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Abstract 

Background: Retinal pigment epithelium (RPE) aging is an important cause of vision loss. As 

RPE aging is accompanied by changes in cell morphological features, an accurate 

segmentation of RPE cells is a prerequisite to such morphology analyses. Due the 

overwhelmingly large cell number, manual annotations of RPE cell borders are time-consuming. 

Computer based methods do not work well on cells with weak or missing borders in the 

impaired RPE sheet regions. 

Method: To address such a challenge, we develop a semi-supervised deep learning approach, 

namely MultiHeadGAN, to segment low contrast cells from impaired regions in RPE flatmount 

images. The developed deep learning model has a multi-head structure that allows model 

training with only a small scale of human annotated data. To strengthen model learning effect, 

we further train our model with RPE cells without ground truth cell borders by generative 

adversarial networks. Additionally, we develop a new shape loss to guide the network to 

produce closed cell borders in the segmentation results.  

Results: In this study, 155 annotated and 1,640 unlabeled image patches are included for 

model training. The testing dataset consists of 200 image patches presenting large impaired 

RPE regions. The average RPE segmentation performance of the developed model 

MultiHeadGAN is 85.4 (correct rate), 88.8 (weighted correct rate), 87.3 (precision), and 80.1 

(recall), respectively. Compared with other state-of-the-art deep learning approaches, our 

method demonstrates superior qualitative and quantitative performance. 

Conclusions: Suggested by our extensive experiments, our developed deep learning method 

can accurately segment cells from RPE flatmount microscopy images and is promising to 

support large scale cell morphological analyses for RPE aging investigations. 

 

Keywords: Deep learning; Retinal pigment epithelium; Image segmentation; Generative 

adversarial networks; Semi-supervised learning 
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Introduction 

The retinal pigment epithelium (RPE) is a pigmented cell layer between the choroid and the 

neurosensory retina. Among others, the main RPE functions are to transport nutrients, maintain 

the photoreceptor excitability, and secrete immunosuppressive factors [1]. Aging of the RPE can 

cause the loss or reduction of the indicated functions that affect the function and survival of 

photoreceptor cells and choroidal cells. Therefore, it may result in the secondary degeneration 

of photoreceptors and finally lead to irreversible vision loss [2]. Previous studies have suggested 

that RPE cell morphological features, such as area, perimeter, aspect ratio, polymegathism, and 

pleomorphism, can be indicators of the cell pathophysiologic status to determine the degree of 

RPE aging [3-5]. 

RPE flatmount images have been widely used to calculate RPE cell morphological features. An 

accurate detection of cell borders from flatmount microscopy images is a prerequisite for 

determining cell morphological features. In our prior work [5], a machine-learning-based ImageJ 

(National Institutes of Health, Bethesda, MD, USA) plugin known as Trainable Weka 

Segmentation [6] was utilized to extract cell borders with a limited success, especially in 

impaired regions enriched with weak or missing RPE cell borders. Typical examples of 

damaged regions are given in Figure 1. To ensure the accuracy of downstream morphology 

analyses, manual post processing steps are, therefore, required to remove these damaged 

regions from further analyses. This process is not only time-consuming, but also significantly 

reduces the scale of data for analysis, resulting in a weaker study power. More importantly, it 

makes infeasible to study RPE cell morphology and structures within impaired regions 

necessary for RPE recovery mechanism and aging investigations. Thus, it is imperative to 

develop an effective and efficient approach to recover blurred and missing RPE cell borders in 

large scale flatmount microscopy images.  
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Unlike traditional machine learning methods, deep neural networks require no manual feature 

engineering and present an enhanced data learning power to support biomedical research [7,8]. 

