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20 Abstract

21

22 The discovery of lignins in the coralline red alga Calliarthron tuberculosum raised new questions about 

23 the deep evolution of lignin biosynthesis. Here we present the transcriptome of C. tuberculosum 

24 supported with newly generated genomic data to identify gene candidates from the monolignol 

25 biosynthetic pathway using a combination of sequence similarity-based methods. We identified 

26 candidates in the monolignol biosynthesis pathway for the genes 4CL, CCR, CAD, CCoAOMT, and CSE 

27 but did not identify candidates for PAL, CYP450 (F5H, C3H, C4H), HCT, and COMT. In gene tree 

28 analysis, we present evidence that these gene candidates evolved independently from their land plant 

29 counterparts, suggesting convergent evolution of a complex multistep lignin biosynthetic pathway in this 

30 red algal lineage. Additionally, we provide tools to extract metabolic pathways and genes from the newly 

31 generated transcriptomic and genomic datasets. Using these methods, we extracted genes related to 

32 sucrose metabolism and calcification. Ultimately, this transcriptome will provide a foundation for further 

33 genetic and experimental studies of calcifying red algae. 

34

35 Keywords: Red algae, lignification, calcification, transcriptome, gene identification, phenylpropanoid 

36 pathway, monolignol

37

38 Introduction

39

40 Coralline red algae (Corallinales, Sporolithales, Hapalidiales) are a diverse lineage of calcified seaweeds 

41 that play important ecological roles in nearshore ecosystems worldwide: they stabilize coral reefs by 

42 creating a calcium carbonate matrix [1–3], induce settlement of invertebrate taxa [4–6], and contribute to 

43 the storage of blue carbon through the creation of biogenic calcium carbonates [7,8]. In recent years, there 

44 has been increased global attention paid to coralline algae. Taxonomists are clarifying their vastly 

45 underestimated species diversity [9–12]; ecologists and physiologists are documenting interspecific 
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46 variation in coralline growth and calcification, particularly in response to climate stress, which may 

47 ultimately impact marine communities [13–17]; evolutionary biologists are examining patterns in 

48 coralline trait evolution [18–20] and using >100 million-year-old coralline fossils to strengthen modern 

49 phylogenies [21,22].

50

51 The discovery of lignins within cell walls of the coralline species Calliarthron cheilosporioides 

52 (Corallinales, Rhodophyta) dramatically changed our perspective on the evolution of lignin biosynthesis 

53 [23]. Lignins are complex aromatic polymers predominantly found in the secondary cell walls of plant 

54 support tissues [24,25] and were long considered to have evolved when land plants emerged from the 

55 oceans, enabling upright growth in air [26]. Among the principal chemical components of wood, lignins 

56 in plant secondary cell walls help reinforce tissue mechanical properties, permit hydraulic transport, and 

57 increase pathogen resistance [27,28]. In the articulated coralline C. cheilosporioides, lignins were found 

58 predominantly within decalcified flexible joints, called genicula [23], that have remarkable biomechanical 

59 properties, permitting this articulated coralline species to thrive along wave-battered coastlines [29,30].

60

61 Because lignin biosynthesis is physiologically complex and involves several enzymes in the monolignol 

62 pathway [31–33], Martone et al. [23] proposed that much of the lignin biosynthetic pathway may have 

63 predated land plants altogether, evolving in a common ancestor of red and green algae more than one 

64 billion years ago. Alternatively, some (or all) of the monolignol biosynthetic pathway may have evolved 

65 independently in the embryophyte and rhodophyte lineages. For example, one important enzyme involved 

66 in S-lignin production (F5H) evolved independently in lycopods and embryophytes [34,35]. Moreover, 

67 candidate genes related to monolignol biosynthesis have since been found in diverse algal lineages such 

68 as diatoms, dinoflagellates, haptophytes, cryptophytes, and green and red algae [36], raising questions 

69 about how the monolignol pathway may have evolved across such evolutionarily divergent lineages. Until 

70 now, questions about monolignol evolution have largely gone unanswered as transcriptomic and genomic 

71 data have mostly been limited to non-coralline red algae (e.g. [37–40] but see [41]).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.30.486440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486440
http://creativecommons.org/licenses/by/4.0/


4

72

73 Here we present a transcriptome of the articulated coralline Calliarthron tuberculosum (a sister species of 

74 C. cheilosporioides) to investigate the evolutionary history of monolignol biosynthesis. Additionally, 

75 though a complete mitochondrial genome [42] and a draft nuclear genome [43] of C. tuberculosum were 

76 previously published, herein we generated a revised nuclear genome assembly using new short-read 

77 sequence data to aid validation of transcriptomic reads. Based on comparative analysis of genome and 

78 transcriptome data, we identify gene candidates for a putative monolignol biosynthetic pathway in C. 

79 tuberculosum and investigate evolutionary relationships of these enzymes with those from other 

80 taxonomic groups, including their land plant counterparts. We also provide a list of annotated genes in the 

81 C. tuberculosum transcriptome and a simplified method for extracting genes from metabolic pathways. 

82 We illustrate the utility of this dataset by extracting gene candidates involved in sucrose metabolism and 

83 calcification. This transcriptomic dataset provides a foundation for future studies of coralline algal 

84 ecology, physiology, and evolution.  

