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Abstract 

The gut microbiome has been identified as a key to immune and metabolic health, especially in 

industrialized populations1. Non-industrialized individuals harbor more diverse microbiomes and 

distinct bacterial lineages2, but systemic under-sampling has hindered insight into the extent and 

functional consequences of these differences3. Here, we performed ultra-deep metagenomic 

sequencing and laboratory strain isolation on fecal samples from the Hadza, hunter-gatherers in 

Tanzania, and comparative populations in Nepal and California. We recover 94,971 total genomes 

of bacteria, archaea, bacteriophage, and eukaryotes, and find that 43% are novel upon aggregating 

with existing unified datasets4,5. Analysis of in situ growth rates, genetic pN/pS signatures, and 

high-resolution strain tracking reveal dynamics in the hunter-gatherer gut microbiome that are 

distinct from industrialized populations. Industrialized versus Hadza gut microbes are enriched in 

genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory 

processes. We use phylogenomics to reveal that global spread of the spirochaete Treponema 

succinifaciens parallels historic human migration prior to its extinction in industrialized 

populations. When combined with a detailed definition of gut-resident strains that are vanishing 

in industrialized populations, our data demonstrate extensive perturbation in many facets of the 

gut microbiome brought on by the industrialized lifestyle.   

 

Recognition of work with indigenous communities 

Research involving indigenous communities is needed for a variety of reasons including to ensure 

that scientific discoveries and understanding appropriately represent all populations and do not 

only benefit those living in industrialized nations3,6. Special considerations must be made to ensure 

that this research is conducted ethically and in a non-exploitative manner. In this study we 

performed deep metagenomic sequencing on fecal samples that were collected from Hadza hunter-

gatherers in 2013/2014 and were analyzed in previous publications using different methods2,7. A 

material transfer agreement with the National Institute for Medical Research in Tanzania specifies 

that stool samples collected are used solely for academic purposes, permission for the study was 

obtained from the National Institute of Medical Research (MR/53i 100/83, 

NIMR/HQ/R.8a/Vol.IX/1542) and the Tanzania Commission for Science and Technology, and 

verbal consent was obtained from the Hadza after the study’s intent and scope was described with 

the help of a translator. The publications that first described these samples included several 
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scientists and Tanzanian and Nepali field-guides as co-authors for the critical roles they played in 

sample collection, but as no new samples were collected in this study, only scientists who 

contributed to the analyses described here were included as co-authors in this publication. It is 

currently not possible for us to travel to Tanzania and present our results to the Hadza people, 

however we intend to do so once the conditions of the COVID-19 pandemic allow it. 

 

Main 

The gut microbiome is increasingly recognized as a critical aspect of human health, but 

microbiome studies are heavily biased towards western industrialized populations3. Microbiota 

composition varies across lifestyles with those from non-industrialized populations harboring 

greater  diversity and distinct microbes known as VANISH (Volatile and/or Associated Negatively 

with Industrialized Societies of Humans) taxa8–14. Analogously, microbiomes of industrialized 

populations are enriched for BloSSUM (Bloom or Selected in Societies of 

Urbanization/Modernization) taxa. The transition to an industrialized microbiome is observed in 

immigrants to the U.S. supporting a causal role of lifestyle15. The presence of VANISH taxa in 

non-industrialized societies around the world and ancient humans underscores their potential 

evolutionary importance16,17. Human-associated microbial lineages have been passed across 

hominid generations across evolutionary time18,19, raising the possibility that human biology has 

become reliant upon functions and cues that these microbes provide20. Current understanding of 

VANISH taxa is primarily based on 16S rRNA sequencing21, and therefore lacks phylogenetic 

resolution and genomic/functional insight. A higher-resolution view, including an understanding 

of VANISH functional capacity, growth dynamics, and dispersal patterns is needed to understand 

microbiome change induced by the industrialized lifestyle. 

Metagenomic sequencing has transformed our ability to understand microbes without culturing, 

but most microbiome studies use relatively shallow sequencing (Fig. 1A). Deeper sequencing 

improves detection of resident  microbes22 (including microbial eukaryotes23)  and provides insight 

from recently developed techniques including in situ growth rate prediction, high-precision strain-

tracking, de novo genome recovery, and microdiversity analysis24,25.  

Here we present ultra-deep metagenomic sequencing of the Hadza hunter-gatherer gut 

microbiome. The Hadza reside near Lake Eyasi in the central Rift Valley of Tanzania, live in bush 
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camps of approximately 5 to 30 people, move between camps approximately every 4 months, 

primarily drink from water springs and streams, and eat a diet that includes foraged tubers, berries, 

honey, and hunted animals26. They are among the last remaining populations in Africa that 

continue a form of the ancestral foraging legacy of our human species. 

Recovery of Hadza-associated genomes and isolates 

We performed metagenomic sequencing on stool samples collected from 167 Hadza individuals 

(including 33 infants and 6 mothers27) between September 2013 and August 20142,7, 56 Nepali 

individuals28 and 12 Californians1 (x`tary Table 1). The Nepali samples are from four populations 

living on a lifestyle gradient: foragers (Chepang), and agrarians (Raute and Raji, recent agrarians; 

Tharu, longtime agrarians28). The Hadza, Nepali, and Californian samples were sequenced to 

approximately 25 giga base pairs (Gbp), an exceptional depth relative to prior studies (Fig. 1A; 

Extended Data Fig. 1), and includes the most deeply-sequenced human gut metagenome (210 

Gbp) to date. 

 

Using multi-domain assembly, binning, and read-mapping, we recovered 48,185 bacteria (Fig. 

1B), 290 archaea, and 17 eukaryote (Fig. 1C), and 34,552 bacteriophage (Fig. 1D) metagenome-

assembled genomes (MAGs) from Hadza samples (see methods for details, Supplementary Table 

2). MAGs recovered from the Hadza expand the Unified Human Gastrointestinal Genome 

(UHGG, v1) database4 bacterial and archaeal species count by 25.4% and 14.3%, respectively, and 

the Metagenomic Gut Virus (MGV) catalog5 viral species count by 23.7%. Over half (59.7%) of 

the 6.6 million protein families found in Hadza gut microbes are absent from the UHGP-95 (v1) 

protein database4 (Extended Data Fig. 2). 52 bacterial strains (Supplementary Table 3) were 

isolated and sequenced from Hadza stool samples, which  comprise of 31 different bacterial species 

belonging to 4 phyla (including 9 strains of Bifidobacterium infantis27); 20 of these species have 

no previously cultured representative from human stool and 9 species are novel relative to UHGG 

v1 (Extended Data Fig. 3).  

 

Of the 21 eukaryotic genomes recovered in this study, 17 are from the Hadza and 4 from the Nepali 

samples (Fig. 1C; Supplementary Table 2). All Nepali and the majority of Hadza genomes are 

from the genus Blastocystis (n=14), a prevalent member of the mammalian gut microbiota106. Of 

the 7 other eukaryotic genomes recovered from the Hadza gut, one is a remarkably large and 
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complete genome of a stingless bee (232 megabase pairs and 92.3% complete), the honey and 

larvae of which are known to be consumed by the Hadza107, and four are novel Amoebae (n=2) 

and Trepomonas (n=2) genomes (Fig. 1C). While a comprehensive genome database does not yet 

exist for eukaryotes known to colonize the human gut, genomes from these species are not present 

in NCBI GenBank108 (a repository of genomes sequenced from all environments). 

