
 4 

scAllele calls nucleotide variants via local reassembly (Fig. 1a). To scan variants in the entire 

transcriptome, we split the mapped reads into read clusters (RC), defined as genomic intervals 

containing overlapping reads. Reads from each RC are subsequently decomposed into 

overlapping k-mers and reassembled into a directed de-Bruijn graph. The reference genomic 

sequence is included in the reassembly to serve as the reference haplotype in the RC. The nodes 

of the graph represent k-mers derived from the read sequence. Two nodes with k-mers 

overlapping by k-1 bases are connected with a directed edge. The ‘bubbles’ in the graph 

represent differences among all sequences including the reads and genome reference sequence.  

 

 

Figure 1. Algorithm outline. a. Illustration of the main algorithm of scAllele for variant calling. The reads and the 

reference genomic sequence overlapping a read cluster (RC) are decomposed into k-mers and reassembled into a de 

Bruijn graph. The graph shown here is a compacted version. The ‘bubbles’ in the graph indicate a sequence 

mismatch i.e., a variant. For each read, scAllele obtains a path for the original read sequence and infers the allele of 

each variant (including introns). b. Variants (green box in a) identified from the graph are then scored using a 

generalized linear model (GLM). The GLM was trained with different features (green box) to assign a confidence 

score to the variants. See Methods for details. c. To identify allele-specific splicing (i.e., variant linkage), scAllele 

performs a mutual information calculation between nucleotide variants (SNVs, microindels) and intronic parts 

(where the ‘alleles’ are the different overlapping introns), to calculate allelic linkage of splicing isoforms. 

 

To identify nucleotide variants, we first traverse the graph with a depth-first search to identify 

nodes marking the beginning and the end of each bubble (source and sink nodes) and their 
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respective pairing (Fig. 1a, Local reassembly). Hereafter, we perform a per-read analysis of the 

graph, where we first obtain the walk in the graph that best matches the read sequence, followed 

by the identification of variants present in each read. The presence of repeats or low-complexity 

regions significantly complicates the detection of variants since the de-Bruijn graph can be 

traversed in multiple ways. scAllele overcomes this challenge by performing a Dijkstra-based 

traversal of the graph with the assumption that the walk with the smallest editing distance best 

represents the set of variants present in the read. Finally, we collect the variants from the RC 

reads and score them using a generalized linear model (GLM) (Fig. 1b) where the following 

features are included: read position, base quality, number of neighboring tandem repeats, allelic 

ratio, sequencing error rate, and haplotype fitting (Methods).   

 

An important feature of scAllele is the detection of variants at the read level. This feature enables 

a direct analysis of allelic linkage between the variants and other attributes of the reads. Here, we 

focus on identifying allelic linkage with alternative splicing via mutual information (Methods), 

similarly as in our previous work for RNA editing identification (17). We consider overlapping 

introns as “alleles” of the same intronic part (Fig. 1c) and calculate the read coverages of the 

allele “haplotypes” between introns and nucleotide variants. In this way, we can incorporate 

splicing isoforms in the mutual information calculation to identify allele-specific splicing. 

 

It should be noted that scAllele is a stand-alone tool and only requires a bam file to conduct 

variant calling and linkage detection. However, pre-processing of the bam file is recommended 

to achieve optimal results (Supp. Fig. 1). 

 

Evaluation of variant calls in GM12878 and iPSC cells  

 

We evaluated the variant-calling function of scAllele using scRNA-seq (Smart-seq2) of 

GM12878 cells and iPSC cells from 3 individuals (18). These individuals were carefully 

genotyped by the GIAB (19) and 1000 Genomes projects (20), thus providing a “ground truth” 

for method evaluation. We compared the performance of scAllele to those of three other popular 

variant callers: Freebayes (v.1.3.4), GATK (v.4.2.0.0) and Platypus (v.1.0) (8, 9, 21). The 

performance evaluation followed previously published guidelines (22) with some modifications 
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to accommodate RNA variants (see Methods). For GM12878, we used three benchmark datasets: 

GIAB’s list of all genetic variants, GIAB’s list of high-confidence genetic variants and the 

variant calls based on long-read DNA sequencing (Oxford Nanopore) (23).  

