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Abstract (150 words) 45 

 Species is the fundamental unit to quantify biodiversity. In recent years, the model 46 

yeast Saccharomyces cerevisiae has seen an increased number of studies related to its 47 

geographical distribution, population structure, and phenotypic diversity. However, seven 48 

additional species from the same genus have been less thoroughly studied, which has 49 

limited our understanding of the macroevolutionary leading to the diversification of this 50 

genus over the last 20 million years. Here, we report the geographies, hosts, substrates, 51 

and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering 52 

the complete genus with unprecedented breadth and depth. We generated and analyzed 53 

complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse 54 

strains. This dataset provides insights about genetic and phenotypic diversity within and 55 

between species and populations, quantifies reticulation and incomplete lineage sorting, 56 

and demonstrates how gene flow and selection have affected traits, such as galactose 57 

metabolism. These findings elevate the genus Saccharomyces as a model to understand 58 

biodiversity and evolution in microbial eukaryotes. 59 

  60 

Keywords: yeasts, population genomics, gene flow, galactose pathway, phenotype 61 
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Introduction 63 

 Global climate change is expected to significantly impact biodiversity and human 64 

health 1. Thus, it is increasingly important to catalog and understand the origins of 65 

biological diversity. While the species is the fundamental unit to quantify biodiversity from 66 

a biological perspective 2, the study of only one or a few representatives of each species 67 

biases our understanding of the true diversity of a species 3. This limitation is especially 68 

problematic when current species delineations are not in full agreement with the 69 

boundaries of gene flow or when traits vary widely within a species 4. Phenotypes can 70 

vary within a species or genus due to gene flow, selection, or other evolutionary 71 

processes 5. Thus, it is vital that the scientific community quantifies biodiversity and strives 72 

to understand both its ecological and evolutionary contexts. 73 

 Quantifying and understanding the origins of biodiversity will advance fundamental 74 

science while also identifying and prioritizing bioresources that contribute to food, 75 

medicine, fuels, and other value-added compounds2. Whole genome sequencing has 76 

empowered researcher’s in this endeavor, and ongoing initiatives, such as the Earth 77 

BioGenome Project and the European Reference Genome Atlas (ERGA), envision 78 

cataloging most of the individual species on Earth 6,7. Unfortunately, these studies are 79 

particularly biased toward multicellular organisms, such as insects, vertebrates, and 80 

plants, for which multiple species have been identified, geographic patterns have been 81 

described, and phenotypic traits are often visible 6. In other species, such as microbial 82 

eukaryotes, macroevolutionary processes have been less thoroughly studied and 83 

received less attention for species- or genus-wide genome sequencing efforts. 84 

Nonetheless, microbial eukaryotes, such as yeasts, are great model organisms due to 85 
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their small genomes, ease of genetic manipulation, and large number of genes that are 86 

orthologous with multicellular eukaryotes 8.  87 

 A major factor in the lack of quantification of eukaryotic microbes has been the 88 

influence of the hypothesis proposed by Baas Becking in 1934 and promulgated by 89 

Beijerinck that “everything is everywhere, but, the environment selects” 9. Nevertheless, 90 

expanded strain isolation from the wild and genome sequencing have shown that 91 

eukaryotic microbes, like multicellular organisms, also have geographical structure 10,11. 92 

While large-scale whole genome sequencing studies have investigated the evolutionary 93 

history of the model yeast Saccharomyces cerevisiae and its closest relative, 94 

Saccharomyces paradoxus 12-14, the six other non-hybrid species of the genus 95 

Saccharomyces have been less thoroughly studied 15-18. In particular, several new and 96 

diverse lineages of Saccharomyces have recently been delineated 13,14,19-28, but the 97 

genetic and phenotypic diversities of each species have not been studied in a 98 

comparative context 29, which has limited our understanding of the macroevolutionary 99 

processes driving diversification in this important genus . 100 

 In this study, we cover the genetic and phenotypic diversity of the model eukaryotic 101 

genus Saccharomyces with unprecedented breadth and depth—reporting geographies, 102 

hosts, substrates, and phylogenetic relationships for approximately 1,800 103 

Saccharomyces strains. We generate and analyze high-quality genome sequences for 104 

representative strains of all available phylogenetic lineages, and we sequence and 105 

phenotype more than a hundred Saccharomyces strains to quantify the genetic and 106 

phenotypic variation across this macroevolutionary timescale (13.3-19.3 million years 30). 107 

With this global dataset, we quantify diversity and divergence within and between species 108 
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and populations, several types of natural reticulation events, and the influence of ecology 109 

and incomplete lineage sorting. This work elevates the genus Saccharomyces as a model 110 

for understanding biodiversity, population structure, and macroevolutionary processes in 111 

microbial eukaryotes. This fundamental understanding also provides a much needed 112 

framework for identifying and prioritizing key bioresources. 113 

 114 

Results 115 

The Palearctic and Fagales preponderance of Saccharomyces 116 

 To place newly isolated Saccharomyces strains in the context of existing datasets 117 

12,13,18,23-25,31-33, we partially sequenced an additional 275 COX2 and 129 COX3 118 

mitochondrial genes from key strains. In total, we analyzed the mitochondrial sequences 119 

of ~1,800 Saccharomyces strains isolated mostly from bark substrates (52 % of wild 120 

isolates) from multiple continents (Figure 1A,C Figure S1, S2 and Table S1). Across the 121 

genus, 85 % of wild isolates were associated with the order Fagales, which includes oak 122 

and beech trees. In contrast, 89 % of S. cerevisiae strains analyzed here were isolated 123 

from anthropic environments (Figure 1C, Figure S2A).  124 

 Saccharomyces mitochondrial genomes were highly polymorphic, with a large number 125 

of haplotypes inferred for COX2 (Figure 1B, 2A) and COX3 (Figure S3, Table S1). Our 126 

results indicate that the Palearctic biogeographic realm, which includes China and 127 