 

Metagenomic reads generated here were mapped to three custom databases containing full genome 

sequences of species-level representatives for the bacteria/archaea (n=5,755) bacteriophage 

(n=16,899), and eukaryote (n=12) genomes (see methods for details). Over 80% of the 

metagenomic reads from Hadza, Nepali, and Californian samples map to these databases (Fig. 

1E). Notably, the Hadza have higher bacterial, bacteriophage, and archaeal diversity than other 

populations in this study, with the exception of Nepali Forager bacteriophage diversity (Fig. 1F). 

This increased diversity was not due to increased sequencing depth as an in-silico rarefaction 

analysis revealed more total and novel species of bacteria, archaea, and bacteriophage in Hadza 

samples compared to other populations across a range of sequencing depths (Fig. 1G; Extended 

Data Fig. 4). Analysis of exceptionally deeply-sequenced samples (≥ 50 Gbp) suggests that the 

Hadza gut microbiome contains two-to-four times the number of bacterial species when compared 

to Californians at similar sequencing depths (Extended Data Fig. 5).  

 

VANISH microbes abound in the Hadza 

To explore the extent to which the Hadza microbiome differs from other populations, we curated 

a dataset of 1,800 human gut metagenomes from 21 published studies11,15,29–44(industrial, n=950; 

transitional, n=583; Hadza hunter-gatherers from this study, n=135; and other hunter-gatherers, 

n=132; Extended Data Fig. 6A-B, Supplementary Table 4). Analysis of the hunter-gatherer 

samples demonstrates that much diversity and distinguishing taxa are recovered with deeper 

sequencing, so subsequent compositional analysis was focused on the deeply sequenced Hadza 

samples (Extended Data Fig. 6C-F). The presence of each species within our bacterial/archaeal 

genome database was determined for each sample (Fig. 2A, Supplementary Table 5); and 

VANISH (n=124) and BloSSUM (n=63) taxa were defined as those that are most significantly 

enriched in the Hadza and industrial populations, respectively (Fisher’s exact test; ≥95th 

percentile; Fig. 2B; Extended Data Fig. 7). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.30.486478doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486478
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

 

Most VANISH taxa (n=120; 96%) and all BloSSUM taxa (n=63; 100%) are detected in 

“transitional” samples (taken from populations intermediate between hunter-gatherer/forager and 

industrialized lifestyles). These taxa are typically found at intermediate prevalence, consistent with 

the extent of lifestyle change corresponding to the magnitude of microbiome shifts45 (Fig. 2C). 

Interestingly, BloSSUM taxa have higher in situ growth rates than VANISH taxa in transitional 

samples (Fig. 2D) and are anti-associated with the presence of Blastocystis, even within 

individuals from industrialized populations (Extended Data Fig. 8). Replication rate differences 

may indicate a competitive advantage of BloSSUM taxa in the industrialized gut versus the slower 

replicating VANISH taxa.  

 

We investigated the functional consequences of the trade-off between VANISH and BloSSUM 

taxa concomitant with lifestyle change. The extraordinary level of novelty present in the Hadza 

gut (Extended Data Fig. 7) precludes the use of most gene annotation pipelines, and we thus 

focused our functional analysis on protein domains (Pfams), which represent broad, evolutionary 

conserved functional units46. Functional analysis identified 145 and 588 Pfams that are more 

prevalent in VANISH and BloSSUM taxa, respectively (p < 0.01; Fisher’s exact test, Benjamini 

p-value correction; Fig. 2E; Supplementary Table 6). Pfams most associated with VANISH taxa 

point to a relatively outsized use of metal ions, peptidases, and RNA methylation. BloSSUM Pfams 

are associated with antioxidant and redox sensing functionality, perhaps reflecting increased 

oxygen tension associated with inflammation or an altered epithelial metabolic state in the 

industrialized gut21,47. These differences demonstrate that VANISH and BloSSUM taxa are not 

functionally redundant.  

 

Treponema succinifaciens dispersal mirrors human migration 

Several species of the phylum Spirochaetota were identified as VANISH taxa in this study 

(Supplemental Table 5). Spirochaetota in general, and especially the most well-studied species 

Treponema succinifaciens, are known to be depleted in industrialized microbiomes8. Here we 

leveraged i) deep sequencing we performed on Hadza, Nepali, and Californian samples using 

consistent methods, and ii) new Spirochaetota genomes recovered in this study (n=1047) to 

conduct a robust analysis of Spirochaetota prevalence across lifestyles. Our recovered 
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Spirochaetota MAGs belong to the Treponemataceae, Sphaerochaetaceae, or Brachyspiraceae 

families and span 26 species (including a sequenced isolate of Treponema perunse48), 16 of which 

are novel relative to the UHGG. The relative abundance of Spirochaetota species decreases with 

increased industrialization and no Spirochaetota genomes are detected within Californians (Fig. 

3A). Hadza Spirochaetota genomes fall into three diverse families also found in other populations 

(colored boxes, Fig. 3B) suggesting that Spirochaetota are a core component of the non-

industrialized microbiome and highly susceptible to loss upon lifestyle change.  

 

The MAGs recovered here increase the number of publicly available Treponema succinifaciens 

genomes from 125 to 346 (276% increase), enabling a robust phylogenomic analysis of the species 

(Fig. 3C). We identified both Hadza-specific and globally distributed clades of T. succinifaciens 

and observed an association between phylogeny and continent of origin (delta statistic d=7.79, p-

value<0.0001)49. To model the dispersal of T. succinifaciens between human populations, we 

performed stochastic character mapping on the phylogenetic tree of MAGs in which the population 

where each MAG was recovered is coded as a trait of the genome and the frequency of “transition 

events” between each pair of populations is quantified50 (Fig. 3D). The 4 most frequent transition 

events between populations are from the Hadza to other populations, accounting for 46.7% of all 

transition events, suggesting that T. succinifaciens was carried along the out-of-Africa human 

dispersal routes51. The congruence of T. succinifaciens phylogenomics with known patterns of past 

human migration is consistent with its dispersal being linked to close human contact (e.g., vertical 

transmission), as has been described for Helicobacter pylori19,52. 

 

Evolution, growth, and dispersal in the Hadza gut 

The high sequencing depth and sample number achieved in this study provide an unprecedented 

opportunity to investigate in situ growth rates, microdiversity, and strain sharing within a hunter-

gatherer population. The Hadza gut microbiome has been shown to undergo seasonal cycling in 

carbohydrate-active enzyme (CAZyme) and species composition2,7. Here we confirm these 

findings using deeper sequencing and updated metagenomic methods (Extended Data Fig. 9) and 

for the first time identify seasonal cycling in bacterial replication rates (Extended Data Fig. 10A). 

Analysis of intra-genic pN/pS ratios, a measure of bias towards non-synonymous mutations that 

suggests directional or diversifying selection, reveals a roster of functions with higher pN/pS ratios 
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(p < 0.01; n=693); many are associated with extracellular or membrane-bound proteins, such as 

Ig-like folds, pilin motifs, and collagen-binding proteins (Extended Data Fig. 10B).  