 

For each data set and each method, we calculated the true positive counts at specific false 

positive cutoffs for microindels and SNPs respectively (Fig. 2a, Supp. Fig. 2a). Overall, scAllele 

achieved the best performance for microindels among all methods, and its performance on SNPs 

was on par with the others. The strength of scAllele in microindel identification is notable as 

these variants are known for their challenging detection (24). Furthermore, scAllele also 

demonstrated superior performance in capturing microindels in “difficult regions” (Fig. 2b, 

Supp. Fig. 2b). These difficult regions were defined by GIAB (19) as the union of regions with 

low mappability, high GC-content, low complexity or presence of repeats, and segment 

duplication among others .  
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Figure 2. Performance of scAllele in variant calling of scRNA-seq data of GM12878 cells. a. True positive (TP) 

counts of four variant callers were evaluated at different false positive (FP) cutoffs. Performance for microindels 

(top) and SNPs (bottom) is shown separately. Three sets of ground truth genetic variants were used: all of GIAB-

reported small variants (all), GIAB’s high-confidence variants (high-confidence) and variants called via Nanopore 

sequencing by Karst et al. (ONT).  b. Performance in ‘difficult regions’ defined by GIAB. c. Experimental 

validation of novel microindels via Sanger sequencing. The bars underneath the variant coordinates indicate the 

methods that detected the variants. d. True positive count of four variant callers (at maximum F1 and specificity > 

0.9) across different read coverages. The curves represent averages of all cells. e Allelic ratios of true positive 

variants segregated by their true genotype. 0/1: heterozygous; 1/1: homozygous variant allele. Gray curve is shown 

for reference purpose only (normal distribution of mean = 0.5 and std. dev = 0.15).     

 
It should be noted that although the above cells have been analyzed by the GIAB and 1000 

Genomes projects, their genotype calls may still miss some true positives. As examples, we 

experimentally confirmed 4 microindels categorized as false positives according to the “ground 

truth” (Fig. 2c, Supp. Fig. 3). The 4 microindels were identified by scAllele and Platypus (2 by 

GATK, 3 by Freebayes). Thus, the above performance of scAllele (and the other methods) may 

be a conservative estimation. 

 

One of the hallmarks of scRNA-seq is the limited read coverage per gene. Thus, it is highly 

desirable to develop variant callers with superior performance at low read coverage. scAllele 

meets this demand and demonstrates a performance gain relative to the other methods in lowly 

covered variants (Fig. 2d, Supp. Fig. 2c). Indeed, about 95% of the ground truth variants were 

covered by less than 5 reads in each data set. Thus, scAllele affords a unique advantage for 

scRNA-seq data.     

 

Unique to RNA-seq, the allelic read counts of genetic variants reflect their allelic expression 

levels. Thus, in addition to variant calling, it is necessary to accurately estimate the allelic 

quantification of each variant. To test the performance of scAllele in this regard, we segregated 

the ground truth variants into heterozygous and homozygous groups. The heterozygous variants 

are expected to exhibit an approximately normal distribution in their ALT allelic ratios (variant 

allele read number/total read number), centered around 0.5 (13). For homozygous variants, the 

allelic ratios are expected to be 1. As shown in Fig. 2e (and Supp. Fig. 2d), the results of scAllele 

largely followed these expectations for both microindels and SNPs. In contrast, other methods 

resulted in flawed distributions in at least one of the above aspects. 
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Overall, the above evaluations support the superior performance of scAllele for scRNA-seq 

variant analysis, especially in handling microindels, an aspect that is much more challenging 

compared to the most-often tackled SNV identification. 

 

Linkage calculation between variants 

 

In addition to variant calling, scAllele enables read-level allelic linkage analysis. Such analysis is 

not possible with other variant callers as read-level information is not extracted. In scAllele, the 

degree of allelic linkage is quantified as the mutual information (MI) between two types of 

variants: nucleotide variants and alternatively spliced junctions (Fig. 1). This metric is expected 

to require a relatively high number of reads harboring both types of variants. To achieve an 

understanding of the read coverage requirements, we first calculated the MI between pairs of 

known genetic variants in the GM12878 and iPSC data used in the last section. As expected, the 

MI of these variant pairs in the RNA is generally high, regardless of read coverage, reflecting the 

associated DNA haplotypes (Fig. 3a).  

 

 

Figure 3. Linkage calculation between pairs of variants. a. Mutual information (MI) distribution (natural log-

based) of pairs of true genetic variants (namely, true positives (TPs)) from the GM12878 and iPSC scRNA-seq 

segregated by the number of reads covering the pair. Most of these pairs have values close to the theoretical 

maximum for two alleles (ln(2) = 0.693) regardless of coverage. b. MI distribution of pairs of variants where at least 

one is not a known genetic variant (here referred to as false positive (FP) genetic variants). c. Cumulative 

distribution of MI of TP and FP pairs with a minimum read coverage of 10. The MI cutoff of 0.52 was selected as 

the minimum value for significant linkage between variants. This cutoff rejects 90% FP pairs and 5% TP pairs 

(dashed lines). 

