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Abstract 15 

Climate change is altering species ranges, and abundances within ranges, as populations become 16 

differentially adapted and vulnerable to the climates they face. Hence, characterising current ranges, 17 

whether species harbour and exchange adaptive genetic variants, and how variants are distributed 18 

across landscapes undergoing rapid change, is crucial to predicting responses to future climates and 19 

informing conservation strategies. Such insights are nonetheless lacking for most species of 20 

conservation concern. We characterise genomic patterns of neutral variation, climate adaptation, and 21 

climate vulnerability (the amount of genomic change needed to track climate change by adaptation) in 22 

sister foundation species, the endemic marine tubeworms Galeolaria caespitosa and Galeolaria 23 

gemineoa, across a sentinel region for climate change impacts. First, species are shown to be partly 24 

sympatric despite previous support for non-overlapping ranges, and genetically isolated despite 25 

known capacity for hybrid crosses to yield viable early offspring. Second, species show signals of 26 

polygenic adaptation, but to differing components of temperature and involving mostly different loci. 27 

Last, species are predicted to be differentially vulnerable to climate change, with G. gemineoa — the 28 

less genetically diverse species — needing double the adaptation to track projected changes in 29 

temperature compared to its sister species. Together, our findings provide new insights into climate 30 

adaptation and its potential disruption by climate change for foundation species that enhance local 31 

biodiversity, with implications for evolutionarily-enlightened management of coastal ecosystems. 32 

Key words: climate change, thermal adaptation, genomic vulnerability, genotype-environment 33 

associations, genetic offset, seascape genomics, temperature components   34 
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Introduction 35 

Global climate change is redistributing Earth’s biodiversity. Geographic ranges are shifting as species 36 

move to track tolerable climatic conditions, and abundances are changing within ranges as 37 

populations adapt, or grow maladapted and thereby vulnerable, to the climates they face (Pecl et al., 38 

2017; Scheffers et al., 2016). Understanding current ranges, whether species harbour (and exchange) 39 

different genetic variants involved in climate adaptation, and how such variants are distributed across 40 

landscapes undergoing rapid climate change, is therefore key to predicting responses to future change 41 

and informing conservation strategies (Teixeira & Huber, 2021; Willi et al., 2022). This remains 42 

challenging for many species, especially those that are cryptic or unsuited to traditional ways of 43 

inferring adaptation and persistence (reciprocal transplants, multi-generation breeding experiments, 44 

etc.). However, emerging tools linked to the rise of population genomics for non-model organisms in 45 

recent years are set to provide new insights into climate adaptation and vulnerability for understudied 46 

species of conservation concern (Hoffmann et al., 2021; Hohenlohe et al., 2021). 47 

Genomic prediction of climate adaptation relies on genome scans and genotype-environment 48 

associations to identify putatively adaptive loci harbouring variants (alleles) whose frequencies covary 49 

with climate across species ranges (Forester et al., 2016; Rellstab et al., 2015). Then, using machine 50 

learning- or distance-based methods and climate forecasts, climate-adaptive variants can be projected 51 

across space and through time to assess genomic vulnerability (also called genetic offset) as the 52 

predicted difference in their distributions across present and future landscapes (Fitzpatrick & Keller, 53 

2015) — in other words, the amount of genomic change needed to track climate change via 54 

evolutionary adaptation (Capblancq et al., 2020; Hoffmann et al., 2021). Notwithstanding the 55 

challenges of validating predictions (Hoffmann et al., 2021; Rellstab et al., 2021), assessing genomic 56 

vulnerability offers new scope to ask how populations and species of high ecological importance, but 57 

limited tractability to experimentation, may fare in future climates, identifying those at most risk of 58 

decline as those needing to evolve the most to keep pace with change and avert maladaptation. 59 

Combining such assessments with insights from neutral genomic variation, moreover, allows 60 

population structures and species barriers to be explored from both neutral and adaptive perspectives, 61 
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with differing implications for population dynamics, species range shifts, and management actions 62 

under climate change (Hohenlohe et al., 2021; Kardos et al., 2021; Willi et al., 2022). 63 

Accordingly, mounting studies have assessed genomic vulnerability in the context of climate 64 

change for individual species — mostly trees (Borrell et al., 2020; Ingvarsson & Bernhardsson, 2020; 65 

Jia et al., 2020; Pina-Martins et al., 2019) or marine counterparts (Vranken et al., 2021; Wood et al., 66 

2021), but also birds (Bay et al., 2018). Yet rarely, if ever, has the approach been extended to related 67 

species in overlapping ranges (but see Nielsen et al., 2021), despite the impacts of dispersal and gene 68 

flow not just across populations, but across partial species barriers. Introducing new adaptive variants 69 

from one population or species to another, for example, may create highly-fit hybrids that increase 70 

population sizes in the short term (Fitzpatrick et al., 2020) or rates of adaptation in the longer term 71 

(Grant & Grant, 2019; Mitchell et al., 2019). Conversely, it may cause outbreeding depression if 72 

distantly-related genomes are less compatible (Frankham, 2015), or expose variants to new 73 

environments in which they are maladapted (Hoffmann & Sgrò, 2011; Polechová, 2018). Over time, 74 

species lines may blur, or species that are less vulnerable to climate change may displace species that 75 

are more so, at a net cost to biodiversity (Román-Palacios & Wiens, 2020; Todesco et al., 2016). 76 