Europe, contained haplotypes from all species and more haplotypes than any other 128 

biogeographic realm (Figure 1B). The centrality of Palearctic COX2 haplotypes in the 129 

phylogenetic network (Figure 2A) corroborates the hypothesis that many Saccharomyces 130 

lineages originated in this region, particularly East Asia 25,28,34,35. 131 
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 132 

Genomic structural variation is common between Saccharomyces lineages 133 

 From our global Saccharomyces collection, we sequenced and assembled 22 high-134 

quality genomes, including representatives for each major phylogenetic lineage (Table 135 

S2); these assemblies had nearly complete chromosomes with additional unplaced 136 

scaffolds ranging from 0 to 39 (Table S2). We also included 16 previously published 137 

assemblies, one of which we substantially improved, bringing the total here to 38 high-138 

quality genome assemblies (Table S2). In addition, we generated sixteen complete 139 

mitochondrial genome assemblies, corrected the size of the previously published 140 

Saccharomyces jurei mitochondrial genome 18, and assembled two new 2-µm plasmids 141 

(Table S2). Structurally, species varied by GC contents, chromosome lengths, 142 

mitochondrial genome sizes, and the synteny of nuclear and mitochondrial genomes, 143 

usually due to a modest number of translocations (Figure S5-S8, Supplementary Note 1).  144 

 145 

Analyses revealed new Saccharomyces lineages 146 

 To better illuminate population-level diversity, especially for previously under-sampled 147 

species, 163 sequenced Saccharomyces strains were analyzed using several population 148 

and phylogenomic approaches (Table S2, see Online Material & Methods). Our analyses 149 

revealed new lineages of S. kudriavzevii and of S. mikatae (Figure S9C,D); we consider 150 

yeast lineages to be clades of strains with shared ancestries that have frequently 151 

interbred, even though they are not strictly panmictic populations. Two S. kudriavzevii 152 

strains, originally isolated in China, belonged to a newly identified lineage (Figure S9D), 153 

but they had fewer fixed differences compared to European (EU) strains (5.5 thousand 154 
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SNPs) than to strains from the Asia A lineage (10.2 thousand SNPs). In haplotype and 155 

phylogenetic networks, mitochondrial gene sequences for these two strains were located 156 

between Asia A and EU haplotypes or unexpectedly close to Asia A (Figure 2A, S3, 157 

S4B,E). Interestingly, despite the geographic proximity of this lineage to Asia A, only 158 

~12 % of the nuclear genome of these strains was more divergent from EU than from the 159 

Asia A S. kudriavzevii population (Table S3, Figure S9D, S10Hi-ii), suggesting that these 160 

strains are descendants of an ancestral admixture event. Specifically, large portions of 161 

their genome are most closely related to EU (~87 %), and small portions most closely 162 

related to Asia A (~12 %). Two distinct populations were revealed for S. mikatae, one of 163 

which (Asia A) may have up to three cryptic lineages and a large number of segregating 164 

polymorphisms (Figure S9C), possibly from lineages yet to be discovered. 165 

 166 

Differentiation and divergence of Saccharomyces lineages and species 167 

 Studying all Saccharomyces species together, we inferred two or more populations, 168 

with an average of about 3 populations per species (Figure 3, Figure S9), except for 169 

S. cerevisiae, due partly to its multiple domestication events. S. cerevisiae, with 16 or 170 

more populations and extensive admixture 13,19,25,36,37, had relatively low genetic diversity 171 

compared to other species, with an average genetic distance only slightly higher than 172 

S. mikatae (Figure 3C, S11I). Despite the low sequence diversity, phenotypic and 173 

ecological factors better differentiated S. cerevisiae into distinct lineages or populations 174 

than in the other Saccharomyces species (Figure S9A). In contrast, Saccharomyces 175 

paradoxus was the most diverse species (1.95 % average pairwise divergence), followed 176 

by S. kudriavzevii and S. uvarum (Figure 3C, S11I). Saccharomyces eubayanus likely 177 
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has diversity levels similar to S. uvarum 24, but the Sichuan and West Asia lineages 22 178 

were not available for genome sequencing. Each species was separated from its closest 179 

relative by a genetic divergence of ~10 % (Figure S11A-D,G-H), except for S. arboricola 180 

and S. kudriavzevii (Figure S11E,F). The differentiation among S. kudriavzevii, 181 

S. arboricola, and S. paradoxus, as measured by FST, was considerably lower than 182 

among the other Saccharomyces species (Figure S12), an indication that these three 183 

species harbor more variation that is not fixed between other members of the genus.  184 

 In Saccharomyces, levels of <85 % of amino acid identity (AAI) in a set of core single-185 

copy eukaryotic genes differentiated species, while population-level AAI values were 186 

higher (Figure 3B). The lowest AAI value within a species was the comparison between 187 

the Asia B and EU populations of S. kudriavzevii, whose value was between the AAI 188 

values of the Homo sapiens/Pan troglodytes and Homo sapiens/Macaca mulatta 189 

comparisons. Saccharomyces paradoxus America A versus EU produced the highest AAI 190 

value (Figure 3B), which is consistent with the hypothesis that these populations were 191 

very recently derived due to migration from Europe to North America 38. The minimum 192 