85

86 Results

87

88 The C. tuberculosum transcriptome is complete and supported by genomic data 

89

90 Two transcriptomic datasets were generated from Calliarthron thalli: one from whole tissue (calcified 

91 intergenicula plus uncalcified genicula; sample I+G/PTM1 in the deposited data) and a second from 

92 intergenicular (i.e., calcified) tissue only (sample I/PTM2). Transcriptome sequencing based on RNA-Seq 

93 produced 38.8 total Gb of sequence data (17.3 Gb for sample I+G; 21.5 Gb for sample I). Reads were 

94 assembled de novo using Trinity. The whole tissue dataset had 172,700,376 total reads and the 

95 intergenicular tissue dataset had 215,491,160 total reads with an overall average coverage of 677-fold. A 

96 third reference transcriptome combining data from both tissues was assembled independently. All three 

97 datasets were combined for subsequent analysis to increase coverage and maximize discovery. The 
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98 transcriptome data were considered complete based on the recovery of core eukaryotic genes (e.g. 94.5% 

99 of CEGMA and 87.8% of BUSCO genes based on TBLASTN; Fig S1A). Genomic sequences were also 

100 assembled for C. tuberculosum (Table S1), but these remain highly fragmented and were used only as 

101 additional support to the transcriptome data in subsequent searches below. More than half (18840; 56.6%) 

102 of the 33301 transcripts in the reference transcriptome were supported by the genome data (BLASTN, E ≤ 

103 10-5). 

104

105 The incomplete monolignol biosynthetic pathway in Calliarthron tuberculosum

106

107 The combined C. tuberculosum transcriptomic dataset was searched for genes encoding enzymes from the 

108 monolignol biosynthetic pathway. The transcriptomic dataset was translated into all six reading frames 

109 and queried with a combination of homology-based approaches, including HMMER searches and KEGG 

110 based annotations. Closest homologs from Arabidopsis thaliana were also verified (BLASTN, E ≤ 10-30). 

111 We identified gene candidates of 4CL, CCR, CAD, CSE, and CCoAOMT, but not HCT, COMT, PAL, 

112 TAL, or PTAL (Fig 1). PAL/TAL/PTAL was considered absent as only fragmented (and no full length) 

113 sequences were identified. Evidence for the presence of homologous p450 enzymes (C3H, C3H, and 

114 F5H) was weak; as a result, their status was classified as ambiguous (Fig 1). All sequences identified had 

115 genomic support (BLASTN, E ≤ 10-5) except for those identified for PAL/TAL/PTAL.

116

117 Fig 1. The presence of C. tuberculosum sequence candidates in the monolignol pathway. 

118 Red indicates presence of a putative homolog in C. tuberculosum; blue indicates no significant hits; green 

119 indicates ambiguous presence. Note how the PTAL/PAL/TAL sequences obtained from the HMMER 

120 search were indicated as absent as all sequences found were too short, 1/4-1/3 in length relative to those 

121 in land plants. All sequences identified have genomic support except for PTAL/PAL/TAL. 

122
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123 Candidate sequences from C. tuberculosum (bolded as contig_gene_isoform in Figs 2, 3, and 4) were 

124 characterized by comparing key residues with their land plant homologs in multiple sequence alignments. 

125 The evolutionary relationships between the identified C. tuberculosum sequences, closely related 

126 sequences in additional taxa, and sequences from the broader protein family of their land plant homologs 

127 were analyzed in gene trees. Below we describe in detail results for the main biosynthetic enzymes 4CL, 

128 CCR, and CAD (Figs 2, 3, and 4). Descriptions of the other biosynthetic enzymes CCoAMT, CSE, and 

129 the cytochrome P450 sequences C3H, C4H, F5H are found in Appendix S1 and Figs S2-S4. 

130

131 Fig 2. 4CL candidates from C. tuberculosum in relation to plants and other taxa 

132 (A) Partial alignment of C. tuberculosum candidates (bolded) and embryophyte 4CL sequences. Residues 

133 involved in hydroxycinnamate binding are indicated with black triangles [61,62]. Phenylalanine substrate 

134 binding pocket is indicated with Box I and Box II. 

135 (B) Maximum likelihood acyl-activating enzyme (AAE) gene tree showing relationships between 

136 Calliarthron sequences (magenta dots) and other taxa (Embryophyta – dark green, Chlorophyta – light 

137 green, Rhodophyta – red, Animalia and Opisthokonta – purple, Bacteria and Cyanobacteria – blue, 

138 Oomycota, Mycetozoa and Fungi – yellow, Ochrophyta – brown). Functionally demonstrated plant 4CLs 

139 are labelled (+). Additional functional groups are labelled [44,45]. Ultrafast bootstrap values > 95 are 

140 marked by *. Model = WAG+F+G4. Sites with < 80% occupancy were removed. Accession numbers can 

141 be found in Appendix S1. 

142

143 Fig 3. CCR candidates from C. tuberculosum in relation to plants and other taxa

144 (A) Partial alignment C. tuberculosum candidates (bolded) and land plant CCR sequences. Catalytic 

145 residues are labelled with NWYCY [64] and additional residues are indicated above with a black box. 

146 NADPH binding pocket residues are indicated with black triangles [65] and the GXXGXX[A/G] motif is 

147 underlined [66]. Hydroxycinnamonyl binding pocket residues are indicated with a gray triangle [65]. 
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148 (B) CCR maximum likelihood gene tree showing relationships between C. tuberculosum (magenta dots) 

149 and other taxa (Embryophyta – dark green, Chlorophyta – light green, Rhodophyta – red, Animalia and 

150 Opisthokonta – purple, Bacteria and Cyanobacteria – blue, Oomycota, Mycetozoa and Fungi – yellow, 

151 Ochrophyta – brown). Functionally demonstrated plant CCRs are labelled (+). Additional functional 

152 groups are labelled. Ultrafast bootstrap values >95 are marked by *. Model = LG+G4. Sites with < 80% 

153 occupancy were removed. Accession numbers can be found in Appendix S1.