From this perspective, multi-species assessments of genomic vulnerability may help to identify 77 

whether genetic lineages are on distinct (and potentially adaptive) evolutionary pathways linked to 78 

climate, and could therefore warrant separate management to conserve their genetic uniqueness (Willi 79 

et al., 2022).  80 

Gaps also exist in our understanding of adaptation and vulnerability to different components of 81 

climate change, which is altering not only the mean values (trends) of key variables, but also their 82 

variability, extremes, and the extents to which they vary predictably or stochastically (Fischer & 83 

Knutti, 2015; Ruokolainen et al., 2009; Waldock et al., 2018). By imposing different selective 84 

pressures, these components of climate change may have different consequences for biodiversity and 85 

lead to different risks of population decline (Bitter et al., 2021; Kingsolver & Buckley, 2017; Lande, 86 

2014; Rescan et al., 2021; Ripa & Lundberg, 1996). To date, however, most assessments focus on 87 

adaptation to climate variables or proxies (precipitation, temperature, vegetation, elevation) relevant 88 
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to terrestrial systems, whereas marine systems are underrepresented by comparison (Grummer et al., 89 

2019; Lotterhos et al., 2021). Marine species often have high fecundity, large effective population 90 

sizes, and long-range dispersal at early life stages (gametes, embryos, and larvae) with high mortality, 91 

so that gene flow, selection, and drift play out in oceanographic settings that can strongly couple 92 

physical and evolutionary processes, while also decoupling the environments of early stages and 93 

adults. Trends in key variables (such as temperature), moreover, are less striking and immutable than 94 

they are on land (Gaylord & Gaines, 2000), potentially giving other components of change greater 95 

influence. Marine systems can therefore offer new genomic insights into climate adaptation and 96 

vulnerability (Liggins et al. 2020), but studies remain rare (Vranken et al., 2021; Wood et al., 2021). 97 

They have not explored adaptation to environmental predictability, and are lacking for many species 98 

of ecological importance in regions undergoing rapid climate change where increased adaptation can 99 

be expected (Hill et al., 2011; Lotterhos et al., 2021). 100 

Southeast Australia is a climate change and biodiversity hotspot, identified as one of the world’s 101 

fastest warming marine regions and one of its most biologically diverse (Frusher et al., 2014; Hobday 102 

& Pecl, 2014; Ramírez et al., 2017). East-west divergence of populations and species in the region is 103 

often attributed to geographic isolation by the historical land-bridge joining Tasmania and mainland 104 

Australia during the last glacial maxima (Dawson, 2005; O’Hara & Poore, 2000). The region also sees 105 

two boundary currents — the East Australian Current flowing south from the tropics, and the Zeehan 106 

Current flowing east from the Great Australian Bight — converge with subantarctic water in Bass 107 

Strait, generating complex gradients of temperature and flow that may mediate postglacial dispersal, 108 

drift, and selection (Miller et al., 2020; Waters, 2008). Those gradients are set to steepen as the East 109 

Australian Current continues to warm and intensify southward (Hobday & Lough, 2011; Ridgway & 110 

Hill, 2009), making the region a natural laboratory for studying climate adaptation and vulnerability 111 

in order to better predict the fate of biodiversity in future climates. 112 

 Here, we investigate climate adaptation and vulnerability in an endemic ecosystem engineer, or 113 

foundation species — the marine tubeworm, Galeolaria — across the southeast hotspot. Galeolaria 114 

comprises cryptic sister species that are geographically concordant with neutral genetic markers 115 
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(placing G. gemineoa to the northeast and G. caespitosa to the southwest; Halt et al., 2009) yet are 116 

still able to interbreed (Styan et al., 2008). Their ranges, population structures, frequency of 117 

hybridization, and potential adaptation to climate are unknown. We therefore characterized genomic 118 

variation among populations of each species throughout the hotspot to assess genomic divergence, 119 

diversity, and gene flow within and between species. We further identified candidate adaptive loci and 120 

associations with different components of temperature for each species, then modelled allele turnover 121 

at candidate loci in current and projected climates to predict where populations are most vulnerable to 122 

loss of adaptation with ongoing climate change. Our analyses reveal these species to be genetically 123 

distinct despite partial sympatry across the hotspot, support climate adaptation in both species, and 124 

identify populations that could face greater risk of decline unless they adapt rapidly to near-future 125 

climates. Such insights into the nature of biodiversity across the hotspot could enhance evolutionarily-126 

enlightened management and conservation strategies in a sentinel region for understanding climate 127 

impacts. 128 

 129 

Methods 130 

Study system 131 

Galeolaria is an ecosystem engineer endemic to rocky shores of southeast Australia, where its dense 132 

colonies of stony tubes enhance local biodiversity by providing habitat and climate refugia for species 133 

that cannot otherwise persist there (Figure 1A; Wright & Gribben, 2017). Year-round, adults release 134 

gametes into the sea for external fertilization and embryogenesis (Chirgwin et al., 2020, 2021), then 135 

larvae spend ~2–3 weeks offshore, dispersed by currents, before transitioning to sessile life stages 136 

(juveniles and adults) onshore in the intertidal. As for other aquatic ectotherms, planktonic stages are 137 

thermal bottlenecks in the lifecycle, defining vulnerability to climate as well as population structure 138 

across species’ ranges (Dahlke et al., 2020; Lotterhos et al., 2021; Rebolledo et al., 2020). Galeolaria 139 

caespitosa and G. gemineoa are said to diverge in the southeast hotspot near Ninety Mile Beach, due 140 
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to historical vicariance, dispersal limitation, or lack of rocky habitat (Figure 1B; Styan et al. 2008; 141 