AAI between Saccharomyces species was comparable to the comparison between Homo 193 

sapiens and Mus musculus (<70 % AAI).  194 

 195 

The non-nuclear genome is more permeable to introgression and gene flow than 196 

the nuclear genome 197 

 To explore the stability of the relationships among Saccharomyces populations and 198 

species, we analyzed 38 high-quality nuclear genomes of representative strains using a 199 

phylogenomic framework to investigate 3850 conserved genes. The ASTRAL coalescent 200 
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species tree and BUCKy concordance primary tree agreed with previous studies (Figure 201 

4A, Figure S13) 15,18,28,39. Species-level branches were highly supported, while some 202 

branches close to the tips were not. Internal branch support values decreased outside of 203 

the S. cerevisiae-S. paradoxus clade and the S. uvarum-S. eubayanus clade, a 204 

phenomenon previously observed 30,40 and proposed to be due to hybridization involving 205 

ancestors of S. kudriavzevii 41. Alternatively, the short coalescent units near the 206 

divergence of S. arboricola and S. kudriavzevii (Figure 4A) and the low relative 207 

differentiation of S. arboricola and S. kudriavzevii with the rest of species (Figure S12E,F) 208 

suggest a more nuanced model. Specifically, we propose that the conflicting data 209 

between genes are the result of diversification over a relatively narrow window of time, 210 

which allowed for the retention of considerable ancestral polymorphisms through 211 

incomplete lineage sorting (ILS); ancient gene flow between lineages in the early stages 212 

of speciation; or both. These patterns have been seen frequently across the tree of life 42. 213 

 To further explore the phylogenetic stability of species boundaries, we applied 214 

reciprocal monophyly tests for each species using 3850 ML gene trees (Table S5). 215 

Saccharomyces cerevisiae and S. paradoxus only failed to be monophyletic in 17 and 57 216 

genes, respectively. Gene flow from S. cerevisiae to S. paradoxus EU and America A 217 

were detected, as previously documented 43, but the most frequent source of conflict was 218 

the location of the S. cerevisiae CHNIX lineage. This lineage sometimes grouped as an 219 

early-diverging member of the S. paradoxus clade or as an outgroup to both S. cerevisiae 220 

and S. paradoxus, topologies and branch lengths that are consistent with ILS. The 221 

S. uvarum Australasian lineage produced an even more striking pattern, again consistent 222 

with ILS, where more than 700 genes placed it as an early-diverging lineage of the 223 
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S. eubayanus clade. At the species level, the Bayesian pipeline revealed many genes 224 

that supported alternative topologies, especially where the phylogenetic locations of 225 

S. arboricola, S. kudriavzevii, and the S. mikatae/S. jurei clade varied, and the consensus 226 

species tree was only supported by ~1824 genes (48 % of a total of 3801 genes for this 227 

pipeline) (Figure S13). The presence of Kluyveromyces lactis in the dataset for the 228 

Bayesian pipeline, which was necessary to root the tree during phylogenetic 229 

reconstruction, might have decreased the support for internal branches compared with 230 

the ML pipeline (Figure 4A).  231 

 This conflict can be recapitulated using phylogenetic networks reconstructed using 232 

genes in 38 high-quality genomes (Table S2, Figure S14A) annotated with the Yeast 233 

Genome Annotation Pipeline (YGAP) and using 14 BUSCO genes common to all (160 234 

strains) phenotyped and previously sequenced strains (Table S2, Figure S14B). 235 

Collectively, these results support a model of rapid radiation of some lineages with the 236 

retention of ancestral polymorphisms.  237 

 Within species, we observed much lower concordance factors at nodes (Figure 4A), 238 

which highlights ongoing gene flow within and between lineages. We next examined our 239 

sequenced and phenotyped strains (Table S2) for genome-wide signals of gene flow 240 

between recognized lineages (Figure S10). These analyses suggested that nuclear gene 241 

flow was infrequent. Only 9.25 % of the Saccharomyces strains, from five of the eight 242 

species, showed strong evidence of admixture (Figure S10, Table S3). Admixture was 243 

mostly observed in domesticated S. cerevisiae strains and was accompanied by higher 244 

levels of heterozygosity, which was generally low across the genus (Figure S15). The 245 

genomic contributions of the minor parental donor averaged 14.29 % (Figure 4Bi, Table 246 
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S3). The smallest values belonged to two strains of S. paradoxus America C with 247 

contributions from America B, which were previously named the America C* lineage 14, 248 

as well as two S. eubayanus strains. In the latter cases, one strain was from each 249 

Patagonian population, but it had genomic contributions from the other Patagonian 250 

population. The highest value of genomic contribution by a minor donor in our dataset 251 

was found in a South America B strain, which had 39.53 % of its genome from South 252 

America A origin (Figure 4Bi, Figure S10I). This strain also showed one of the two highest 253 

levels of heterozygosity for wild strains (Figure S15), further suggesting a recent 254 

admixture event. The low levels of heterozygosity for the rest of admixed strains might 255 

point to the rapid fixation of lineage-specific alleles following haploselfing, intratetrad 256 

mating, or a return-to-growth event. Although we found some evidence of gene flow 257 

between populations, rarer introgressions between species (Figure S16, Table S3, 13), 258 

and considerable evidence of incomplete lineage sorting, we conclude that the 259 

phylogenies of nuclear genes were generally consistent with the accepted species 260 

relationships. 261 

 We next tested how the species tree compared with phylogenies generated using the 262 

mitochondrial genome. A preliminary view of mitochondrial synteny among 263 

Saccharomyces immediately suggested the possibility of considerable incongruence. For 264 

example, mitochondrial genome synteny is conserved in S. cerevisiae and S. paradoxus, 265 

except in the EU–America A and Far East populations of S. paradoxus (Figure S7, S8A, 266 

