 

the rma.mv function in the R package, metafor (Viechtbauer, 2010). The intercept models 513 

(meta-analytic model) had three random factors: 1) functional group, 2) traits group and 3) 514 

effect size identifier (which is equivalent to residuals in a meta-analytic model; see 515 

Nakagawa & Santos, 2012), while in the meta-regression models, we fitted functional group 516 

as a moderator (see Fig 3). The model structures for all the three effect sizes were identical. 517 

We reported parameter estimates and 95% confidence intervals, CI and 95% prediction 518 

intervals, PI, which were visualised by the R package, orchaRd (Nakagawa et al., 2021). In a 519 

meta-analysis, 95% PI represents the degree of heterogeneity as well as a likely range of an 520 

effect size for a future study. We considered the estimate statistically significant when 95% 521 

CI did not span zero.  522 

 523 

Correlations among differences in slopes, intercepts and residual SDs 524 

We also quantified correlations among the three effect sizes, using a Bayesian tri-variate 525 

meta-analytic model, implemented in the R package, brms (Burkner, 2017). We fitted 526 

functional grouping as a fixed effect and trait groups as a random effect using the function, 527 

brm. Notably, we have log transformed ESfolded and also transformed SEfolded using the delta 528 

method (e.g., Nakagawa et al., 2017), accordingly, before fitting effect sizes to the model. 529 

We imposed the default priors for all the parameter estimated with the settings of two chains, 530 

1,000 warm-ups and 4,000 iterations. We assessed the convergence of the chains by 531 
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Gelman-Rubin statistic (Gelman & Rubin, 1992), which was 1 for all chains (i.e., meaning 532 

they were all converged) and we also checked all effective sample sizes for posterior 533 

samples (all were over 800). We reported mean estimates (correlations among the three 534 

effect sizes) and 95% credible intervals (CI) and if the 95% CI did not overlap with 0, we 535 

considered the parameter statistically significantly different from 0.  536 

 537 

Data availability 538 

The R code and data generated during this study are freely accessible on GitHub at <to be 539 

inserted>. An R Markdown file with the complete workflow for all analyses is provided in the 540 

supporting information, available at <to be inserted>. 541 

 542 

References 543 

Arnegard, M. E., Whitten, L. A., Hunter, C., & Clayton, J. A. (2020). Sex as a biological variable: a 5-544 

year progress report and call to action. Journal of Women's Health, 29(6), 858-864. 545 

Arnold, A. P. (2010). Promoting the understanding of sex differences to enhance equity and 546 

excellence in biomedical science. Biology of Sex Differences, 1(1), 1. 547 

https://doi.org/10.1186/2042-6410-1-1  548 

Becker, J. B., Prendergast, B. J., & Liang, J. W. (2016). Female rats are not more variable than male 549 

rats: a meta-analysis of neuroscience studies. Biology of Sex Differences, 7(1), 34. 550 

https://doi.org/10.1186/s13293-016-0087-5 551 

Beery, A. K., & Zucker, I. (2011). Sex bias in neuroscience and biomedical research. Neuroscience & 552 

Biobehavioral Reviews, 35(3), 565-572. 553 

https://doi.org/https://doi.org/10.1016/j.neubiorev.2010.07.002 554 

Bolker, B., & Robinson, D. (2021). broom.mixed: Tidying Methods for Mixed Models. In (Version 555 

0.2.7.) https://CRAN.R-project.org/package=broom.mixed 556 

Bouman, A., Heineman, M. J., & Faas, M. M. (2005). Sex hormones and the immune response in 557 

humans. Human Reproduction Update, 11(4), 411-423. 558 

Bonduriansky, R. (2007). Sexual selection and allometry: a critical reappraisal of the evidence and 559 

ideas. Evolution: International Journal of Organic Evolution, 61(4), 838-849. 560 