 

Family relation and cohabitation are among the strongest factors associated with microbial strain 

sharing in industrial populations53,54, but it is unknown whether these patterns hold for hunter-

gatherer populations like the Hadza. We performed a high-resolution strain-tracking analysis 

(threshold for same strain = 99.999% popANI) and found that family members share more 

recently-transmitted strains than unrelated individuals among the Hadza (Fig. 4A, Supplementary 

Table 7). Interestingly, strain sharing among members of the same bush camp approaches that 

between members of the same family (Fig. 4B), and this effect is stronger in some bush camps 

(Fig. 4B). For example, individuals from the Hukamako camp share more strains with one another 

than family members share on average across all camps. Drinking water source (e.g., spring, 

stream, riverbed, etc.) and season (late dry, early dry, early wet, or late wet) have been previously 

linked to gut microbiome similarity2,28, and here we demonstrate that these factors are also linked 

with the sharing of identical microbial strains (Fig. 4A). Overall, these results point to the 

importance of environmental factors, kinship, and bush camp membership (a social structure with 

no equivalent in the industrialized populations) in driving strain dispersal among hunter-gatherers. 

 

Discussion 

Here we elucidated many novel facets of lifestyle differentiation in the gut microbiome using 

exceptionally deep metagenomic sequencing of non-industrialized populations, particularly the 

Hadza hunter-gatherers of Tanzania. The discovery of numerous novel clades of bacteria, archaea, 

bacteriophage, and eukaryotes highlight a leap in understanding of non-industrialized 

microbiomes and reframe the incompleteness and bias of commonly used genomic reference 

databases. Functional differences in the gut microbiomes of humans living different lifestyles 

affirm the ability of our intestinal inhabitants to continually adapt to selective pressures in the gut 

environment. The VANISH taxa found in present-day Hadza may represent lineages of microbes 

that shaped human development throughout our species’ long history as foragers. Global 

phylogenomic analysis of the commensal spirochaete, Treponema succinifaciens, shows strain 

relatedness consistent with known human migration patterns prior to industrialization. Extending 

deep metagenomic sequencing to populations living across additional geographies will enable a 
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better understanding of which microbes traveled with, were lost, or gained in human populations 

as we spread around the planet. An important challenge is to characterize the impact of these 

microbes on human physiology and determine whether the absence or presence of species and 

functions are detrimental to human health. Overall, our results conclusively show that the 

differences between industrialized and non-industrialized microbiomes go well beyond simple 

taxonomic membership and diversity.  These findings have substantial implications for how the 

microbiome may be investigated toward improving the health of both industrialized and non-

industrialized populations. 
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Fig. 1. The Hadza gut microbiota contains substantial multi-domain novelty.  

(A) Number of samples versus the number of bases sequenced per sample for 19 previously 

published metagenomic data sets and the present study. Points are green if they contributed 

hunter-gatherer (H-G) samples to public databases and gray if they did not.  

(B) Phylogenetic tree of bacterial species-level representative genomes (SRGs) from Hadza and 

UHGG based on bacterial single copy gene alignment; branch colors correspond to phyla. SRGs 

from species-level groups consisting of only genomes assembled from the Hadza or only UHGG 

are colored green and orange in the outer ring, respectively. The number of SRGs found in the 

Hadza, UHGG, or both is shown as a horizontal line. Hadza genomes that are novel at the family 

or order level according to GTDB are annotated with red and blue stars, respectively. 

(C) A phylogenetic tree of eukaryotic genomes recovered from the Hadza and Nepali based on 

universal single copy genes. Public reference genomes are marked with blue text labels. The 

heatmap shows the prevalence of the individual Blastocystis species in the Hadza, Nepali and 
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Californian cohorts.  

(D) The percentage of bacteriophage species clusters assembled from the Hadza that are novel at 

the species level according to MGV, categorized by phylum of the predicted host. 

Bacteriophages without a host prediction are labeled “Uncharacterized”. 

(E) The percentage of metagenomic reads mapping to various domains averaged across all 

metagenomic samples from each population. The phyla “Bacteriodota” and “Firmicutes_A” are 

shown separated from other bacteria. “Unmapped” depicts the percentage of reads that do not 

map to any genomes, and “Low confidence” depicts the percentage of reads that map to genomes 

with less than 50% genome breadth. 

(F) The Shannon diversity of bacteria, archaea, bacteriophage, and eukaryote genomes in 

metagenomes sequenced in this study. P-values from two-sided Mann-Whitney-Wilcoxon test 

with multiple hypothesis correction; *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001, 

ns: p ≥ 0.05. 

(G) Collectors’ curves depicting the average number of genomes detected per sample in each 

population sequenced in this study after rarefication to various sequencing depths. The vertical 

dotted lines indicate the average per-sample sequencing depth of this study (~23 Gbp) and the 

average depth of samples studied in Nayfach et al. (~4 Gbp; ref. 4). Shaded areas around lines 

indicate 95% confidence intervals. “Nepal For.” includes the Chepang foragers, while “Nepal 

Ag.” includes Raute, Raji, and Tharu agrarians. 
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Fig. 2. VANISH and BloSSUM taxa have distinct global prevalence, function, growth rates 

and covariance with eukaryote detection.  

(A) A heatmap depicting the presence of 524 SRGs (columns) within metagenomic samples 

from populations living different lifestyles (rows). Darker blue indicates SRG presence, lighter 

blue indicates SRG absence. SRGs with >30% prevalence among all samples in any lifestyle 

category were included. 

(B) SRGs were classified as “BloSSUM” or “VANISH” based on their prevalence across 
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lifestyles (see methods for details). Colored bars correspond to columns in the heatmap.  

(C) The prevalence of VANISH (magenta), BloSSUM (blue) and non-enriched taxa (gray) in the 

Hadza, transitional lifestyle populations and industrial lifestyle populations. Dashed lines 

connect median prevalence across the taxa in each category surrounded by standard deviation 

(color shaded regions). Solid lines show the median prevalence for 6 representative taxa in each 

of these lifestyle groups.  

(D) The in situ growth rate of SRGs in metagenomes from Nepali individuals, stratified by status 

as “VANISH” (middle), “BloSSUM” (bottom), or neither (top) (* P ≤ 0.05; ** P ≤ 0.01; 

Wilcoxon rank-sum test). 

(E) The association of Pfams with VANISH or BloSSUM genomes. The x-axis displays the 

fraction of BloSSUM genomes a Pfam is detected in minus the fraction of VANISH genomes a 

Pfam is detected in (Pfam differential prevalence). The y-axis displays the p-value resulting from 

Fisher's exact test with multiple hypothesis correction.  
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Fig. 3. Spirochaetes that are highly abundant in the Hadza are absent in industrial samples.  

(A) A heatmap showing the relative abundance of the 10 most prevalent spirochaete species in 

the Hadza, Nepali, and American cohorts. All samples are sequenced to approximately the same 

sequencing depth.  

(B) A phylogenetic tree of all spirochaete species using genomes from NCBI, the UHGG and the 

species-representative genomes added in this study. Clades of commensal organisms 

representing the genera Brachyspira, Spirochaeta, and Treponema are highlighted.  

(C) A phylogenetic tree of all Treponema succinifaciens MAGs in the UHGG in addition to new 

MAGs recovered in this study (annotated in outer ring). The inner ring is colored based on the 

country of origin of the individual contributing the MAG. 