44). The S. jurei nuclear genome was mostly syntenic with S. mikatae strains (Figure S5), 267 

but its mitochondrial genome was syntenic with the S. paradoxus EU and America A 268 

populations (Figure S8B) and differed from the S. mikatae Asia A population (Figure S7). 269 
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The S. uvarum Australasian population and S. eubayanus were syntenic in both their 270 

nuclear and mitochondrial genomes (Figure S5, S8E), while the other S. uvarum 271 

populations inherited derived mitochondrial and nuclear rearrangements (Figure S5, 272 

S8D). At the nucleotide level, both COX2 and COX3 phylogenetic networks disagreed 273 

with the nuclear genome in some cases. In both mitochondrial phylogenetic networks, 274 

population haplotypes from some species were more closely related to other species 275 

haplotypes than to their same-species haplotypes (Figure 2A, S3) due to lineage-specific 276 

introgressions. For example, S. paradoxus America B and C strains were connected to 277 

S. cerevisiae haplotypes. Similarly, S. eubayanus West China and S. uvarum 278 

Australasian strains likely experienced introgressions. A phylogenetic network for 279 

mitochondrial genes of the 64 high-quality mitochondrial genomes (Table S2, Figure 2B), 280 

supported the broader COX2 and COX3 results (Figure 2B, Figure S4). In addition to 281 

previously detected mitochondrial introgressions between species and gene flow 282 

between populations 44-47, we also detected new cases of mitochondrial introgressions 283 

and gene flow for S. kudriavzevii, S. jurei, and S. mikatae (Figure 4Bii, Figure S4). The 284 

S. arboricola and S. kudriavzevii mitochondrial genomes also had some affinity for the 285 

Candida (Nakaseomyces) castellii outgroup, as suggested by their exacerbated 286 

subtended edges in the network (Figure S4), so ancestral polymorphisms or introgression 287 

from unknown Saccharomyces lineages might have contributed to the mitochondrial 288 

genomes of these species. We conclude that events of introgressions and gene flow 289 

between mitochondrial genomes have been much more frequent than in the nuclear 290 

genome (Figure 4Bi, Bii).  291 
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 Similarly, 22 interspecies transfers were detected for the 2-µm plasmid (Figure 4Bii, 292 

Figure S17), which is also cytoplasmically inherited. The S. cerevisiae 2-µm plasmid 293 

seems to be highly mobile, and we detected it in four other species. Sixteen strains had 294 

both cytoplasmic 2-µm plasmid genes and plasmid genes that had been transferred to 295 

the nuclear genome, a phenomenon previously noted for a handful of strains 48 (Table 296 

S4). We also detected a transfer from a hypothesized unknown source into the 297 

S. cerevisiae Taiwanese lineage 13, as well as to a S. mikatae Asia A strain and a 298 

S. kudriavzevii Asia A strain (Figure S17A). Given its sister relationship with the 299 

previously detected S. kudriavzevii 2-µm plasmid, this unknown lineage may also be a 300 

close relative of S. kudriavzevii (Figure S17A). Taken together, our results suggest that 301 

introgressions and gene flow involving the nuclear genome are limited in wild 302 

environments, while introgression and gene flow involving the cytoplasmically inherited 303 

mitochondrial genome and the 2-µm plasmid are much more frequent (Figure 4), likely 304 

because they can occur without involving karyogamy 49, or be aided by the activity of free-305 

standing homing endonucleases 47,50. 306 

 307 

Complex ancestries promote phenotypic diversity 308 

 To explore phenotypic variation across the genus Saccharomyces, we phenotyped 309 

128 of the sequenced Saccharomyces strains, focusing on phylogenetically distinct 310 

lineages from different species (Table S2, S6, Figure S9). We tested the ability of these 311 

strains to grow in different carbon sources, temperatures, and stresses (Supplementary 312 

Note 2). Growth characteristics varied among Saccharomyces species depending on the 313 

conditions tested (Figure S18-S22). Interestingly, S. mikatae had some of the lowest 314 
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genetic diversity values but had some of the highest phenotypic diversity (Figure 3C, 5A, 315 

Figure S23). In contrast, S. eubayanus and S. uvarum strains were mostly overlapping in 316 

a principal component analysis (PCA) and were less phenotypically diverse than the other 317 

species (Figure 5A, S23), indicating strains from these sister species have similar traits 318 

in the conditions tested (Figure 5A, Figure S24A,C). These results highlight how 319 

phenotypically diverse the Saccharomyces genus is and offer new bioresources for 320 

industrial applications. 321 

 Temperature tolerance was an important condition (Figure S25 S26) for species 322 

differentiation (Figure 5A). Saccharomyces eubayanus and S. uvarum grew the best at 323 

lower temperatures (Figure 5B, S18, S26C-E), while S. cerevisiae and S. paradoxus grew 324 

the worst at lower temperatures and instead grew best at higher temperatures (Figure 325 