Halt et al. 2009).  142 

 143 

Sampling throughout the southeast Australian hotspot 144 

We sampled adult populations of G. caespitosa and G. gemineoa from 30 locations spanning ~800 km 145 

of coast throughout the hotspot (Figure 1B; Table S1) in January 2019. Locations were separated by 146 

~20 km (subject to accessibility and species detection) and were chosen to capture thermal variation 147 

in each species’ range. Each of 10 to 15 individuals per location was immediately extracted from its 148 

tube, spawned for 5 minutes in filtered seawater to minimize contamination by gametes, then rinsed 149 

and placed in an Eppendorf tube with 70% ethanol. Individuals were transported to the lab and stored 150 

at room temperature (~22 °C) until DNA extraction. 151 

 152 

DNA extraction, library preparation, and sequencing 153 

We extracted DNA from the posterior ~5 mm of each individual. We digested tissue overnight with 154 

proteinase K, then extracted DNA using the Qiagen DNeasy Blood and Tissue Kit following 155 

manufacturer instructions (Qiagen, 2006). Quality was checked by running individual samples on 2% 156 

agarose gel stained with ethidium bromide and also with a UV-Vis Spectrometer (NanoDrop 1000, 157 

Thermo Scientific). Quantity was checked with a QuBit fluorometer (dsDNA HS, Invitrogen). 158 

Library preparation followed a double-digest (with HF-PstI and MspI restriction enzymes), 159 

genotype-by-sequencing (ddGBS) protocol with equal amounts of DNA per individual (Poland et al., 160 

2012). The protocol was modified by performing PCR reactions for individual samples, then pooling 161 

equal amounts of the PCR products. A size selection step was also added to focus on fragments 162 

between 400-600 bp. Sequencing was performed in two batches, one by GenomeQuébec (Montréal, 163 

Canada) and one by GENEWIZ (Suzhou, China). Both batches used one lane of Illumina HiSeq 4000 164 

(paired-end, 150 bp).  165 
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Identifyng single nucleotide polymorphisms (SNPs) 166 

Reads were quality-checked using FastQC 167 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), then demultiplexed and cleaned using 168 

process_radtags in the Stacks software pipeline (Catchen et al., 2013; Catchen et al., 2011). To 169 

optimise parameter values for identifying SNPs, we ran the pipeline nine times using a range of values 170 

for a subset of 16 individuals, then explored key statistics including the distribution of SNPs per locus 171 

and the number of loci shared by at least 80% of individuals (Paris, Stevens, and Catchen 2017; 172 

Rochette and Catchen 2017). Based on results, we called SNPs for all individuals using values of m = 173 

3, M = 5, and n = 5.  174 

We filtered SNPs in several steps. First, we filtered loci with low allele frequencies in Stacks 175 

(with min_maf = 0.01). Next, we filtered the remainder in vcfR v1.8.0 (Knaus & Grünwald, 2017), 176 

adegenet v2.1.1 (Jombart, 2008), and gaston v1.5.6 (Perdry & Dandine-Roulland, 2020) to keep only 177 

biallelic loci with depth > 5, genotype quality > 30, and linkage disequilibrium (r2) < 0.8, and to 178 

exclude individuals missing more than 60% of loci. Last, we excluded loci missing more than 55% of 179 

data across individuals and used this large SNP set for genotype-environment association analyses. 180 

For analyses of population genetic structure, which do not require large numbers of SNPs, we used a 181 

reduced SNP set that excluded loci missing more than 30% of data across individuals. 182 

All remaining data analyses were performed in R v.4.0.5 (R Core Team, 2021) unless otherwise 183 

stated.  184 

 185 

Environmental data 186 

We obtained a high-resolution (1 km2 grid cell) satellite-based time series of sea surface temperature 187 

from January 2010 to December 2018 (www.ghrsst.org), and extracted daily observations for all 30 188 

locations. We summarised data using ten variables based mostly on the WorldClim scheme (Fick & 189 

Hijmans, 2017; Hijmans et al., 2005), then selected four that captured different components of change 190 

in temperature and had pairwise correlations below |0.7| (Table S2). They were the mean temperature 191 

(a measure of trend), maximum temperature of the warmest month (a measure of extremity), mean 192 
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monthly temperature range (a measure of variability), and temperature noise structure (a measure of 193 

stochasticity). See supplementary material for details of calculations. 194 

Analyses of population genetic structure 195 

Genetic clustering. To explore genetic differentiation between populations of each species, we 196 

clustered loci using a principal components analysis of genetic variation in the adegenet package 197 

(v2.1.1; Jombart, 2008). We also estimated the ancestries of individuals, and levels of admixture 198 

among ancestral lineages, using the ADMIXTURE program (Alexander et al., 2009). The parameter 199 

K (presumed number of ancestral lineages) was set to 2, which minimized cross-validation error in 200 

preliminary analyses. Setting higher values of K did not alter our results. 201 

Genetic diversity. To explore genetic diversity within populations of each species, and because some 202 

loci were polymorphic between species but not within them, we filtered out loci that were 203 

monomorphic or unique to one species. For each population, we then calculated standard measures of 204 

diversity — observed heterozygosity (HO), expected heterozygosity (HS), inbreeding coefficient (FIS), 205 

and allelic richness (AR) — averaged across loci in hierfstat v0.5-7 (Goudet & Jombart, 2015). We 206 

compared diversity between species using F-tests from linear models with species as a categorical 207 

fixed effect. Checks of model assumptions using diagnostic plots of residuals detected no serious 208 

violations. 209 

Genetic isolation by distance. To identify evidence for greater gene flow among geographically 210 

proximate populations of each species, we first calculated pairwise genetic distances (FST, also 211 

averaged across loci) between populations in hierfstat v0.5-7 (Goudet & Jombart, 2015). To reduce 212 

sampling error, populations represented by less than three individuals were excluded from 213 

calculations (Nazareno et al., 2017). To assess the relationship between genetic isolation and 214 

geographic distance in each species, we tested the correlation between matrices of pairwise genetic 215 

distances (FST/1 – FST) and geographic distances (calculated with the geosphere package; (Hijmans et 216 

al., 2017) using a Mantel test based on 999 permutations in dartR v1.8.3 (Gruber & Georges, 2019).   217 