Buch, T., Moos, K., Ferreira, F. M., Fröhlich, H., Gebhard, C., & Tresch, A. (2019). Benefits of a 561 

factorial design focusing on inclusion of female and male animals in one experiment. Journal 562 

of Molecular Medicine, 97(6), 871-877. https://doi.org/10.1007/s00109-019-01774-0 563 

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of 564 

statistical software, 80, 1-28. 565 

Campesi, I., Seghieri, G., & Franconi, F. (2021). Type 2 diabetic women are not small type 2 diabetic 566 

men: Sex-and-gender differences in antidiabetic drugs. Current Opinion in Pharmacology, 567 

60, 40-45. https://doi.org/https://doi.org/10.1016/j.coph.2021.06.007 568 

Canto, J. G., Goldberg, R. J., Hand, M. M., Bonow, R. O., Sopko, G., Pepine, C. J., & Long, T. (2007). 569 

Symptom presentation of women with acute coronary syndromes: myth vs reality. Archives 570 

of internal medicine, 167(22), 2405-2413. 571 

Cardini, A., & Polly, P. D. (2013). Larger mammals have longer faces because of size-related 572 

constraints on skull form [Article]. Nature Communications, 4, 2458. 573 

https://doi.org/10.1038/ncomms3458 574 

Cardini, A., Polly, D., Dawson, R., & Milne, N. (2015). Why the long face? Kangaroos and wallabies 575 

follow the same ‘rule’of cranial evolutionary allometry (CREA) as placentals. Evolutionary 576 

Biology, 42(2), 169-176.  577 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Chen, M.-L., Lee, S.-C., Ng, M.-J., Schuirmann, D. J., Lesko, L. J., & Williams, R. L. (2000). 578 

Pharmacokinetic analysis of bioequivalence trials: Implications for sex-related issues in 579 

clinical pharmacology and biopharmaceutics. Clinical Pharmacology & Therapeutics, 68(5), 580 

510-521. https://doi.org/https://doi.org/10.1067/mcp.2000.111184 581 

Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the 582 

cranium. Evolution, 36(3), 499-516. 583 

Cinar, O., & Viechtbauer, W. (2021). poolr: Methods for Pooling P-Values from (Dependent) Tests. In 584 

(Version 1.0-0.) https://CRAN.R-project.org/package=poolr 585 

Clayton, J. A., & Collins, F. S. (2014). Policy: NIH to balance sex in cell and animal studies. Nature 586 

News, 509(7500), 282. 587 

Cook, I. F. (2008). Sexual dimorphism of humoral immunity with human vaccines. Vaccine, 26(29-30), 588 

3551-3555. 589 

Correa-de-Araujo, R. (2006). Serious gaps: how the lack of sex/gender-based research impairs health. 590 

Journal of Women's Health, 15(10), 1116-1122. 591 

Dayton, A., Exner, E. C., Bukowy, J. D., Stodola, T. J., Kurth, T., Skelton, M., Greene, A. S., & Cowley Jr, 592 

A. W. (2016). Breaking the cycle: estrous variation does not require increased sample size in 593 

the study of female rats. Hypertension, 68(5), 1139-1144. 594 

Dickinson, M. E., et al. (2016). High-throughput discovery of novel developmental phenotypes. 595 

Nature, 537(7621), 508-514. https://doi.org/10.1038/nature19356 596 

Egset, C. K., Bolstad, G. H., Rosenqvist, G., Endler, J. A., & Pélabon, C. (2011). Geographical variation 597 

in allometry in the guppy (Poecilia reticulata). Journal of Evolutionary Biology, 24(12), 2631-598 

2638. 599 

Egset, C. K., Hansen, T. F., Le Rouzic, A., Bolstad, G. H., Rosenqvist, G., & Pélabon, C. (2012). Artificial 600 

selection on allometry: change in elevation but not slope. Journal of Evolutionary Biology, 601 

25(5), 938-948. https://doi.org/https://doi.org/10.1111/j.1420-9101.2012.02487.x 602 