5B, S26C-E). Saccharomyces mikatae, S. arboricola, and S. kudriavzevii also grew well 326 

at lower temperatures, which supports the hypothesis that lower temperature growth is 327 

an ancestral trait of the genus Saccharomyces 51,52 and might influence in the ecological 328 

and geographic distribution of Saccharomyces lineages.  329 

 The utilization pathway for the sugars GALactose and MELibiose is well studied and 330 

highly variable in the genus Saccharomyces (Figure S27A) 53-56. Making use of our 331 

diverse genomic and phenotypic dataset, we explored the ancestry of the individual genes 332 

involved in the GAL/MEL pathway (Figure S28) to determine potential genetic bases of 333 

variabilities in growth on galactose and melibiose (Figure 6A,B, S27B,C). Previous 334 

studies have observed loss-of-function mutations in some genes of the pathway in 335 

S. cerevisiae 56,57, ancient pseudogenization of the entire GAL pathway in the S. 336 

kudriavzevii Asia A and B populations and retention of a functional pathway in the EU 337 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486421doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486421
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

population 58,59, and ancient alleles in some S. cerevisiae strains whose origin predates 338 

the diversification of the genus 60-63. Our new analyses here found additional variation that 339 

suggests that some of the variation in galactose or melibiose growth was the 340 

consequence of gene flow between populations of the same species or introgression 341 

between species (Figure 6A, S27B, S28). For example, two strains of S. paradoxus from 342 

America C with evidence of gene flow from America B population (Figure S9G) were 343 

capable of growing on melibiose, likely because they acquired an active MEL1 gene from 344 

the America B population (Figure S27C, S28H). Introgressions for genes conferring 345 

melibiose utilization were also detected between S. cerevisiae and S. paradoxus 55,57. 346 

 The two new admixed strains of S. kudriavzevii provided an even more striking 347 

example of gene flow and selection. We previously inferred long-term balancing selection 348 

based on local selection regimes for the functional genes and inactivated pseudogenes 349 

of S. kudriavzevii 58, but the populations with inactive (Asia A and B) or active (EU) GAL 350 

networks were strongly differentiated by geography and population structure. Here we 351 

discovered two strains isolated from Southern China (Figure S1D, Table S2) that shared 352 

more than 87 % genome ancestry with EU strains (Figure S10H) and yet were unable to 353 

grow on galactose (Figure 6B). Phylogenetic analyses demonstrated that the loss of this 354 

trait was due to the acquisition of six GAL pseudogenes (at four loci: GAL1/GAL10/GAL7, 355 

GAL4, GAL2, and GAL80) from the S. kudriavzevii Asia A population after the 356 

diversification of EU and Asia A populations (Figure S28K). Since these two strains 357 

shared less than 12 % genome ancestry with the Asia A lineage, in the absence of 358 

selection against hybrid networks or against GAL activity in Asia, the odds are quite low 359 

(p = 0.124 = 0.0002) that these closely related strains would have acquired pseudogenes 360 
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by chance at all 4 GAL loci that are functional in the EU population. Notably, the only two 361 

GAL loci not transferred from the Asia A lineage by gene flow into the ancestors of these 362 

two strains were GAL3 and GAL80B (Figure S28K, Figure S10H), two pseudogenes that 363 

were inactivated in the ancestor of all known strains of S. kudriavzevii 58. 364 

 The data also suggested that intricate selection dynamics may be occurring at the 365 

GAL2 locus that are not simply qualitative. Most S. eubayanus and S. uvarum strains 366 

have a tandem duplication at the GAL2 locus whose function is unknown 17,58-60. Some 367 

S. cerevisiae strains from the CHNIII lineage that were isolated from milk fermentations 368 

also possess additional copies of GAL2 whose origin predates the diversification of the 369 

genus; these strains lack functional copies of HXT6 and HXT7, which encode hexose 370 

transporters, and seem to use GAL2 to encode the transport of both galactose and 371 

glucose in dairy environments that are rich in lactose 63. Some S. eubayanus and 372 

S. uvarum strains have lost the GAL2B gene. Despite testing several growth conditions, 373 

including various galactose concentrations, the strains lacking GAL2B only displayed 374 

maximum growth rate differences at 30 °C on 2 % glucose, which was lower (Wilcoxon 375 

rank-sum test, p-value = 5.97 x 10-4, Figure S26F). This result suggests a similar model 376 

for the evolution of the S. uvarum/S. eubayanus GAL2B gene and the additional copies 377 

of GAL2 in S. cerevisiae, wherein these additional copies of GAL2 evolved to support 378 

glucose transport in specific ecological conditions. Notably, the single copies of GAL2 379 

from S. eubayanus Holarctic strains are an outgroup to the entire 380 

S. uvarum/S. eubayanus clade, including all known GAL2 and GAL2B alleles (Figure 381 

S28B), suggesting that multiple ancient alleles are segregating at this locus due to 382 
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balancing selection 60. Collectively, these results highlight how local selection regimes 383 

can maintain ancient polymorphisms, even in multi-locus gene networks. 384 

 385 

Discussion 386 

 387 

Saccharomyces diversification within and outside of Asia in association with 388 

plants 389 

 Several authors have postulated Asia as the geographical origin of S. cerevisiae and 390 

other species of Saccharomyces 13,22,25,28,37,64,65. Our present results provide evidence to 391 

support several rounds of speciation in Asia, as well as potentially the origin of the genus 392 

itself: i) the high genomic diversity in the Palearctic biogeographic realm, which includes 393 

Asia; ii) the centrality of Palearctic mitochondrial haplotypes to the mitochondrial network; 394 

iii) and ancestral polymorphisms in Asian strains that generate phylogenetic conflict and, 395 

in some cases, such as the GAL loci, phenotypic differences that are likely under strong 396 

selection. The presence of ancestral polymorphisms in several populations and species 397 

suggests that Saccharomyces diversification was rapid 66, that considerable gene flow 398 

continued prior to the generation of strong species barriers 67-71, or both. The presence of 399 

all species in association with trees of the order Fagales points to the adaptation of the 400 

last common ancestor of Saccharomyces to these hosts. However, there is still much to 401 

learn about the ecological distribution of yeasts in general, and Saccharomyces in 402 

particular 72, where sampling has often been biased toward bark and soil samples from 403 