 

As a comparison, we also calculated the MI between pairs of nucleotide variants where at least 

one variant was not a known genetic variant (Fig. 3b). Since the cell lines have been well-

genotyped, we assume all unknown variants observed in the RNA-seq reads are RNA editing 
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sites or sequencing errors. The MI of these variant pairs is expected to be low in general (17), 

unless rare allele-specific RNA editing exists. This expectation of low MI was met at relatively 

high read coverage (>10). However, at lower read coverage, the MI is inflated due to the low 

number of transcripts used for its calculation. Thus, it is necessary to impose a minimum read 

coverage requirement for MI calculation. In this study, we set this cutoff to be 10 based on the 

above results. Additionally, we required a minimum MI of 0.52 to call significant linkage events, 

as 95% of the known genetic variant pairs (with 10 reads) had an MI of 0.52 or greater, and 

90% of the unknown variant pairs (with 10 reads) failed this MI cutoff (Fig. 3c). The read 

coverage and MI cutoffs can be altered by the user in scAllele. 

 

scAllele unveils nucleotide variants and allele-specific splicing events in lung cancer cells 

 

Next, we applied scAllele to scRNA-seq data of lung cancer (Smart-seq2) (25). We focused on 

cancer cells and their normal counterparts, epithelial cells, in tumor and matched normal samples 

of two patients (TH179 and TH238; n = 574 cells). We first carried out variant calling in each 

cell. An SNV or microindel was retained if it was detected in at least 3 cells. Furthermore, we 

compared the presence of the variants in normal epithelial or cancer cells. A variant was defined 

as cancer-enriched if it was not detected in normal cells or its presence is significantly more 

frequent in cancer compared to normal cells (BH-corrected p < 0.1, Methods). Otherwise, the 

variant was labeled as a common variant to cancer and normal cells. As a sanity check, we note 

that no variant was found to be enriched in normal cells relative to cancer cells. 

 

As shown in Fig. 4a, >15,000 variants were identified in each patient, with the majority being 

SNVs. Most SNVs are annotated variants in the dbSNP (b151) or Cosmic (human cancer 

mutations) database. Importantly, Cosmic variants constitute a larger fraction among cancer-

enriched variants compared to the common variants (p < 1e-14 in both patients, Chi-Squared 

test). Among the unannotated (i.e., novel) SNVs, some may be novel genetic variants and others 

may reflect RNA editing events. Indeed, a large fraction (74% in TH179, 76% in TH238) of the 

novel SNVs corresponded to A-to-G or C-to-T RNA editing types. A relatively large fraction of 

microindels was not annotated in either database, likely reflecting our incomplete knowledge of 

this type of variants. Interestingly, cancer-enriched SNVs were more often located in coding 
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exons, less often in introns, compared with common SNVs (Fig. 4b). In contrast, the fraction of 

microindels in coding exons is approximately the same for the two categories of variants. 

Nonetheless, one patient (TH179) showed enrichment of cancer-enriched microindels in 3’ 

UTRs (depletion in introns), relative to the common microindels.  

 

 

Figure 4. Summary of variants and linkage events detected by scAllele in the Lung Cancer scRNA-seq 

dataset. a. Variants identified in each patient (≥3 cells). Common: variants common to cancer and normal cells. 

Cancer-enriched: variants enriched in cancer cells (see Text). Novel: variants not annotated in dbSNP or Cosmic. 

Variants labelled as “Cosmic” may also present in dbSNP. b. Distribution of variants in a in different types of 

genomic regions. C: common. CE: cancer-enriched. c. IGV view of two example allele-specific splicing events. The 

location of the variant is denoted by the black arrowhead. The reads overlapping each variant are segregated 

according to the allele they harbor (indicated by the base color and the base label on the left). d. Number of linkage 

events identified in cancer or normal cells (union of cells from the two patients). The cells are ranked by their total 

number of events. Events associated with microindels or SNVs are shown in different colors. The insets show the 

total number of junction reads in the scRNA-seq data of the cells sorted in the same order as the main panel. e. 

Number of linkage events identified in 5 deeply sequenced cells at different down sampled total read coverage. 