154

155 Fig 4. CAD candidates from C. tuberculosum in relation to plants and other taxa

156 (A) Partial alignment of C. tuberculosum CAD sequence candidates (bolded) with land plant CAD 

157 sequences. Zn+2 ion coordinating and proton shuttling residues are indicated with the black triangle, 

158 NADPH or NADH interacting residues are boxed. Hydrostatic interaction forming residues are indicated 

159 with a black box. Putative substrate-binding residues are indicated with grey boxes. [67–69] 

160 (B) CAD maximum likelihood gene tree showing relationships between C. tuberculosum (magenta dots) 

161 and other taxa (Embryophyta – dark green, Chlorophyta – light green, Rhodophyta – red, Animalia and 

162 Opisthokonta – purple, Bacteria and Cyanobacteria – blue, Oomycota, Mycetozoa and Fungi – yellow, 

163 Ochrophyta – brown). Alcohol dehydrogenase (ADH) sequences from yeast, and aldehyde reductase 

164 (YAHK and AHR) sequences from E. coli were used as the ADH family is closely related to that of CAD 

165 [70,71]. Functionally demonstrated plant CADs are labelled (+). Additional functional groups are 

166 labelled. Ultrafast bootstrap values >95 are marked by *. Model = LG+G4. Sites with < 80% occupancy 

167 were removed. Accession numbers can be found in Appendix S1.

168

169 Identification of 4CL candidates

170

171 4CL is an acyl-CoA synthase in the monolignol pathway and a member of the acyl-activating enzyme 

172 (AAE) superfamily. 4CL converts p-coumaric acid, caffeic acid, and ferulic acid into their respective 

173 hydroxycinnamoyl-CoA thioesters. We identified 11 candidate 4CL-coding transcripts: two based on 
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174 KEGG analysis and nine additional sequences based on HMMER searches (Fig 2A). A query of these 

175 sequences against the A. thaliana proteome returned related proteins within the acyl-activating enzyme 

176 superfamily but not the A. thaliana 4CL (Table S2). Moderate sequence conservation exists in substrate 

177 binding and hydroxycinnamate binding residues between 4CL candidates in C. tuberculosum (bolded) 

178 and 4CLs in land plants (identity similarity [IS] > 70% Fig 2A). 

179

180 In the 4CL gene tree analysis, most C. tuberculosum sequences grouped with sequences from other 

181 Rhodophytes (Fig 2B). In addition, C. tuberculosum sequences grouped within several functional clades 

182 including malonate CoA ligase (ultrafast bootstrap support [BS] = 100%), succinylbenzoate CoA ligase 

183 (BS = 87%), oxylate CoA ligase (BS = 100%), acetyl CoA synthase (BS = 100%), and the long chain 

184 fatty acid CoA ligase (BS = 89%) (magenta dots, Fig 2B) [44,45]. In contrast, embryophyte 4CL 

185 sequences form a clade separated from candidate 4CL sequences in C. tuberculosum (BS = 99% Fig 2B) 

186 by the luciferase containing outgroup. Thus, 4CL candidates in C. tuberculosum did not show any clear 

187 homology to functionally demonstrated 4CL sequences from embryophytes. 

188

189 Identification of CCR candidates

190

191 CCR is the first committed enzyme in the monolignol pathway, reducing cinnamoyl-CoA esters to 

192 cinnamaldehydes. We identified three sequences as candidate CCR-coding transcripts: one based on 

193 KEGG analysis and two additional sequences based on HMMER searches (Fig 3A). A query of these 

194 sequences against the A. thaliana proteome returned sequences within the CCR family (CCR7, CCR4, 

195 CCR-Like6) (Table S2). Substrate-binding residues (NWYCY) and the hydroxycinnamonyl-binding 

196 pocket showed low sequence conservation (IS <80%). In contrast, the core catalytic residues (S, T, and 

197 K) and NADPH-binding residues appear to be conserved (IS >90%) between the candidate sequences in 

198 C. tuberculosum and CCRs in land plants (Fig 3A).

199
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200 In the CCR gene tree analysis, C. tuberculosum sequences varied in their relatedness to other taxa with 

201 some sequences closer to Rhodophytes and others more closely related to Oomycota/Mycetozoa/Fungi 

202 (Fig 3B). Additionally, CCR candidates in C. tuberculosum were mapped with epimerase dehydratase 

203 type sequences that included the A. thaliana CCR family (Fig 3B). Sequences from C. tuberculosum 

204 grouped with epimerase dehydratase type sequences of non-embryophyte origin. In contrast, embryophyte 

205 CCR, class 2 CCR, and CCR-like form an independent clade (BS >97%). The embryophyte CCR clade 

206 and the non-embryophyte epimerase dehydratase clade (containing sequences from C. tuberculosum) 

207 were more closely related than the embryophyte dihydroflavonol-4-reductase protein (DFR) group within 

208 the overall epimerase dehydratase family. 

209

210 Identification of CAD candidates

211

212 CAD, the final step in the monolignol pathway, is an alcohol dehydrogenase converting various 

213 hydroxycinnamaldehydes to their respective hydroxycinnamyl alcohols. SAD, proposed to catalyze this 

214 same reaction for sinapyl monolignols [46], is added into our analysis despite debate over their function. 

215 We identified five sequences as candidate CAD-encoding transcripts: two based on KEGG analysis and 

216 three additional sequences based on HMMER searches (Fig 4A). A query of these sequences against the 

217 A. thaliana proteome returned CAD2 and other alcohol dehydrogenases (Table S2).  NADPH-binding 

218 motifs show moderate conservation (IS >80%) (Fig 4A). One C. tuberculosum sequence showed high 

219 conservation with land plant counterparts, suggesting a promising CAD candidate (+ in Figs 3A and 3B).

220

221 In the CAD gene tree analysis, all C. tuberculosum sequences grouped with sequences from other 

222 Rhodophytes (Fig 4B). CAD candidates in C. tuberculosum were mapped with their embryophyte CAD 

223 counterparts and closely related alcohol dehydrogenases. Sequences from C. tuberculosum grouped 

224 together with oxidoreductases (BS = 100%), sorbitol dehydrogenases (BS = 100%), general alcohol 

225 dehydrogenases (BS = 100%), and an algal CAD clade (BS = 100%). Sequences in this algal CAD clade 
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226 were based on previous sequence similarity-based annotation and have not been functionally 

227 demonstrated. In contrast, the land plant CAD and SAD sequences form their own clades (BS 100%; Fig 

228 4B) that are separated from the C. tuberculosum candidates by the functionally distinct alcohol 

229 dehydrogenases, such as yeast alcohol dehydrogenase 7 (ADH7) and E. coli aldehyde reductase (YAHK). 