(D) World map showing locations of populations from which T. succinifaciens MAGS were 

recovered as nodes (TZA = Tanzania, MDG = Madagascar, NEP = Nepal, FIJ = Fiji, PER = 

Peru, ELS = El Salvador). Arrows indicate the detection of transition events between 

populations. Thickness of the arrow indicates frequency of the transition event (thickest arrow is 

Tanzania to Fiji, 17.1%). The top 7 most frequent transition events are shown, accounting for 

65.7% of all transitions.  
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Fig. 4. Microbial strains in the Hadza exhibit are highly shared within bush camps. 

(A) The mean number of strains shared between Hadza adults broken down by various types of 

familial relationships. Exact p-values shown from Wilcoxon rank-sum test. 

(B) Rectangles along the circumference represent Hadza individuals and each link drawn 

between boxes indicates a shared strain. Links between members of the same bush camp are 

colored based on the bush camp; links between bush camps are colored black. The mean number 

of strains shared between members of the same bush camp and the p-value comparing strains 

sharing among members of that bush camp vs members from different bush camps are shown 

(Wilcoxon rank-sums test). 
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Materials and Methods 

Sample collection 

Samples from Tanzania are from 2013-2014 and described previously 2,7. Permission was 

obtained from the National Institute of Medical Research and the Tanzania Commission for 

Science and Technology. For longitudinal samples, one sample from each individual was marked 

“high_prority” (Table S1) and used as noted in statistical analyses that are not robust to multiple 

samples from the same individual. Nepal samples were obtained previously28 approved by the 

Ethical Review Board of the Nepal Health Research Council (NHRC) and the Stanford 

University Institutional Review Board (IRB). U.S. samples were obtained previously55 . All 

human samples were collected after receiving informed consent from participants. 

 

Library preparation and sequencing 

Shotgun metagenome sequencing was performed on extracted DNA (MoBio PowerSoil) as 

described previously2,7. Deeper shotgun metagenome sequencing was performed on samples 

extracted using phenol:chloroform:isoamyl alcohol described previously2. 101 Hadza individuals 

were sampled once and 66 individuals were sampled longitudinally. DNA extraction was 

performed using mechanical extraction (n=318), phenol chloroform extraction (n=38), or both 

(n=32). 

 

Libraries were prepared using half-reactions (Nextera Flex), using a minimum of 10 ng of DNA 

and 6 or 8 PCR cycles to minimize amplification bias using a different 12 base pair unique dual-

indexed barcode. Libraries were quantified (Agilent Fragment Analyzer) and size-selected 

(AMPure XP beads,Beckman), targeting a fragment length of 450bp (insert size 350 bp).  

 

Paired-end sequencing (2x140bp) was performed on a NovaSeq 6000 using S4 flow cells at 

Chan Zuckerberg Biohub (San Francisco, CA, USA). Samples were randomized across runs and 

sequenced repeatedly until the target depth was reached. Minimum target depth for each sample 

was 50 million paired-end reads (~14 Gbp) with a subset of samples sequenced to a minimum 

target depth of 100 million paired-end reads (~28 Gbp). A total of 8,148 giga base pairs (Gbp) of 

metagenomic data were generated from 388 Hadza metagenomes (range = 0.7 - 210.3 Gbp, mean 

= 21.0 Gbp, std dev = 14.5 Gbp), 57 Nepali metagenomes (1,794 Gbp total, range = 14.9 – 84.9 
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Gbp, mean =31.5 Gbp, std dev = 11 Gbp), and 12 California metagenomes (418 Gbp total, range 

= 25.2 – 56.8 Gbp, mean = 34.8 Gbp, std dev = 9.2 Gbp) for a total of 10.4 Tbp. 

 

Metagenome quality control and assembly  

Raw sequencing reads were demultiplexed and data originating from the same libraries were 

concatenated prior to analysis. Raw reads were processed using BBtools suite56. Exact duplicate 

reads (subs=0) were marked (clumpify), adapters and low-quality bases were trimmed 

(bbduk;trimq=16 minlen=55), trimmed reads were mapped (BBmap) against the human genome 

(hg19) with masks over regions conserved broadly in eukaryotes, and duplicate reads were 

removed. FastQC57 was used to ensure read quality. BBMerge was used to merge reads that 

could be joined unambiguously using the recommended settings (rem k=62 extend2=50 ecct 

vstrict)58.  

 

Metagenomes were assembled individually (metaSPAdes59 ; v3.13) using unmerged 

forward/reverse and merged reads (-k 21,33,55,77) with error-correction enabled.  Assembly size 

and contig metrics were evaluated (QUAST60 v5.0) and filtered to contigs >=1500 bp for all 

subsequent analyses. Gene-calling was performed on all assemblies (Prodigal 61 ;v2.6.3) in 

metagenome mode.  

 

Strain isolation and genome sequencing 

Stool resuspended in PBS was plated on CHG, YCFA (Anaerobe Systems), MRS (Sigma 

Aldrich), BSM (BBL), Colombia (Anaerobe Systems), BHI (Sigma Alrdich), LKV (Anaerobe 

Systems), Treponema media (DSM Medium 275), and milk-enriched media under anaerobic 

conditions. Individual colonies were re-streaked and then biotyped on a Bruker MALDI-TOF 

microflex to determine taxonomy. Colonies were grown in liquid media of the same type as the 

originating agar plate in anaerobic conditions. For isolating Treponema, 0.5% agar was added to 

the liquid media before making plates. Treponema strains were isolated after removing the top 

layer of agar to harvest colonies within the agar. Many of these isolated strains are not currently 

amenable to freezer storage and liquid-culture-based propagation in isolation.  
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Genomic DNA was extracted (Qiagen DNeasy Blood and Tissue). Libraries were prepared using 

half-reactions of the Nextera Flex kit, a minimum of 10 ng of DNA as input, 6 or 8 PCR cycles 

to minimize PCR amplification bias and a different 12 base pair unique dual-indexed barcode. 

Libraries were quantified (Agilent Fragment Analyzer) and size-selected (AMPure XP beads; 

Beckman), targeting a fragment length of 450bp (insert size of 350 bp). Paired-end sequencing 

(2x140bp) was performed on a NovaSeq 6000 using S4 flow cells at Chan Zuckerberg Biohub. 

Assembly of genomes was performed by trimming using BBduk (trimq=30), normalizing read 

depth using BBnorm (target=320, min=2), and assembled using SPAdes v3.13.1 (-k 

21,33,55,77,99,127)62. Genomes were assessed for completeness and contamination using 

CheckM (1.1.2)63. 

 

Bacterial and archaeal genome recovery and refinement 

A novel “co-mapping” approach was developed to leverage contig depth information from 

multiple, closely related samples and improve genome bin recovery from single-sample 

assemblies. MASH sketches (-s 1000000 -k 32 -m 2)64 were created from reads in each 

metagenome individually, and sketches were compared in a pairwise manner. For each assembly, 

reads from that sample and the nine next-closest related samples by MASH distance were 

mapped (Bowtie265;--very-sensitive -X 1000) and genome bins generated using contig depth for 

all 10 samples (MetaBAT266;v2.15, default settings). For California samples, only samples taken 

from the same individual were co-mapped. Genome bin quality was assessed using CheckM 

(v1.1.2)63 and anvi’o67 (v6.3). 

 

Bins were refined using MAGpurify v268 (using weighted mode for gc_content, tetra_freq, and 

coverage). The database used by Nayfach et al.68 for conspecific analysis was augmented by 

adding all bins that were >=95% complete and <=5% contaminated (CheckM and anvi’o). For 

each species-level group, only the highest-quality genome bin for each individual was included. 