 218 
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Genetic isolation by temperature. To assess the relationship between genetic isolation and thermal 219 

environment in each species, we calculated environmental distances based on temperature variables in 220 

the ade4 package (Dray & Dufour, 2007), then tested their correlation with genetic distances using a 221 

Mantel test in the same package.   222 

 223 

Analyses of climate adaptation and vulnerability 224 

Candidate loci for thermal adaptation. To search for candidate adaptive loci that diverge among 225 

populations in association with temperature variables, we performed a redundancy analysis for each 226 

species using the vegan package (Oksanen et al., 2016). This two-step extension of linear regression 227 

to multivariate responses identifies loci that covary in response to multivariate environments, and 228 

provides a superior combination of low false-positive and high true-positive rates to other methods 229 

(Forester et al., 2018). Here, it involved regressing loci on temperature variables to compute a matrix 230 

of predicted genotype-temperature associations, then applying principal components analysis to the 231 

matrix to compute four uncorrelated principal components, or ordination axes (RDA1– RDA4), 232 

comprising linear combinations of variables that explain those associations. Candidate loci were 233 

identified as outliers on ordination axes based on scores at least three standard deviations from the 234 

mean score per axis (two-tailed P-value = 0.003). Because the method does not tolerate missing data, 235 

missing genotypes were imputed by population using the most common genotype per locus. If loci 236 

were missing or tied, we used the most common genotype in all samples (Forester et al., 2018).  237 

To cross-validate results with those from alternative approaches, we performed equivalent 238 

univariate analyses using the standard covariate model and default settings in the BayPass program 239 

(Gautier, 2015). We identified candidate loci based on P-values of XtX statistics (FST analogues 240 

accounting for population structure) and inferred associations with temperature variables based on 241 

Bayes factors greater than ten (“strong evidence”; Gautier 2015). We then tested the overlap of 242 

candidates identified by each method using one-tailed hypergeometric tests. As further cross-243 

validation, we repeated the redundancy analysis with distance-based Moran’s eigenvector maps 244 

included to account for population structure (Forester et al., 2018). 245 

 246 
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Genomic vulnerability to climate change. To predict each species’ vulnerability to future climate 247 

change, we modelled temperature-driven turnover in alleles at candidate loci using gradient forest 248 

regression models (Fitzpatrick & Keller, 2015), then mapped current and future turnovers throughout 249 

the study range. We fitted each model using minor allele frequencies at candidate loci that overlapped 250 

redundancy and BayPass analyses as the response variables, temperature variables as predictors, and 251 

constructed 2000 regression trees per locus using default settings in the gradientForest package (Ellis 252 

et al., 2012).  253 

To map current turnover, we extracted temperature variables for each grid cell in the study range 254 

and transformed variables into genetic importance (relative contributions to turnover) using the 255 

turnover function estimated by the model (Fitzpatrick & Keller, 2015). We then summarised 256 

transformed variables as three principal components, assigned each component to a RGB colour 257 

palette following Ellis et al. (2012), and mapped colours to grid cells using the raster package 258 

(Hijmans, 2017). Mapped this way, colours predict genetic compositions (allele frequencies) in cells, 259 

and locations with similar colours are predicted to harbour populations with similar compositions. 260 

Biplots of the two largest principal components were used to relate turnover in composition to 261 

changes in temperature (Ellis et al., 2012).  262 

Rather than map future turnover directly, we translated it to the genetic offset needed to maintain 263 

thermal adaptation under climate change (Ellis et al., 2012; Fitzpatrick & Keller, 2015). To do so, we 264 

repeated the process above with mean and maximum temperatures projected for 2050 and 2100 under 265 

low (RCP45) and high (RCP85) CO2 emission scenarios, extracted for each grid cell from the Bio-266 

ORACLE database (Assis et al., 2018; Tyberghein et al., 2012). Since other variables were 267 

unavailable, we also re-calculated current turnover without them. For each cell, we transformed 268 

variables into genetic importance as above, calculated genetic offset as the Euclidian distance between 269 

current and future genetic compositions, then mapped offset as above.  270 
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Results 271 

Variant identification 272 

Sequencing returned an average of 3,392,340 quality-filtered reads per individual, with an average 273 

depth of coverage of 24.1-fold. Stacks (Catchen et al., 2011) identified 8,887,109 putative SNPs from 274 

330 individuals. Filtering retained 8,788 unlinked loci from 272 individuals (with 16.1% of data 275 

missing across loci and individuals) for analyses of population genetic structure, and 24,263 unlinked 276 

loci from 272 individuals (with 31.3% of data missing across loci and individuals) for genotype-277 

environment association analyses. 278 

Analyses of population genetic structure 279 

Genetic clustering. Principal components analysis of genetic variation revealed two distinct genetic 280 

clusters defined by PC1 and PC2, jointly accounting for 42.1% of the multilocus genetic variation 281 

sampled (Figure 1C). Most individuals in one cluster were sampled northeast of Wilsons Promontory 282 