230

231 Identification of additional metabolic pathways in Calliarthron tuberculosum

232

233 To enable broad and rapid identification of C. tuberculosum genes involved in specific metabolic 

234 processes, we present two general tools for gene identification within the C. tuberculosum transcriptome 

235 dataset using KEGG based annotations. This involves extracting whole metabolic pathways or individual 

236 genes (see Appendix S1; Fig S5). We included annotations for all metabolic genes recovered in the C. 

237 tuberculosum transcriptome (Table S3). We identified 36 putative C. tuberculosum genes present in the 

238 starch and sucrose metabolism pathway (Fig S5; Table S4). In addition, we individually searched for 

239 genes potentially involved in calcification [41,47,48] and identified 13 sequence candidates related to 

240 calcium transport, six related to inorganic carbon transport, five related to pH homeostasis, 19 putative 

241 carbonic anhydrases, and 12 putative HSP90 genes (Table S5). 

242

243 Discussion

244

245 Evidence for convergent evolution of monolignol biosynthesis

246

247 Using sequence similarity methods with genes from the monolignol pathway in land plants, we identified 

248 candidates for five genes related to monolignol biosynthesis (4CL, CCR, CAD, CCoAOMT, and CSE) 

249 from the newly generated C. tuberculosum transcriptomic dataset. These gene candidates are supported 

250 by genomic evidence, retain major motifs from their respective gene family, and return their A. thaliana 
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251 counterpart in reciprocal BLAST analyses, suggesting that these enzymes may function similarly in 

252 monolignol biosynthesis in C. tuberculosum. 

253

254 Despite supporting evidence from sequence similarity analyses, functional predictions for candidate 

255 sequences in the monolignol pathway within C. tuberculosum are obscured by the gene tree analysis. If 

256 the monolignol pathway in embryophytes and C. tuberculosum evolved in a common ancestor and was 

257 retained through conserved evolution, we would expect their sequences to form functional clades 

258 uninterrupted by functionally divergent protein sequences. However, with the exception of the 

259 CCoAOMT candidate, our gene tree analyses consistently showed that monolignol biosynthetic genes in 

260 land plants are not sister to those in C. tuberculosum. C. tuberculosum sequences were found within each 

261 respective overall protein family, but consistently grouped with land plant genes of non-monolignol 

262 forming function. If these C. tuberculosum sequences are functionally homologous to the monolignol 

263 biosynthesis counterpart in land plants, then they likely arose independently in C. tuberculosum. 

264 Convergent evolution in protein function, with phylogenetic patterns of protein sequences with similar 

265 functions intersected by sequences with dissimilar functions, is not uncommon in cell wall synthesizing 

266 enzymes [49]. Biosynthetic enzymes in C. tuberculosum could have evolved similar substrate specificity 

267 after the divergence of red algae and land plants or, alternatively, may reflect genes that were individually 

268 acquired. Previous evidence suggests that the core monolignol biosynthesis genes (4CL, CCR, and CAD) 

269 in C. tuberculosum may have been acquired through horizontal gene transfer from a bacterial source [36]. 

270 Thus, over evolutionary time genes in C. tuberculosum may have developed enough synchronicity in gene 

271 expression and protein regulation to produce an ad hoc monolignol biosynthetic pathway.

272

273 Alternatively, the phylogenetic evidence might suggest that gene candidates in C. tuberculosum do not 

274 function in monolignol biosynthesis and instead have a function similar to their sister sequences within 

275 their distinct phylogenetic groupings. For example, considering only clustering patterns in the 

276 phylogenetic data, perhaps C. tuberculosum contig 141618 functions as a CoA ligase that acts on 
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277 malonate and not coumarate (4CL enzyme) (Fig 2B). However, the tandem use of stricter curated 

278 sequences in our predictive HMM models and more flexible HMM models with previously annotated 

279 data, such as KEGG annotations, improves our confidence in finding potential gene candidates. 

280 Biochemical or functional assays will ultimately be needed to verify the function of candidate gene 

281 sequences.

282

283 The monolignol biosynthesis pathway and missing steps in Calliarthron tuberculosum

284

285 Several key steps in the monolignol biosynthetic pathway were not recovered in the C. tuberculosum 

286 transcriptome, including PAL, TAL, PTAL, HCT, COMT, C3H, C4H, or F5H. Although we cannot 

287 dismiss that these observations may be due to fragmented sequences in the assembled genome and 

288 transcriptome data, we present several other possibilities. 

289

290 The ammonia-lyase PAL, TAL, or PTAL creates the first substrates in the monolignol biosynthetic 

291 pathway [50–52]. Although no full-length homologs were identified in the C. tuberculosum 

292 transcriptome, short sequence candidates identified may represent a fragmented gene. However, these 

293 short sequences lacked genomic support, indicating they may be contaminants of non-Calliarthron origin. 

294 For this reason, PAL, TAL, and PTAL are currently indicated as absent (Fig 1). If these are indeed from 

295 C. tuberculosum, RACE amplification could help determine if the short ammonia-lyase we identified has 

296 a longer transcript. C. tuberculosum likely has an ammonia-lyase acting on phenylalanine or tyrosine 

297 since PAL and TAL are also key enzymes in producing flavanoids and coumarins, which have been 

298 previously detected in both fleshy and coralline red algae [53]. Further validation will be required to 

299 elucidate their presence.