The basic structure of a deep neural network is composed of layers of computational nodes 

analogous to brain neurons. For semantic segmentation tasks, a class of deep neural networks 

consists of an encoder for latent feature extraction from input images and a decoder for 

mapping the extracted features to desired segmentation results. Deep neural networks have 

been widely used for segmentation with multiple image modalities, ranging from bright field 

histopathology image slides [9,10], CT [11,12], MRI [13], and immunofluorescence microscopy 

images [14,15]. Although there are multiple state-of-the-art deep learning models [15-18] that 

can be potentially used to segment RPE cells presenting blurred or missing cell borders, they 

require a large scaled annotated training dataset. As the manual annotations on RPE cells in 

damaged regions are time-consuming, we only have a small set of annotated weak RPE cells 

insufficient to support the supervised learning strategy by these state-of-the-art deep learning 

models. To address this challenge, we leverage the Generative Adversarial Networks (GAN) 

Figure 1 Representative examples of RPE flatmount image regions. (A) RPE cells in damaged regions 

present weak or missing cell borders with partial or complete cell structure loss. (B) RPE cells in normal 

regions often have cells with high contrast borders. 
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mechanism to enrich the training dataset with a massive amount of unlabeled weak RPE cells 

and mitigate the model overfitting problem. The resulting deep learning model, namely 

MultiHeadGAN, is built upon the state-of-the-art UNet, but with a new training strategy 

simultaneously leveraging a small set of annotated and a large set of unlabeled RPE cells from 

flatmount microscopy images for morphology feature extraction and RPE structure 

reconstruction. Additionally, we design a new shape loss for model training that favors closed 

cell borders. We present the efficacy of our model design by ablation experiments. Our method 

is both qualitatively and quantitatively evaluated and compared with the state-of-the-art deep 

learning approaches. The extensive experimental results demonstrate the superiority of our 

developed segmentation method, suggesting its potential to facilitate further biomedical 

research on RPE aging. 

Methods 

Training and Testing Datasets 

In this study, the mouse RPE flatmount images are selected from our reference database 

[19,20]. As these RPE images have high resolutions (around 4,000 × 4,000 pixels each), we 

divide each image into patches of size 96 × 96 in pixels. Both a small set of annotated and a 

large set of unlabeled RPE cells are included in our training set. For the small annotated set 

𝓟 = {(𝑧𝑖 , 𝑤𝑖)}, we have 155 patch pairs where 𝑧𝑖  and 𝑤𝑖 are the image patch and manually 

annotated ground truth. In the large set of unlabeled RPE cells for training, we include 987 

image patches presenting RPE cells with weak or missing borders in 𝓧 = {𝑥𝑖}, and 653 patches 

denoted by 𝓨 = {𝑦𝑖}  with strong cell borders. For the testing set, we include 34,742 RPE cells 

with weak or missing cell borders from 200 image patches.  

Deep Neural Network Architecture 

For deep learning based image segmentation, deep neural networks often consist of an encoder 

and a decoder that are trained with a large amount of annotated data. By contrast, we make use 

of GAN-based image translation mechanism and use a semi-supervised learning strategy to 

improve the model performance due to a limited set of data annotations available in this work. In 

image translation tasks, GAN usually consists of two key components, i.e., a generator and a 

discriminator. The generator attempts to minimize the adversarial loss and translate inputs to 

images indistinguishable from real target images by the discriminator. By contrast, the 

discriminator is trained to maximize the adversarial loss and distinguish the fake images from 

real ones.  
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We present the overall architecture of the developed multi-head deep learning model 

(MultiHeadGAN) in Figure 2. Note MultiHeadGAN makes a full use of both limited data with 

annotations and a large set of unlabeled images for training. The generator in MultiHeadGAN is 

derived from the U-Net [18,21], but extended to multi-heads for contrast enhanced gray-scale 

and binary segmentation outputs. Different from the U-Net with one encoder and one decoder, 

our proposed generator has one encoder, two decoders, and one feature extractor. For each 

encoder input 𝒔, there are two decoder output images 𝐺1(𝒔) and 𝐺2(𝒔) and a feature 

Figure 2 Overall schema of the developed multi-head deep learning approach MultiHeadGAN. Our 

proposed deep learning generator consists of one encoder, two decoders, and one feature extractor. For 

each image input, the network produces two output images and one feature vector. Note our generator has 

four image resolution levels. Not all levels are shown in the schema for conciseness. With such a model 

design, we can effectively detect RPE cell borders in damaged regions within flatmount microscopy images. 

Conv: Convolution layer; DC: Double convolution layers; FC: Fully connected layer; MP: Max-pooling layer; 

MLP: Multi-layer perceptron; UC: Up-sampling + convolution layer. 
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extractor output 𝑉(𝒔). 𝐺1(𝒔) from Decoder 1 represents a segmentation map, while 𝐺2(𝒔) 

from Decoder 2 is the translated image with enhanced RPE cell borders. The output from the 

feature extractor 𝑉(𝒔) is used for the contrastive representation learning in the model training. 