Flagged contigs were removed. Rarely, a module suggested the removal of >25% of a bin’s 

length, and in such cases that module was turned off. Genomes with ≥50% completeness and 

<10% contamination according to CheckM were retained, in accordance with MIMAG 

standards69. 
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Evaluation of self- and co-mapping relative to isolate genomes 

Isolate genomes from Hadza stool samples were de-replicated (dRep v3.2.2;-s 100000, -sa 0.99). 

The highest scoring isolate as the representative when multiple isolates from the same secondary 

cluster were isolated from the same sample. 19 representative isolates were identified from 

samples that also had metagenome sequencing, assembly, and binning. Representative isolates 

and bins (>=50% complete, <5% contamination) generated using self-mapping and co-mapping 

were compared (MASH;-s 100000), selecting most similar bin MASH distance <0.05), with co-

mapping and self-mapping recovered 17 and 10 bins representing isolates, respectively, with no 

significant differences in quality. 

 

Creating bacteria / archaeal species-level genome database  

Bacterial and archael genomes sharing ≥ 95% average nucleotide identity (ANI) over 30% of 

their length were considered the same species70. Species-level groups were determined using 

dRep (v3.0.071 ;--S_algorithm fastANI --multiround_primary_clustering --clusterAlg greedy -ms 

10000 -pa 0.9 -sa 0.95 -nc 0.30 -cm larger) based on the ANI between all genomes within each 

species-level group. Each genome was assigned a “centrality” score according to its average ANI 

to all other genomes in the group. The highest score genome was chosen as representative for 

each species-level group using the formula: score = (1*completeness) - (5*contamination) + 

(0.5*log10(ctg_N50)) + (1*log10(contig_bp)) + (2*(centrality-0.95)*100). 

 

Centrality was calculated between all genomes in the UHGG genome database (v1.0) using the 

species-grouping4, and species representatives were chosen as above. Representatives from de 

novo genomes generated here and from the UHGG database (v1.0) were compared (dRep;--

S_algorithm fastANI --multiround_primary_clustering --clusterAlg greedy -ms 10000 -pa 0.9 -sa 

0.95 -nc 0.30 -cm larger). Representatives for each species-level group were chosen using the 

formula: score = (1*completeness) - (5*contamination) + (0.5*log10(ctg_N50)) + 

(1*log10(contig_bp)). Representatives were compared using the same dRep command, and 

winners were chosen using the same scoring criteria. Species-level group membership was back-

propagated to the original bins.  

 

Annotating bacteria / archaeal genomes and assessing genomic novelty 
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Taxonomy was determined for all species-level representative genomes using GTDB (v95)72. 

Novelty against UHGG were determined based on the species-level clustering described above. 

Only genomes that pass both the MIMAG genomic standards used in this study (≥50% 

completeness and <10% contamination) and the standard used during UHGG creation 

(completeness - (5*contamination) > 50) were considered in comparisons against UHGG. 

Species groups containing only genomes recovered from the Hadza were considered novel 

relative to UHGG. 

 

A phylogenetic tree was made (GtoTree (v1.5.36)73 with bacterial gene sets (-H Bacteria). All 

other settings were default. The tree was visualized using iTol74 with taxonomy provided by 

GTDB.  

 

Eukaryotic genome recovery and analysis 

EukRep (v0.6.6)75 was employed on all assemblies (default settings) and if a genome bin was 

both >5 mega base pairs and >80% eukaryotic according to EukRep, it was called eukaryotic. 

EukCC (v1.1)76  was run on eukaryotic bigs using database eukcc_db_20191023_1 

 

Proteins identified via EukCC were compared against UniRef10077 (downloaded 3/5/2020) using 

DIAMOND78 with a maximum e-value of 0.0001 (blastp -f 6 -e 0.0001 -k 1). The resulting 

taxonomy was parsed with tRep (https://github.com/MrOlm/tRep/tree/master/bin)79. Eukaryotic 

genomes with the same species-level taxonomy that originated from the same metagenomic 

sample were presumed to be from the same organism, were merged into a single file and re-

analyzed using EukCC and tRep. 

 

Phylogenetic tree was created (GToTree; v1.5.36)73 “GToTree -H Universal_Hug_et_al -j 4 -B -

c 1 -t”) with a custom set of public reference genomes. Tree was visualized using iTol74.  

 

Creating eukaryotic species-level genome database 

To identify eukaryotic species that may be present in the metagenomics sequenced in this study 

and which did not have genomes recovered using the pipeline described above, we ran the 

program EukDetect80 on all metagenomes sequenced in this study. Five species were detected in 
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at least two samples with “perecent_observed_markers” ≥ 50, and reference genomes for these 

five species were included in the eukaryotic species-level genome database. In addition to these 

five genomes, the highest quality representative genome from each of the seven species of 

eukaryotes recovered in this study was included in the eukaryotic species-level genome database. 

 

Metagenome reads were mapped onto the eukaryotic species-level genome database (Bowtie 265) 

and the resulting mappings were processed (inStrain quick_profile; v1.2.1424 and CoverM v0.4.0 

(https://github.com/wwood/CoverM)). A species was “present” if the breadth of coverage 

according to inStrain exceeded 0.1.  

 

Viral genome recovery 

CheckV81 (version 0.8.1, end-to-end mode, database v1.0) was run on all assembled contigs 

>=1500bp. Contigs predicted to contain one or more proviruses were run iteratively through 

CheckV (up to 5 rounds) until CheckV assumed the remaining region was viral. For provirus 

iterations only yielding an HMM-based completeness estimates, the most complete fragment was 

selected and excised from the parent contig. For provirus iterations with AAI (Average Amino 

acid Identity)-based completeness predictions, the fragment with the length closest to expected 

length was selected and excised from the parent contig. Viral contigs were passed through the 

MGV viral detection pipeline5 and Bacphlip (v0.9.6) was run to assign a lytic and temperate 

score82. 

 

Creating bacteriophage species-level genome database 

The 40,171 viruses recovered in this study were clustered into species-level groups as described 

previously5 (blastn --min_ani 95 --min_qcov 0 --min_tcov 85, 

https://github.com/snayfach/MGV/tree/master/ani_cluster), and the longest viral contig in each 

cluster was selected as the representative. To measure novelty versus MGV, the 16,899 species-

level representatives were subsequently clustered with the 54,118 MGV cluster representatives 

into species-level groups using the same method, and clusters without an MGV genome were 

considered novel. 

 

Viral host prediction 
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Host prediction was performed on the 40,171 viruses as described previously 5. Briefly, CRISPR 

spacers were identified (PILER-CR83 and CRT84 )  And BLASTN85 used to search viruses for 

CRISPR spacers identified from bins reported here and UHGG v1 (-dust no -word_size 18). 

CRISPR spacer hits were retained if there was a maximum of one mismatch or gap over >=95% 

of the spacer length. Additionally, hs-blastn86 was used to identify >=1kb and >=96% DNA 

identity hits between all UHGG and newly-recovered genomes and viruses reported here. All 

viral connections to host genomes were aggregated, and host taxonomy was assigned based on 

the lowest host taxonomic rank that had >70% agreement across CRISPR or BLASTN. 