300

301 C3H, C4H, or F5H are p450 monooxygenases responsible for converting substrates across the monolignol 

302 pathway eventually resulting in H to S to G type monolignols, respectively (Fig 1). P450 sequence 
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303 candidates have been identified, but their substrate-specific identity as C3H, C4H, or F5H homologs is 

304 unclear. The cytochrome P450 sequence candidates from the C. tuberculosum transcriptome form two 

305 divergent groups. One group is likely involved in carotenoid biosynthesis, positioned within the CYP97 

306 clade, while the other group forms their own clade of unknown function (Fig S2B). The identified 

307 candidates from C. tuberculosum may have multi-substrate specificities, acting on various substrates, 

308 including monolignol intermediate products. Some substrate promiscuity has previously been observed 

309 within members of the cytochrome P450 enzyme family [54,55]. Alternatively, each of the identified 

310 P450 clades in C. tuberculosum could contain a new class of cytochrome P450 capable of functioning in 

311 H-, G-, or S- unit monolignol biosynthesis. This proposed convergent evolution of a distinct and 

312 independently-evolved cytochrome P450 involved in monolignol production has previously been 

313 documented in the clubmoss Selaginella moellendorffii (F5H) [34,35]. In any case, the presence of unique 

314 P450s represents an interesting avenue of exploration to elucidate substrate specificity and functionality 

315 in the monolignol pathway in C. tuberculosum. 

316

317 HCT is one alternative route shifting monolignol synthesis from H- to G- to S- types using a temporary 

318 shikimate decoration (Fig 1) [56]. Its absence could suggest that C. tuberculosum does not utilize an HCT 

319 enzyme or create G lignin using this route. Another alternative route in G- and S- type monolignol 

320 synthesis utilizes a CSE enzyme that acts on caffeoyl shikimate, an HCT downstream product (Fig 1). 

321 The absence of an HCT is at odds with the CSE enzyme identified in this study (Fig 1), suggesting that 

322 the CSE candidate identified may not be utilized in the monolignol biosynthetic pathway for C. 

323 tuberculosum. Though this absence could be due to fragmentation in the transcriptome, more data are 

324 required for further validation. 

325

326 COMT is necessary for S type monolignol production in angiosperms [57–59]. The absence of this 

327 enzyme raises questions about how C. tuberculosum can produce sinapyl alcohol, a precursor component 

328 for S monolignols. Some evidence exists for a bifunctional enzyme in pine that can function as both 
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329 COMT and CCoAOMT (named AEOMT) in heterologous systems [60]. However, only moderate-to-low 

330 sequence similarity is shared among CCoAOMT, COMT, and the bifunctional AEOMT. Perhaps a 

331 similar protein with broad substrate specificity is present in C. tuberculosum but has yet to be identified 

332 based on sequence similarity.

333

334 Conclusion

335

336 In summary, we have identified several gene candidates in the C. tuberculosum transcriptome that 

337 represent central components in the monolignol biosynthetic pathway, helping to explain the surprising 

338 presence of lignins in this coralline red alga. Despite the complexity of monolignol biosynthesis, and 

339 contrary to the predictions outlined in Martone et al. [23], our gene trees do not demonstrate a deeply 

340 conserved evolution of monolignol biosynthesis, but instead suggest that each of the enzymes identified 

341 in C. tuberculosum likely evolved independently from those found in land plants.  Interestingly, there 

342 remain several key enzymes in the monolignol pathway whose sequences have not been identified, 

343 including those related to pathway entry and to shifting the types of monolignols produced that would 

344 form H-, G-, and S-lignins within the cell wall. Further biochemical evidence and validation of sequence 

345 expression will be necessary to provide functional support for both the genes identified and to elucidate 

346 potential alternative routes in the monolignol biosynthetic pathway in C. tuberculosum.  By providing 

347 methods to easily identify additional gene candidates from the C. tuberculosum transcriptome, we aim to 

348 facilitate future research on this fascinating organism.

349

350 Methods

351

352 Data and code availability

353
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354 All sequencing data generated from this study are available at European Nucleotide Archive 

355 (transcriptome data: accession PRJEB39919; genome data: accession PRJEB39919). Genome supported 

356 transcripts, transcriptome assemblies, annotations, and an example of metabolic pathway extraction are 

357 available on Github (https://github.com/martonelab/geneAnnotCalliarthronTranscriptome/).

358

359 Experimental model and subject details

360

361 Specimen collection and sequencing

362

363 Two male, haploid specimens of Calliarthron tuberculosum were collected October 6, 2013, from 

364 Bluestone Point (48.81952, -125.1640), Bamfield, British Columbia, Canada and verified as haploid male 

365 specimens by microscopy. A portion of each collected sample was pressed and deposited into the UBC 

366 herbarium with voucher codes A89970 and A89985. Voucher codes can be queried at 

367 https://herbweb.botany.ubc.ca/herbarium/search.php?Database=algae for more information.

368 Calcified intergenicula and non-calcified genicula from each individual were divided into two portions for 

369 data collection: either whole tissue (Sample I+G/PTM1 in the dataset) or calcified tissue only (Sample 

370 I/PTM2 in the dataset). Total RNA was extracted using the Spectrum Plant Total RNA kit (Cat # 

371 STRN50, Sigma-Aldrich) and sequenced on the Illumina HiSeq 2000 platform (paired-end 2x100bp, 

372 insert size ~220bp). 