Fagales. Even though most new lineages and species likely originated in Asia, our 404 

comprehensive global sampling and analyses strongly support the hypothesis that 405 
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several lineages originated in South America, North America, Europe, and Oceania, 406 

including lineages of S. eubayanus, S. paradoxus, S. uvarum, S. jurei, and S. arboricola 407 

14,21,24,26,27,31,73-75 (Figure 4D). These diversifications could be accompanied by the 408 

adaptation to new hosts. For example, S. uvarum and S. eubayanus lineages are 409 

frequently isolated from fungi associated with trees of the genus Nothafagus in South 410 

America. This influence of related Nothafagus hosts during diversification might help 411 

explain the similar phenotypic traits observed among S. uvarum and S. eubayanus 412 

strains. 413 

 The ecological and genetic factors driving this diversification of the genus could also 414 

be linked to temperature fluctuations during the Miocene epoch, which is coincident with 415 

Saccharomyces divergence times 30. Temperature fluctuations have played an important 416 

role in the diversification of plants 76 and animals 77, and temperature tolerance 417 

differentiate several Saccharomyces species and clades. In particular, the high 418 

temperature tolerance of S. cerevisiae and S. paradoxus 51,52,78 seems to be a derived 419 

trait. The influence of temperature during the diversification might be one of the reasons 420 

why we observe frequent introgressions in the mitochondrial genome 44-47, where species-421 

specific mitotypes have been shown to strongly affect temperature tolerance 50,79. Clear 422 

patterns of differentiation by geographic distribution and climatic conditions have also 423 

been detected for Saccharomyces mitotypes 26,33,65,80,81. 424 

 The role of introgressions during lineage diversification is still under debate, but 425 

nuclear introgressions between species have been mainly observed in human-associated 426 

environments, including the horizontal gene transfer of few genes 82-84, frequent 427 

admixture of domesticated S. cerevisiae strains 13,36,62, and interspecies hybridization of 428 
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strains used to produce fermented beverages 85-87. In contrast, cytoplasmic genetic 429 

elements have undergone extensive introgression and gene flow even in wild strains of 430 

Saccharomyces, as previously seen in animals 88-90.  431 

 432 

Saccharomyces populations are often more genetically differentiated than 433 

multicellular eukaryotic species 434 

 Multicellular eukaryotes might be more permeable to interspecies introgression 91,92 435 

because animal and plant species are more closely related than species are in the genus 436 

Saccharomyces. The distinction is not entirely due to differences in taxonomic practice 437 

because, even when we considered phylogenetically distinct Saccharomyces lineages, 438 

only 9.25 % of Saccharomyces nuclear genomes were admixed. Spore viabilities lower 439 

than 1 % 69,93 in crosses between strains have been considered sufficient to define yeast 440 

species using the biological species concept alone. When combined with phylogenetic 441 

and ecological species concepts, taxonomic authorities have accepted spore viabilities 442 

lower than 10 %, as seen for S. eubayanus and S. uvarum, which have the highest AAI 443 

values among currently recognized species 94,95.  444 

 Our comparison of AAI values with multicellular eukaryotes suggests that species 445 

designations based on spore viability and other currently used criteria do not differentiate 446 

Saccharomyces species as finely as the criteria deployed by plant and animal 447 

taxonomists. If they did, what we currently consider Saccharomyces populations or 448 

lineages might be more analogous to the species designations of multicellular eukaryotes. 449 

Even so, current yeast taxonomic practice has the advantage of recognizing the ease 450 
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with which genes of phenotypic importance flow between populations of the same 451 

species. 452 

 453 

Phenotypic diversity through complex ancestries 454 

 Phenotypic traits are gained and lost frequently in animals, plants, and fungi 30,96-98. 455 

Alternatively, traits can be retained in a species by balancing selection when different 456 

lineages or populations maintain genes or even multi-locus gene networks encoding traits 457 

due to local adaptation or fluctuating conditions. For example, here we showed that some 458 

admixed S. paradoxus America C strains regained the ability to grow in melibiose by 459 

acquiring a functional MEL1 gene from the S. paradoxus America B population. Even 460 

more strikingly, two admixed S. kudriavzevii strains, which were isolated in Asia but were 461 

more closely related to the EU population, lost the ability to grow in the presence of 462 

galactose by acquiring GAL pseudogenes from the Asia A population, directly 463 

demonstrating gene flow between Gal+ and Gal- populations of S. kudriavzevii for the first 464 

time 58. Recent studies concluded that S. cerevisiae maintained alternative higher-activity 465 

versions of the GAL network due to segregating variation at multiple loci 60. Our new 466 

results here definitively show that qualitative variation can also segregate within a species 467 

for a multi-locus gene network, and indeed, suggest that pseudogenized genes may be 468 

preferred in some environments. We conclude that the maintenance of compatible 469 

alternative versions of gene networks, even at unlinked loci, may be more frequent than 470 

previously thought. 471 

 472 
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Conclusion 473 

 The model genus Saccharomyces and the current dataset provide an important 474 

quantitative benchmark of the boundaries of lineages, populations, and species in terms 475 

of genetic variation, phenotypic variation, and the relationship between genotype and 476 

phenotype. Setting these boundaries helps characterize eukaryotic microbial biodiversity, 477 

understand ecological dynamics, and offers bioresources of industrial interest. 478 
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Figure 1. Geographic distribution of Saccharomyces strains. 550 