 

Characterizing diversity 

Reads from all metagenomes generated here were mapped to the bacterial/archaeal, 

bacteriophage, and eukaryote species-level genome databases (Bowtie 265). Resulting mappings 

were processed (inStrain quick_profile; v1.2.1424 and CoverM v0.4.0 

(https://github.com/wwood/CoverM)). Prokaryotes where the representative genome was 

detected at ≥ 0.5 breadth (i.e. at least half of bases were covered by at least 1 read) were 

considered present. Bacteriophages and eukaryotes breadth thresholds were 0.75 and 0.1, 

respectively. 

 

Relative abundance (% DNA) was calculated as (# reads mapping a genome / total # reads in 

metagenome). Shannon diversity was calculated based on relative abundance (% DNA) values 

(scikit-bio (http://scikit-bio.org)) . 

 

Rarefaction analysis 

In silico rarefaction was performed on samples sequenced to ≥ 50 Gbp using the InStrain 

auxiliary script “rarefaction_curve.py“ (v0.3.0) 

(https://github.com/MrOlm/inStrain/blob/master/auxiliary_scripts/rarefaction_curve.py) on a 

.bam file of reads mapped with Bowtie 265. For other rarefaction curves (Fig. 1G, Extended 

Data Fig. 4C) an alternative in silico rarefaction technique was used. Genomes with < 50% 

breadth were removed from the analysis, and for each rarefaction level 1) a scaling threshold was 

established based on the total sequencing depth (scaling factor =  rarefaction depth / total 

sequencing depth), 2) scaled genome coverage was calculated by each genome by multiplying 
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un-rarefied coverage by this scaling factor, and 3) genomes with scaled coverage ≥ 1 were 

considered detected. 

 

Collating previously published human gut metagenomic samples 

Prevalence of microbial species across lifestyle was characterized using  a curated collection of 

2122 metagenomes including samples from industrial29–32,34,40,87,88, transitional15,17,35–38,40,41,89, 

and hunter-gatherer populations36,38,42–44. Samples were binned using the U.N. Human 

Development Index (HDI)90,91. Samples from individuals < 3 years old were excluded. For 

longitudinal samples, a single sample was randomly selected resulting in 137 Hadza samples. 

Reads were processed as described above. Samples with fewer than 60 genomes detected were 

excluded.  

 

Hadza sample ERR7803603, sequenced to a depth of 210 Gbp, was determined to be the deepest 

human gut metagenome sequenced as of 28 Feb 2022 by downloading all summary metadata 

from NCBI SRA with the search term “(txid408170[Organism:noexp]) AND WGS[Strategy]” 

and sorting by decreasing base pairs sequenced. 

 

Species prevalence analysis 

All reads generated here and publicly available were mapped to the bacterial/archaeal species-

level genome database (Bowtie265), and resulting mappings were processed using inStrain 

quick_profile (v1.2.14)24 and CoverM v0.4.0 (https://github.com/wwood/CoverM)). Species 

detected at ≥ 0.5 breadth were considered present and prevalence was calculated as the 

percentage of metagenomes in which the species was present.  

 

Genomes were assigned to VANISH or BloSSUM using p-values resulting from Fisher’s exact 

test on the following contingency table: [[(# Hadza samples where genome is found, # industrial 

samples where genome is found), (# Hadza samples genome is not found, # industrial samples 

where genome is not found)]]. All p-values were ranked and a percentile score was assigned. 

Genomes in the 95th percentile or greater where Hadza prevalence was higher were “VANISH” 

taxa. Those in the 95th percentile or greater where industrial prevalence was higher were 

“BloSSUM”.  
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Heatmaps displaying species prevalence data were created using the R package “pheatmap” 

(v1.0.12). Principal coordinate analysis was performed on the species prevalence data using the 

vegdist function in the package “vegan” 92 (v2.5-6) and the function cmdscale from the package 

“stats” (v4.0.4). 

 

Growth rate analyses 

InStrain profile (v1.2.14) (26) was run on all .bam files created as described in the “species 

prevalence analysis” section. All iRep values for genomes with ≥ 50% genome breadth and with 

values < 5 were considered valid. Seasonality of iRep values was plotted using seaborn v0.11.193 

“lineplot” with the default estimator (mean) and 95% confidence interval for error bars. 

 

Blastocystis analysis 

Presence or absence of each Blastocystis MAG was determined as described above. The top two 

most prevalent Blastocystis MAGs were most closely related to Blastocystis ST1 and Blastocystis 

ST4, respectively(tRep; https://github.com/MrOlm/tRep/tree/master/bin)79. Wilcoxon rank sum 

test was used to determine if presence of a Blastocystis genome was correlated with total relative 

abundance of VANISH taxa and BloSSUM taxa separately. Linear discriminant analysis was 

performed using the “lda” function from the package MASS (v7.3) to determine the effect size of 

each association.  

 

Seasonality analysis 

Principal coordinate analysis was performed on the Bray-Curtis distance between all Hadza 

samples in our study. Relative abundance was aggregated at the taxonomic level of family to 

mirror initial analysis done in Smits, et al.2. The adonis function in the R package “vegan” was 

used to test significance by season. Subject ID was used as a sub-stratum. A Wilcoxon rank-sum 

test was used to determine whether samples varied in composition along the major axis of 

variation, aggregated by season.  

 

The average relative abundance of each species-level group in our bacterial/archaeal species-

level genome database was calculated for each sub-season. Taxa that observed cyclical 
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abundance over the course of a year was determined (Kruskal-Wallis test; p-values were 

Bonferroni-adjusted to control for multiple hypothesis testing).  

 

CAZyme annotation was performed using dbCAN_v9 HMMs94 

(http://bcb.unl.edu/dbCAN2/download/Databases/V9/dbCAN-HMMdb-V9.txt). Proteins were 

searched against the HMM collection using hmmscan95 and filtered using the “hmmscan-

parser.sh” script provided with dbCAN2. Seasonal CAZyme analysis was performed using 

previously described seasonal delineations2. 

 

Protein clustering and novelty assessment 

Predicted proteins were clustered at 95% identity (MMseqs296 ; v12.113e3; easy-linclust --cov-

mode 1 -c 0.8 --kmer-per-seq 80 --min-seq-id 0.95 --compressed 1). Novelty relative to UHGP-

95 (v1.0)4 was determined by clustering together UHGP-95 with our de novo representative 

proteins (MMseqs2) and back-propagating to the initial de novo clustering to calculate the 

number of protein clusters assembled from each lifestyle (Extended Data Figure 2). 

Representative proteins were also compared against UniRef100 using DIAMOND78. Novel 

proteins were defined when the representative protein was not related to any protein in the 

UniRef100 database with ≥ 95% amino acid identity. 

 

Protein annotation 

Proteins were annotated (Pfams (v32)97 ;hmmsearch 95), filtered (hmmsearch --cut_ga --

domtblout), and protein domain overlap was resolved (cath-resolve-hits.ubuntu14.0498; --input-

format hmmer_domtblout --hits-text-to-file). 