Fadiran, E. O., & Zhang, L. (2015). Effects of sex differences in the pharmacokinetics of drugs and 603 

their impact on the safety of medicines in women. In M. Harrison-Woolrych (Ed.), Medicines 604 

for women (pp. 41-68). Springer International Publishing. 605 

Farkas, R. H., Unger, E. F., & Temple, R. (2013). Zolpidem and Driving Impairment — Identifying 606 

Persons at Risk. New England Journal of Medicine, 369(8), 689-691. 607 

https://doi.org/10.1056/NEJMp1307972 608 

Feldman, S., Ammar, W., Lo, K., Trepman, E., van Zuylen, M., & Etzioni, O. (2019). Quantifying Sex 609 

Bias in Clinical Studies at Scale With Automated Data Extraction. JAMA Network Open, 2(7), 610 

e196700-e196700. https://doi.org/10.1001/jamanetworkopen.2019.6700 611 

Fernández-Liz, E., Modamio, P., Catalán, A., Lastra, C. F., Rodríguez, T., & Mariño, E. L. (2008). 612 

Identifying how age and gender influence prescription drug use in a primary health care 613 

environment in Catalonia, Spain. British Journal of Clinical Pharmacology, 65(3), 407-417. 614 

Flanagan, K. L. (2014). Sexual dimorphism in biomedical research: a call to analyse by sex. 615 

Transactions of The Royal Society of Tropical Medicine and Hygiene, 108(7), 385-387. 616 

https://doi.org/10.1093/trstmh/tru079 617 

Gandhi, M., Aweeka, F., Greenblatt, R. M., & Blaschke, T. F. (2004). Sex differences in 618 

pharmacokinetics and pharmacodynamics. Annual Review of Pharmacology and Toxicology, 619 

44, 499-523. 620 

Garcia-Sifuentes, Y., & Maney, D. L. (2021). Reporting and misreporting of sex differences in the 621 

biological sciences. eLife, 10, e70817. https://doi.org/10.7554/eLife.70817 622 

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. 623 

Statistical science, 7(4), 457-472.  624 

Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41(4), 587-625 

638. 626 

Greenblatt, D. J., Harmatz, J. S., Singh, N. N., Steinberg, F., Roth, T., Moline, M. L., Harris, S. C., & 627 

Kapil, R. P. (2014). Gender differences in pharmacokinetics and pharmacodynamics of 628 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

zolpidem following sublingual administration. The Journal of Clinical Pharmacology, 54(3), 629 

282-290. 630 

Greenblatt, D. J., Harmatz, J. S., & Roth, T. (2019). Zolpidem and gender: Are women really at risk? 631 

Journal of clinical psychopharmacology, 39(3), 189-199. 632 

Guo, T., Sun, W. J., Xia, D. Y., & Zhao, L. S. (2010). The pharmacokinetics of fluconazole in healthy 633 

Chinese adult volunteers: influence of ethnicity and gender. Journal of Clinical Pharmacy and 634 

Therapeutics, 35(2), 231-237. 635 

Gurevitch, J., Koricheva, J., Nakagawa, S., & Stewart, G. (2018). Meta-analysis and the science of 636 

research synthesis. Nature, 555(7695), 175-182. 637 

Heath, A., & Pechlivanoglou, P. Prioritizing Research in an Era of Personalized Medicine: The 638 

Potential Value of Unexplained Heterogeneity. Medical Decision Making, 0(0), 639 

0272989X211072858. https://doi.org/10.1177/0272989x211072858 640 

Huxley, J. S. (1924). Constant differential growth-ratios and their significance. Nature, 114, 895-896. 641 

Huxley, J. S. (1932). Problems of Relative Growth. John Hopkins University Press. 642 

Holdcroft, A. (2007). Gender bias in research: how does it affect evidence based medicine? In: SAGE 643 

Publications Sage UK: London, England. 644 

Jackson, S. E., & Chester, J. D. (2015). Personalised cancer medicine. International Journal of Cancer, 645 