Although our generator has four resolution levels, not all levels are shown in Figure 2 for 

conciseness. At each image resolution level, the encoder convolves the image with a double 

convolution layer and next scales down the convolution response by a max-pooling layer. In the 

decoding analysis, an image representation is up-sampled, interpolated by a bilinear 

interpolation layer, and convolved with a double convolution layer in turn at each image 

resolution level. Additionally, the encoder outputs at different image resolution levels are 

processed by Multi-Layer Perceptron (MLP) modules, with the outcomes concatenated for the 

image feature vector construction. 

To process two image outputs 𝐺1(𝒔) and 𝐺2(𝒔) from the generator, we include two 

corresponding discriminators 𝐷1 and 𝐷2. By architecture, each discriminator has multiple 

convolution layers and a fully connected output layer [22]. These discriminators help recognize 

the difference between generated and true images and thus force the generator to produce 

high-quality images similar to the true counterparts. 

Model training strategy 

With training batches 𝑷 ⊆ 𝓟, 𝑿 ⊆ 𝓧, 𝒀 ⊆ 𝓨, we would like to achieve two training objectives on 

image segmentation and translation. 1) For a given image and its ground truth pair (𝒛, 𝒘)~𝑷, 

we expect the segmentation result 𝐺1(𝒛) from the generator to be similar to the segmentation 

ground truth 𝒘 and indistinguishable by discriminator 𝐷1. 2) For RPE cells with weak (i.e. 

𝒙~𝑿) and strong borders (i.e. 𝒚~𝒀), we would like to make translated weak image 𝐺2(𝒙) 

indistinguishable by discriminator 𝐷2 and keep translated strong images intact, i.e. 𝐺2(𝒚) ≈ 𝒚. 

To achieve these training goals, we define the objective function for the GAN training strategy 

as follows: 

 ℒ𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)ℒ𝑠(𝑷) + 𝜆ℒ𝑢( 𝑿, 𝒀) (1) 

where two loss terms are balanced by the relative contribution factor 𝜆.  

This weight 𝜆 is dynamic and depends on the epoch number 𝑡: 
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𝜆(𝑡) = {

1 𝑡 ≤ 𝑡1

1 −
1 − 𝑐

𝑡2 − 𝑡1
∙ (𝑡 − 𝑡1) 𝑡1 < 𝑡 < 𝑡2

𝑐 𝑡 ≥ 𝑡2

 (2) 

where 𝑡1 and 𝑡2 are transient time cutoff values; The constant 𝑐 is the weight factor after 𝜆 is 

stabilized. 

The first loss term ℒ𝑠 describes the similarity between the output of Decoder 1 and the 

segmentation ground truth: 

 ℒ𝑠(𝑷) = ℒ𝑠−𝐺𝐴𝑁(𝑷) + 𝜆1ℒ𝑠−𝑖𝑑𝑡(𝑷) + 𝜆2ℒ𝑠ℎ𝑎𝑝𝑒(𝑷) 

= 𝔼(𝒛,𝒘)~𝑷 (log (1 − 𝐷1(𝐺1(𝒛))) + log 𝐷1(𝒘)) 

+ 𝜆1𝔼(𝒛,𝒘)~𝑷‖𝐺1(𝒛) − 𝒘‖1 + 𝜆2𝔼(𝒛,𝒘)~𝑷‖(𝐺1(𝒛) − 𝒘) ∙ 𝒘‖1 

(3) 

In Equation 3, the first two terms are the adversarial loss and the identity loss widely used in 

supervised GAN approaches [21,22]. In this work, our exploratory experimental results suggest 

that the segmented RPE cell borders are often not closed, leading to a significantly different 

RPE cell topology. This artifact results from the fact that the misclassification of cell border 

pixels has a small influence on the identity loss that in turn is due to a small proportion of cell 

border pixels in an entire image. In favor of closed RPE cell contours in the segmentation 

results, we penalize cell border misclassification more by a shape loss (i.e., the third term in 

Equation 3). In our designed shape loss term, we only direct model’s training attention to cell 

border misclassification events by multiplying the ground truth 𝒘 to the difference between 

𝐺1(𝒛) and 𝒘. As border and background pixels in the ground truth take value 1 and 0, 

respectively, such multiplication results in a focused attention to the misclassification on cell 

borders. 