 

Following variant calling, we identified the allele-specific splicing events in each cell. As 

examples, Fig. 4c shows two significant linkage events. In these cases, the SNPs demonstrated 
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strong allelic linkage with alternative splicing patterns (exon skipping and alternative 5’ splice 

site, respectively). Across cancer and normal cells, the number of allele-specific splicing events 

varied greatly, ranging from 0 to 49 events (Fig. 4d), most of which involved SNVs. This 

number correlated approximately with the number of spliced-junction reads present in each cell 

(Fig. 4d insets). Based on down-sampling of a few deeply sequenced cells, we observed that 1M 

total reads can enable identification of up to 11 events per cell (Fig. 4e). In some cells, the 

number of events plateaued at around 5M reads. Thus, to afford power for splicing analysis, a 

relatively large number of scRNA-seq reads is needed.   

  

Cancer and normal cells exhibit unique and differential linkage events  

 

Next, we asked whether cancer and normal cells harbor different allele-specific splicing events. 

Among all events identified in this study, 27 were observed in both cancer and normal cells, 

whereas more events were exclusive to one of the two classes of cells (Fig. 5a). In general, most 

events were observed in a small number of cells (< 5), possibly due to read coverage limitations.  
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Figure 5. Comparison of allele-specific splicing events in cancer and normal cells. a. Number of events shared 

by cancer and normal cells, or exclusive to one of the two classes. Histograms of the number of cells harboring each 

type of events are also shown for each set and the intersect. b. Number of events categorized as cancer-specific, 

normal-specific, or differential (see Text for details). The number of cells harboring the events are shown by the 

shade of the bar. c. Examples of allele-specific splicing events (red vertical lines) from condition-specific events 

(left) and differential event (right). The sashimi plots are split by the allele harbored in the reads (indicated by color 

and base label). The read counts are reported for each junction and the mutual information between the variant and 

the splicing event is shown by the bars on the right. Note that only reads harboring the variant (black arrowhead) are 

shown.       

 

To identify differential linkage events between cancer and normal cells, we focused on two 

scenarios. In the first scenario, the variants were not present/testable in the normal cells but had 

significant linkage in the cancer cells, or vice versa (labeled as “cancer-specific” or “normal-

specific”, Fig. 5b, Table S1). For this scenario, we observed 67 events that were cancer-specific 

and a smaller number of events (29) that were normal-specific. Notably, 11 cancer-specific 

events were observed in at least 3 cancer cells, whereas no normal-specific events exceeded this 

level of prevalence (Fig. 5b). Figure 5c (left) shows an example in the gene IFI44L (interferon-

induced protein 44-like), a type I interferon stimulated gene with a role in host antiviral response 

(26). The allele-specific splicing event and the associated variant were only observed in cancer 

cells.  
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The second scenario includes variants present and testable for splicing linkage in both cancer and 

normal cells, but significant linkage was detected with higher prevalence (p-value < 0.05 

Fisher’s exact test) in one cell class than the other.  For this scenario, we observed 2 events, both 

of which occurred in higher proportion in the normal than cancer cells (Normal-differential, Fig. 

5b, Table S1). These events may reflect a loss of function of the variants in the cancer cells. 

Figure 5c (right) shows an example of such an event in the CTSE gene, where the C allele of the 

variant is linked to skipping of the middle exon, whereas the T allele is associated with exon 

inclusion. This linkage was only observed in normal cells, but not cancer cells (despite the 

presence of the variant and adequate read coverage in cancer cells). Notably, the gene CTSE 

encodes for Cathepsin E, an aspartic protease with a vital role in protein degradation, bioactive 

protein generation, antigen processing and presentation (27).  

 

 

Discussion 

 

scRNA-seq affords unprecedented views of single cell transcriptomes. Similar to bulk RNA-seq, 

scRNA-seq provides information on the single-nucleotide level. However, identification of 

nucleotide variants in scRNA-seq is challenging due to the limited read coverage per cell. Here, 

we present scAllele, a versatile tool that not only enables variant calling in single cells but also 

uncovers allele-specific RNA processing events.  

 

We showed that scAllele outperforms other popular methods in variant calling, especially for 

microindels, the class of variants that are less well characterized than SNVs. Built upon local 

reassembly, scAllele refines read alignments and corrects possible misalignments in each read, 

thus enhancing variant detection accuracy per read. Additionally, scAllele uses a GLM model to 

detect high confidence variants. These features together confer an advantage in performance 

given low sequencing depth.    