 551 
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A) Map showing the locations where Saccharomyces strains have been isolated, scaled by size to the number of strains 552 

studied here. Symbols and colors designate the species. Ecological and geographic information about the strains can be 553 

found in Table S1. B) Stacked bar plot showing the number of COX2 haplotypes isolated in each biogeographic realm 554 

(Figure 2A). The data shows many COX2 haplotypes from the Palearctic region, pointing to Asia as a hotspot of diversity. 555 

Bars are colored by species. The map was generated using the map_data function implemented in R package ggplot2 556 

99. C) Bar plots represent the total number of strains from each Saccharomyces species grouped by host (external plot) or 557 

substrates (inner plot) (full details in Table S1 and Figure S2). Human-related environments, such as vineyards, were 558 

grouped in the “Anthropic” hosts category and removed from the substrate plot. Bar plots are colored according to species. 559 

 560 

  561 
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Figure 2. Extensive mitochondrial gene flow and introgression between Saccharomyces 562 

lineages. 563 

 564 

A) Templeton, Crandall, and Sing (TCS) phylogenetic network of 739 partial COX2 sequences from wild Saccharomyces 565 

strains. COX2 haplotype classification, for the wild and anthropic Saccharomyces strains, is shown in Table S1. Haplotypes 566 

are represented by circles. Circle size is scaled according to the haplotype frequency. Pie charts show the frequency of 567 

haplotypes based on biogeographic realm. The number of mutations separating each haplotype are indicated by lines on 568 

the edges connecting different haplotype circles. Haplotype numbers and populations are highlighted in the panel and 569 
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colored according to species designations. CHN: China; EU: Europe; HOL: Holarctic; Jp-Ph: Japan-Philippines (=Sake-570 

Philippines); Med oak: Mediterranean oak; NA-Jp: North America-Japan (=North America); SA-A: South America A; SA-B: 571 

South America B; W/EU: Wine/European. B) Neighbor-Net phylogenetic network reconstructed using a concatenated 572 

alignment of the coding sequences of 10 mitochondrial genes (ATP6, ATP8, ATP9, COB, COX1, COX2, COX3, VAR1, and 573 

the genes encoding 15S rRNA and 21S rRNA) for 64 sequenced Saccharomyces strains representing all known 574 

Saccharomyces lineages that were available (Table S2). Strain names are colored according to species designations. 575 

Population names are highlighted in black. The scale is given in nucleotide substitution per site. Arrows highlight 576 

mitochondrial gene flow (intraspecies) and introgressions (interspecies) detected from individual gene trees (Figure S4); 577 

affected genes are shown close to the arrows with the color indicated by the species donor. Gene flow and introgressions 578 

unique to a Saccharomyces strain are indicated between parentheses. A similar phylogenetic network for the COX3 579 

mitochondrial gene is shown in Figure S3, which is more congruent with the concatenated data shown in panel B than the 580 

data for COX2 shown in panel A. The asterisk indicates that UWOPS91-917.1 did not contain the introgression of COX3 581 

from S. cerevisiae found in other Saccharomyces paradoxus America B and C strains. Most of the Saccharomyces jurei 582 

(NCYC3947) protein-coding sequences were more closely related to the S. paradoxus Far East-EU clade, rather than to 583 

Saccharomyces mikatae (Figure S4).  584 

 585 
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Figure 3. Species and population-level diversity in Saccharomyces. 586 

 587 

A) Percentage of private segregating polymorphisms, fixed differences, and shared polymorphisms among SNPs found in 588 

pairwise comparisons between supported populations, except for S. cerevisiae where populations were grouped according 589 
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to PCA and co-ancestry for better resolution (Figure S9A iv and v). B) Right: dot plot of mean amino acid identities (AAI) 590 

calculated from pairwise comparisons between populations and between species. Left: dot plot for comparisons of Homo 591 

sapiens with Pan troglodytes, Macaca mulatta, Mus musculus, and Gallus gallus. C) Global picture of the percentage of the 592 

Tamura-Nei-corrected pairwise genetic distance between populations and within Saccharomyces species. ???: values 593 

cannot be inferred because West China and Sichuan strains were unavailable for whole genome sequencing. N. A.: not 594 

applicable because only one strain was available from this population. Am: America; EU: European; FE: Far East; HOL: 595 

Holarctic; MD: Mediterranean Domesticated group; SA-A: South America A; SA-B: South America B; Sc: S. cerevisiae; Se: 596 

S. eubayanus; Sj: S. jurei; Sm: S. mikatae; Sp: S. paradoxus; WAfr: West African; IV: China IV.  597 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486421doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486421
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

Figure 4. Vertical inheritance and incomplete lineage sorting dominated in the nuclear genome, 598 

while introgression and gene flow were widespread among cytoplasmically inherited genetic 599 

elements. 600 
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A) Coalescent tree (species tree) for Saccharomyces lineages. Two values of concordance factors (CFs) are shown. Brown 602 

CFs were generated by IQTree using a collection of Maximum Likelihood phylogenetic trees (3850 genes) and the ASTRAL 603 

species tree. The normalized score was 0.97, which indicates that 97 % of input gene quartet trees are satisfied by the 604 