Similarly, the second loss term ℒ𝑢 characterizes the quality of gray-scale outputs from the 

generator: 

 ℒ𝑢( 𝑿, 𝒀) = ℒ𝑢−𝐺𝐴𝑁( 𝑿, 𝒀) + 𝜆3ℒ𝑢−𝑖𝑑𝑡(𝒀) + 𝜆4ℒ𝑁𝐶𝐸(𝑿) (4) 

 

In Equation 4, the first term ℒ𝑢−𝐺𝐴𝑁( 𝑿, 𝒀) is the adversarial loss for unsupervised GAN learning 

that takes the following format: 
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 ℒ𝑢−𝐺𝐴𝑁( 𝑿, 𝒀) = 𝔼𝒙~𝑿 log (1 − 𝐷2(𝐺2(𝒙))) + 𝔼𝒚~𝒀 log 𝐷2(𝒚) (5) 

 

The second term ℒ𝑢−𝑖𝑑𝑡( 𝒀) in Equation 4 is the identity loss to retain strong images at the 

generator output in the unsupervised image translation. While we aim to transfer weak to strong 

images by the generator, we also would like to keep those strong images unchanged during the 

translation. Therefore, the identity loss ℒ𝑢−𝑖𝑑𝑡( 𝒀) is defined by:  

 ℒ𝑢−𝑖𝑑𝑡(𝒀) = 𝔼𝒚~𝒀‖𝐺2(𝒚) − 𝒚‖1 (6) 

 

The third term ℒ𝑁𝐶𝐸(𝑿) in Equation 4 is Noised Contrastive Estimation (NCE) loss [23]. It aims 

to train an encoder that associates only corresponding inputs [24]. In the unsupervised GAN 

training, this NCE loss prevents a generator from randomly producing images with high quality 

in the target domain but irrelevant to inputs [25]. Applying this loss to our work, we aim to 

achieve a high mutual information between an input 𝒙𝑖 and its translation output 𝐺2(𝒙𝑖), and a 

low mutual information between the input 𝒙𝑖 and other translation outputs 𝐺2(𝒙𝑗). Illustrated in 

Figure 2, encoded feature maps are processed with MLP modules for a vector representation 

𝑉(𝒔). Let 𝒗𝑖 = 𝑉(𝒙𝑖) and 𝒗̂𝑖 = 𝑉(𝐺2(𝒙𝑖)), the NCE loss contributed by image 𝒙𝑖 is defined 

with a cross-entropy loss: 

 
ℓ𝑖 = − log

𝑒𝒗𝑖∙𝒗̂𝑖/𝜏

𝑒𝒗𝑖∙𝒗̂𝑖/𝜏 + ∑ 𝑒𝒗𝑖∙𝒗̂𝑗/𝜏𝑁
𝑖≠𝑗

 (7) 

where 𝜏 is the scaling factor.  

The resulting NCE loss for a training batch 𝑿 is defined as: 

 
ℒ𝑁𝐶𝐸(𝑿) =

1

𝑁
∑ ℓ𝑖

𝑁

𝑖≠𝑗
 (8) 

We implement our segmentation model with Python 3.8 programming language and PyTorch 

1.8.1 deep learning framework [26] and run the segmentation analysis with two NVIDIA Tesla 

K80 GPUs. Balancing the tradeoff between computational efficiency and deep network efficacy, 

we design four image resolution levels in the generator, with 64, 128, 256, and 512 filters from 
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the highest to the lowest level, respectively. Each MLP embedding image features from the 

Encoder has two neural network layers, with 256 units at each layer. For discriminators, we use 

two convolutional neural networks, both including the same resolution levels and filter numbers 

as the generator. Instead of max-pooling layers, image representations in discriminators are 

down-sampled by convolution layers of stride 2.  

For training parameters, we have 𝑡1 = 40, 𝑡2 = 70, 𝑐 = 0.7, 𝜆1 = 𝜆2 = 0.5, 𝜆3 = 𝜆4 = 1, and the 

scaling factor 𝜏 = 0.07 determined empirically. 