 

The read-level variant calling by scAllele enables another advantage, that is, facilitating a 

detailed view of the allelic bias linked to alternative RNA isoforms. In this work, we focused on 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.486330doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.29.486330
http://creativecommons.org/licenses/by-nd/4.0/


 15 

allele-specific splicing patterns. A similar approach can be extended to examine other aspects of 

RNA expression, such as alternative polyadenylation. We note that this type of analysis requires 

a relatively high read coverage per event, as it simultaneously quantifies alternative alleles of 

nucleotide variants, alternative RNA isoforms and their combined linkage patterns. We showed 

that the number of such events increased with higher scRNA-seq sequencing depth, indicating 

that RNA representation in scRNA-seq was not saturated at lower depth, such as 1M reads. With 

the continued drop in sequencing cost, we expect to see wide applications of allele-specific and 

alternative RNA isoform analyses, such as those enabled by scAllele.    

 

We applied scAllele to a lung cancer scRNA-seq dataset (with matched controls). Our analysis 

identified a large number of nucleotide variants, many of which had enriched presence in cancer 

cells. Compared to variants common to both normal and cancer cells, cancer-enriched variants 

were more often cataloged in Cosmic, supporting the validity of the scAllele variant calls. 

Additionally, cancer-enriched variants were more often located in coding regions, which 

suggests a potential role in altering protein sequences or producing neoantigens. Although 

microindels are not as abundant as SNVs, they may also have critical roles in human diseases 

(28), an area remains under-explored. In general, compared to SNVs, we observed a relative 

enrichment of microindels in 3’ UTRs. Given the existence of numerous regulatory elements in 

the 3’ UTRs (29), microindels in these regions may alter many processes, such as mRNA 

stability, translation, or mRNA localization, which should be investigated in the future. 

 

In the cancer and normal epithelial cells, we identified more than 150 allele-specific splicing 

events. We further categorized these events based on their relative prevalence in cancer or 

normal cells. Even though most events were observed in a small number of cells, likely due to 

low read coverage in single cells, such categorization provides an approximate overview of their 

relative enrichments. Among these events, many have important relevance to cancer, such as 

those in the CTSE and IFI44L genes in Fig. 5c. Our results suggest that scRNA-seq data possess 

useful information to uncover important alternative splicing events, linking genotypes to this 

molecular phenotype.   
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In summary, scAllele offers a unique approach to maximize the information extracted from 

scRNA-seq data sets. With the emergence of scRNA-seq data from a large spectrum of samples, 

scAllele will lead to a granular view of the genetic landscape of each cell and the potential 

genetic drivers of gene expression complexity. 

 

 

Methods 

 

scAllele: detailed outline  

 

To scan variants in the entire transcriptome, we grouped the sequencing reads into Read Clusters 

(RC). An RC is made up of a group of overlapping reads. It should be noted that the entire 

sequence of each read was included, not only the segment that overlaps the RC. Multi-mapped, 

chimeric, and low mapping-quality reads were removed as well as reads with  5 soft-clipped 

bases or trailing homopolymers (n  15). An additional “reference read” was included as part of 

the RC. This read contains the genomic reference sequence of the entire range spanned by the 

RC.  

 

In each RC, the reads were decomposed into overlapping k-mers (k-1 overlap) which are the 

nodes of the de Bruijn Graph (dBG). The edges represent consecutive nodes (i.e., two k-mers 

overlapping by k-1) in the reads.  Every edge was labeled with the name of the reads that 

contained this consecutive pair of k-mers and the position in the read where the k-mers were 

located.  

 

The graph was then processed by compacting and removing certain nodes. Walks on the graph 

that contain consecutive nodes of in-degree = 1 and out-degree = 1 can be merged into a single 

node that contains a sequence length of k + n – 1 where n is the number of nodes being merged. 

In addition, subsequences in the “reference read” that did not overlap with other reads (which are 

usually intronic segments) were also compressed. This step greatly simplifies the graph because 

the intronic regions are generally several thousand bases long, much longer than the average RC. 

Other nodes were removed from the graph if they did not provide useful information. For 
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example, we defined the actual start and end of the RC as the first and last nodes that originated 

from the “reference read”. By definition, these nodes have in-degree = 0 and out-degree = 0 

respectively. Additional nodes that complied with the degree requirement but did not originate 

from the “reference read” were labeled as alternative starts and ends. These alternative starts and 

ends also represent differences among read sequences. However, since they do not form a 

bubble, it’s not possible to infer the variant causing such difference.     