373

374 Abbreviation of enzyme names

375

376 CAD, (hydroxy)cinnamyl alcohol dehydrogenase; SAD, sinapyl alcohol dehydrogenase; CCoAOMT, 

377 caffeoyl-CoA O-methyl transferase; CCR, (hydroxy)cinnamoyl-CoA reductase; C3’H, p-coumaroyl 

378 shikimate 3’-hydroxylase; C4H, cinnamate 4 hydroxylase; 4CL, 4-hydroxycinnamoyl-CoA ligase; 

379 COMT, caffeic acid O-methyltransferase; F5H, ferulic acid ⁄ coniferaldehyde ⁄ coniferyl alcohol 5-
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380 hydroxylase; HCT, hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase; PAL, 

381 phenylalanine ammonia-lyase

382

383 Transcriptome assembly and annotation

384

385 Illumina sequence reads were assembled using Trinity with the de novo mode at default setting [72], 

386 independently for each anatomical sample (I+G/PTM1 ; I/PTM2 in the ENA database). A reference 

387 transcriptome was also assembled de novo using Trinity by independently combining the sequence reads 

388 generated from both samples. The assembled transcripts were annotated using Blast2GO [73]. Briefly, 

389 each transcript was searched against the NCBI RefSeq protein database (BLASTX, E ≤ 10-5), and its 

390 putative function was inferred based on the top protein hit and Gene Ontology (GO) terms. These proteins 

391 were then mapped onto the corresponding metabolic pathways in the Kyoto Encyclopaedia of Gene and 

392 Genomes (KEGG) database [74]. Identification of genes present in KEGG annotated pathways were 

393 extracted using the pathview package [75]. 

394

395 Filtering contaminant sequences in genome assembled data 

396

397 To identify putative contaminant sequences in the genome assembly, each genome scaffold was searched 

398 (BLASTN) against a database of archaeal, bacterial and viral genome sequences retrieved from the NCBI 

399 RefSeq database. Sequences with a significant hit (E ≤ 10-5, covering > 50% of the query length) were 

400 considered putative contaminants and removed from the genome assembly. To identify broad differences 

401 in sequence characteristics, genomic scaffolds with and without transcriptomic support were compared 

402 for G+C content and transcript length (Fig S1B). Scaffolds with no transcript support and low recovery of 

403 eukaryotic genes (< 6% BUSCO or CEGMA recovery) were also identified as likely putative 

404 contaminants and removed from the genome assembly. 

405
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406 Genome annotation guided by transcriptome evidence     

407

408 Repetitive elements in the genome assembly were identified and masked using RepeatMasker version 

409 open-4.0.6 [76]. To maximize recovery of transcript support for genome scaffolds, the transcriptomes 

410 (I+G/PTM1; I/PTM2 in the dataset) were mapped against the masked genome scaffolds using PASA 

411 v2.0.2 [77], and full-length coding sequences (CDSs) were predicted with TransDecoder v5.0.1 [72]. 

412 These CDSs represent the primary set of putative genes and were used as extrinsic hints to guide ab initio 

413 gene prediction using AUGUSTUS v3.2.1 [78] from the genome scaffolds. 

414

415 HMM based gene candidate search

416

417 Monolignol biosynthesis gene candidates were identified from the C. tuberculosum transcriptomic dataset 

418 using Hidden Markov Model (HMM) based searches [79]. Transcriptomic sequence contigs were 

419 translated into all six reading frames using EMBOSS Transeq [80]. This amino acid database was used 

420 for subsequent sequence searches. HMM profiles used to search for homologs in the transcriptome were 

421 produced by aligning amino acid sequences of a given protein or protein family using MUSCLE [81] with 

422 no manual adjustment. The profiles were searched against the translated C. tuberculosum dataset in 

423 HMMER searches [79] to look for putative sequence homologs. Sequences more than 100 amino acids 

424 long were retained for subsequent analysis. These sequences were then searched against the Arabidopsis 

425 (GenBank taxid:3701) proteome using NCBI’s BLAST [82] to verify their closest homolog match 

426 (BLASTP, E ≤ 10-30). 

427

428 Domain and motif comparison

429

430 The monolignol biosynthetic genes and their overall gene families contain sequence domains that 

431 influence protein shape and function. To compare these key domains, multiple sequence alignments 
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432 (MSA) of candidate amino acid sequences from C. tuberculosum with their land plant counterpart protein 

433 were produced. Sequences were aligned using MUSCLE under default settings [81]. Key domains and 

434 motifs were chosen based on available literature and highlighted in the MSA as indicated in each figure 

435 legend. In each MSA, an asterisk (*) represents full conservation; and a period (.) represents sites with 

436 conservation >50%. Accession numbers can be found in Appendix S1. 

437

438 Gene tree analysis 

439

440 Gene trees were reconstructed for the candidate sequences of C. tuberculosum identified. For each gene 

441 tree analysis, sequence candidates from C. tuberculosum, the functionally demonstrated enzyme sequence 

442 from land plants, enzyme sequences from the overall protein family from land plants, and the top 20 

443 sequences identified by NCBI BLAST using C. tuberculosum candidates as a query against the total 

444 database using default settings (BLASTP, E ≤ 10-20) were compiled. Land plant sequences identified to 

445 represent the functional gene and overall gene family were curated by a literature search. For each set of 

446 sequences, a multiple sequence alignment was performed using MUSCLE with default setting [81]. Sites 

447 with <80% coverage were removed using trimAl [83]. IQTree was used to search for the evolutionary 

448 model alignment under a BIC criterion [84,85]. A maximum likelihood tree was reconstructed using 

449 IQTree [86], with node support calculated based on 1000 ultrafast bootstrap pseudoreplicates in IQTree 

450 [86].  A clade is considered strongly supported when bootstrap value ≥ 95%. FigTree was used to edit 

451 branch width and colors [87]. Accession numbers can be found in Appendix S1.

452

453 Generation of genome data as additional support for transcriptome data 

454  

455 Genome data of C. tuberculosum were generated using Illumina IIx platform (paired-end 2×150bp reads, 

456 insert size ~350 bp). An overview of the summary statistics for the genome assembly can be found in 

457 Table S1. Adapter sequences were removed using Trimmomatic v0.33 [88] (LEADING:25 
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458 TRAILING:25 HEADCROP:10 SLIDINGWINDOW:4:20 MINLEN:50). The generated filtered 

459 sequence reads and the previously published genome data (GenBank accession #: SRP005182) generated 

460 using the 454 pyrosequencing platform [43] were used in a de novo genome assembly using SPAdes [89]. 

