Abstract
Maps of the nervous system that identify individual cells along with their type, subcellular components, and connectivity have the potential to reveal fundamental organizational principles of neural circuits. Volumetric nanometer-resolution imaging of brain tissue provides the raw data needed to build such maps, but inferring all the relevant cellular and subcellular annotation layers is challenging. Here, we present Segmentation-Guided Contrastive Learning of Representations (“SegCLR”), a self-supervised machine learning technique that produces highly informative representations of cells directly from 3d electron microscope imagery and segmentations. When applied to volumes of human and mouse cerebral cortex, SegCLR enabled the classification of cellular subcompartments (axon, dendrite, soma, astrocytic process) with 4,000-fold less labeled data compared to fully supervised approaches. Surprisingly, SegCLR also enabled inference of cell types (neurons, glia, and subtypes of each) from fragments with lengths as small as 10 micrometers, a task that can be difficult for humans to perform and whose feasibility greatly enhances the utility of imaging portions of brains in which many neuron fragments terminate at a volume boundary. These predictions were further augmented via Gaussian process uncertainty estimation to enable analyses restricted to high confidence subsets of the data. Finally, SegCLR enabled detailed exploration of layer-5 pyramidal cell subtypes and automated large-scale statistical analysis of upstream and downstream synaptic partners in mouse visual cortex.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* co-first authors
We revised the document to include the latest version of the MICrONS segmentation. We added more classes to the cell type classification task and added two analyses showcasing the use of the SegCLR embeddings: [1] we show that the embeddings can be used to cluster L5 pyramidal cell subtypes and [2] we use cell type predictions derived from the embeddings to analyze input and output characteristics of pyramidal cells in mouse V1.