 

Subsequently, scAllele inferred the walk on the graph that matched the original sequence of each 

read. These walks were named “read walks”. Because some nodes were removed or merged in 

the previous step, this walk is not necessarily the same sequence of nodes obtained from the 

initial read decomposition. As a result, many of the original reads were matched by the same 

“read walk”, reducing the number of distinct reads to process.  

 

In the compacted/cleaned dBG, we identified the bubble structures by locating the source nodes, 

the sink nodes and the walks connecting them via depth-first search (DFS) of the graph. These 

structures represent variants, and with the DFS we can identify which specific source node, sink 

node, and connecting walk correspond to each allele. This information was then used to identify 

the variants and their alleles present on each “read walk”. In the case of highly 

interconnected/cyclic graphs (due to existence of repeats or low complexity regions), this 

assignment was aided by a Dijkstra-like algorithm which identifies the most likely set of variants 

on a “read walk” by minimizing the editing distance between the read walk sequence and the 

reference sequence. More specifically, first, all the end-to-end “read walks” were identified. 

Then, by calculating the cumulative edit distance at every node and traversing the graph through 

different walks, we can select the best walk. Note that introns were also considered a type of 

variants in these intermediate steps and were processed in the same way as the nucleotide 

variants. However, we did not assign an edit distance to them. 

 

The variants were further processed by normalizing, left aligning and atomizing them. Different 

features were collected for each variant including read counts for each allele, base qualities, read 

positions, and count of tandem repeats flanking the variant. An additional feature, namely 

haplotype-fitting was calculated using the entire set of reads and variants from each RC. These 
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features were then used to score the quality of the variant (see Variant Scoring). At this point, the 

variant-calling step was complete. Since scAllele identifies variants at the read level, this 

information was stored in memory for subsequent mutual information analysis, based on which 

the linkage between nucleotide variants and splicing isoforms was calculated (see linkage 

analysis).     

 

Variant Scoring  

 

We trained a generalized linear model (GLM) using “ground truth” genetic variants and various 

features obtained from the main algorithm of scAllele. The features included the variant’s ALT 

allelic ratio (AB), the number of tandem repeats neighboring the variant (TandemRep), 

sequencing error rate (SER), median base quality in the variant’s proximity, read position, and 

the haplotype-fitting, as detailed below. 

 

Low ALT allelic ratio is often indicative of a false positive variant, likely due to existence of 

sequencing errors. In fact, we can calculate the probability of observing an allelic ratio (AB) if it 

is resulted from a sequencing error using the binomial distribution.  

 

p(AB | seq. error) = (
𝐷𝑃

𝐴𝐶
) 𝑓𝐴𝐶(1 − 𝑓)𝐷𝑃−𝐴𝐶 

 

where AC is the ALT allele counts, and DP is the total read count. The value of f is the 

probability of error which in most cases corresponds to the SER. We used 0.01 for this variable, 

which is the maximum error rate for the Illumina sequencing platforms (30). In tandem repeats, 

however, the probability of error is expected to increase due to the propensity of PCR slippage. 

We then defined f as follows:  

 

𝑓 =  {
𝑆𝐸𝑅 + 0.075 𝑖𝑓 𝑇𝑎𝑛𝑑𝑒𝑚𝑅𝑒𝑝 ≥ 5 𝑎𝑛𝑑 𝑣𝑎𝑟𝐿𝑒𝑛𝑔𝑡ℎ = 1
𝑆𝐸𝑅 + 0.035 𝑖𝑓 𝑇𝑎𝑛𝑑𝑒𝑚𝑅𝑒𝑝 ≥ 5 𝑎𝑛𝑑 𝑣𝑎𝑟𝐿𝑒𝑛𝑔𝑡ℎ ≥ 2

𝑆𝐸𝑅 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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These values are approximations of the empirical estimation of stutter noise made in lobSTR 

(31). The stutter noise was found to be a function of the variant length (varLength) and the 

number of tandem repeats (TandemRep). The probability p(AB|seq.error) was used as an 

additional feature in the GLM, and served as an interaction term between AB and TandemRep. 

 

Another feature in the GLM was derived from base quality scores. In case of SNVs, we simply 

used the base quality at the mismatch position. For microindels, we used the median base quality 

in the neighboring region of the variant (+/- 7 bases) since the original position of the microindel 

is, in many cases, ambiguous. In addition, the median read position was used as a variable in the 

GLM because the 3’ ends of the reads tend to have lower base quality, also considering the fact 

that the bubble structures in the dBG are less reliable if they only use the ends of the “read 

walks”.  

 

Next, scAllele calculated another metric called “haplotype-fitting”. This refers to the ability to 

cluster the variant alleles into two potential haplotypes based on their colocalization in the reads. 