461 The 454 reads were treated as unpaired, single-end reads in the assembly process. This de novo assembly 

462 was further scaffolded with the transcriptome data using the L_RNA_Scaffolder [90]. Putative 

463 contaminant sequences were removed based on shared similarity against known genome sequences from 

464 bacterial, archaeal, and viral sources in NCBI RefSeq (BLASTN, E ≤ 10-5), and subsequently based on 

465 discrepancy in G+C content of the assembled scaffolds, and the recovery of core eukaryotic genes 

466 (CEGMA and BUSCO). Because the genome assembly is fragmented, genome scaffolds on which no 

467 transcripts were mapped were filtered out, yielding the final genome assembly (21,672 scaffolds, total 

468 bases 64.15 Mbp). These genome scaffolds were used as additional support for the transcriptome data. 

469 For the reference transcriptome (combined I+G/PTM1 ; I/PTM2), putative coding sequences were 

470 predicted based on alignment of the assembled transcripts against the genome scaffolds using PASA [77] 

471 and TransDecoder [72], from which the coded protein sequences were predicted.

472

473 Completeness of transcriptome and genome data

474

475 The completeness of the genome and transcriptome data was assessed by the recovery of core conserved 

476 eukaryote genes with the Core Eukaryotic Genes Mapping Approach (CEGMA) [91] and Benchmarking 

477 Universal Single-Copy Orthologs (BUSCO) [92] datasets. CEGMA and BUSCO datasets (eukaryote 

478 odb9 and Viridiplantae odb10) were independently used as query to search against the predicted proteins 

479 from the reference transcriptome (combined IG and IO) using BLASTP (E ≤ 10-5) and against the same 

480 transcriptome using TBLASTN (E ≤ 10-5). The core CEGMA and BUSCO proteins were also queried 

481 against the 21,672 genome scaffolds using TBLASTN (E ≤ 10-5). 

482

483
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484 Key Resources Table

485

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Calliarthron tuberculosum 

(sample vouchers)

This paper A89970 and A89985

at 

https://herbweb.bota

ny.ubc.ca/herbarium/

search.php?Database

=algae

Critical Commercial Assays

HiSeq 2000 (Transcript reads) Illumina

IIx platform (Genomic reads) Illumina

Spectrum Plant Total RNA kit Sigma-Aldrich STRN50

Deposited Data

Raw sequencing reads for transcriptomic and genomic 

data

This paper PRJEB39919

Genome supported transcripts, transcriptome 

assemblies, annotations

This paper https://github.com/m

artonelab/geneAnnot

CalliarthronTranscri

ptome/

Additional Calliarthron Genomic Reads [43] SRP005182

Pyropia genomic data [39] MXAK00000000

Arabidopsis Proteome taxid:3701
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Software and Algorithms

TransDecoder v5.0.1 [72] https://github.com/T

ransDecoder/TransD

ecoder/wiki

Trinity [72] https://github.com/tri

nityrnaseq/trinityrna

seq/wiki

Blast2GO [73] https://www.blast2g

o.com/

Kyoto Encyclopedia of Genes and Genomes (KEGG) [74] https://www.genome

.jp/kegg/

Pathview R Package [75] https://www.biocond

uctor.org/packages/r

elease/bioc/html/pat

hview.html

HMMER [79] http://hmmer.org/

EMBOSS Transeq [80] http://emboss.source

forge.net/apps/releas

e/6.6/emboss/apps/tr

anseq.html

MUSCLE v3.5 [81] http://www.drive5.c

om/muscle/muscle.h

tml

IQtree [85,86] http://www.iqtree.or

g/
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TrimAl [83] http://trimal.cgenomi

cs.org/

FigTree [87] http://tree.bio.ed.ac.u

k/software/figtree/

Trimmomatic v0.33 [88] http://www.usadella

b.org/cms/?page=tri

mmomatic

SPAdes [89] https://cab.spbu.ru/s

oftware/spades/

L_RNA_Scaffolder [90] https://github.com/C

AFS-

bioinformatics/L_R

NA_scaffolder

PASA v2.0.2 [77] https://github.com/P

ASApipeline/PASA

pipeline

CEGMA [91] http://korflab.ucdavi

s.edu/datasets/cegma

/

BUSCO [92] https://busco.ezlab.o

rg/

RepeatMasker version open-4.0.6 [76] http://www.repeatma

sker.org/

AUGUSTUS v3.2.1 [78] https://github.com/n

extgenusfs/augustus
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772 Supporting Information 

773

774 Fig S1. Completeness of the C. tuberculosum transcriptome dataset.

775 (A) Transcriptome sequences show high recovery of eukaryotic genes in CEGMA/BUSCO analysis. 

776 Percentage of genomic scaffolds with transcriptome support and transcriptomic scaffolds alone that share 

777 amino acid sequences with the core eukaryotic gene databases including CEGMA, BUSCO eukaryotic, 

778 and BUSCO Viridiplantae. Transcriptome encoded amino acid sequences were searched against the 

779 databases using BLASTP (orange) or TBLASTN (yellow), and genomic scaffolds were searched against 

780 the databases using TBLASTN (blue) 

781 (B) Transcriptomic support of genomic data analyzed by GC content and transcript length.                                                        

782 The distribution of GC content (above) against transcript lengths is shown for scaffolds with 

783 transcriptome support (blue) and scaffolds without transcriptome support (yellow) (right).