(to Merimbula, our northernmost location; Figure 1B), whereas most individuals in the other cluster 283 

were sampled west of this point (to Glenaire, our westernmost location; Figure 1B). However, 284 

multiple individuals from western locations clustered with the ‘northeastern’ cluster, and one 285 

individual from a northeastern location clustered with the ‘western’ cluster (Figure 1C). 286 

ADMIXTURE analyses confirmed the presence of individuals from different ancestral lineages in 287 

western and northeastern populations (Figure 1B and 1D), but detected little gene flow between 288 

lineages (individual ancestry proportions consistently exceeded 0.99, shown by single-coloured bars 289 

in Figure 1D). Based on known distributions of Galeolaria species (Halt et al., 2009), the 290 

‘northeastern’ cluster is G. gemineoa and the ‘western’ cluster is G. caespitosa, but species are now 291 

shown to be sympatric in some locations, especially west of Wilsons Promontory (Figure 1B). 292 

Subsequent analyses were therefore separated by species. We also explored genetic clustering within 293 

species but detected none at this level (Figure S1), as was further confirmed by within-species 294 

ADMIXTURE analyses. 295 

Genetic diversity. Of the reduced SNP set, 2,495 loci were polymorphic within species and shared 296 

between species. On average, measures of genetic diversity based on these loci were significantly 297 
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lower for G. gemineoa than for G. caespitosa, except for inbreeding coefficients (Table 1). These 298 

coefficients were positive and similar in magnitude (~0.21) for both species, indicating that their 299 

populations harbour fewer heterozygotes than expected under Hardy-Weinberg equilibrium. 300 

Genetic isolation by distance. Mean pairwise genetic distance (FST ± SE; see Figure S2 for all 301 

values) was relatively low for both species (G. caespitosa: 0.066 ± 0.001; G. gemineoa: 0.062 ± 302 

0.001) but significantly lower for G. gemineoa (F (1, 305) = 6.567, P < 0.02). Mantel tests failed to 303 

detect an association between pairwise genetic distance and geographic distance for either species (G. 304 

caespitosa: r = 0.006, P = 0.508; G. gemineoa: r = 0.212, P = 0.058). 305 

To further check whether species remain genetically isolated in sympatry, we compared mean 306 

species-level FST between sympatric and allopatric populations (Figure S3). No difference was 307 

detected (FST in sympatry: 0.599 ± 0.009; FST in allopatry: 0.598 ± 0.001; F (1, 85) = 0.015, P = 0.903), 308 

suggesting that species barriers persist even when geographical barriers are absent. 309 

 310 

Genetic isolation by temperature. Mantel tests also failed to detect an association between pairwise 311 

genetic distance and distance in thermal environment for either species (G. caespitosa: r = -0.119, P = 312 

0.692; G. gemineoa: r = 0.003, P = 0.462). 313 

Analyses of climate adaptation and vulnerability 314 

 Candidate loci for thermal adaptation. Redundancy analyses identified significant associations 315 

between individual loci and temperature variables that explained ~2% of multilocus genetic variation 316 

and supported thermal adaptation in each species (G. caespitosa: adjusted R2 of global model = 0.021, 317 

P < 0.002; G. gemineoa: adjusted R2 of global model = 0.020, P < 0.002). Multiple, independent 318 

associations were inferred by the significance of all four ordination axes per analysis (P < 0.002), 319 

with the two largest axes jointly capturing 53% of associations detected in G. caespitosa and 56% of 320 

associations detected in G. gemineoa (Figure 2). Of 775 candidate loci detected in G. caespitosa 321 

(from 15,636 loci screened), 181 were most associated with mean temperature, 230 were most 322 

associated with maximum temperature, 213 were most associated with monthly temperature range, 323 

and 151 were most associated with temperature noise structure (Table S4). Association strengths 324 
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(measured as correlations) averaged 0.354 and ranged from 0.077 to 0.769. Of 679 candidate loci 325 

detected in G. gemineoa (from 15,462 loci screened), 248 were most associated with mean 326 

temperature, 93 were most associated with maximum temperature, 173 were most associated with 327 

monthly temperature range, and 165 were most associated with temperature noise structure (Figure 2; 328 

Table S4). Association strengths averaged 0.311 and ranged from 0.081 to 0.856.  329 

BayPass analyses also identified multiple candidate loci associated with temperature variables, 330 

some of which overlapped those identified by redundancy analyses (Figure 3, top row), and did so for 331 

specific variables (Table S4). Robust candidates identified by both methods were used to further 332 

predict genomic vulnerability (see Figures 4 and 5). Few candidates overlapped between species 333 

(Figure 3, bottom row), which seemingly adapt to temperature using mostly different loci. Overlaps 334 

were generally higher than expected by chance (P < 0.001), except for the overlap between species 335 

resulting from redundancy analyses (Figure 3, bottom row). 336 

Other cross-validations further supported the robustness of our results. Patterns in Figure 2 were 337 

similar to those from an equivalent analysis that included Moran’s eigenvector maps to account for 338 

population structure in G. gemineoa (the only species for which genetic isolation was marginally 339 

associated with distance), with many overlapping SNPs (Table S5).  340 

Genomic vulnerability to future climate change. Gradient forest models identified temperature-341 

driven turnover in allele frequencies at 11 candidate loci in G. caespitosa (from 24 candidates 342 

screened), and 10 candidate loci in G. gemineoa (from 17 candidates screened) (Figure S5). Based on 343 

the relative contributions of temperature variables to predicted turnover (indicated by the lengths and 344 

alignments of vectors with biplot axes in Figure 4; see also importance values in Figure S6), 345 

maximum temperature and temperature noise structure are most important to turnover in G. 346 

caespitosa, whereas mean temperature and monthly temperature range are most important to turnover 347 

in G. gemineoa. Importance aside, the close alignments of their vectors in both biplots suggest that 348 

temperature range and noise structure otherwise act similarly on turnover in both species (Figure 4). 349 