137(2), 262-266. https://doi.org/https://doi.org/10.1002/ijc.28940 646 

Jarugula, V., Yeh, C. M., Howard, D., Bush, C., Keefe, D. L., & Dole, W. P. (2010). Influence of body 647 

weight and gender on the pharmacokinetics, pharmacodynamics, and antihypertensive 648 

efficacy of aliskiren. The Journal of Clinical Pharmacology, 50(12), 1358-1366. 649 

Javaid, M., & Haleem, A. (2018). Additive manufacturing applications in orthopaedics: A review. 650 

Journal of Clinical Orthopaedics and Trauma, 9(3), 202-206. 651 

https://doi.org/https://doi.org/10.1016/j.jcot.2018.04.008 652 

Karp, N. A., Mason, J., Beaudet, A. L., Benjamini, Y., Bower, L., Braun, R. E., Brown, S. D., Chesler, E. J., 653 

Dickinson, M. E., & Flenniken, A. M. (2017). Prevalence of sexual dimorphism in mammalian 654 

phenotypic traits. Nature Communications, 8(1), 1-12.  655 

Kim, A. M., Tingen, C. M., & Woodruff, T. K. (2010). Sex bias in trials and treatment must end. 656 

Nature, 465(7299), 688-689. https://doi.org/10.1038/465688a 657 

Klein, S. L., & Poland, G. A. (2013). Personalized vaccinology: one size and dose might not fit both 658 

sexes. Vaccine, 31(23), 2599-2600. 659 

Klein, S. L., Schiebinger, L., Stefanick, M. L., Cahill, L., Danska, J., de Vries, G. J., Kibbe, M. R., 660 

McCarthy, M. M., Mogil, J. S., Woodruff, T. K., & Zucker, I. (2015). Opinion: Sex inclusion in 661 

basic research drives discovery. Proceedings of the National Academy of Sciences, 112(17), 662 

5257-5258. https://doi.org/10.1073/pnas.1502843112 663 

Klinge, I. (2008). Gender perspectives in European research. Pharmacological Research, 58(3), 183-664 

189. https://doi.org/https://doi.org/10.1016/j.phrs.2008.07.011 665 

Klingenberg, C. P. (1998). Heterochrony and allometry: the analysis of evolutionary change in 666 

ontogeny. Biological Reviews, 73(1), 79-123. https://doi.org/10.1017/s000632319800512x  667 

Klingenberg, C. P. (2010). There's something afoot in the evolution of ontogenies. Bmc Evolutionary 668 

Biology, 10, Article 221. https://doi.org/10.1186/1471-2148-10-221 669 

Koren, G., Nordeng, H., & MacLeod, S. (2013). Gender differences in drug bioequivalence: time to 670 

rethink practices. Clinical Pharmacology & Therapeutics, 93(3), 260-262. 671 

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 963-974. 672 

Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of a 673 

correlation matrix. Heredity, 95(3), 221-227. 674 

Madla, C. M., Gavins, F. K. H., Merchant, H. A., Orlu, M., Murdan, S., & Basit, A. W. (2021). Let’s talk 675 

about sex: Differences in drug therapy in males and females. Advanced Drug Delivery 676 

Reviews, 175, 113804. https://doi.org/https://doi.org/10.1016/j.addr.2021.05.014 677 

Mauvais-Jarvis, F., Bairey Merz, N., Barnes, P. J., Brinton, R. D., Carrero, J.-J., DeMeo, D. L., De Vries, 678 

G. J., Epperson, C. N., Govindan, R., Klein, S. L., Lonardo, A., Maki, P. M., McCullough, L. D., 679 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

Regitz-Zagrosek, V., Regensteiner, J. G., Rubin, J. B., Sandberg, K., & Suzuki, A. (2020). Sex 680 

and gender: modifiers of health, disease, and medicine. The Lancet, 396(10250), 565-582. 681 

https://doi.org/https://doi.org/10.1016/S0140-6736(20)31561-0 682 

Mazure, C. M., & Jones, D. P. (2015). Twenty years and still counting: including women as 683 

participants and studying sex and gender in biomedical research. BMC Women's Health, 684 