784 Fig S2. C3H, C4H, F5H, P450 candidates from C. tuberculosum in relation to plants and other taxa.

785 (A) Partial alignment of C. tuberculosum P450 candidates with C3H, C4H, and F5H from A. thaliana, 

786 and a novel F5H from Selaginella moellendorffii. Heme binding domain residues, secondary structure 

787 stabilizing K helix residues, PXRX, and the I-helix are indicated [8]. Sites with <80% coverage were 

788 removed. A strong candidate for beta-carotene synthesis is indicated with a triangle.  

789 (B) Unrooted CYP450 maximum likelihood gene tree with C. tuberculosum (magenta dots) and 

790 additional taxa (Embryophyta – dark green, Chlorophyta – light green, Rhodophyta – red, Animalia and 

791 Opisthokonta – purple, Bacteria and Cyanobacteria – blue, Oomycota, Mycetozoa and Fungi – yellow, 

792 Ochrophyta – brown). Functionally demonstrated plant C3H, C4H, and F5H are labeled (+). Additional 

793 functional groups are labeled [9]. Ultrafastbootstrap values > 95 are marked by *. Model = VT+F+G4.      

794

795 Fig S3. CCoAOMT candidates from C. tuberculosum in relation to plants and other taxa.

796 (A) Partial alignment of C. tuberculosum CCoAOMT sequence candidates with CCoAOMT from land 

797 plants. Substrate recognition residues (black triangle), divalent metal ion and cofactor binding residues 

798 (grey triangle), catalytic residues (back square), and the positively charged R220 necessary for substrate 

799 recognition (grey square) are indicated. Sites with < 70% coverage were removed. 

800 (B) Unrooted maximum likelihood gene tree of biochemically characterized plant O-methyltransferases 

801 with C. tuberculosum (magenta dots) and additional taxa (Embryophyta – dark green, Chlorophyta – light 

802 green, Rhodophyta – red, Animalia and Opisthokonta – purple, Bacteria and Cyanobacteria – blue, 

803 Oomycota, Mycetozoa and Fungi – yellow, Ochrophyta – brown). Functionally demonstrated plant 
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804 CCoAOMT are labeled (+). Additional functional groups are labeled [13]. Ultrafastbootstrap values > 95 

805 are marked by *. Model = LG + G4. JMT, SAMT, and BAMT are closely related to OMTs. 

806

807 Fig S4. CSE candidates from C. tuberculosum in relation to plants and other taxa.

808 (A) Partial alignment of C. tuberculosum CSE sequence candidates with CSE from land plants. Acyl 

809 transferase motifs (HX4D), lipase motifs (GXSXG) and active site residues (triangle) are indicated. Sites 

810 with <  70% coverage were removed. 

811 (B) Unrooted maximum likelihood gene tree of C. tuberculosum CSE candidates (magenta dots) and 

812 additional taxa (Embryophyta – dark green, Chlorophyta – light green, Rhodophyta – red, Animalia and 

813 Opisthokonta – purple, Bacteria and Cyanobacteria – blue, Oomycota, Mycetozoa and Fungi – yellow, 

814 Ochrophyta – brown). Functionally demonstrated plant CSE are labeled (+). Additional functional groups 

815 are labeled. Ultrafastbootstrap values > 95 are marked by *. Model = VT+G4. 

816

817 Fig. S5. A visual representation of the C. tuberculosum sequences present in the starch and sucrose 
818 metabolism pathway from the KEGG based annotation.
819 KEGG based annotation showing the starch and sucrose metabolic pathway with C. tuberculosum 

820 annotations highlighted. The gradient map in the top right corner indicates the level of transcription, with 

821 white and dark pink coloring representing absence and presence of expression respectively. The annotated 

822 map, number “00500”, was extracted in the provided R file using the pathview program.  

823

824 Table S1. Summary statistics for the C. tuberculosum genome assembly. 

825 Scaffolds are categorized as shared with either red algal (Pyropia yezoensis) genomic scaffolds, 

826 eukaryotic sequences, or other bacteria sequences based on sequence similarity. 

827 Table S2. Top hits against Arabidopsis thaliana (taxid:3702) using Calliarthron sequences as the 

828 search query (BLASTP). Query sequence is indicated by contig number. Result hits are indicated by 

829 description (At tax ID 3702) and colored by overall alignment scores with red (>=200), pink (80-200), 

830 green (50-80), blue (40-50), and black (<40) that are most to least reliable scores in that order.

831

832 Table S3. KEGG annotations of Calliarthron tuberculosum reads from the combined transcriptomic 

833 dataset. Unique reads are represented by their contig identifier (contig_gene_isoform) and matched with 

834 their annotated KEGG based identifier (KO_identifier) and associated protein name. 

835
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836 Table S4. Listed representation of the C. tuberculosum sequences present in starch and sucrose 

837 metabolism pathway from the KEGG based annotation.

838 C. tuberculosum sequences were extracted from the KEGG based starch and sucrose metabolism pathway 

839 number “00500”. “KEGG Identifier” refers to the specific KEGG code for the gene, “Contig Name” 

840 refers to the sequence identifier from the Calliarthron transcriptome where the values represent the contig 

841 name_gene number_gene isoform and “Gene Name” refers to the gene acronym, the gene name, and its 

842 enzyme commission (EC) number. Sequences were extracted in the provided R file using the pathview 

843 program.  

844

845 Table S5. A list of calcification related gene candidates identified from KEGG-based annotations of 

846 the C. tuberculosum transcriptome.

847 Calcification gene candidates were initially selected based on a literature search, and then C. 

848 tuberculosum sequences were identified manually from the KEGG based annotations (annotation file 

849 available on Github), thus this is not an exhaustive list. The genes are organized by their functional 

850 classification indicated as “overall function”, while “KEGG Identifier” refers to the specific KEGG code 

851 for the gene, “Contig Name” refers to the sequence identifier from the Calliathron transcriptome where 

852 the values represent the contig name_gene number_gene isoform and “Gene Name” refers to the gene 

853 acronym, the gene name, and its enzyme commission (EC) number. 

854
855
856
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