Evaluation metrics 

In this work, we set border and background pixels as positive and negative classes, 

respectively. We derived metrics from the confusion matrix for model evaluations [16-18]. The 

confusion matrix results in TP (number of correctly classified border pixels), FP (number of 

incorrectly classified background pixels), FN (number of incorrectly classified border pixels), and 

TN (number of correctly classified background pixels). As TN is much larger than the other three 

in practice, we do not use accuracy ACC=(TP+TN)/(TP+FP+FN+TN)) as a metric. Instead, we 

adopt precision P=TP/(TP+FP) and recall R=TP/(TP+FN) for model evaluation. 

Additionally, we introduce metrics to indicate RPE cell topology. For each cell with ground truth, 

we compute its Intersection over Union (IoU) with all overlapped cells predicted from models. If 

Figure 3 Evaluation of segmentation results. (A) A representative image (top) and its ground truth for 

segmentation (bottom) are presented. The (B) correct, (C) over-, and (D) under-segmentation results are 

illustrated, respectively. In (B-D), the top images present the segmentation results, while the bottom images 

highlight regions with erroneous segmentation results (red). 
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a cell has an IoU larger than 0.5, we mark it as a correct hit (CH); otherwise, it is a wrong hit 

(WH) as presented in Figure 3. We define the Correct Rate (CR) of segmentation as:  

Figure 4 Qualitative comparison of deep 

learning approaches for RPE cell 

segmentation with flatmount microscopy 

images. Four typical impaired image regions 

are shown in columns with rows for ground 

truth and corresponding segmentation 

results of FCN, DeepLab, UNet, Cellpose, 

CycleGAN+UNet, CUT+UNet, and our 

developed MultiHeadGAN, respectively. 
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 𝐶𝑅 =
|𝐶𝐻|

|𝐶𝐻| + |𝑊𝐻|
 (9) 

where |∙| represents the set size.  

To penalize wrong segmentation by the cell size, we also use such information to calculate the 

Weighted Correct Rate (WCR) of segmentation: 

 𝐶𝑅 =
∑ |𝑟|𝑟∈𝐶𝐻

∑ |𝑟|𝑟∈𝐶𝐻 + ∑ |𝑟|𝑟∈𝑊𝐻
 (10) 

Results 

Deep learning model validation 

To validate our method performance, we compare our proposed method MultiHeadGAN with 

four state-of-the-art models, including FCN [17], DeepLab [16], UNet [18], and Cellpose [15]. 

FCN, DeepLab, and UNet have been widely applied to a large number of biomedical image 

segmentation applications [8]. Cellpose is a pre-trained cell segmentation model built on UNet. 

It is trained to predict gradient vector fields and produce segmentation results by gradient 

tracking. For fair comparisons, we use CycleGAN [22] and CUT [25] to enhance the RPE cell 

border contrast before UNet is used for segmentation. We train FCN, DeepLab and UNet with 

the annotated training set 𝓟 and trained CycleGAN and CUT with the unlabeled training sets 

𝓧 and 𝓨. We present typical tissue segmentation results of these models in Figure 4. By visual 

comparisons, the results from FCN, DeepLab and UNet have large under-segmented regions. 

CycleGAN and CUT can effectively mitigate the degree of under-segmentation, while our 

developed MultiHeadGAN model achieves the best segmentation results. Although Cellpose 

can generate separated cell masks, its performance highly depends on the gradient vectors in 

cells. As not all cells present convergent gradient fields, Cellpose can fail in these cases. 

We quantitatively evaluate segmentation results by Correct Rate (CR), Weighted Correct Rate 

(WCR), Precision (P) and Recall (R). Demonstrated in Table 1, the proposed MultiHeadGAN 

achieves the best performance with 85.4% (CR), 88.8% (WCR), 87.3% (Precision) and 80.1% 

(Recall), respectively. In Figure 5, quantitative evaluation results are plotted to present the 

statistical difference between our proposed approach and others. Noticeably, MultiHeadGAN 

presents fewer outliers and a smaller variation, implying its strong stability. By metrics of WCR,  
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P and R, MultiHeadGAN is significantly better than all other approaches. By CR, it is also 

significantly better than all other approaches except Cellpose. 

Additionally, we test all approaches on a human RPE flatmount image dataset. Each image has 

1,024×1,024 pixels by size. The training and testing data include 14 and 16 human samples. 

