Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Rapid and accurate identification of Escherichia coli STEC O157:H7 by mass spectrometry, artificial intelligence and detection of specific biomarkers peaks

Manfredi Eduardo, Rocca María Florencia, Zintgraff Jonathan, Irazu Lucía, Miliwebsky Elizabeth, Carbonari Carolina, Deza Natalia, Prieto Monica, Chinen Isabel
doi: https://doi.org/10.1101/2022.03.31.486435
Manfredi Eduardo
aServicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: edimanfredi@gmail.com florirocca1980@gmail.com jczintgraff@gmail.com
Rocca María Florencia
bInstituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
cRed Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (ReNaEM Argentina), Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: edimanfredi@gmail.com florirocca1980@gmail.com jczintgraff@gmail.com
Zintgraff Jonathan
bInstituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
cRed Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (ReNaEM Argentina), Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: edimanfredi@gmail.com florirocca1980@gmail.com jczintgraff@gmail.com
Irazu Lucía
bInstituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miliwebsky Elizabeth
aServicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carbonari Carolina
aServicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Deza Natalia
aServicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Prieto Monica
bInstituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
cRed Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (ReNaEM Argentina), Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chinen Isabel
aServicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

The different pathotypes of Escherichia can produce a large number of human diseases. Surveillance becomes complex since their differentiation are not easy.

Particularly, the detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 consists of stool culture of a diarrheal sample in enrichment and/or selective media, identification of presumptive colonies and confirmation by Multiplex PCR technique for the genotypic characterization of serogroup O157 and Shiga toxins (stx1 and stx2), in addition to the traditional biochemical identification.

All of these procedures are laborious, require a certain level of training, are time consuming and expensive. Among the currently most widely used methodologies, MALDI-TOF MS mass spectrometry (matrix-assisted laser desorption/ionization with time-of-flight mass detection), allows a quick and easy way to obtain a protein spectrum of a microorganism, not only in order to identify the genus and species, but also the discovery of potential biomarker peaks of a certain characteristic. In the present work, the information obtained from 60 clinical isolates was used to detect peptide fingerprints of STEC O157:H7 and other diarrheagenic E. coli. The differences found in the protein profiles of the different pathotypes established the foundations for the development and evaluation of classification models through automated training.

The application of the Biomarkers in combination with the predictive models on a new set of samples (n=142), achieved 99.3% of correct classifications, allowing the distinction between STEC O157:H7 isolates from the other diarrheal Escherichia coli.

Therefore, given that STEC O157:H7 is the main causal agent of haemolytic uremic syndrome and based on the performance values obtained in the present work (Sensitivity=98.5% and Specificity=100%), this development could be a useful tool for diagnosis of the disease in clinical microbiology laboratories.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted April 01, 2022.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Rapid and accurate identification of Escherichia coli STEC O157:H7 by mass spectrometry, artificial intelligence and detection of specific biomarkers peaks
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Rapid and accurate identification of Escherichia coli STEC O157:H7 by mass spectrometry, artificial intelligence and detection of specific biomarkers peaks
Manfredi Eduardo, Rocca María Florencia, Zintgraff Jonathan, Irazu Lucía, Miliwebsky Elizabeth, Carbonari Carolina, Deza Natalia, Prieto Monica, Chinen Isabel
bioRxiv 2022.03.31.486435; doi: https://doi.org/10.1101/2022.03.31.486435
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Rapid and accurate identification of Escherichia coli STEC O157:H7 by mass spectrometry, artificial intelligence and detection of specific biomarkers peaks
Manfredi Eduardo, Rocca María Florencia, Zintgraff Jonathan, Irazu Lucía, Miliwebsky Elizabeth, Carbonari Carolina, Deza Natalia, Prieto Monica, Chinen Isabel
bioRxiv 2022.03.31.486435; doi: https://doi.org/10.1101/2022.03.31.486435

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4382)
  • Biochemistry (9594)
  • Bioengineering (7091)
  • Bioinformatics (24861)
  • Biophysics (12615)
  • Cancer Biology (9956)
  • Cell Biology (14354)
  • Clinical Trials (138)
  • Developmental Biology (7948)
  • Ecology (12105)
  • Epidemiology (2067)
  • Evolutionary Biology (15988)
  • Genetics (10925)
  • Genomics (14739)
  • Immunology (9869)
  • Microbiology (23670)
  • Molecular Biology (9484)
  • Neuroscience (50866)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2683)
  • Physiology (4014)
  • Plant Biology (8657)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2394)
  • Systems Biology (6435)
  • Zoology (1346)