Mapping current genetic turnover for both species identified divergent patterns of adaptive genetic 350 

composition along the open coast (Figure 4). For G. caespitosa, predicted allele frequencies were 351 
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relatively homogeneous (Figure 4B), apart from turnover between western populations and the sole 352 

northeastern sample mapping to changes in maximum and mean temperature (higher in bluer and 353 

purple regions respectively). For G. gemineoa predicted allele frequencies were more heterogeneous 354 

(Figure 4D), with turnover between western populations and (mostly) allopatric ones in the northeast 355 

mapping to changes in temperature range and mean (higher in greener and bluer regions respectively). 356 

For both species, marked turnover between the open coast and enclosed bays mapped to changes in 357 

temperature range and noise structure (both higher within bays). 358 

Not surprisingly, more extreme warming (RCP45 versus RCP85 and 2050 versus 2100 scenarios) 359 

is predicted to increase divergence between current and future genetic compositions, and hence the 360 

genetic offset needed to maintain thermal adaptation, in both species (Figure 5). For G. caespitosa, 361 

greatest offset is predicted for enclosed bays and the northeast coast, unless extreme warming to 2100 362 

demands adaptation throughout its range (Figure 5A). For G. gemineoa, genetic offset is more than 363 

double the magnitude predicted for G. caespitosa, and is greatest for western (sympatric) populations 364 

— again, unless extreme warming to 2100 demands adaptation throughout its range (Figure 5B). 365 

 366 

Discussion 367 

With climate change redistributing biodiversity around the globe (Pecl et al., 2017), predicting 368 

species’ responses to future climates entails understanding their current ranges, whether they harbour 369 

or share genetic variants involved in climate adaptation, and how variants are distributed across 370 

landscapes and seascapes undergoing climate change. We set out to assess the distribution of neutral 371 

and adaptive genomic variation in sister foundation species — the marine tubeworms G. gemineoa 372 

and G. caespitosa — across a sentinel region for climate impacts. We found that species hybridize 373 

little despite uncovering sympatry in their ranges, harbour mainly species-specific variants involved in 374 

adaptation to differing components of temperature, and face different risks of maladaptation under 375 

projected changes in temperature. These results offer new insights into the potential disruption of 376 

evolutionary adaptation and species distributions by near-future climate change in coastal ecosystems. 377 
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Detection of sympatry in sister Galeolaria species overturns previous molecular support for 378 

limited overlap in their ranges (Halt et al., 2009; Styan et al., 2008), but accords with their capacity 379 

for long-distance dispersal in early life (Olsen et al., 2020; Palumbi, 1994). Notably, the extent of 380 

range overlap detected here far exceeds estimates of poleward range shifts by marine species in the 381 

hotspot during the last decade (Sunday et al., 2015). Our results could therefore reflect more intensive 382 

sequencing across the hotspot here than in previous work. Moreover, that species show little gene 383 

flow in sympatry suggests the presence of strong reproductive barriers between them, despite 384 

maintaining a reasonable capacity to cross-fertilise and produce viable larvae (Styan et al., 2008). It is 385 

therefore possible that species in sympatry remain isolated by genetic incompatibilities arising at later 386 

postzygotic stages (Fierst & Hansen, 2010; Sinervo & Calsbeek, 2003), or other mechanisms (e.g., 387 

asynchronous gamete release, conspecific sperm precedence; Howard, 1999; Lotterhos & Levitan, 388 

2010) that avoid hybridisation in the first place, and such possibilities warrant further research. Last, 389 

neutral genomic variation revealed low levels of population differentiation and moderate levels of 390 

inbreeding in both species, as seems to be common for external fertilisers with long-distance dispersal 391 

and limited control of mate choice (Olsen et al., 2020; Palumbi, 1994). However, other measures of 392 

neutral diversity were lower in G. gemineoa than G caespitosa, suggesting that species-specific 393 

reductions in population size may have left one species more genetically depauperate, and hence more 394 

vulnerable to decline, than the other (Reed & Frankham, 2003; Sgrò et al., 2011). 395 

Climate adaptation also seems to differ between Galeoalaria species, given that putatively-396 

adaptive loci show species-specific associations with different components of temperature — 397 

specifically, with its maximum and stochasticity for G. caespitosa, but its mean and range for G. 398 

gemineoa. Australia’s east coast is characterized by clear latitudinal gradients in the annual mean and 399 

seasonality of temperature driven by seasonal cycling of the East Australian Current, whereas the 400 

south coast is characterised by less-structured changes in temperature occurring longitudinally 401 