We use the human training set for transfer learning with FCN, DeepLab, UNet and 

MultiHeadGAN. The resulting method performances are shown in Table 1. As most cell borders  

Figure 5 Quantitative comparison of deep learning approaches for RPE flatmount image 

segmentation. We compare the RPE cell segmentation performance of deep learning approaches by (A) 

Correct Rate, (B) Weighted Correct Rate, (C) Precision, and (D) Recall. Paired sample t-tests between the 

developed MultiHeadGAN and other six state-of-the-art approaches suggest a statistically significant 

performance difference. The notations for *, **, and *** represent a p-value less than 0.05, 0.005, and 

0.0005, respectively. 
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Table 1 Comparison of quantitative performance of the developed MultiHeadGAN and other state-of-the-

art deep learning approaches by different evaluation metrics on the mouse and human dataset. L: Training 

data with ground truth (i.e., 𝓟); UL: Unlabeled training data (i.e., 𝓧, 𝓨); CR: Correct Rate; WCR: Weighted 

Correct Rate; P: Precision; R: Recall. All value units are in percentage (%).Included and excluded training 

data are checked by “✓”and “✗”, respectively. The absence is represented by “/”. 

in our human dataset are strong, all methods for comparison present no significant difference. 

Our proposed approach achieves the best performance by Precision (98.9%). By CR, WCR, 

and Recall, all methods present similar performances. The difference between our proposed 

approach and the best approach is only 0.6%, 0.6%, and 2.3%, respectively.  

Ablation study 

To demonstrate the contribution from individual training losses in our developed MultiHeadGAN 

model, we carry out ablation experiments with seven loss combinations. The resulting 

performances are presented in Table 2. Loss combination 7 is for our MultiHeadGAN model 

with all losses and achieves the best performance. Comparisons between loss combination 1 

and 2 imply that the GAN mechanism improves supervised training outcome. Furthermore, 

comparisons between loss combination 2 and 3 suggest that our proposed shape loss can 

boost the performance with annotated training data. Comparisons between loss combination 2 

and 4 indicate that the addition of unsupervised learning to deep learning model training may 

degrade the model performance without use of appropriate constraints (i.e., identity loss and 

NCE loss). 

Note we have a dynamic weight factor 𝜆 to balance the supervised and unsupervised learning. 

To validate the effectiveness of this design and determine corresponding parameters, we have 

carried out ablation experiments. In Figure 7, the training curves of identity loss for the 

supervised learning suggest that the parameter setting with 𝑡1 = 40,  𝑡2 = 70, 𝑐 = 0.7 achieves 

the best training performance. Furthermore, we compare the testing performance in Table 3. 

Method  Training data Mouse Human 

Enhancement Segmentation L UL CR WCR P R CR WCR P R 

/ FCN ✓ ✗ 52.5 57.2 82.0 59.8 95.3 89.4 96.1 95.0 

/ DeepLab ✓ ✗ 58.1 62.9 81.5 61.3 94.9 89.6 96.3 94.9 

/ UNet ✓ ✗ 56.1 60.1 85.0 68.5 92.4 85.2 97.9 90.6 

/ Cellpose / / 83.8 86.7 73.8 73.7 97.1 87.9 95.1 91.4 

CycleGAN UNet ✓ ✓ 59.9 64.2 85.7 70.0 96.7 88.8 98.9 92.4 

CUT UNet ✓ ✓ 64.5 68.8 86.1 70.3 96.9 89.0 98.9 93.0 

MultiHeadGAN ✓ ✓ 85.4 88.8 87.3 80.1 96.5 88.8 98.9 92.7 
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With a constant weight factor 𝜆 (i.e., 𝑡1 =  𝑡2 = 0), our model is trained with both supervised 

and unsupervised learning. The results suggest that a fixed 𝜆 has the worst performance 

across dynamic factor strategies for each given stabilized weight factor 𝑐. Next, we begin model 

training only with the unsupervised learning and linearly change the weight factor 𝜆 for a semi-

supervised learning. We define the pre-training as the stage only with unsupervised learning. 