 

Pfam enrichment analysis 

For each Pfam, the number of VANISH and BloSSUM genomes with at least one gene 

containing a Pfam was recorded as “c1” and “c2”, respectively. Pfams found more often in one 

genome set or the other were detected using a Fisher’s exact test on the following contingency 

table: [[c1, (# VANISH genomes) - c1], [c2, (# BloSSUM genomes) - c2]]. Multiple hypothesis 

correction was performed using the FDR method99). Pfam differential prevalence was calculated 

as (c2 / (# BloSSUM genomes)) - (c1 / (# VANISH genomes)). 
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Spirochaetes analysis 

Spirochaete genomes from the bacterial/archaeal species-level genome database and NCBI were 

de-replicated (dRep; --S_algorithm fastANI -ms 10000 -pa 0.9 -sa 0.95), and a phylogenetic tree 

was generated (GtoTree;v1.5.36)61,73,95,100–102 ) from bacterial (-H Bacteria) gene sets. All other 

settings were default. The tree was visualized using iTol74 and colored by taxonomy provided by 

GTDB. 

 

A tree of Treponema succinifaciens in the bacterial/archaeal species-level genome database was 

generated using GtoTree; v1.5.36)61,73,95,100–102 with IQ-Tree103 from bacterial (-H Bacteria) gene 

sets (completeness threshold 75% with “-G 0.75”). We used country-of-origin information (re-

coded as continent-of-origin) as a trait of each genome to measure the degree of phylogenetic 

signal in the geographic spread of the MAGs (“delta” function from Borges, et al.49 ). P-value of 

the delta statistic was performed using 100 calculations with randomly permuted tree tip labels.  

 

Stochastic character mapping of Treponema succinifaciens 

Stochastic character mapping was performed using SIMMAP via the “make.simmap” function 

(“phytools” R package104). We applied the character mapping on the marker-based tree of T. 

succinifaciens GToTree generated MAGs (described above). “Country of origin” of each MAG 

served as a trait and inferred ancestral character states on phylogeny (equal rates model, repeated 

100 times to calculate average # of character changes and direction of host transfer events). 

 

Pfam pN/pS analysis 

The pN/pS was calculated using inStrain (v1.2.14) (inStrain profile --database_mode)24 on 

mappings to the bacterial/archaeal species-level genome database, using the predicted genes. All 

genomes detected with < 80% breadth were excluded from analysis. For remaining genomes, 

genes with “SNV_count” < 5 were excluded. If <10 genes in a genome fit this criteria, the 

genome was excluded. Genes with ≥ 5 “SNV_count” and a blank “pNpS_variants” value were 

assigned a “pNpS_variants” of 100. Genes were sorted according to “pNpS_variants”, and genes 

in the top and bottom 10% of “pNpS_variants” were recorded. How many times each Pfam was 

detected on any genes that passed the above filters (“trial_count”) and how many times the Pfam 
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was in genes in the top and bottom 10% of genes based on “pNpS_variants” 

(“top_success_count”, “bottom_success_count”) was noted.  

 

To determine Pfams in the top or bottom 10% of “pNpS_variants” more often than expected by 

chance, genes detected in less than 5 samples were excluded, the number of times a gene was in 

the top 10%, bottom 10%, and seen total was scaled (“trial_count”/5), and the scaled 

“top_success_count”, “bottom_success_count”, and “trail_count” values were summed together. 

Probability that the “top_success_count” or bottom_success_count” was due to random chance 

was calculated using binomial statistics (Python Scipy105). P-values reported as 0 were set to 1E-

300 and multiple hypothesis correction was performed (FDR 99). Mean Pfam pN/pS was 

calculated as the average “pNpS_variants'' of all genes on genomes with ≥ 80% breadth and a 

non-blank “pNpS_variants” value. 

 

The procedure described above was repeated using “coverage” instead of “pNpS_variants” to 

detect Pfams associated with genes with higher or lower coverage than others. To avoid mis-

mapping (recruiting genes from other populations), all Pfams with uncorrected p-values < 0.01 

were excluded from the “pNpS_variants” analysis.  

 

Strain sharing analysis 

Genome detection was defined as minCov breadth ≥0.5 (i.e. at least half of bases were covered 

by at least 5 reads) as measured using “inStrain profile”. Each species detected in more than one 

individual was compared using inStrain compare. Where a genome was detected in more than 

120 samples, samples were divided into groups of equal size such that no group had more than 

120 samples, and “inStrain compare” was then run on each group. A distance matrix was created 

for each species based on resulting popANI values and used to cluster each species into 

individual strains using “average” hierarchical clustering with a threshold of 99.999% popANI 

(Scipy cluster). Strains shared between sample pairs were calculated based on this strain 

definition, and P-values were calculated only considering pairs of samples in which both samples 

were from Hadza adults.  
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Extended Data Figures 
 