ASTRAL species tree. Purple CFs were generated by BUCKy using a collection of sample trees during Bayesian 605 

reconstruction in MrBayes and representative strains, mostly selected from Asia (asterisks). Other gene tree topologies are 606 

shown in Figure S13. Chromosomal translocations (Figure S5) and mitochondrial rearrangements (Figure S7,S8) are 607 

reported by red and blue bars on branches, respectively. The insertion of a 2-µm plasmid gene into the nuclear genome 608 

(Table S4) is represented by green bars on branches. The scale is coalescent units. B) Maximum-likelihood phylogenetic 609 

tree of all studied Saccharomyces strains reconstructed using the common BUSCO genes and collapsed to the species level 610 

(full tree in Figure 5B). Scale bars show the number of substitutions per site. Population names are only shown for those 611 

involved in gene flow or introgression based on the genome-wide analysis. B i) Summary of detected nuclear gene flow 612 

(between populations) and introgression (between species). The quantified percent of genome contribution by the donor is 613 

indicated near to the dashed arrow. Saccharomyces cerevisiae introgressions were congruent with previous reports 13,19,64. 614 

B ii) summary of detected gene flow and introgression for the mitochondrial genome (squared symbol) and 2-µm plasmid 615 

(triangle symbol). The direction of the arrow indicates the donor lineage. Unknown donor lineages are colored in black. 616 

Strain names, branches, and arrows are colored according to the species designations or their donors. C) Geographic 617 

locations of the different Saccharomyces populations. We omitted the global distribution of Wine/European S. cerevisiae 618 
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population for clarity. The location of populations, for which strains were not studied here, are indicated with an asterisk 619 

symbol. Species-specific populations are colored according to the left legend. 620 
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Figure 5. The genus Saccharomyces is phenotypically diverse. 621 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486421doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486421
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 622 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486421doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486421
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

A) Principal component analysis (PCA) of PC1 and PC2 of the maximum OD600 calculated 623 

from growth curves (n = 3) calculated from an array of twenty-six media conditions (Table 624 

S6). PC1 and PC2 accounted for 37.4 % of the total variation. A higher image resolution 625 

PCA with growth condition weights can be found in Figure S24A. The variation explained 626 

by each component is shown in Figure S24B, and a plot of PC1 and PC3 is shown in 627 

Figure S24C. Strains are colored according to their species designations, and different 628 

shapes represent their population or lineage designation (see below). B) Heatmap 629 

showing the maximum OD600, normalized by the highest value for each growth condition 630 

as indicated by a red asterisk. Heat colors from yellow (low growth) to blue (high growth) 631 

are scaled according to the bar in the left. White colors indicate log2 values lower than -1 632 

or no detected growth. Growth conditions are columns, and strains are rows. The dot plot 633 

above the growth conditions shows the maximum OD600 value used for normalizing the 634 

data for each growth condition (grey dot), and the colored dots are median maximum 635 

OD600 value for each Saccharomyces species. A maximum-likelihood (ML) phylogenetic 636 

tree of 14 orthologs (~8.7 Kbp) for the phenotyped strains is shown to the left of the 637 

heatmap. Branches are colored according to their bootstrap support (minimum, yellow – 638 

maximum, dark blue). Strain names are colored according to species designations. 639 

Population designations are written to the right of the heatmap. The bottom colored bars 640 

highlight the conditions tested: temperature, simple or complex sugars, and stress. CHN: 641 

China; EU: Europe; HOL/SA-A: Holarctic/South America A; PA: Patagonia A; PB/HOL: 642 

Patagonia B/Holarctic; SA-B: South America B. iTOL tree at http://bit.ly/2VthpGT. 643 
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Figure 6. Phenotypic diversity and complex ancestries. 644 

 645 

A) Saccharomyces strains affected by gene-flow for the GAL regulon genes. Names of strains with genome-wide admixture 646 

(Table S3) are boxed. Strain names are colored according to species designations. Complete genes with a phylogenetic 647 
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position (Figure S28) as expected based on population genomic analysis (Figure S9) are labeled as white. Genes acquired 648 

from another lineage by gene flow are labelled orange. Genes with premature stop codons or in a more advanced state of 649 

pseudogenization are labelled gray. Genes with a complex ancestry, such as unexpectedly ancient alleles, are labelled 650 

cyan. Genes not detected by any of the methods employed in this study (see Online Material and Methods) were considered 651 

absent and are labelled red. B) Maximum biomass production (OD600) on 2 % galactose. Each point is a strain colored by 652 

species designation. Data was split based on whether (left) or not (right) gene flow had occurred. Asia A and B 653 

S. kudriavzevii (on the right) were separated from the rest of Saccharomyces data points for clarity.  The groups are defined 654 

as follows: 655 

i) S. cerevisiae: Group1 (Domesticated strains: Bioethanol, Beer 1 & 2, Wine/European, Sake), Group 3 (West African), 656 

Group 4 (CHN IV), Group 5 (Asian Islands, Malaysian, North American). 657 

ii) S. paradoxus: Group 1 (European), Group 2 (Far East), Group 3 (America B), Group 4 (America C).  658 

iii) S. mikatae: Group 1 (Asia A), Group 2 (Asia B). 659 

iv) S. kudriavzevii: Group 1 (EU), Group 2 (Asia A), Group 3 (Asia B). 660 

v) S. arboricola: Group 1 (Asia A), Group 2 (Oceania). 661 

vi) S. uvarum: Group 1 (Holarctic), Group 2 (South America A), Group 3 (South America B), Group 4 (Australasia). 662 

vii) S. eubayanus: Group 1 (Holarctic), Group 2 (Patagonia B), Group 3 (Patagonia A). 663 

 664 
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