The performance is improved as the pre-training time increases. When the pre-training time is 

increased to 40 epochs, our model achieves the best performance. When the pre-training time 

is increased further, our model performance becomes worse in large part due to overfitting in 

the unsupervised learning. After systematic investigations, we choose parameters 𝑡1 = 40,  𝑡2 =

70, 𝑐 = 0.7 for the dynamic weight factor strategy by the experiment results. 

  

Figure 6 Quantitative comparison of ablated models for RPE flatmount image segmentation. We 
compare the segmentation performance of our model with different training loss combinations by (A) 
Correct Rate, (B) Weighted Correct Rate, (C) Precision, and (D) Recall. The x-axis represents the loss 
combination index given in Table 2. Paired sample t-tests between the proposed combination for 
MultiHeadGAN and other six loss combinations suggest a statistically significant performance difference in 
most cases. The notations for *, **, and *** represent a p-value less than 0.05, 0.005, and 0.0005, 
respectively. 
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Table 2 Quantitative performance comparison across different training loss combinations by different 

evaluation metrics on the mouse dataset. CR: Correct Rate; WCR: Weighted Correct Rate; P: Precision; R: 

Recall. All value units are in percentage (%). Included and excluded loss terms are checked by “✓” and 

“✗”, respectively. 

Discussion 

RPE cell morphological information plays a vital role to facilitate a better understanding of RPE 

aging and physiology. An accurate morphological characterization, however, is highly 

dependent on a high-quality segmentation. Due to lack of appropriate computational methods, 

the segmentation maps are often created by manual annotations, suffering from a large inter- 

and intra-variability. Additionally, such a human annotation process is time-consuming and 

insufficient to produce an adequately large number of annotated RPE images from impaired 

regions to support computer-based method training.  

Loss 
Index 

Loss Term 
CR WCR P R 

ℒ𝑠−𝑖𝑑𝑡 ℒ𝑠−𝐺𝐴𝑁 ℒ𝑢−𝐺𝐴𝑁 ℒ𝑢−𝑖𝑑𝑡 ℒ𝑁𝐶𝐸 ℒ𝑠ℎ𝑎𝑝𝑒 

1 ✓ ✗ ✗ ✗ ✗ ✗ 56.1 60.1 85.0 68.5 

2 ✓ ✓ ✗ ✗ ✗ ✗ 59.4 63.4 88.7 58.7 

3 ✓ ✓ ✗ ✗ ✗ ✓ 66.4 70.5 87.0 57.4 

4 ✓ ✓ ✓ ✗ ✗ ✗ 53.4 57.2 86.8 60.4 

5 ✓ ✓ ✓ ✓ ✗ ✗ 67.7 71.3 86.7 59.4 

6 ✓ ✓ ✓ ✓ ✓ ✗ 80.9 84.2 86.7 78.9 

7 ✓ ✓ ✓ ✓ ✓ ✓ 85.4 88.8 87.3 80.1 

Figure 7 Comparison of our model training curves with different training parameters. We compare 

the training curves of the identity loss for the supervised learning with different strategies for the weight 

factor 𝜆. Training curves with stabilized weight factor 𝑐 = 0.5 and 𝑐 = 0.7are presented in (A) and (B), 

respectively. 
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Table 3 Quantitative performance comparison with different weight factor 𝜆 strategies by 

different evaluation metrics on the mouse dataset. CR: Correct Rate; WCR: Weighted Correct 

Rate; P: Precision; R: Recall. All value units are in percentage (%). 

 

To address this challenge, we develop a novel method (MultiHeadGAN) for segmenting RPE 

cells from 2D RPE flatmount microscopy images in this study. Our developed method takes a 

semi-supervised learning strategy and enables deep neural networks to learn from a small set 

of annotated and a large set of unlabeled image data, resulting in a more generalized feature 

extraction ability and learning outcome. The resulting deep neural network is designed within a 

GAN training framework equipped with one encoder, two decoders, and one feature extractor in 

the generator. Two heads are created in the generator for the contrast enhanced grayscale and 

binary segmentation output, respectively. Correspondingly, there are two discriminators in our 

model that force the generator to output images with strong borders. Additionally, we create a 

new shape loss term that encourages our model to produce closed cell borders.  