 
Extended Data Figure 1. The median metagenomic sequencing depths of populations 
sequenced in this study.  
A box plot showing the distribution of sequencing depth, in giga base pairs (Gbp) for each of the 
populations sequenced in this study. The Chepang foragers and Raute, Raji, and Tharu agrarians 
are the Nepali populations. The populations do not differ significantly by sequencing depth (P = 
0.097, Kruskal-Wallis test). 
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Extended Data Figure 2. The Hadza gut microbiome has extensive functional novelty. 
For each population in this study, the percentage of predicted proteins from recovered genomes 
that are present in the UniRef100 and UHGP-95 protein databases  
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Extended Data Figure 3. Phylogenies of strains isolated from Hadza stool samples. 
(A) A phylogenetic tree of all isolate genomes sequenced in this study. The tree is decorated with 
phylum of each species (inner ring), whether the species is newly isolated for the first time 
(middle ring) and whether the species is novel relative to UHGG (outer ring). 
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Extended Data Figure 4. Increased sequencing depth results in the detection of novel and 
phylogenetically distinct taxa. 
(A) Taxonomic distribution of organisms present at different ranges of relative abundance levels 
(horizontal stacked bar plots) and the percentage of species that are novel according to GTDB 
(text percentages right of horizontal bars). Organisms detected at low relative abundance levels 
are more likely to be novel than those that are more abundant. (B) A depiction of how metrics 
would be different if 5 Gbp (approximately the average depth sequenced in previous large-scale 
genome binning studies) had been sequenced in the study rather than ~25 Gbp. ‘Nepal For.’ 
includes the Chepang foragers, and the ‘Nepal Ag.’ group includes Raute, Raji, and Tharu 
agrarians. (C) Collectors curves show the number of novel bacterial genomes detected in the four 
populations we sequenced by limiting sequencing depth of all samples to 5, 10, 15, 20, and 25 
Gbp. The vertical dotted lines indicate the average per-sample sequencing depth of this study 
(~23 Gbp) and the average per-sample sequencing depth of Nayfach et al. (~4 Gbp; ref. 4). 
Shaded areas around lines indicate 95% confidence intervals. “Nepal For.” includes the Chepang 
foragers, while “Nepal Ag.” includes Raute, Raji, and Tharu agrarians.  
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Extended Data Figure 5. Rarefaction analysis of deeply sequenced samples. 
The number of genomes detected (breadth > 0.5) in individual samples sequenced in this study 
by limiting sequencing depth to 5 Gbp increments. Each line represents an individual sample 
from which ≥ 50Gbp of trimmed, filtered reads were generated. Lines are colored by the 
population of the individual that gave the sample. The vertical dotted lines indicate the average 
per-sample sequencing depth of this study (~23 Gbp) and the average per-sample sequencing 
depth of samples used in Nayfach et al. (~4 Gbp; ref. 4).   
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Extended Data Figure 6. Global metagenomics data set and analysis of publicly available 
hunter-gatherer samples.  
(A) A flowchart showing the computational pipeline used to analyze global metagenomics 
samples. (B) A world map showing the geographic locations of global metagenomics samples. 
Dots are colored based on the lifestyle of the study population and the size of the dots indicate 
the number of samples contributed by that population. ‘H-G’, Hunter-Gatherer. (C) PCoA plot of 
H-G (green) and transitional (orange) samples in our global metagenomics data set. Triangles are 
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samples sequenced in this study (Hadza and Nepali samples). Circles are samples from other 
studies. Distance matrix was generated with Jaccard similarity between samples. (D) Shannon 
diversity of H-G samples in our global metagenomics data set. Significance between groups was 
calculated using Wilcoxon rank-sum test (*** P < 0.001, * P < 0.05). (E) Confusion matrix from 
a random forest classifier built to predict the lifestyle of Hadza samples from this study and H-G 
and transitional lifestyle samples from publicly available studies. 100% of Hadza samples were 
classified as Hadza, H-G samples were correctly classified 53% of the time and transitional 
samples were classified correctly 91% of the time. (F) Scatter plot showing sequencing depth 
versus richness (number of observed species). Linear regression model of richness against 
sequencing depth reveals a highly significant association (P = 2.2 x 10-16). ‘H-G’, Hunter-
Gatherer. 
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Extended Data Figure 7. Lifestyle-specific enrichment of bacterial and archaeal taxa. 
Volcano plot showing enrichment of each species in either Hadza or industrial samples in our 
global metagenomics data set. Dots colored magenta are in the 95th percentile most enriched in 
the Hadza and are deemed VANISH taxa (124 total). Dots that are colored blue are in the 95th 
percentile most enriched in industrial samples and are deemed BloSSUM (63 total).  
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Extended Data Figure 8. Global prevalence of two most prevalent Blastocystis MAGs and 
their association with VANISH and BloSSUM taxa. 
(A) A heatmap showing the prevalence of the two most prevalent Blastocystis MAGs (subtype 1 
and subtype 4) in 16 different countries in our global metagenomics database. (B) A volcano plot 
showing associations between the presence or absence of either Blastocystis genome and the 
relative abundance of VANISH (magenta) or BloSSUM (blue) taxa. P-values were determined 
with a Wilcoxon rank-sum test and then adjusted with the Benjamini-Hochberg method to 
correct for multiple hypothesis testing. Threshold for significance of the adjusted p-values is 
P=0.05 (or -log10(P)=1.3). Effect size was determined by linear discriminant analysis.  The data 
points labeled “Global” are the associations for all samples in our global metagenomics data set. 
Other data points are for individual studies within the global metagenomics data set (annotated 
by first author of study and country of origin of the metagenomes). Across all studies we found 
that Blastocystis presence was positively and negatively associated with the total abundance of 
VANISH (P=5.1x10-14) and BloSSUM (P=8.6x10-21) taxa, respectively. (C) Boxplots showing 
the summed relative abundance of BloSSUM taxa per sample and whether Blastocystis was 
detected in that sample. Associations shown are for the entire global metagenomics data set and 
5 additional populations (NEP = Nepal, TZA = Tanzania, THA = Thailand, ISR = Israel) from 
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three lifestyles labeled above the plots. P-values shown are the results of Wilcoxon rank-sum 
tests.  
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Extended Data Figure 9. Seasonality in Hadza gut microbiome. 
(A) A principal coordinate analysis of Hadza samples where the Bray-Curtis distance matrix was 
generated by calculating the relative abundance of each taxonomic family in our 
bacterial/archaeal species-level genome database using InStrain (top panel). Samples are colored 
by season. Season explains a significant amount of the variation in the data (P = 0.001, R2 =0.09; 
ADONIS, using Subject ID as a strata). Sub-season also explains a significant amount of 
variation in the data (P = 0.001, R2 =0.14; ADONIS, using Subject ID as a strata). The bottom 
panel shows a violin plot of each sample’s PCo1 position, grouped by season. Samples collected 
in the dry season are significantly different from the wet season (P = 1.2 x 10-10 and P = 2 x 10-16 
for 2013-DRY:2014-WET and 2014-WET:2014-DRY comparisons, respectively; Wilcoxon 
test). The samples collected in each dry season do not differ significantly from each other 
(P=0.34; Wilcoxon test). (B) The violin plots depict distribution of relative abundance for 6 
SRGs that vary significantly over the 5 sub-seasons. The top three sub-panels depict species-
level groups that have higher abundance in the wet seasons. The bottom three sub-panels depict 
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species-level groups that have higher abundance in the dry seasons. (Bulleidia sp., P-adjusted = 
7.5 x 10-20; Dorea formicigenerans, P-adjusted = 1.2 x 10-16; Holdemanella sp003436425, P-
adjusted = 6.5 x 10-16; Prevotella copri_A, P-adjusted = 0.0054; Succinivibrio sp000431835, P-
adjusted = 4.7 x 10-7; Treponema_D succinifaciens, P-adjusted = 0.012; Kruksal-Wallis test). 
2013-LD (Late Dry); 2014-EW (Early Wet); 2014-LW (Late Wet); 2014-ED (Early Dry); 2014-
LD (Late Dry). (C) For Hadza gut metagenomes sequenced in this study, genes present (≥ 80% 
breadth of coverage) on detected genomes (≥ 50% breadth of coverage) were annotated against 
the CAZyme database. CAZyme Pielou evenness (left), total richness (middle), and Shannon 
diversity (right) were calculated using the summed relative abundance of genomes containing 
each GH and PL CAZyme Family (for example, ‘GH16’) or (D) SubFamily (for example, 
‘GH16.7’). Values for samples collected from Hadza individuals in different seasons were 
compared using a two-sided Wilcoxon rank-sum test (* P < 0.01; ** P < 1 x 10-5; *** P < 1 x 10-

10).  
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Extended Data Figure 10. Microdiversity and growth rates of Hadza gut bacteria. 
(A) In situ growth rate measurements of all taxa detected in Hadza adult metagenomes across 

seasons. Error bars indicate 95% confidence intervals. (n.s. P > 0.05; **** P ≤ 0.0001; Wilcoxon 

rank-sum test). (B) Pfams with high or low pN/pS values in Hadza fecal metagenomes. The x-

axis displays the mean pN/pS value of all genes annotated with each Pfam within Hadza fecal 

metagenomes. The y-axis displays the probability that the number of times genes annotated as 

each Pfam were in the top 10% or bottom 10% of all genes on detected genomes was due to 

random chance (binomial test with multiple hypothesis correction). The 30 Pfams with the 

lowest p-values for low and high pN/pS were manually annotated with broad functional 

categories. 
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Supplementary Tables 

Supplementary Table 1 Description of Hadza, Nepali, and Californian cohorts 

Supplementary Table 2 Comprehensive genome information info (including representative genomes and other genomes) 

Supplementary Table 3 Roster of strains isolated from Hadza stool (including culturing information) 

Supplementary Table 4 Global metagenomics data set broken down by sample 

Supplementary Table 5 Prevalence/abundance data for each species-level representative genome in our bacterial/archaeal 
species-level genome database 

Supplementary Table 6 Pfam info (lifestyle-enrichment and pN/pS data) 

Supplementary Table 7 Strain sharing data between Hadza adult samples 
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