15(1), 94. https://doi.org/10.1186/s12905-015-0251-9 685 

Mogil, J. S., & Chanda, M. L. (2005). The case for the inclusion of female subjects in basic science 686 

studies of pain. PAIN, 117(1). 687 

https://journals.lww.com/pain/Fulltext/2005/09000/The_case_for_the_inclusion_of_female688 

_subjects_in.1.aspx 689 

Morrissey, M. B. (2016). Meta-analysis of magnitudes, differences and variation in evolutionary 690 

parameters. Journal of Evolutionary Biology, 29(10), 1882-1904.  691 

Morrow, E. H. (2015). The evolution of sex differences in disease. Biology of Sex Differences, 6(1), 5. 692 

https://doi.org/10.1186/s13293-015-0023-0 693 

Morrow, E. H., & Connallon, T. (2013). Implications of sex-specific selection for the genetic basis of 694 

disease. Evolutionary Applications, 6(8), 1208-1217. 695 

Nakagawa, K., & Kajiwara, A. (2015). Female sex as a risk factor for adverse drug reactions. Nihon 696 

rinsho. Japanese journal of clinical medicine, 73(4), 581-585. 697 

Nakagawa, S., & Santos, E. S. (2012). Methodological issues and advances in biological meta-analysis. 698 

Evolutionary Ecology, 26(5), 1253-1274. 699 

Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., & Senior, A. M. (2015). 700 

Meta-analysis of variation: ecological and evolutionary applications and beyond. Methods in 701 

Ecology and Evolution, 6(2), 143-152.  702 

Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R
2
 and 703 

intra-class correlation coefficient from generalized linear mixed-effects models revisited and 704 

expanded. Journal of The Royal Society Interface, 14(134), 20170213. 705 

https://doi.org/doi:10.1098/rsif.2017.0213  706 

Nakagawa, S., Kar, F., O’Dea, R. E., Pick, J. L., & Lagisz, M. (2017). Divide and conquer? Size 707 

adjustment with allometry and intermediate outcomes. BMC biology, 15(1), 1-6.  708 

Nakagawa, S., Lagisz, M., O'Dea, R. E., Rutkowska, J., Yang, Y., Noble, D. W. A., & Senior, A. M. (2021). 709 

The orchard plot: Cultivating a forest plot for use in ecology, evolution, and beyond. 710 

Research Synthesis Methods, 12(1), 4-12. https://doi.org/https://doi.org/10.1002/jrsm.1424  711 

NIH, 1993. Revitalization Act of 1993, PL 103-43. Available at 712 

grants.nih.gov/grants/funding/women_min/guidelines_amended_10_2001.htm001.htm 713 

Oh, S. S., Galanter, J., Thakur, N., Pino-Yanes, M., Barcelo, N. E., White, M. J., de Bruin, D. M., 714 

Greenblatt, R. M., Bibbins-Domingo, K., Wu, A. H. B., Borrell, L. N., Gunter, C., Powe, N. R., & 715 

Burchard, E. G. (2015). Diversity in Clinical and Biomedical Research: A Promise Yet to Be 716 

Fulfilled. PLOS Medicine, 12(12), e1001918. https://doi.org/10.1371/journal.pmed.1001918 717 

Pélabon, C., Bolstad, G. H., Egset, C. K., Cheverud, J. M., Pavlicev, M., & Rosenqvist, G. (2013). On the 718 

relationship between ontogenetic and static allometry. The American Naturalist, 181(2), 719 

195-212. 720 

Prendergast, B. J., Onishi, K. G., & Zucker, I. (2014). Female mice liberated for inclusion in 721 

neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 40, 1-5. 722 

https://doi.org/https://doi.org/10.1016/j.neubiorev.2014.01.001 723 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2021). nlme: Linear and Nonlinear Mixed 724 