We clarify that we do not aim to infer the actual haplotype since RNA-seq data is not ideal for 

this task. This step simply checks for multi-allelic variants and allele combinations that result in 

more than two haplotypes. For this step, we discarded potential RNA editing sites and we 

perform the clustering at the RC level which, most of the time, matches exonic coordinates. In 

this way, the haplotype is not confounded by non-genetic variants or allele-specific splicing.  

 

The regression of the GLM was performed using the scikit-learn package (32) from Python. The 

training data consist of genetic variants identified in scRNA-seq data originated from the 

GM12878 cell line. We used the ground truth from GIAB (19) and trained the model on a subset 

of the dataset used in the “Evaluation of variant calls in GM12878 and iPSC cells” section. It’s 

important to note that the training data was not used to derive the performance results in that 

section. We trained a separate model for SNPs, insertions, and deletions respectively. The data 

was shuffled and split 25 times for cross-validation.  

 

Lastly, we sought to define a “quality score” for the scAllele variant call.  First, we consider the 

log-likelihood of the GLM regression as a regression score: 
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𝑙𝑜𝑔 (
𝑝(𝑉𝑎𝑟𝑖𝑎𝑛𝑡 = 𝑇𝑟𝑢𝑒)

𝑝(𝑉𝑎𝑟𝑖𝑎𝑛𝑡 = 𝐹𝑎𝑙𝑠𝑒)
) = 𝐺𝐿𝑀(𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … ) 

 

Meanwhile, the quality score (QUAL) of a standard VCF file format (specified by VCFtools, 

v.4.2) is a Phred-scaled form: 

 

𝑄𝑈𝐴𝐿 =  −10 × 𝑙𝑜𝑔10(𝑝(𝑉𝑎𝑟𝑖𝑎𝑛𝑡 = 𝐹𝑎𝑙𝑠𝑒)) 

 

Thus, a GLM regression score of zero corresponds to QUAL = 3.01, which represents equal 

probability of a variant being true or false. Based on the benchmark evaluation, we observed that 

the F1 score was usually maximized at regression scores between 1 and 2 (10.4  QUAL  20.0). 

Thus, in scAllele, the default score format is QUAL with a cutoff of 10. However, the user can 

choose to use regress scores to define quality of variant calls and the score cutoff can also be 

defined by the user.  

 

Linkage analysis 

 

scAllele detects variants at the read level allowing for allelic linkage detection. For every RC, all 

the reads that overlap a variant position were collected with their corresponding allele recorded 

(REF or ALT). Reads from different RCs were pooled together after scanning an entire 

chromosome. In paired-end data, a RC may not contain both mates of the pair. Thus, by merging 

reads from different RCs we can increase the number of potential linkages. 

 

For every pair of variants that were less than 100 kb apart, scAllele retrieved the reads that 

overlapped both variants. Using these reads, one array per variant was constructed containing the 

allele information of the variant. We used Python’s scikit-learn package (32) to calculate the 

mutual information between these two arrays.  

 

For the calculation of linkage between nucleotide variants and splicing isoforms, scAllele first 

grouped overlapping introns into “intronic part” (Fig. 1a). Such overlapping introns were 
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considered as “alleles” of the intronic part. In this way, the mutual information between an 

intronic part and a nucleotide variant can be calculated similarly as for a pair of nucleotide 

variants.  

 

Based on our analysis in the section “Linkage calculation between variants”, we required a 

minimum of 10 common reads for a pair of variants. Additionally, a minimum mutual 

information of 0.52 was required to define a significant linkage.   

 

scRNA-seq processing and mapping 

 

Raw scRNA-seq fastq files from the GM12878 cell line were retrieved from ENCODE 

(Accession: ENCSR000AIZ). These replicates were deeply sequenced (about 30 million reads). 

Thus, we downsampled each replicate into 30 alignment files with roughly 1 million reads each. 

The goal was to resemble a shallowly sequenced sample to test our method on low coverage 

data. 

 

The scRNA-seq data from iPSCs, corresponding to individuals NA19098, NA19101, and 

NA19239, were obtained from NCBI (Accession number: GSE77288) 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77288) 

 

The lung cancer (25) dataset was also downloaded from NCBI (BioProject PRJNA591860) 

(https://www.ncbi.nlm.nih.gov/bioproject/28889).     