(Frusher et al., 2014; Waters, 2008). Hence, adaptive genetic variation in G. gemineoa (whose range 402 

extends northward along the east coast) associates most strongly with the dominant components of 403 

temperature variation throughout its range, as does adaptive variation in G. caespitosa (whose range is 404 
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largely restricted to the south coast). This result emphasises the expected coupling of physical 405 

processes (e.g., oceanographic forcing) and evolutionary processes in the sea (Lotterhos et al., 2021), 406 

also detected in the handful of studies to so far link adaptive variants to physical characteristics of 407 

coastal ecosystems (Nielsen et al., 2021; Vranken et al., 2021; Wood et al., 2021). It may further 408 

suggest that sister Galeoalaria species have adapted to different selective pressures mediated by 409 

different components of temperature variation, facilitating poleward range shifts in G. gemineoa, 410 

especially, if conditions to which it has already adapted on the east coast extend southward with 411 

ongoing climate change.  412 

Another possibility is that Galeolaria species have adapted to similar components of temperature 413 

variation, but differ in the genetic basis of adaptation in ways that affect power to detect associations 414 

between adaptive variants and those components. Supporting this idea, adaptation in both species is 415 

polygenic and involves loci that not only associate with different components of temperature to 416 

different degrees within species, but also overlap little between species. On one hand, this could 417 

reflect the multidimensional nature of climatic variables (Garcia et al., 2014; Waldock et al., 2018) if 418 

their different components drive selection at different genomic regions. Future studies could therefore 419 

assess whether putatively-adaptive loci are functionally associated with different traits that aid 420 

adaptation (e.g., Popovic & Riginos 2020), for example, to changes in mean temperature versus 421 

stochasticity in temperature. On the other hand, genetic differentiation of populations and species 422 

across the southeast hotspot is often attributed to their historical isolation during glacial maxima 423 

(Dawson, 2005; O’Hara & Poore, 2000). Consequently, Galeolaria species may have diverged 424 

genetically long before adapting to contemporary climates, and the relative contributions of isolation 425 

and adaptation to divergence in these (and other) lineages across the hotspot are currently hard to 426 

elucidate (Miller et al., 2013; Waters, 2008). Climate adaptation is nonetheless cited as a key driver of 427 

divergence in other local species (Miller et al., 2020; Wood et al., 2021). If such is also the case for 428 

Galeolaria, then barriers between sister species could be maintained by genetic incompatibilities 429 

arising from divergent adaptation (Dettman et al., 2007; Keller & Seehausen, 2012), in addition to the 430 

neutral divergence noted above. The nature and origin of these barriers, however, remains to be tested. 431 
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Mapping genomic vulnerability to future climate change across the hotspot predicts that G. 432 

gemineoa is substantially more vulnerable than G. caespitosa, generally needing twice as much 433 

genomic change to track climate change via evolutionary adaptation (Capblancq et al., 2020; 434 

Hoffmann et al., 2021). This may be due G. gemineoa’s distribution across a broad thermal gradient 435 

in the hotspot, leading to greater breadth of adaptation, and hence greater potential for future loss of 436 

adaptation in this species compared to G. caespitosa. Vulnerability also varied geographically within 437 

species, with higher levels predicted for populations approaching the northern edge of G. caespitosa’s 438 

range, and those approaching the western edge of G. gemineoa’s range (though we cannot rule out its 439 

extension further west than sampled). Compared to populations at range cores, range-edge 440 

populations often harbour novel genetic variants that can facilitate adaptation, but may also have 441 

higher risks of decline due to smaller population sizes and lower genetic diversity (Eckert et al., 2008; 442 

Polechová & Barton, 2015; Sexton et al., 2009). Our predictions of vulnerability may therefore flag 443 

potential range contractions in both species under future climate change, with G. gemineoa at 444 

comparatively greater risk due to its lower genetic diversity noted above. Last, G. caespitosa is 445 

predicted to have relatively high vulnerability in enclosed bays, marked by less flow and more 446 

extreme temperatures compared to open coasts (Barton et al. 2012). Hence, the relatively strong 447 

signals of climate adaptation detected in bays, shown here to harbour different adaptive variants to 448 

those found on nearby coasts, may also be prone to disruption under future climate change. 449 

Despite their promise for inferring climate adaptation (and its predicted loss) in non-model 450 

organisms with limited tractability to experimentation (Fitzpatrick et al., 2021), the genomic tools 451 

used here have limitations that should be acknowledged (reviewed in Capblancq et al., 2020; 452 

Hoffmann et al., 2021; Rellstab et al., 2021). For instance, predictions of genomic vulnerability do not 453 

account for the ability of populations to adapt to climate change using standing genetic variation, or 454 

gene flow from other, well-adapted populations across a species’ range (which, as noted, could 455 

especially benefit G. gemineoa). Genotype-environment associations are also inherently correlative, 456 

and can be prone to false positives (Hoban et al., 2016; Rellstab et al., 2015; Tiffin & Ross-Ibarra, 457 

2014), although we cross-validated adaptive candidates using multiple approaches here. 458 
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Notwithstanding such limitations, using genotype-environment associations to predict genomic 459 

vulnerability may point out populations requiring greater adaptation to track future climates, given 460 

that inherent costs of adaptation are expected to impose demographic pressure on populations while  461 

they adapt to projected changes (Bell, 2012; Haldane, 1957). For any focal organism, future studies 462 

should ideally aim to link putatively-adaptive genetic variants to variation in individual phenotypes 463 

and fitness, in addition to population growth and adaptive capacity, in order to improve and validate 464 

predictions of genomic vulnerability under climate change. 465 

Overall, we present new insights into climate adaptation, its predicted disruption by climate 466 

change, and the implications for partly sympatric foundation species that enhance biodiversity in a 467 

sentinel region for climate change impacts. Identifying so-called evolutionarily significant units worth 468 

conserving for their genetic uniqueness, adaptive significance, and risk of decline, is one of the most 469 

pressing challenges facing us today, and a necessary step in developing proactive conservation 470 

strategies (Foden et al., 2019; Smith et al., 2014; Willi et al., 2022). Our findings advance that goal by 471 

identifying sister Galeolaria species as lineages on distinct adaptive trajectories linked to climate, that 472 

seemingly share little gene flow (and hence little scope to gain neutral diversity or climate-adaptive 473 

variants from one another), and are predicted to fare differently in future climates. As foundation 474 

species, moreover, future changes in either of their distributions will likely cascade to broader impacts 475 

on the biological communities they sustain (Thomsen et al., 2022). In this context, studies such as 476 

ours could enhance the holistic assessment of species vulnerability to climate change (Hoffmann et 477 

al., 2015; Williams et al., 2008), and contribute to the evolutionarily enlightened management of 478 

biodiversity in coastal ecosystems.  479 
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Figures 821 