Effects Models. In (Version 3.1-153) https://CRAN.R-project.org/package=nlme 725 

Polasek, T. M., Shakib, S., & Rostami-Hodjegan, A. (2018). Precision dosing in clinical medicine: 726 

present and future. Expert Review of Clinical Pharmacology, 11(8), 743-746. 727 

https://doi.org/10.1080/17512433.2018.1501271 728 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Porto, A., de Oliveira, F. B., Shirai, L. T., De Conto, V., & Marroig, G. (2009). The Evolution of 729 

Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes. 730 

Evolutionary Biology, 36(1), 118-135. https://doi.org/10.1007/s11692-008-9038-3 731 

Rademaker, M. (2001). Do women have more adverse drug reactions? American journal of clinical 732 

dermatology, 2(6), 349-351. 733 

Rathore, S. S., Wang, Y., & Krumholz, H. M. (2002). Sex-based differences in the effect of digoxin for 734 

the treatment of heart failure. New England Journal of Medicine, 347(18), 1403-1411. 735 

Rawlik, K., Canela-Xandri, O., & Tenesa, A. (2016). Evidence for sex-specific genetic architectures 736 

across a spectrum of human complex traits. Genome biology, 17(1), 1-8. 737 

Regitz-Zagrosek, V., & Kararigas, G. (2017). Mechanistic pathways of sex differences in cardiovascular 738 

disease. Physiological reviews, 97(1), 1-37. 739 

Rogers, W. A., & Ballantyne, A. J. (2008). Exclusion of Women From Clinical Research: Myth or 740 

Reality? Mayo Clinic Proceedings, 83(5), 536-542. 741 

https://doi.org/https://doi.org/10.4065/83.5.536 742 

Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: overconfident estimates in 743 

mixed models. Behavioral ecology, 20(2), 416-420. 744 

Senior, A. M., Viechtbauer, W., & Nakagawa, S. (2020). Revisiting and expanding the meta-analysis of 745 

variation: The log coefficient of variation ratio. Research Synthesis Methods, 11(4), 553-567. 746 

Sex, T., & Group, G. S. R. C. t. A. (2020). Sex and gender in health research: updating policy to reflect 747 

evidence. Medical Journal of Australia, 212(2), 57-62.e51. 748 

doi:https://doi.org/10.5694/mja2.50426 749 

Shansky, R. M. (2019). Are hormones a female problem for animal research? Science, 364(6443), 750 

825-826. https://doi.org/doi:10.1126/science.aaw7570 751 

Soldin, O. P., & Mattison, D. R. (2009). Sex Differences in Pharmacokinetics and Pharmacodynamics. 752 

Clinical Pharmacokinetics, 48(3), 143-157. https://doi.org/10.2165/00003088-200948030-753 

00001 754 

Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J., & Schiebinger, L. (2019). Sex and gender analysis 755 

improves science and engineering. Nature, 575(7781), 137-146. 756 

Team, R. C. (2019). R: A language and environment for statistical computing. In R Foundation for 757 

Statistical Computing. http://www.R-project.org  758 

Usui, T., Macleod, M. R., McCann, S. K., Senior, A. M., & Nakagawa, S. (2021). Meta-analysis of 759 

variation suggests that embracing variability improves both replicability and generalizability 760 

in preclinical research. PLoS Biology, 19(5), e3001009. 761 

Van Hoof, J. (2015). Female thermal demand. Nature Climate Change, 5(12), 1029-1030. 762 

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of 763 

statistical software, 36(3), 1-48. 764 

Voje, K. L., Hansen, T. F., Egset, C. K., Bolstad, G. H., & Pélabon, C. (2014). Allometric constraints and 765 

the evolution of allometry. Evolution, 68(3), 866-885. https://doi.org/10.1111/evo.12312 766 