 

Raw reads from all samples were pre-processed using fastqc (v.0.11.7) (33) to check for adapter 

content and over-represented sequences. If present, these sequences were removed using 

cutadapt (v.1.9) (34). 3’end of reads with low base quality were also trimmed using sickle 

(v.1.33)(35). The reads were aligned using two-pass STAR alignment (v.2.7.0c) (36). Finally, we 

marked PCR duplicates using the tool MarkDuplicates from Picard Tools (v.2.25.2) (37) (Supp. 

Fig. 1).   

 

Evaluation of multiple variant callers 
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Variants were called by three other tools: Platypus, GATK-HaplotypeCaller and Freebayes. The 

recommended pre-processing steps and parameters were used. For Platypus, the variant call was 

performed after processing the alignment file with Oppossum. For GATK, the variant calls were 

carried out following the “best practices” steps for RNA variant calling. For Freebayes, the 

variant call was performed with default parameters. These variants were then filtered to remove 

predicted variants with alternative (ALT) allele read count < 2 and A-to-G, C-to-T mismatches 

as they may represent RNA editing sites. Variants with labels indicating low quality were also 

removed.  

 

We evaluated the performance of the variant callers using the vcfeval function from rtg tools 

(v.3.12) (38) according to the benchmarking standards reported previously (22), with the 

following parameters: 

 

RTG vcfeval -T 1 -b $TRUTH_VCF -c $QUERY_VCF -o $OUTPUT -t $REF_SDF -f 'QUAL' --bed-

regions=$RC_BED --all-records --decompose --ref-overlap --sample ALT --output-mode='annotate' 

 

 

The variable RC_BED is a bed file containing all the genomic regions covered by at least one 

read. We employ it to reduce the running time of the software. The option “--sample ALT” was 

used to skip genotype matching and is more appropriate for RNA data.  

 

The performance metric used in this study was true positive count at fixed false positive 

thresholds. Given that the ground truth genetic variants were obtained from WGS, the sensitivity 

of variant calling in RNA-seq is in principle restricted to the number of genetic variants that are 

transcribed and sequenced in RNA. Hence, sensitivity, true-positive rate and F1 scores won’t 

accurately reflect the performance of variant callers in RNA-seq.  

 

For the evaluation of variant calling in difficult regions, we used the union of bed files 

containing difficult regions for variant calling from GIAB which merges regions of low-

mappability, high GC-content, segment duplication, low complexity, functional regions, and 

other difficult regions. 
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Detection of cancer-enriched variants and annotation 

 

We applied scAllele to the lung cancer dataset from Maynard et al (25) and selected cancer and 

normal epithelial cells corresponding to two individuals (TH238, TH179) where both cancer and 

normal tissue biopsies were obtained. Then, we focused on variants present in at least three cells 

of an individual. We calculated the prevalence of each variant across cells. Using the 

hypergeometric test, we evaluated the enrichment of each variant in cancer cells compared to 

normal. The p-value obtained was then corrected for multiple testing using the BH method. We 

defined a given variant as cancer-enriched if the BH corrected p-value is  0.1 or if the variant is 

not present in any normal cell.  

 

We further overlapped the variants with the COSMIC (cancer.sanger.ac.uk) (39) and, 

subsequently, dbSNP (b151) (40) databases. From the COSMIC annotation, we only selected 

variants that were confirmed to be somatic and were found in lung tissue. A variant was labeled 

“novel” if it is not present in either database.  

 

Detection of differential linkage events 

 

To detect differential linkage, we selected common linkage events (same nucleotide variant and 

same introns) between the cells of the same individual. We then classified them into four 

categories explained by the two proposed scenarios. For scenario 1, we selected linkage events 

that were present in cancer cells, but not in normal cells, or vice versa. These events were 

grouped into the categories “cancer-specific” and “normal-specific”, respectively. For scenario 2, 

we selected linkage events that were present in both types of cells, but significantly more 

prevalent in one compared to the other. These events were grouped into the categories “cancer-

differential” and “normal-differential”. To detect differential prevalence, we used the Fisher’s 

Exact test using the number of cells with the linkage event and the number of cells that were 

testable for linkage in each group of cells.    

 

Code availability 
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The scAllele software is available in our github repository 

(https://github.com/gxiaolab/scAllele/). The scripts used for the analyses in this work are 

available at: https://github.com/gxiaolab/scAllele/Manuscript  

  

Data availability 

Variant calls and linkage events from the GM12878, IPSC cells for individuals NA19098, 

NA19101 and NA19239, and the lung cancer cells are available in our github repository: 

https://github.com/gxiaolab/scAllele/data 
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