Demonstrated in Figure 3, very few mis-classified pixels can either connect separate cells or 

divide a single cell, leading to a huge change in the RPE cell topology. We propose two new 

metrics, i.e. Correct Rate (CR) and Weighted Correct Rate (WCR), to better characterize such 

cell topology. CR represents the proportion of correctly segmented cells in the total cell 

population, while WCR indicates the proportion of areas of correctly segmented cells in the total 

cell area. As shown in Figure 5, the differences across different methods by CR and WCR are 

much larger than those suggested by Precision and Recall. CR and WCR can better reflect 

performance difference supported by the visual results in Figure 4. 

𝑡1 𝑡2 c CR WCR P R 

0 0 

0.5 

48.9 53.3 88.4 58.0 

10 40 70.2 74.4 86.5 64.7 

40 70 79.6 83.2 83.4 71.7 

70 100 66.3 70.2 85.5 65.4 

0 0 

0.7 

50.6 55.0 87.8 58.7 

10 40 74.5 78.7 86.7 64.9 

40 70 85.4 88.8 87.3 80.1 

70 100 73.3 77.2 84.3 65.4 
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Table 4 Comparison of deep learning segmentation models by model parameter number, Floating Point 

Operations Per Second (FLOPS), and the average processing time cost on a 96×96 image patch. 

We have systematically compared our MultiHeadGAN model with other state-of-the-art deep 

learning methods. MultiHeadGAN manifests a superior performance by RPE cell segmentation 

accuracy, model complexity, and computational efficiency. By both visual and quantitative 

evaluations, we demonstrate the promising segmentation performance by MultiHeadGAN. In the 

ablation study, we systematically compare and analyze the contribution from each loss term. 

Although our approach takes a semi-supervised training strategy for multiple network 

components in a GAN framework, we only need to load Encoder and Decoder 1 in the testing 

stage. MultiHeadGAN includes the least parameters and requires the least Floating Point 

Operations Per Second (FLOPS) for processing except Cellpose. Although Cellpose has the 

least number of parameters, it requires a time-consuming gradient tracking process, resulting in 

the longest average processing time (3,604 ms). Additionally, models of CycleGAN+Unet and 

CUT+Unet leverage the GAN mechanism and include more parameters, leading to a slower 

analysis. By contrast, our proposed MultiHeadGAN has the shortest average processing time 

cost (35.9 ms), promising to support large-scale RPE image data analysis. 

In future work, we plan to aggregate “network engineering” techniques in the generator to boost 

the segmentation performance further. Residual connections have demonstrated its potential for 

biomedical image segmentation [13,27]. Inclusion of such residual connections to our network 

may improve image feature information learning. Additionally, attention layers are known to 

encourage networks to focus on features in target regions [28]. Thus, addition of attention layers 

to our generator may better guide it for RPE cell border feature extraction. Furthermore, depth-

wise separable convolution layers can be used to replace regular convolution layers, as they 

can help reduce model complexity and accelerate training speed [29,30]. As Transformer based 

networks have achieved state-of-the-art results in some medical image segmentation tasks [7], 

we also plan to make them as new generators in our project. Finally, we plan to generalize our 

Model Parameter number FLOPS Processing time (ms)* 

FCN 51.9M 7.6G 134.6 
DeepLab 58.6M 8.5G 167.8 

UNet 34.5M 9.2G 92.9 
Cellpose 6.6M 2.9G 3,603.6 

CycleGAN+UNet 43.0M 16.1G 132.6 
CUT+UNet 43.0M 16.0G 125.1 

MultiHeadGAN 8.5M 7.0G 35.9 
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approach to support a larger set of biomedical image based disease investigations where cell 

borders are weak but critical for morphology analyses. 

Conclusion 

A new approach MultiHeadGAN has been developed to segment RPE cells with weak or 

missing borders in damaged regions of flatmount microscopy images, allowing more informative 

and reliable cell morphology investigations. Built upon the UNet architecture, we use one 

encoder and two separate decoders to enable simultaneous training with both limited data with 

human annotations and a large set of unlabeled images by the GAN mechanism. The 

performance of the model is systematically validated and compared with other state-of-the-art 

deep learning approaches both in a qualitative and quantitative manner. Our developed model 

makes it possible to segment low contrast RPE cells in flatmount microscopy images without 

expensive annotated training datasets, presenting its promising potential to assist cell 

morphology analyses for RPE aging studies. 
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Codes are available at Github repository: https://github.com/jkonglab/RPE_MultiHeadGAN 
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