Wallach, J. D., Sullivan, P. G., Trepanowski, J. F., Steyerberg, E. W., & Ioannidis, J. P. (2016). Sex based 767 

subgroup differences in randomized controlled trials: empirical evidence from Cochrane 768 

meta-analyses. bmj, 355. 769 

Whitley, H. P., & Lindsey, W. (2009). Sex-based differences in drug activity. American Family 770 

Physician, 80(11), 1254-1258. 771 

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. 772 

https://ggplot2.tidyverse.org  773 

Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A Grammar of Data Manipulation. In 774 

(Version 1.0.7) https://CRAN.R-project.org/package=dplyr 775 

Wiemann, L. M., Vallarta-Ast, N., Krueger, D., & Binkley, N. (2007). Effect of female database use for 776 

T-score derivation in men. Journal of Clinical Densitometry, 10(3), 244-248. 777 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Wilson, L. A. B., & Sánchez-Villagra, M. R. (2010). Diversity trends and their ontogenetic basis: an 778 

exploration of allometric disparity in rodents. Proc R Soc Lond B Biol Sci, 277. 779 

https://doi.org/10.1098/rspb.2009.1958 780 

Wilson, L. A. (2013). Allometric disparity in rodent evolution. Ecology and Evolution, 3(4), 971-984.  781 

Woitowich, N. C., Beery, A., & Woodruff, T. (2020). A 10-year follow-up study of sex inclusion in the 782 

biological sciences. eLife, 9, e56344. https://doi.org/10.7554/eLife.56344 783 

Yang, L., Li, Y., Hong, H., Chang, C.-W., Guo, L.-W., Lyn-Cook, B., Shi, L., & Ning, B. (2012). Sex 784 

differences in the expression of drug-metabolizing and transporter genes in human liver. 785 

Journal of drug metabolism & toxicology, 3(3). 786 

Yu, Y., Chen, J., Li, D., Wang, L., Wang, W., & Liu, H. (2016). Systematic analysis of adverse event 787 

reports for sex differences in adverse drug events. Scientific Reports, 6(1), 1-9. 788 

Zajitschek, S. R. K., Zajitschek, F., Bonduriansky, R., Brooks, R. C., Cornwell, W., Falster, D. S., Lagisz, 789 

M., Mason, J., Senior, A. M., Noble, D. W. A., & Nakagawa, S. (2020). Sexual dimorphism in 790 

trait variability and its eco-evolutionary and statistical implications. eLife, 9, e63170. 791 

https://doi.org/10.7554/eLife.63170  792 

Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690-690. 793 

https://doi.org/10.1038/465690a  794 

Zucker, I., & Prendergast, B. J. (2020). Sex differences in pharmacokinetics predict adverse drug 795 

reactions in women. Biology of Sex Differences, 11(1), 32. https://doi.org/10.1186/s13293-796 

020-00308-5  797 

Zucker, I., Prendergast, B. J., & Beery, A. K. (2021). Pervasive Neglect of Sex Differences in Biomedical 798 

Research. Cold Spring Harbor Perspectives in Biology, a039156. 799 

 800 

Acknowledgements  801 

This research was supported by Australian Research Council grants DP200100361 awarded 802 

to SN and ML and FT200100822 awarded to LABW. Research reported in this publication 803 

was supported by the European Molecular Biology Laboratory core funding and the National 804 

Human Genome Research Institute of the National Institutes of Health under Award Number 805 

UM1HG006370. The content is solely the responsibility of the authors and does not 806 

necessarily represent the official views of the National Institutes of Health. 807 

 808 

Author contributions 809 

LABW and SN designed the research; SN, LABW, SRKZ, ML and HH contributed to the 810 

conception and implementation of data analysis; JM contributed to data acquisition; LABW 811 

drafted the manuscript with contributions from SN and ML.  812 

 813 

Competing interests 814 

The authors declare no competing interests. 815 

 816 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486193
http://creativecommons.org/licenses/by-nc-nd/4.0/