 822 

Figure 1. Geographic setting and genetic structure of Galeolaria. (A) A typical colony showing 823 

adults retracted into tubes at low tide. (B) Locations from which individuals were sampled across the 824 

southeast hotspot, where boundary currents converge at a now-submerged land bridge between 825 

Tasmania and mainland Australia (inset). Pie charts show the proportions of individuals identified as 826 

G. caespitosa (blue) and G. gemineoa (red) by ADMIXTURE analyses. Until now, species ranges 827 

were thought to diverge near Ninety Mile Beach (grey line), which lacks rocky habitat to colonise. (C) 828 

A principal components analysis of genetic variation reveals two distinct clusters corresponding to the 829 

two species, with individuals from western locations (Glenaire to Wilsons Promontory) in green and 830 

individuals from northeastern locations (Wilsons Promontory to Merimbula) in purple. (D)  831 

Ancestries of individuals (vertical bars, coloured as in panel A) suggest little gene flow between 832 

species. Horizontal lines below bars group individuals by location.  833 
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 834 

Figure 2. Associations between genotype and temperature identified for G. caespitosa (A–B) and G. 835 

gemineoa (C–D) by redundancy analysis. Biplots show the two largest ordination axes (RDA1 and 836 

RDA2) per analysis, comprising linear combinations of temperature variables (mean, maximum, 837 

range, and noise structure) that explain 53–56% of associations with multilocus genetic variation per 838 

species (see Figure S4 for other axes). In all panels, closer alignments of items with ordination axes 839 

indicate stronger associations with axes. In (A) and (C), grey points are single loci, other points are 840 

individuals coloured by location, and vectors are variables. In (B) and (D), which magnify left-hand 841 

plots to focus on loci, candidate adaptive loci (identified as significant outliers on ordination axes) are 842 

coloured by the variables they associate most strongly with.  843 
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 844 

Figure 3. Candidate adaptive loci identified for G. caespitosa and G. gemineoa by redundancy 845 

analyses (RDA) versus BayPass analyses. The top row shows overlaps between methods for each 846 

species (overlapping candidates were used to further predict genomic vulnerability; see Figures 4 and 847 

5). The bottom row shows overlaps between species for each method, suggesting that the genetic basis 848 

of adaptation mostly differs between species. P-values are the probabilities of observing overlaps by 849 

chance, given the numbers of candidates identified from the numbers of loci screened.  850 
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 851 

Figure 4. Temperature-driven turnover in alleles at candidate loci predicted for G. caespitosa (A–B) 852 

and G. gemineoa (C–D) by gradient forest models. Biplots in (A) and (C) show the two largest 853 

principal components (PC1 and PC2) per model, comprising linear combinations of temperature 854 

variables (mean, maximum, range, and noise colour) that explain 98–99% of allele turnover per 855 

species. Colours predict genetic compositions (allele frequencies) along biplot axes, and vectors relate 856 

compositions to variables (variables have higher values in the directions of vectors and lower values 857 

in opposing directions). Maps in (B) and (D) predict genetic compositions throughout the study range, 858 

and locations with similar colours are predicted to harbour populations with similar compositions. In 859 

all panels, points are locations from which individuals were sampled. Note that species have 860 

planktonic life stages (gametes, embryos, and larvae) that spend days to weeks offshore before 861 

transitioning to sessile life stages (juveniles and adults) onshore in the intertidal.  862 
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 863 

Figure 5. Genetic offsets needed to maintain thermal adaptation under future climate change for G. 864 

caespitosa (A) and G. gemineoa (B; note the difference in scale between species). Predictions are 865 

shown for 2050 and 2100 under low (RCP45) and high (RCP85) CO2 emission scenarios. Points are 866 

locations from which individuals were sampled. Note that species have planktonic life stages 867 

(gametes, embryos, and larvae) that spend days to weeks offshore before transitioning to sessile life 868 

stages (juveniles and adults) onshore in the intertidal.  869 
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Tables 870 

Table 1. Estimates of genetic diversity for G. caespitosa and G. gemineoa. Ho is observed 871 

heterozygosity, HS is expected heterozygosity, FIS is the inbreeding coefficient, and AR is allelic 872 

richness (ranging from one to two because only biallelic loci were analysed). Estimates are averaged 873 

across loci and populations (see supplementary Table S3 for population values) and compared 874 

between species using F-tests (*P < 0.05; **P < 0.001). 875 

  Ho Hs FIS AR 

Galeolaria caespitosa     

Mean ± SE 0.067 ± 0.001 0.097 ± 0.001 0.212 ± 0.009 1.271 ± 0.016 
     

Galeolaria gemineoa     

Mean ± SE 0.059 ± 0.001 0.084 ± 0.001 0.210 ± 0.010 1.220 ± 0.020 
     

 F (1, 40) = 38.82**  F (1, 35) = 152.61**  F (1, 35) = 0.20  F (1, 40) = 4.70* 

 876 
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